Capture, acceleration and bunching rf systems for the MEIC booster and storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei
2015-09-01
The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeyratne, S; Ahmed, S; Barber, D
2012-08-01
Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.« less
RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan
2015-09-01
JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less
Scanning Synchronization of Colliding Bunches for MEIC Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.
2015-09-01
Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Morozov, Vasiliy; Lin, Fanglei
We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design aremore » summarized.« less
Fischer, W.; Gu, X.; Altinbas, Z.; ...
2015-12-23
Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.
The Electron Beam Ion Source (EBIS)
Brookhaven Lab
2017-12-09
Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen
MeRHIC - staging approach to eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptitsyn,V.; Beebe-Wang, J.; Ben-Zvi, I.
Design of a medium energy electron-ion collider (MeRHIC) is under development at the Collider-Accelerator Department at BNL. The design envisions construction of a 4 GeV electron accelerator in a local area inside and near the RHIC tunnel. Electrons will be produced by a polarized electron source and accelerated in energy recovery linacs. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at the 10{sup 32} cm{sup -2}s{sup -1} level will be achieved with 50 mA CW electronmore » current and presently available proton beam parameters. Efficient proton beam cooling at collision energy may bring the luminosity to 10{sup 33} cm{sup -2}s{sup -1}. An important feature of MeRHIC is that it serves as a first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of MeRHIC accelerator components will be used in eRHIC.« less
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Observations of beam losses due to bound-free pair production in a heavy-ion collider.
Bruce, R; Jowett, J M; Gilardoni, S; Drees, A; Fischer, W; Tepikian, S; Klein, S R
2007-10-05
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the CERN Large Hadron Collider when it operates with (208)Pb(82+) ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the BNL Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon (63)Cu(29+) ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beam pipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.
Determination of electron-nucleus collisions geometry with forward neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L.; Aschenauer, E.; Lee, J. H.
2014-12-29
There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.
Pre-Town Meeting on spin physics at an Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Aschenauer, Elke-Caroline; Balitsky, Ian; Bland, Leslie; Brodsky, Stanley J.; Burkardt, Matthias; Burkert, Volker; Chen, Jian-Ping; Deshpande, Abhay; Diehl, Markus; Gamberg, Leonard; Grosse Perdekamp, Matthias; Huang, Jin; Hyde, Charles; Ji, Xiangdong; Jiang, Xiaodong; Kang, Zhong-Bo; Kubarovsky, Valery; Lajoie, John; Liu, Keh-Fei; Liu, Ming; Liuti, Simonetta; Melnitchouk, Wally; Mulders, Piet; Prokudin, Alexei; Tarasov, Andrey; Qiu, Jian-Wei; Radyushkin, Anatoly; Richards, David; Sichtermann, Ernst; Stratmann, Marco; Vogelsang, Werner; Yuan, Feng
2017-04-01
A polarized ep/ eA collider (Electron-Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center-of-mass energy √{s} ˜ 20 to ˜ 100 GeV (upgradable to ˜ 150 GeV) and a luminosity up to ˜ 10^{34} cm-2s-1, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three-dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini-review contains a short update on progress in these areas since the EIC White paper (A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)).
Pre-Town Meeting on spin physics at an Electron-Ion Collider
Aschenauer, Elke-Caroline; Balitsky, Ian; Bland, Leslie; ...
2017-04-14
A polarized ep/eA collider (Electron-Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center-of-mass energy √s ~ 20 to ~ 100 GeV (upgradable to ~ 150 GeV) and a luminosity up to ~10 34 cm -2s -1, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three-dimensional structure of the nucleon (sea quark andmore » gluon spatial distributions, orbital motion, polarization, and their correlations). Finally, this mini-paper contains a short update on progress in these areas since the EIC White paper (A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)).« less
Physics Opportunity with an Electron-Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Patrizia
2016-12-01
Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less
NASA Astrophysics Data System (ADS)
M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier
2012-11-01
We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.
Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; ...
2017-12-01
Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less
Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.
Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less
Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyeKyoung; Castilla, Alejandro; Delayen, Jean R.
2016-05-01
The Center for Accelerator Science at Old Dominion University has designed, fabricated and successfully tested a crab cavity for Electron Ion Collider at Jefferson Lab (JLEIC) [1]. This proof-of-principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated JLEIC (called MEIC earlier) design [2] utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavities. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options.more » It compares advantages and disadvantages of the options which provide the JLEIC design team important technical information for a system down selection.« less
Fischer, W.; Gu, X.; Drees, K. A.; ...
2017-09-13
A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015)]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, W.; Gu, X.; Drees, K. A.
A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015)]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.
Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.
2017-07-01
The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less
Linear beam dynamics and ampere class superconducting RF cavities at RHIC
NASA Astrophysics Data System (ADS)
Calaga, Rama R.
The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half-cell electron gun and a five-cell SRF linac cavity are presented. Several RF and beam dynamics issues ultimately resulting in an optimum cavity design are discussed in detail.
Solenoid and monocusp ion source
Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley
1997-01-01
An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.
Solenoid and monocusp ion source
Brainard, J.P.; Burns, E.J.T.; Draper, C.H.
1997-10-07
An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.
Polarized positrons in Jefferson lab electron ion collider (JLEIC)
NASA Astrophysics Data System (ADS)
Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong
2018-05-01
The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.
Nuclear physics with a medium-energy Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.
2012-06-01
A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.
Study of Electron Polarization Dynamics in the JLEIC at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fanglei; Derbenev, Yaroslav; Morozov, Vasiliy
The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry ofmore » the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring.« less
Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development
NASA Astrophysics Data System (ADS)
Hamilton, Hannah; Phenix Collaboration
2015-10-01
Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.
Vadim Ptitsyn
2018-04-18
"E-RHIC - Future Electron-Ion Collider at BNL. While RHIC scientists continue their quest to look deep into nuclear phenomena resulting from collisions of ion beams and beams of polarized protons, new design work is under way for a possible extension of RHIC to include e-RHIC, a 10-billion electron volt, high-intensity polarized proton beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru
A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock aremore » due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.« less
Error Correction for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei
2016-05-01
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less
The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex; Nissen, Edward
Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8more » GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.« less
Luminosity geometric reduction factor from colliding bunches with different lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdu-Andres, S.
In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.
Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC
NASA Astrophysics Data System (ADS)
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.
2017-07-01
The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider.
Ji, Xiangdong; Yuan, Feng; Zhao, Yong
2017-05-12
Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin(ϕ_{q}-ϕ_{Δ}), where ϕ_{Δ} and ϕ_{q} are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.
Lappi, T.; Venugopalan, R.; Mantysaari, H.
2015-02-25
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
Beam Dynamics Considerations in Electron Ion Colliders
NASA Astrophysics Data System (ADS)
Krafft, Geoffrey
2015-04-01
The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.
Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)
NASA Astrophysics Data System (ADS)
Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.
2012-02-01
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.
Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.
Kondo, K; Yamamoto, T; Sekine, M; Okamura, M
2012-02-01
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Stephen V.; Derbenev, Yaroslav S.; Douglas, David R.
Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second usesmore » a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.« less
Baseline scheme for polarization preservation and control in the MEIC ion complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Lin, Fanglei; Morozov, Vasiliy
2015-09-01
The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarizationmore » orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.« less
Photon structure studied at an electron ion collider
Chu, X.; Aschenauer, E. C.; Lee, J. H.; ...
2017-10-30
We report that a future electron ion collider (EIC) will be able to provide collisions of polarized electrons with protons and heavy ions over a wide range of center-of-mass energies (20 GeV to 140 GeV) at an instantaneous luminosity of 10 33 - 10 34cm -2s -1. One of its promising physics programs is the study of the partonic structure of quasireal photons. Measuring dijets in quasireal photoproduction events, one can effectively access the underlying parton dynamics of the photons. In this paper, we discuss the feasibility of tagging resolved photon processes and measuring the dijet cross section as a function of jet transverse momentum in the range of 0.01 < xmore » $$rec\\atop{γ}$$ < 1 at an EIC. Finally, it will be shown that both unpolarized and polarized parton distributions in the photon can be extracted, and that the flavor of the parton can be tagged at an EIC.« less
Simulations of space charge neutralization in a magnetized electron cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerity, James; McIntyre, Peter M.; Bruhwiler, David Leslie
Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.
Simultaneous production of lepton pairs in ultraperipheral relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Kurban, E.; Güçlü, M. C.
2017-10-01
We calculate the total cross sections and probabilities of electromagnetic productions of electron, muon, and tauon pairs simultaneously. At the CERN Large Hadron Collider (LHC), the available electromagnetic energy is sufficient to produce all kinds of leptons coherently. The masses of muons and tauons are large, so their Compton wavelengths are small enough to interact with the colliding nuclei. Therefore, the realistic nuclear form factors are included in the calculations of electromagnetic pair productions. The cross section calculations show that, at LHC energies, the probabilities of simultaneous productions of all kinds of leptons are increased significantly compared to energies available at the BNL Relativistic Heavy Ion Collider (RHIC) . Experimentally, observing this simultaneous production can give us important information about strong QED.
NASA Astrophysics Data System (ADS)
Nakai, Yohta; Shirai, Toshizo; Tabata, Tatsuo; Ito, Rinsuke
1989-01-01
A universal analytic formula is given for the total cross sections of single-electron capture by multiply-charged ions colliding with H, H2 or He. Values of constants in the formula have been determined by least-squares fit to experimental data collected from the literature. The formula is applicable to ions of almost all atomic species with charge q greater than 4 (for the H and H2 targets) or 5 (for the He target) in the energy region from about 1 to 107 eV amu-1. The root-mean-square deviation of the data from the formula is 29%. The formula shows that the cross sections are proportional to q1.07 at low energies and to q2.86 at high energies. Other trends of the cross sections that can be derived from the formula are also discussed.
NASA Astrophysics Data System (ADS)
Overstreet, Sarah; Wang, Haipeng
2017-09-01
An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.
TMDs and GPDs at a future Electron-Ion Collider
Ent, Rolf
2016-06-21
With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less
Derbenev, Yaroslav S.; Zhang, Yuhong
2014-12-01
Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.
2008-11-01
Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.
NASA Astrophysics Data System (ADS)
Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.
1998-02-01
Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.
High energy Coulomb-scattered electrons for relativistic particle beams and diagnostics
Thieberger, P.; Altinbas, Z.; Carlson, C.; ...
2016-03-29
A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Lastly, some possiblemore » future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sickles, Anne
2014-03-19
Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protonsmore » and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.« less
Superconducting energy recovery linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
Superconducting energy recovery linacs
Ben-Zvi, Ilan
2016-09-01
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
PHENIX: Beyond 15 years of discovery
Morrison, David; Nagle, James L.
2015-01-12
The PHENIX experiment at BNL’s Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark–gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physicsmore » via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery.« less
Crab cavities: Past, present, and future of a challenging device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
2015-05-03
In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less
End-to-end 9-D polarized bunch transport in eRHIC energy-recovery recirculator, some aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Meot, F.; Brooks, S.
2015-05-03
This paper is a brief overview of some of the numerous beam and spin dynamics investigations undertaken in the framework of the design of the FFAG based electron energy recovery re-circulator ring of the eRHIC electron-ion collider project
Space-charge limitations in a collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, A.; Heimerle, M.
Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less
NASA Astrophysics Data System (ADS)
Rieger, G.; Pinnington, E. H.; Ciubotariu, C.
2000-12-01
Absolute photon emission cross sections following electron capture reactions have been measured for C2+, N3+, N4+ and O3+ ions colliding with Li(2s) atoms at keV energies. The results are compared with calculations using the extended classical over-the-barrier model by Niehaus. We explore the limits of our experimental method and present a detailed discussion of experimental errors.
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators
Luo, Yun
2015-08-29
SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yun
2015-06-24
SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; Luo, Jun-Hua; Li, Jun-Xiu
2015-06-15
We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation.more » Moreover, it is found that they are obviously different for the last two colliding cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Bob
Electron-ion colliders (EIC) have been identified as an ideal tool to study the next frontier of nuclear physics – the gluon force that holds the building blocks of matter together, and which is a fundamental component of the theory of Quantum Chromodynamics (QCD). Future electron-ion colliders under consideration can be based on the Energy Recovery Linac (ERL) architecture. The beam lines for this architecture could be built of the newly developed Non-Scaling Fixed Field Alternating Gradient (NS FFAG) structure, so that they can transfer multiple energies within the same aperture. This structure allows for the use of compact, economical quadupolemore » permanent magnets. In this SBIR, we propose to design and to manufacture prototype quadrupole permanent magnets of focusing/defocusing combined function for use in this beam line. For our SBIR project, we proposed to design and build the focusing/defocusing quadrupole with a gradient strength of 50 T/m and with a beam gap of 16mm. The proposed permanent magnet material is SmCo because of its higher radiation resistance as compared to NdBFe2. The use of permanent magnets will reduce the overall cost. For Phase I, we took a recent design by Dr. Dejan Trbojevic, and reran Tosca code on the design to optimize the iron yoke with respect to the thickness of SmCo. We then fabricated one prototype focusing/defocusing combined function quadruple and measured field quality dG/Go. Our plan for Phase II is that, based on our Phase I prototype experience, we shall improve the design and fabricate a production quadruple, and design and incorporate coils for skew dipoles and normal quadrupole correctors, etc. In addition, we shall fabricate enough quadrupoles for one cell. The development of quadrupole permanent magnets is of fundamental importance for there application in the future electron-ion colliders. This accelerator structure will also advance the development of muon accelerators and allow for the development of compact, simplified, less expensive proton accelerators which will promote their use in areas such as proton cancer therapy, and for high-power proton drivers for tritium and neutron production, waste transmutation, driving a sub-critical nuclear reactor to produce energy, cargo contain inspection, and radioisotope production. Proton cancer therapy has been identified as a particularly attractive and viable commercial application for the immediate future.« less
ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A. M.; Kondratenko, M. A.; Morozov, Vasiliy
2016-05-01
In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, wemore » propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.« less
Polarized He 3 + 2 ions in the Alternate Gradient Synchrotron to RHIC transfer line
Tsoupas, N.; Huang, H.; Méot, F.; ...
2016-09-06
The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV/n polarized 3He +2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus G He=(g₋2)/2=₋4.184 (where g is the g-factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions frommore » AGS to RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and lastly, we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.« less
Linear polarization of gluons and photons in unpolarized collider experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.
2013-10-01
We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pairmore » production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.« less
Particle beam injection system
Jassby, Daniel L.; Kulsrud, Russell M.
1977-01-01
This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, W.; Gu, X.; Altinbas, Z.
Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less
NASA Astrophysics Data System (ADS)
Duan, B.; Bari, M. A.; Wu, Z. Q.; Jun, Y.; Li, Y. M.; Wang, J. G.
2012-11-01
Aims: We present relativistic quantum mechanical calculations of electron-impact broadening of the singlet and triplet transition 2s3s ← 2s3p in four Be-like ions from N IV to Ne VII. Methods: In our theoretical calculations, the K-matrix and related symmetry information determined by the colliding systems are generated by the DARC codes. Results: A careful comparison between our calculations and experimental results shows good agreement. Our calculated widths of spectral lines also agree with earlier theoretical results. Our investigations provide new methods of calculating electron-impact broadening parameters for plasma diagnostics.
Injector for the University of Maryland Electron Ring (UMER)
NASA Astrophysics Data System (ADS)
Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.
2001-05-01
The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.
INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Vasiliy; Derbenev, Yaroslav; Lin, Fanglei
2016-05-01
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required tomore » allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.« less
Unveiling the proton spin decomposition at a future electron-ion collider
Aschenauer, Elke C.; Sassot, Rodolfo; Stratmann, Marco
2015-11-24
We present a detailed assessment of how well a future electron-ion collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton’s spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudodata and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have providedmore » evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon’s helicity distribution by the end of BNL-RHIC operations. As a result, all estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.« less
Pikin, A; Beebe, E N; Raparia, D
2013-03-01
Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.; Beebe, E. N.; Raparia, D.
Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current upmore » to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.« less
Electron-ion collider: The next QCD frontier: Understanding the glue that binds us all
DOE Office of Scientific and Technical Information (OSTI.GOV)
Accardi, A.; Albacete, J. L.; Anselmino, M.
This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decadesmore » and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. Furthermore, this White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.« less
Electron-ion collider: The next QCD frontier: Understanding the glue that binds us all
Accardi, A.; Albacete, J. L.; Anselmino, M.; ...
2016-09-08
This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decadesmore » and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. Furthermore, this White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.« less
Laser ion source for isobaric heavy ion collider experiment.
Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M
2016-02-01
Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tannenbaum, M. J.
A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less
Tannenbaum, M. J.
2018-01-30
A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2018-05-01
A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.
Crabbing System for an Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Castilla, Alejandro
As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increas- ing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers--in one of their versions--the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.
3D simulation of electron and ion transmission of GEM-based detectors
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal
2017-10-01
Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.
High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator
NASA Astrophysics Data System (ADS)
Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.
2017-10-01
Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar, J.; Andres, J. de; Lucas, J. M.
2012-11-27
Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structuremore » information.« less
NASA Astrophysics Data System (ADS)
Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles
2018-03-01
We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
NASA Technical Reports Server (NTRS)
Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.;
2016-01-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
NASA Astrophysics Data System (ADS)
Øieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J. C.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y.; Lindqvist, P. A.; Malakit, K.
2016-06-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
NASA Astrophysics Data System (ADS)
Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.
2016-12-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at 12 di downstream of the X line) was well resolved by Magnetospheric Multiscale, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
Opportunities for Drell-Yan Physics at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, E.; Bland, L.; Crawford, H.
Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participantsmore » of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.« less
Performance on the low charge state laser ion source in BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M.; Alessi, J.; Beebe, E.
On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au 32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavymore » Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).« less
NASA Astrophysics Data System (ADS)
He, X.
In the proposed Electron-Ion Collider (EIC) experiments, particle identification (PID) of the final state hadrons in the semi-inclusive deep inelastic scattering allows the measurement of flavor-dependent gluon and quark distributions inside nucleons and nuclei. The EIC PID consortium (eRD14 Collaboration) has been formed for identifying and developing PID detectors using Ring Imaging Cherenkov (RICH) techniques for the EIC experiments. A modular Ring Imaging Cherenkov (mRICH) detector has been designed for particle identification in the momentum coverage from 3 GeV/c to 10 GeV/c. The mRICH detector consists of an aerogel radiator block, a Fresnel lens, a mirror-wall and a photosensor plane. The first prototype of this detector was successfully tested at Fermi National Accelerator Laboratory in April 2016 for verifying the detector working principles. This talk will highlight the mRICH beam test results and their comparison with GEANT4-based detector simulations. An implementation of the mRICH detector concept in the Forward Angle sPHENIX spectrometer at BNL will also be mentioned in this talk.
High-performance DIRC detector for the future Electron Ion Collider experiment
NASA Astrophysics Data System (ADS)
Kalicy, G.; Allison, L.; Cao, T.; Dzhygadlo, R.; Hartlove, T.; Horn, T.; Hyde, C.; Ilieva, Y.; Nadel-Turonski, P.; Park, K.; Peters, K.; Schwarz, C.; Schwiening, J.; Stevens, J.; Xi, W.; Zorn, C.
2018-04-01
Excellent particle identification (PID) is an essential requirement for a future Electron-Ion Collider (EIC) detector. Identification of the hadrons in the final state is critical to study how different quark flavors contribute to nucleon properties. A detector based on the Detection of Internally Reflected Cherenkov light (DIRC) principle, with a radial size of only a few cm, is a perfect solution for those requirements. The R&D process performed by the EIC PID consortium (eRD14) is focused on designing a high-performance DIRC that would extend the momentum coverage well beyond the state-of-the-art, allowing 3 standard deviations or more separation of π/K up to 6 GeV/c, e/π up to 1.8 GeV/c, and p/K up to 10 GeV/c. A key component to reach such a performance is a special 3-layer compound lens. This article describes the status of the High-Performance DIRC R&D for the EIC detector, with a focus on the detailed Monte Carlo simulation results and performance tests of the 3-layer lens.
Beam-beam interaction study of medium energy eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.
Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beammore » loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun
Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...
2018-03-15
Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Emergence of kinetic behavior in streaming ultracold neutral plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuillen, P.; Castro, J.; Bradshaw, S. J.
2015-04-15
We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
Pressurized rf cavities in ionizing beams
Freemire, B.; Tollestrup, A. âV.; Yonehara, K.; ...
2016-06-20
A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less
Gridded thermionic gun and integral superconducting ballistic bunch compression cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The general design is a modified ballistic compression cavity pair with two independently powered cells [3]. The first is a cathode cell that includes the thermionic cathode and grid to provide for beam bunching. The second is a full cell with independent phasing and field levels designed to minimize energy spread. The primary goal for Phase II is to manufacture a superconducting gun with a thermionic cathode and imbedded coil. The system developed here is applicable to many high current electron accelerators. The analysis and design constraints imposed by the magnetized cathode make the cathode system developed here more complicated and limited than one without the magnetized beam constraints. High power ERLs would benefit by a gun with the capabilities shown here, 400 mA or more of current. ERLs hold great promise for electron cooling experiments, advanced light sources and Free Electron Lasers. This high current electron injector is a technological advance that will place the requirements for an ERL capable of providing quality bunches needed for cooling within the MEIC circulator ring within reach. This injector would have application to future ERLs around the world.« less
A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.
Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John
2014-02-01
A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.
NASA Astrophysics Data System (ADS)
Mäntysaari, Heikki; Venugopalan, Raju
2018-06-01
We show that gluon saturation gives rise to a strong modification of the scaling in both the nuclear mass number A and the virtuality Q2 of the vector meson production cross-section in exclusive deep-inelastic scattering off nuclei. We present qualitative analytic expressions for how the scaling exponents are modified as well as quantitative predictions that can be tested at an Electron-Ion Collider.
Calculation of the transverse kicks generated by the bends of a hollow electron lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
2014-03-25
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Testmore » Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.« less
The Proton Spin, Semi-Inclusive processes, and measurements at a future Electron Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhay, Deshpande
2018-01-12
We discuss spin physics, Guido’s contribution to it, and what we still have to learn. We set out in particular a programme for incorporating constraints from semi-inclusive data into global fits of polarized PDFs, and discuss the need for the EIC to increase the precision and kinematic coverage of current measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Afanasiev, S.; Aidala, C.
Measurements of bottomonium production in heavy-ion and p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three Υ states, Υ(1S + 2S + 3S), was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au+Au and p+p collisions at \\(\\sqrt{s_{\\mathrm{NN}}}=200\\) GeV. The Υ(1S + 2S + 3S) → e⁺e⁻ differential cross section at midrapidity was found to be B eedσ/dy = 108 ± 38 (stat) ± 15 (syst) ± 11 (luminosity) pb in p+p collisions. The nuclear modification factor in the 30% most central Au+Au collisions indicates a suppression ofmore » the total Υ state yield relative to the extrapolation from p+p collision data. Thus, the suppression is consistent with measurements at higher energies by the CMS experiment at the Large Hadron Collider.« less
Ion related problems for the XLS ring
NASA Astrophysics Data System (ADS)
Bozoki, Eva S.; Halama, Henry
1991-10-01
The electron beam in a storage ring collides with the residual gas in the vacuum chamber. As a consequence, low velocity positive ions are produced and trapped in the potential well of the electron beam. They perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions can lead to partial or total neutralization of the beam, causing both a decrease of lifetime and a change in the vertical tunes as well as an increase in the tune spread. It can also cause coherent and incoherent transverse instabilities. An electrostatic clearing electrodes system was designed to keep the neutralization below a desired limit. The location and the geometry of the clearing electrodes as well as the applied clearing voltage is based on the study of the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles, beam self-electric field, beam potential, critical mass for ion capture in the bunched beam and the bounce frequencies of the ions, tune shift and pressure rise due to trapped ions.
Crabbing system for an electron-ion collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castilla, Alejandro
2017-05-01
As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams aremore » being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.« less
Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M
2016-02-01
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.
Lead Ions and Coulomb's Law at the LHC (CERN)
ERIC Educational Resources Information Center
Cid-Vidal, Xabier; Cid, Ramon
2018-01-01
Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…
Compensation Techniques in Accelerator Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayed, Hisham Kamal
2011-05-01
Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less
NASA Astrophysics Data System (ADS)
Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha
2018-04-01
We study the low-virtuality inclusive leptoproduction of open charm, p↑l →D0+X as a probe of the gluon Sivers function. We perform the analysis in a generalized parton model framework. At leading order, this process is sensitive only to the gluon content of the proton. Hence any detection of a transverse single-spin asymmetry in this process would be clear indication of a non-zero gluon Sivers function (GSF). Considering COMPASS and a future Electron-Ion Collider (EIC), we present predictions for asymmetry using fits for the GSF available in literature. Predictions for peak asymmetry values lie in the range of 0.8% to 13%. We also present estimates of the upper bound on the asymmetry as obtained with a maximal gluon Sivers function. Further, for the case of the Electron-Ion Collider, we evaluate the asymmetry in the muons decaying from the D -meson and find that the asymmetry is well preserved in the kinematics of the muons. Peak values of the muon asymmetry are close to those obtained for the D -meson and lie in the range 0.75% to 11%.
Positron production by x rays emitted by betatron motion in a plasma wiggler.
Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M
2006-10-27
Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less
NSAC Recommends a Relativistic Heavy-Ion Collider.
ERIC Educational Resources Information Center
Physics Today, 1984
1984-01-01
Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
NASA Astrophysics Data System (ADS)
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.
2017-02-15
The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less
NASA Astrophysics Data System (ADS)
Chikvashvili, Ioseb
2011-10-01
In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.
X-rays from the colliding wind binary WR 146
NASA Astrophysics Data System (ADS)
Zhekov, Svetozar A.
2017-12-01
The X-ray emission from the massive Wolf-Rayet binary (WR 146 ) is analysed in the framework of the colliding stellar wind (CSW) picture. The theoretical CSW model spectra match well the shape of the observed X-ray spectrum of WR 146, but they overestimate considerably the observed X-ray flux (emission measure). This is valid in the case of both complete temperature equalization and partial electron heating at the shock fronts (different electron and ion temperatures), but there are indications for a better correspondence between model predictions and observations for the latter. To reconcile the model predictions and observations, the mass-loss rate of WR 146 must be reduced by a factor of 8-10 compared to the currently accepted value for this object (the latter already takes clumping into account). No excess X-ray absorption is derived from the CSW modelling.
Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields.
An, Weiming; Lu, Wei; Huang, Chengkun; Xu, Xinlu; Hogan, Mark J; Joshi, Chan; Mori, Warren B
2017-06-16
Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of less than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. The underlying physics that leads to the lower than expected emittance growth is elucidated.
A Study of Green's Function Methods Applied to Space Radiation Protection
NASA Technical Reports Server (NTRS)
Heinbockel, John H.
2001-01-01
The purpose of this research was to study the propagation of galactic ions through various materials. Galactic light ions result from the break up of heavy ion particles and their propagation through materials is modeled using the one-dimensional Boltzmann equation. When ions enter materials there can occur (i) the interaction of ions with orbital electrons which causes ionization within the material and (ii) ions collide with atoms causing production of secondary particles which penetrate deeper within the material. These processes are modeled by a continuum model. The basic idea is to place a control volume within the material and examine the change in ion flux across this control volume. In this way on can derive the basic equations for the transport of light and heavy ions in matter. Green's function perturbation methods can then be employed to solve the resulting equations using energy dependent nuclear cross sections.
NICA project at JINR: status and prospects
NASA Astrophysics Data System (ADS)
Kekelidze, V. D.
2017-06-01
The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.
Leading twist nuclear shadowing phenomena in hard processes with nuclei
L. Franfurt; Guzey, V.; Strikman, M.
2012-01-08
We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less
NASA Astrophysics Data System (ADS)
Liu, Ranran; Li, Qiyao; Smith, Lloyd M.
2014-08-01
In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.
Studies of electron cooling at DESY
NASA Astrophysics Data System (ADS)
Balewski, K.; Brinkmann, R.; Derbenev, Y.; Floettmann, K.; Wesolowski, P.; Gentner, M.; Husmann, D.; Steier, C.
2000-02-01
A possibility to improve the luminosity in hadron colliders is to apply electron cooling. For the e-p and possibly in the future for e-ion a cooling scheme is proposed for the HERA collider which improves the brightness of the hadron beam in two steps. In a first step the hadron beam is cooled at an energy of 15-20 GeV in the pre-accelerator PETRA. In a second step the hadrons are cooled at top energy in HERA, mainly to maintain the beam quality. The first part of the cooler in PETRA consists of a thermionic gun which delivers electron bunches of 120 keV. These bunches are then compressed so that they fit into a 208 MHz travelling wave linac where they are accelerated to an energy of 10 MeV. Gun, compressor, and linac are surrounded by a solenoid so that emittance growth is avoided especially at the low energy end. In order to reduce the energy spread of the electron beam and to lengthen it, the electrons run through a decompressor before they are brought together with the hadron beam in a 40 m long cooling section which is again surrounded by a solenoid. In this paper a schematic layout of the system will be presented and simulation results of the first part of the cooler will be shown. The cooler in HERA consists of a small electron storage ring with two long straight sections. It is shown that all requirements of such a ring running at an energy between 180 and 450 MeV can be met to fight emittance growth in case of light hadron beams (protons) and to cool heavy ions sufficiently fast.
Measurement of Υ (1 S +2 S +3 S ) production in p +p and Au + Au collisions at √{sNN}=200 GeV
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'Ani, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Bing, X.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garishvili, A.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, R.; Hanks, J.; Hartouni, E. P.; Haruna, K.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Samsonov, V.; Sano, M.; Sarsour, M.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration
2015-02-01
Measurements of bottomonium production in heavy-ion and p +p collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three Υ states, Υ (1 S +2 S +3 S ) , was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au +Au and p +p collisions at √{sNN}=200 GeV. The Υ (1 S +2 S +3 S ) →e+e- differential cross section at midrapidity was found to be Beed σ /d y =108 ±38 (stat) ±15 (syst) ±11 (luminosity) pb in p +p collisions. The nuclear modification factor in the 30% most central Au +Au collisions indicates a suppression of the total Υ state yield relative to the extrapolation from p +p collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.
Adare, A.; Afanasiev, S.; Aidala, C.; ...
2015-02-24
Measurements of bottomonium production in heavy-ion and p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three Υ states, Υ(1S + 2S + 3S), was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au+Au and p+p collisions at \\(\\sqrt{s_{\\mathrm{NN}}}=200\\) GeV. The Υ(1S + 2S + 3S) → e⁺e⁻ differential cross section at midrapidity was found to be B eedσ/dy = 108 ± 38 (stat) ± 15 (syst) ± 11 (luminosity) pb in p+p collisions. The nuclear modification factor in the 30% most central Au+Au collisions indicates a suppression ofmore » the total Υ state yield relative to the extrapolation from p+p collision data. Thus, the suppression is consistent with measurements at higher energies by the CMS experiment at the Large Hadron Collider.« less
Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)
NASA Astrophysics Data System (ADS)
Haug, F.; LHeC Study Team, The
2012-06-01
The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.
Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.
2016-02-15
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT)more » section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.« less
Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Weiming; Lu, Wei; Huang, Chengkun
2017-06-14
Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of lessmore » than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. In conclusion, the underlying physics that leads to the lower than expected emittance growth is elucidated.« less
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2014-04-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2015-02-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Relativistic Hydrodynamics for Heavy-Ion Collisions
ERIC Educational Resources Information Center
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Fourth workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider
NASA Technical Reports Server (NTRS)
Fatyga, M. (Editor); Moskowitz, B. (Editor)
1992-01-01
We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e(sup +) e(sup -) pairs in the elastic scattering of two heavy ions at the Relativistic Heavy Ion Collider (RHIC). A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.
Nuclear structure functions at a future electron-ion collider
Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; ...
2017-12-07
The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less
Nuclear structure functions at a future electron-ion collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.
The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less
NASA Astrophysics Data System (ADS)
Bearzotti, Andrea; Palummo, Lucrezia
2007-09-01
Relative humidity is an important quantity to control in many manufacturing environments such as semiconductor industry. Humidity and moisture can affect many electronic devices, generally rendering their operation worse. In this study we present results showing that in some specific applications, humidity can improve the performance of an electronic device. Resistive plate chambers are used as trigger detectors of the muon system in LHC (large hadron collider) experiments ATLAS (a toroidal LHC apparatus), CMS (compact muon solenoid) and ALICE (a large ion collider experiment) and as detector in cosmic rays experiment ARGO (astrophysical radiation with ground-based observatory). These detectors are made of phenolic-melaminic laminate electrodes, coated with a polymerized linseed oil film delimiting the gaseous sensitive volume. The loss of some of the detector capability can be progressive in time and due to the intrinsic limits of the detector materials. One of these effects is due to an increase of the total plate resistance, that is correlated to ion migration and relativity humidity phenomena. Our purpose is to understand the relative humidity (RH) influence on the conduction mechanisms on the electrodes surface. Results of amperometric measurements on laminate samples kept at a fixed temperature of 22°C, cycling RH between 10% and 90% are here presented.
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
Update on the CeC PoP 704 MHz 5-cell cavity cryomodule design and fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brutus, J. C.; Belomestnykh, S.; Ben-Zvi, I.
2015-05-03
A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up to 22MeV. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cellmore » SRF for CeC PoP experiment.« less
Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.
2015-05-01
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )
Direct heating of a laser-imploded core by ultraintense laser-driven ions.
Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A
2015-05-15
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.
Nuclear parton density functions from dijet photoproduction at the EIC
NASA Astrophysics Data System (ADS)
Klasen, M.; Kovařík, K.
2018-06-01
We study the potential of dijet photoproduction measurements at a future electron-ion collider (EIC) to better constrain our present knowledge of the nuclear parton distribution functions. Based on theoretical calculations at next-to-leading order and approximate next-to-next-to-leading order of perturbative QCD, we establish the kinematic reaches for three different EIC designs, the size of the parton density function modifications for four different light and heavy nuclei from He-4 over C-12 and Fe-56 to Pb-208 with respect to the free proton, and the improvement of EIC measurements with respect to current determinations from deep-inelastic scattering and Drell-Yan data alone as well as when also considering data from existing hadron colliders.
Potential for luminosity improvement for low-energy RHIC operation with long bunches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, A.; Blaskiewicz, M.
Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beams at low energies. Luminosity decreases as the square of bunch intensity due to the beam loss from the RF bucket as a result of the longitudinal intra beam scattering (IBS), as well as due to the transverse emittance growth because of the transverse IBS. Both transverse and longitudinal IBS can be counteracted with electron cooling. This would allow one to keep the initial peak luminosity close to constant throughout the store essentially without the beam loss. In addition, the phase-space density of the hadron beamsmore » can be further increased by providing stronger electron cooling. Unfortunately, the defining limitation for low energies in RHIC is expected to be the space charge. Here we explore an idea of additional improvement in luminosity, on top of the one coming from just IBS compensation and longer stores, which may be expected if one can operate with longer bunches at the space-charge limit in a collider. This approach together with electron cooling may result in about 10-fold improvement in total luminosity for low-energy RHIC program.« less
Space plasma contactor research, 1987
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.
Feasibility study of heavy-ion collision physics at NICA JINR
NASA Astrophysics Data System (ADS)
Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.
2017-11-01
The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.
NASA Astrophysics Data System (ADS)
Li, Ming; Kapusta, Joseph I.
2017-01-01
In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.
Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg
2011-07-15
One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions.
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A.; Anerella, M.; Cozzolino, J.
1995-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and testmore » results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A.; Anerella, M.; Cozzolino, J.
1996-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing andmore » test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less
NASA Astrophysics Data System (ADS)
Bae, Jai Kwan; Cultrera, Luca; DiGiacomo, Philip; Bazarov, Ivan
2018-04-01
Photocathodes capable of providing high intensity and highly spin-polarized electron beams with long operational lifetimes are of great interest for the next generation nuclear physics facilities like Electron Ion Colliders. We report on GaAs photocathodes activated by Cs2Te, a material well known for its robustness. GaAs activated by Cs2Te forms Negative Electron Affinity, and the lifetime for extracted charge is improved by a factor of 5 compared to that of GaAs activated by Cs and O2. The spin polarization of photoelectrons was measured using a Mott polarimeter and found to be independent from the activation method, thereby shifting the paradigm on spin-polarized electron sources employing photocathodes with robust coatings.
Bunch Splitting Simulations for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satogata, Todd J.; Gamage, Randika
2016-05-01
We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.
A large hadron electron collider at CERN
Abelleira Fernandez, J. L.
2015-04-06
This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less
NASA Astrophysics Data System (ADS)
Castro, Andrew; Alice-Usa Collaboration; Alice-Tpc Collaboration
2017-09-01
The Time Projection Chamber (TPC) currently used for ALICE (A Large Ion Collider Experiment at CERN) is a gaseous tracking detector used to study both proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) In order to accommodate the higher luminosit collisions planned for the LHC Run-3 starting in 2021, the ALICE-TPC will undergo a major upgrade during the next LHC shut down. The TPC is limited to a read out of 1000 Hz in minimum bias events due to the intrinsic dead time associated with back ion flow in the multi wire proportional chambers (MWPC) in the TPC. The TPC upgrade will handle the increase in event readout to 50 kHz for heavy ion minimum bias triggered events expected with the Run-3 luminosity by switching the MWPCs to a stack of four Gaseous Electron Multiplier (GEM) foils. The GEM layers will combine different hole pitches to reduce the dead time while maintaining the current spatial and energy resolution of the existing TPC. Undertaking the upgrade of the TPC represents a massive endeavor in terms of design, production, construction, quality assurance, and installation, thus the upgrade is coordinated over a number of institutes worldwide. The talk will go over the physics motivation for the upgrade, the ALICE-USA contribution to the construction of Inner Read Out Chambers IROCs, and QA from the first chambers built in the U.S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaoheng; Guo, Jiquan; Wang, Haipeng
2016-05-01
The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the firstmore » phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.« less
Superconducting racetrack booster for the ion complex of MEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filatov, Yu; Kondratenko, A. M.; Kondratenko, M. A.
2016-02-01
The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c.more » The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.« less
NASA Astrophysics Data System (ADS)
Geraksiev, N. S.; MPD Collaboration
2018-05-01
The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.
NASA Astrophysics Data System (ADS)
Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás
2018-06-01
A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D; Hollis, R; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, N S; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2007-05-11
The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2
Lead ions and Coulomb’s Law at the LHC (CERN)
NASA Astrophysics Data System (ADS)
Cid-Vidal, Xabier; Cid, Ramon
2018-03-01
Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.
Orthos, an alarm system for the ALICE DAQ operations
NASA Astrophysics Data System (ADS)
Chapeland, Sylvain; Carena, Franco; Carena, Wisla; Chibante Barroso, Vasco; Costa, Filippo; Denes, Ervin; Divia, Roberto; Fuchs, Ulrich; Grigore, Alexandru; Simonetti, Giuseppe; Soos, Csaba; Telesca, Adriana; Vande Vyvre, Pierre; von Haller, Barthelemy
2012-12-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The DAQ (Data Acquisition System) facilities handle the data flow from the detectors electronics up to the mass storage. The DAQ system is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches), and controls hundreds of distributed hardware and software components interacting together. This paper presents Orthos, the alarm system used to detect, log, report, and follow-up abnormal situations on the DAQ machines at the experimental area. The main objective of this package is to integrate alarm detection and notification mechanisms with a full-featured issues tracker, in order to prioritize, assign, and fix system failures optimally. This tool relies on a database repository with a logic engine, SQL interfaces to inject or query metrics, and dynamic web pages for user interaction. We describe the system architecture, the technologies used for the implementation, and the integration with existing monitoring tools.
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
NASA Astrophysics Data System (ADS)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
A New Simulation Framework for the Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Arrington, John
2017-09-01
Last year, a collaboration between Physics Division and High-Energy Physics at Argonne was formed to enable significantly broader contributions to the development of the Electron-Ion Collider. This includes efforts in accelerator R&D, theory, simulations, and detector R&D. I will give a brief overview of the status of these efforts, with emphasis on the aspects aimed at enabling the community to more easily become involved in evaluation of physics, detectors, and details of spectrometer designs. We have put together a new, easy-to-use simulation framework using flexible software tools. The goal is to enable detailed simulations to evaluate detector performance and compare detector designs. In addition, a common framework capable of providing detailed simulations of different spectrometer designs will allow for fully consistent evaluations of the physics reach of different spectrometer designs or detector systems for a variety of physics channels. In addition, new theory efforts will provide self-consistent models of GPDs (including QCD evolution) and TMDs in nucleons and light nuclei, as well as providing more detailed physics input for the evaluation of some new observables. This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-06CH11357.
Baltz, A J
2008-02-15
A new lowest order QED calculation for BNL Relativistic Heavy-Ion Collider e+ e- pair production has been carried out with a phenomenological treatment of the Coulomb dissociation of the heavy-ion nuclei observed in the STAR ZDC triggers. The lowest order QED result for the experimental acceptance is nearly 2 standard deviations larger than the STAR data. A corresponding higher-order QED calculation is consistent with the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelis, François; Schenke, Björn
In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
DAΦNE operation with electron-cloud-clearing electrodes.
Alesini, D; Drago, A; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, M; De Santis, S; Demma, T; Raimondi, P
2013-03-22
The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly evidenced by turning the electrodes on and off. In this Letter we briefly describe a novel design of the electrodes, while the main focus is on experimental measurements. Here we report all results that clearly indicate the effectiveness of the electrodes for e-cloud suppression.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-07
For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV 2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less
Emittance preservation in plasma-based accelerators with ion motion
Benedetti, C.; Schroeder, C. B.; Esarey, E.; ...
2017-11-01
In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittancemore » preservation with ion motion.« less
First observation of RDEC for gas (N2) targets with F9+
NASA Astrophysics Data System (ADS)
Kumara, P. N. S.; La Mantia, D. S.; Simon, A.; Kayani, A.; Tanis, J. A.
2017-10-01
Radiative double electron capture (RDEC) is a fundamental atomic process predicted to occur in ion-atom collisions. Several attempts were made to show experimental evidence for RDEC after it was introduced theoretically in 1987. The first successful measurements were done for O8+ ions colliding with a thin carbon foil in 2010, followed by measurements for F9+ projectiles incident on carbon. The works reported here are the first observations giving preliminary results for RDEC in collisions of F9+ projectiles with gas (N2) targets. X-rays were observed in the region of interest and an estimation of RDEC cross section was calculated. These cross sections are compared with recent theoretical calculations.
Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.
R&D of a High-Performance DIRC Detector for a Future Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Allison, Stacey Lee
An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly flat focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.
R&D of a high-performance DIRC detector for a future electron-ion collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Staceu L.
An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fractionmore » of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly at focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.« less
Enhanced production of low energy electrons by alpha particle impact
Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard
2011-01-01
Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184
Astrophysical Applications for Charge-Exchange with H, He, and H2 Targets
NASA Astrophysics Data System (ADS)
Cumbee, Renata S.; Mullen, Patrick D.; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.
2018-01-01
When a hot plasma collides with a cold neutral gas, interactions occur between the constituents at the interface of the collision, including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.As the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models in regions in which CX might be significant so that the ion abundance and plasma velocities can be estimated most accurately. Here, a set of CX X-ray line ratios and spectra will be shown for a variety of collision velocities for C-Cl ions colliding with H, He, and H2. An X-ray emission model including these line ratios performed in XSPEC will be presented for a region of the Cygnus Loop supernova remnant and the starburst galaxy M82 in order to highlight the variation in CX spectral models with collision energy and neutral target species.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ent, Rolf
With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less
Gluons and the quark sea at high energies: distributions, polarization, tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, D.; Venugopalan, R.; Diehl, M.
2011-09-30
This report is based on a ten-week program on Gluons and the quark sea at high-energies, which took place at the Institute for Nuclear Theory (INT) in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics (QCD). This report is organized around the following four major themes: (i) the spin and flavor structure ofmore » the proton, (ii) three dimensional structure of nucleons and nuclei in momentum and configuration space, (iii) QCD matter in nuclei, and (iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.« less
Possible limits of plasma linear colliders
NASA Astrophysics Data System (ADS)
Zimmermann, F.
2017-07-01
Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.
Initial-State Quantum Fluctuations in the Little Bang
Gelis, François; Schenke, Björn
2016-06-01
In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.
Correction to AD/RHIC-47, Beam Transfer From AGS to RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, J.; Foelsche, H.
1988-12-12
RHIC an acronym for Relativistic Heavy Ion Collider, is a facility for colliding heavy ions with each other, proposed for construction at Brookhaven National Laboratory. This facility and the motivation for building it, have been described. It consists of two intersecting storage rings and the purpose of this note is to describe how these two rings are to be filled with beam.
Ion related problems for the XLS ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozoki, E.; Halama, H.
1989-07-11
The electron beam in the XLS will collide with the residual gas in the vacuum chamber. The positive ions will be trapped in the potential well of the electron beam. They will perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions will lead to partial or total neutralization of the beam, causing both, a decrease of life-time and a change in the vertical tunes as well as an increase in the tune-spread. They can also cause coherent transverse instabilities. The degree of neutralization {theta} that one canmore » tolerate, is primarily determined by the allowable tune shift, which of the XLS is between 1 and 5 10{sup {minus}3}. Electrostatic clearing electrodes will be used to keep the neutralization below the desired limit. In order to determine their location and the necessary clearing-rate and voltage, we examine the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles to see what distance the ions can travel without clearing before the neutralization of the beam reaches the prescribed limit, beam potential to see the locations of the potential wells, voltage requirements for ion clearing, critical mass for ion capture in the bunched beam, tune shift caused by neutralization of the beam, pressure rise due to the trapped ions and power dissipation due to beam image current. 13 refs., 3 figs., 4 tabs.« less
Forward Tracking with the JLab/MEIC Detector Concept
NASA Astrophysics Data System (ADS)
Hyde, Charles; JLab/MEIC Design Team
2015-10-01
At a future electron ion collider (EIC), the quark-gluon structure of the NN force can be probed in e . g . deeply virtual exclusive scattering on a tensor polarized Deuteron and diffractive DIS on the deuteron with tagging of the NN final state. The MEIC design includes two Interaction Points (IPs), each of which can operate simultaneously at full luminosity. The detector and beam-line optics for IP1 are designed to be nearly hermetic for all particles outside the presumed 10-sigma admittance (longitudinal and transverse) of the figure-8 accelerator lattice. The integration of the IP1 detector with the lattice extends 40 m downstream of the IP in both the electron and ion directions. The central region of the detector is a new 4 m long 3 m diameter 3 Tesla solenoid. Analysis in the forward ion direction is enhanced by the 50 mrad crossing angle at the IP, and a two-stage spectrometer integrated into the first 36 m of the accelerator lattice. In this talk I will present the optics and resolution of the forward ion spectrometer, including resolution effects of an initial beam pipe design. Supported by U.S. Department of Energy.
Viscous Flow in Heavy-Ion Collisions from RHIC to LHC
NASA Astrophysics Data System (ADS)
Shen, Chun; Heinz, Ulrich
2013-05-01
We present a systematic hydrodynamic study of the evolution of hadron spectra and their azimuthal anisotropy from the lowest collision energy studied at the Relativistic Heavy Ion Collider (RHIC), s=7.7A GeV, to the highest energy reachable at the Large Hadron Collider (LHC), s=5500A GeV [C. Shen and U. Heinz, Phys. Rev. C 85, 054902 (2012) [arXiv:1202.6620 [nucl-th
Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M
2015-02-27
Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves. Copyright © 2015, American Association for the Advancement of Science.
Transverse profile of the electron beam for the RHIC electron lenses
Gu, X.; Altinbas, Z.; Costanzo, M.; ...
2015-07-10
To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less
Direct heating of a laser-imploded core using ultraintense laser LFEX
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Mori, Y.; Ishii, K.; Hanayama, R.; Nishimura, Y.; Okihara, S.; Nakayama, S.; Sekine, T.; Takagi, M.; Watari, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Hioki, T.; Motohiro, T.; Azuma, H.; Sunahara, A.; Sentoku, Y.; Arikawa, Y.; Abe, Y.; Miura, E.; Ozaki, T.
2017-07-01
A CD shell was preimploded by two counter-propagating green beams from the GEKKO laser system GXII (based at the Institute of Laser Engineering, Osaka University), forming a dense core. The core was predominantly heated by energetic ions driven by the laser for fast-ignition-fusion experiment, an extremely energetic ultrashort pulse laser, that is illuminated perpendicularly to the GXII axis. Consequently, we observed the D(d, n)3 He-reacted neutrons (DD beam-fusion neutrons) at a yield of 5× {{10}8} n/4π sr. The beam-fusion neutrons verified that the ions directly collided with the core plasma. Whereas the hot electrons heated the whole core volume, the energetic ions deposited their energies locally in the core. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with a yield of 6× {{10}7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. The shell-implosion dynamics (including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions) can be explained by the one-dimensional hydrocode STAR 1D. Meanwhile, the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions were well-predicted by the two-dimensional collisional particle-in-cell code. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high-gain fusion.
Simulation of radiation damping in rings, using stepwise ray-tracing methods
Meot, F.
2015-06-26
The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less
NASA Technical Reports Server (NTRS)
Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam
2009-01-01
X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.
NASA Astrophysics Data System (ADS)
Han, Jiu-Ning; Luo, Jun-Hua; Liu, Zhen-Lai; Shi, Jun; Xiang, Gen-Xiang; Li, Jun-Xiu
2015-06-01
The nonlinear properties of composite structure induced by the head-on collision of electron-acoustic solitons in a general plasma composed of cold fluid electrons, hot nonextensive distributed electron, and stationary ions are studied. We have made a detailed investigation on the time-evolution process of this merged wave structure. It is found that the structure survives during some time interval, and there are obviously different for the properties of the composite structures which are induced in cylindrical and spherical geometries. Moreover, it is shown that there are both positive and negative phase shifts for each colliding soliton after the interaction. For fixed plasma parameters, the soliton received the largest phase shift in spherical geometry, followed by the cylindrical and one-dimensional planar geometries.
The Hadron Blind Ring Imaging Cherenkov Detector
NASA Astrophysics Data System (ADS)
Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom
2013-10-01
Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.
Vorticity in heavy-ion collisions at the JINR Nuclotron-based Ion Collider fAcility
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2017-05-01
Vorticity of matter generated in noncentral heavy-ion collisions at energies of the Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna is studied. Simulations are performed within the model of the three-fluid dynamics (3FD) which reproduces the major part of bulk observables at these energies. Comparison with earlier calculations is done. The qualitative pattern of the vorticity evolution is analyzed. It is demonstrated that the vorticity is mainly located at the border between participants and spectators. In particular, this implies that the relative Λ -hyperon polarization should be stronger at rapidities of the fragmentation regions than that in the midrapidity region.
BM@N and MPD experiments at NICA
NASA Astrophysics Data System (ADS)
Kekelidze, Vladimir; Kolesnikov, Vadim; Sorin, Alexander
2018-02-01
The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range = 4 - 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avakian, Harut
Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.
1963-05-01
extracted is essentially qual- itative in nature. Ideally one should supplement all-sky camera data with those obtained by means of photometers which...oscillating charges do not collide with each other and with neutral molecules, the energy extracted from the wave by ions and electrons is reradiated...collision frequency Sen & Wyller showed that the couplex index of refraction in the generalized theory is given by 2 20± VB2 sn02cS20 n - i c k A+B
Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crease, Robert P.
2007-12-12
As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, themore » discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.« less
TPC status for MPD experiment of NICA project
NASA Astrophysics Data System (ADS)
Averyanov, A.; Bazhazhin, A.; Chepurnov, V. F.; Chepurnov, V. V.; Cheremukhina, G.; Chernenko, S.; Fateev, O.; Kiriushin, Yu.; Kolesnikov, A.; Korotkova, A.; Levchanovsky, F.; Lukstins, J.; Movchan, S.; Pilyar, A.; Razin, S.; Ribakov, A.; Samsonov, V.; Vereschagin, S.; Zanevsky, Yu.; Zaporozhets, S.; Zruev, V.
2017-06-01
In a frame of the JINR scientific program on study of hot and dense baryonic matter a new accelerator complex Ion Collider fAcility (NICA) based on the Nuclotron-M is under realization. It will operate at luminosity up to 1027 cm-2s-1 for Au79+ ions. Two interaction points are foreseen at NICA for two detectors which will operate simultaneously. One of these detectors, the Multi-Purpose Detector (MPD), is optimized for investigations of heavy-ion collisions. The Time-Projection Chamber (TPC) is the main tracking detector of the MPD central barrel. It is a well-known detector for 3-dimensional tracking and particle identification for high multiplicity events. The conceptual layout of MPD and detailed description of the design and main working parameters of TPC, the readout system based on MWPC and readout electronics as well as the TPC subsystems and tooling for assembling and integration TPC into MPD are presented.
High-intensity polarized H- ion source for the RHIC SPIN physics
NASA Astrophysics Data System (ADS)
Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.
2017-08-01
A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.
Excited State Atom-Ion Charge-Exchange
NASA Astrophysics Data System (ADS)
Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana
2017-04-01
We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.
The future of the Large Hadron Collider and CERN.
Heuer, Rolf-Dieter
2012-02-28
This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.
NASA Astrophysics Data System (ADS)
Ivantchenko, Vladimir
Geant4 is a toolkit for Monte Carlo simulation of particle transport originally developed for applications in high-energy physics with the focus on experiments at the Large Hadron Collider (CERN, Geneva). The transparency and flexibility of the code has spread its use to other fields of research, e.g. radiotherapy and space science. The tool provides possibility to simulate complex geometry, transportation in electric and magnetic fields and variety of physics models of interaction of particles with media. Geant4 has been used for simulation of radiation effects for number of space missions. Recent upgrades of the toolkit released in December 2009 include new model for ion electronic stopping power based on the revised version of ICRU'73 Report increasing accuracy of simulation of ion transport. In the current work we present the status of Geant4 electromagnetic package for simulation of particle energy loss, ranges and transmission. This has a direct implication for simulation of ground testing setups at existing European facilities and for simulation of radiation effects in space. A number of improvements were introduced for electron and proton transport, followed by a thorough validation. It was the aim of the present study to validate the range against reference data from the United States National Institute of Standards and Technologies (NIST) ESTAR, PSTAR and ASTAR databases. We compared Geant4 and NIST ranges of electrons using different Geant4 models. The best agreement was found for Penelope, except at very low energies in heavy materials, where the Standard package gave better results. Geant4 proton ranges in water agreed with NIST within 1 The validation of the new ion model is performed against recent data on Bragg peak position in water. The data from transmission of carbon ions via various absorbers following Bragg peak in water demonstrate that the new Geant4 model significantly improves precision of ion range. The absolute accuracy of ion range achieved is on level of 1
NASA Astrophysics Data System (ADS)
Batyuk, P.; Karpenko, Iu.; Lednicky, R.; Malinina, L.; Mikhaylov, K.; Rogachevsky, O.; Wielanek, D.
2017-08-01
Correlation femtoscopy allows one to measure the space-time characteristics of particle production in relativistic heavy-ion collisions due to the effects of quantum statistics (QS) and final state interactions (FSIs). The main features of the femtoscopy measurements at top RHIC and LHC energies are considered as a manifestation of strong collective flow and are well interpreted within hydrodynamic models employing equation of state (EoS) with a crossover type transition between quark-gluon plasma (QGP) and hadron gas phases. The femtoscopy at lower energies was intensively studied at AGS and SPS accelerators and is being studied now in the Beam Energy Scan program (BES) at the BNL Relativistic Heavy Ion Collider in the context of exploration of the QCD phase diagram. In this article we present femtoscopic observables calculated for Au-Au collisions at √{sN N}=7.7 -62.4 GeV in a viscous hydro + cascade model vHLLE+UrQMD and their dependence on the EoS of thermalized matter.
The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenke, Bjoern
2014-12-18
The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with eachmore » other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.« less
Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.
Schukraft, J
2012-02-28
After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.
Compensating effect of the coherent synchrotron radiation in bunch compressors
NASA Astrophysics Data System (ADS)
Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.
2013-06-01
Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.
Multi-cathode unbalanced magnetron sputtering systems
NASA Technical Reports Server (NTRS)
Sproul, William D.
1991-01-01
Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.
High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freemire, Ben
2013-05-01
The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternativemore » particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.« less
Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.
2006-02-10
It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.
Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders
NASA Astrophysics Data System (ADS)
Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan
2018-02-01
We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumberidze, A.; Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt am Main; Fritzsche, S.
2010-11-15
The projectile excitation of high-Z ions has been investigated in relativistic ion-atoms collisions by observing the subsequent x-ray emission. The x-ray spectra from the projectile excitation have been separated from the x-ray emission following electron capture into the excited states using a novel anticoincidence technique. For the particular case of hydrogenlike Au{sup 78+} ions colliding with Ar atoms, Coulomb excitation from the ground state into the fine-structure-resolved n=2 levels as well as into levels with principal quantum number n{>=}3 has been measured with excellent statistics. The observed spectra agree well with simulated spectra that are based on Dirac's relativistic equationmore » and the proper inclusion of the magnetic interaction into the amplitudes for projectile excitation. It is shown that a coherent inclusion of the magnetic part of the Lienard-Wiechert potential leads to the lowering of the excitation cross section by up to 35%. This effect is more pronounced for excitation into states with high angular momentum and is confirmed by our experimental data.« less
Numerical calculation of ion polarization in the NICA collider
NASA Astrophysics Data System (ADS)
Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.
2016-02-01
The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.
NASA Astrophysics Data System (ADS)
Kolesnikov, V. I.
2017-06-01
The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.
NASA Astrophysics Data System (ADS)
Kim, Young-Min; Lee, Chang-Hwan; Teaney, Derek; Zahed, Ismail
2017-07-01
We use an event-by-event hydrodynamical description of the heavy-ion collision process with Glauber initial conditions to calculate the thermal emission of photons. The photon rates in the hadronic phase follow from a spectral function approach and a density expansion, while in the partonic phase they follow from the Arnold-Moore-Yaffe (AMY) perturbative rates. The calculated photon elliptic flows are lower than those reported recently by both the ALICE and PHENIX collaborations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C. -Y.; Derbenev, Ya. S.; Douglas, D.
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. As a result, the newmore » formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.« less
Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosyn, Wim B.; Guzey, Vadim A.; Sargsian, Misak M.
2016-03-01
An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging''). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) andmore » report about on-going developments.« less
Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments
NASA Astrophysics Data System (ADS)
Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.
2017-11-01
A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.
Numerical calculation of charge exchange cross sections for plasma diagnostics
NASA Astrophysics Data System (ADS)
Mendez, Luis
2016-09-01
The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).
NASA Astrophysics Data System (ADS)
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.
2018-04-01
This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.
Mei Bai
2017-12-09
Among other things, scientists at BNL's Relativistic Heavy Ion Collider (RHIC) are studying a fundamental question of particle physics: What is responsible for proton "spin"? Physicist Mei Bai discusses this topic at the 423rd Brookhaven Lecture, "RHIC: The Worlds First High-Energy, Polarized-Proton Collider."
Polarized γ source based on Compton backscattering in a laser cavity
NASA Astrophysics Data System (ADS)
Yakimenko, V.; Pogorelsky, I. V.
2006-09-01
We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC), and the Compact Linear Collider (CLIC). This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO2 laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.
Lattice QCD at finite temperature and density from Taylor expansion
NASA Astrophysics Data System (ADS)
Steinbrecher, Patrick
2017-01-01
In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.
Nuclear physics from Lattice QCD
NASA Astrophysics Data System (ADS)
Shanahan, Phiala
2017-09-01
I will discuss the current state and future scope of numerical Lattice Quantum Chromodynamics (LQCD) calculations of nuclear matrix elements. The goal of the program is to provide direct QCD calculations of nuclear observables relevant to experimental programs, including double-beta decay matrix elements, nuclear corrections to axial matrix elements relevant to long-baseline neutrino experiments and nuclear sigma terms needed for theory predictions of dark matter cross-sections at underground detectors. I will discuss the progress and challenges on these fronts, and also address recent work constraining a gluonic analogue of the EMC effect, which will be measurable at a future electron-ion collider.
NASA Astrophysics Data System (ADS)
Robertis, G. De; Fanizzi, G.; Loddo, F.; Manzari, V.; Rizzi, M.
2018-02-01
In this work the MOSAIC ("MOdular System for Acquisition, Interface and Control") board, designed for the readout and testing of the pixel modules for the silicon tracker upgrade of the ALICE (A Large Ion Collider Experiment) experiment at teh CERN LHC, is described. It is based on an Artix7 Field Programmable Gate Array device by Xilinx and is compliant with the six unit "Versa Modular Eurocard" standard (6U-VME) for easy housing in a standard VMEbus crate from which it takes only power supplies and cooling.
BNL 56 MHz HOM Damper Prototype Fabrication at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huque, Naeem A.; Daly, Edward F.; Clemens, William A.
A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.
Project Nuclotron-based Ion Collider fAcility at JINR
NASA Astrophysics Data System (ADS)
Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.
2017-09-01
The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Toneev, V. D.; Voronyuk, V.
2018-06-01
We study the formation of fluid vorticity and the hyperon polarization in heavy-ion collisions at energies available at the JINR Nuclotron-based Ion Collider fAcility in the framework of the parton-hadron-string dynamic model, taking into account both hadronic and quark-gluonic (partonic) degrees of freedom. The vorticity properties in peripheral Au+Au collisions at √{sN N}=7.7 GeV are demonstrated and confronted with other models. The obtained result for the Λ polarization is in agreement with the experimental data by the STAR Collaboration, whereas the model is not able to explain the observed high values of the antihyperon Λ ¯ polarization.
Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies
NASA Astrophysics Data System (ADS)
Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter
2015-02-01
We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.
NASA Astrophysics Data System (ADS)
Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.
2017-12-01
Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.
Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III
NASA Astrophysics Data System (ADS)
Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.
2005-05-01
We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.
Has the QCD critical point been signaled by observations at the BNL relativistic heavy ion collider?
Lacey, Roy A; Ajitanand, N N; Alexander, J M; Chung, P; Holzmann, W G; Issah, M; Taranenko, A; Danielewicz, P; Stöcker, Horst
2007-03-02
The shear viscosity to entropy ratio (eta/s) is estimated for the hot and dense QCD matter created in Au+Au collisions at BNL Relativistic Heavy Ion Collider (square root[s_{NN}]=200 GeV). A very low value is found; eta/s approximately 0.1, which is close to the conjectured lower bound (1/4pi). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.
Photon interferometry of Au+Au collisions at the BNL Relativistic Heavy-Ion Collider.
Bass, Steffen A; Müller, Berndt; Srivastava, Dinesh K
2004-10-15
We calculate the two-body correlation function of direct photons produced in central Au+Au collisions at the Relativistic Heavy-Ion Collider. Our calculation includes contributions from the early preequilibrium phase in which photons are produced via hard parton scatterings as well as radiation of photons from a thermalized quark-gluon plasma and the subsequent expanding hadron gas. We find that high energy photon interferometry provides a faithful probe of the details of the space-time evolution and of the early reaction stages of the system.
BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less
Vlasov analysis of microbunching instability for magnetized beams
Tsai, C. -Y.; Derbenev, Ya. S.; Douglas, D.; ...
2017-05-19
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. As a result, the newmore » formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.« less
Transverse profile of the electron beam for the RHIC electron lenses
NASA Astrophysics Data System (ADS)
Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.
2015-10-01
The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.
Ion Sources, Preinjectors and the Road to EBIS (459th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, James
2010-07-21
To meet the requirements of the scientific programs of the Relativistic Heavy Ion Collider and the NASA Space Radiation Lab, BNL's Collider-Accelerator Department needs a variety of ion sources. Although these sources are a relatively small and inexpensive part of an accelerator, they can have a big impact on the machine's overall performance. For the 459th Brookhaven Lecture, James Alessi will describe C-AD's long history of developing state-of-the-art ion sources for its accelerators, and its current process for source and pre-injector development. He will follow up with a discussion of the features and development status of EBIS, which, as themore » newest source and preinjector, is in the final stages of commissioning at the end of a five-year construction project.« less
Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2018-01-01
The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.
Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas
NASA Astrophysics Data System (ADS)
Rosenberg, Michael
2013-10-01
Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.
Small-x Physics: From HERA to LHC and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonid Frankfurt; Mark Strikman; Christian Weiss
2005-07-01
We summarize the lessons learned from studies of hard scattering processes in high-energy electron-proton collisions at HERA and antiproton-proton collisions at the Tevatron, with the aim of predicting new strong interaction phenomena observable in next-generation experiments at the Large Hadron Collider (LHC). Processes reviewed include inclusive deep-inelastic scattering (DIS) at small x exclusive and diffractive processes in DIS and hadron-hadron scattering, as well as color transparency and nuclear shadowing effects. A unified treatment of these processes is outlined, based on factorization theorems of quantum chromodynamics, and using the correspondence between the ''parton'' picture in the infinite-momentum frame and the 'dipole''more » picture of high-energy processes in the target rest frame. The crucial role of the three-dimensional quark and gluon structure of the nucleon is emphasized. A new dynamical effect predicted at high energies is the unitarity, or black disk, limit (BDL) in the interaction of small dipoles with hadronic matter, due to the increase of the gluon density at small x. This effect is marginally visible in diffractive DIS at HERA and will lead to the complete disappearance of Bjorken scaling at higher energies. In hadron-hadron scattering at LHC energies and beyond (cosmic ray physics), the BDL will be a standard feature of the dynamics, with implications for (a) hadron production at forward and central rapidities in central proton-proton and proton-nucleus collisions, in particular events with heavy particle production (Higgs), (b) proton-proton elastic scattering, (c) heavy-ion collisions. We also outline the possibilities for studies of diffractive processes and photon-induced reactions (ultraperipheral collisions) at LHC, as well as possible measurements with a future electron-ion collider.« less
Commissioning of the Electron-Positron Collider VEPP-2000 after the Upgrade
NASA Astrophysics Data System (ADS)
Shatunov, Yu.; Belikov, O.; Berkaev, D.; Gorchakov, K.; Zharinov, Yu.; Zemlyanskii, I.; Kasaev, A.; Kirpotin, A.; Koop, I.; Lysenko, A.; Motygin, S.; Perevedentsev, E.; Prosvetov, V.; Rabusov, D.; Rogovskii, Yu.; Senchenko, A.; Timoshenko, M.; Shatilov, D.; Shatunov, P.; Shvarts, D.
2018-05-01
The VEPP-2000 electron-positron collider has been operating at BINP since 2010. Applying the concept of round colliding beams allows us to reach the record value of the beam-beam parameter, ξ 0.12. The VEPP-2000 upgrade, including the connection to the new BINP Injection Complex, the improvement of the BEP booster, and the BEP-VEPP-2000 transfer channels for operation at 1 GeV, substantially increases the installation luminosity. Data collection is in progress.
Status of the NICA project at JINR
NASA Astrophysics Data System (ADS)
Kekelidze, Vladimir; Kovalenko, Alexandr; Lednicky, Rihard; Matveev, Viktor; Meshkov, Igor; Sorin, Alexandr; Trubnikov, Grigory
2017-03-01
The NICA (Nuclotron-based Ion Collider fAcility) project is now under active realization at the Joint Institute for Nuclear Research (JINR, Dubna). The main goal of the project is a study of hot and dense strongly interacting matter in heavy-ion (up to Au) collisions at the center-of-mass energies up to 11 GeV per nucleon. Two modes of operation are foreseen, collider mode and extracted beams, with two detectors: MPD and BM@N. The both experiments are in preparation stage. An average luminosity in the collider mode is expected to be 1027 cm-2 s-1 for Au (79+). Extracted beams of various nuclei with maximum momenta of 13 GeV/c (for protons) will be available. A study of spin physics with extracted and colliding beams of polarized deuterons and protons at energies up to 27 GeV (for protons) is foreseen with the NICA facility. The proposed program allows one to search for possible signs of phase transitions and critical phenomena as well as to shed light on the problem of the nucleon spin structure.
Neutral-current weak interactions at an EIC
Zhao, Y. X.; Deshpande, A.; Huang, J.; ...
2017-03-21
Here, a simulation study of measurements of neutral current structure functions of the nucleon at the future high-energy and high-luminosity polarized electron-ion collider (EIC) is presented. A new series of γ-Z interference structure functions, F γZ 1, F γZ 3, g γZ 1, g γZ 5 become accessible via parity-violating asymmetries in polarized electron-nucleon deep inelastic scattering (DIS). Within the context of the quark-parton model, they provide a unique and, in some cases, yet-unmeasured combination of unpolarized and polarized parton distribution functions. The uncertainty projections for these structure functions using electron-proton collisions are considered for various EIC beam energy configurations.more » Also presented are uncertainty projections for measurements of the weak mixing angle sin 2θ W using electron-deuteron collisions which cover a much higher Q 2 than that accessible in fixed target measurements. QED and QCD radiative corrections and effects of detector smearing are included with the calculations.« less
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Moens, Vince; Redaelli, Stefano
2014-07-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The designmore » of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.« less
NASA Astrophysics Data System (ADS)
Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco
2017-09-01
As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.
Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report
Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; ...
2016-05-01
Here, the interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark–gluon plasma. Among them is the Chiral Magnetic Effect (CME)—the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark–gluon plasma, andmore » can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.« less
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2006-07-01
We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
Luo, Y.; Fischer, W.; White, S.
2016-02-04
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we will present the operational observations at the routine proton physics stores. In addition, the mechanisms for the beam loss, transverse emittance growth, and bunch lengthening are analyzed. Lastly, numerical calculations and multiparticle tracking are used to model these observations.
Artificial optical emissions in the thermosphere induced by powerful radio waves: A review
NASA Astrophysics Data System (ADS)
Kosch, M.; Senior, A.; Gustavsson, B.; Grach, S.; Pedersen, T.; Rietveld, M.
High-power high-frequency radio waves beamed into the ionosphere with O-mode polarization cause plasma turbulence which can accelerate electrons These electrons collide with the F-layer neutrals causing artificial optical emissions identical to natural aurora The brightest optical emissions are O 1D 630 nm with a threshold of 2 eV and O 1S 557 7 nm with a threshold of 4 2 eV The optical emissions give direct evidence of electron acceleration by plasma turbulence as well as their non-Maxwellian energy spectrum HF pumping of the ionosphere also causes electron temperature enhancements but these alone are not sufficient to explain the optical emissions EISCAT plasma-line measurements indicate that the enhanced electron temperatures are consistent with the bulk of the electrons having a Maxwellian energy spectrum Novel discoveries include 1 Very large electron temperature enhancements of several 1000 K which maximise along the magnetic field line direction 2 Ion temperature enhancements of a few 100 K 3 Large ion outflows exceeding 200 m s 4 The F-layer optical emission maximizes sharply near the magnetic zenith with clear evidence of self-focusing 5 The optical emission generally appears below the HF pump reflection altitude as well as the upper-hybrid resonance height 6 The optical emission and HF coherent radar backscatter generally minimize when pumping on the third or higher electron gyro-harmonic frequency suggesting upper-hybrid waves as the primary mechanism 7 The optical emissions and HF coherent backscatter are enhanced on the
Developing field emission electron sources based on ultrananocrystalline diamond for accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi
Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less
Low-Virtuality Leptoproduction of Open-Charm as a Probe of the Gluon Sivers Function
NASA Astrophysics Data System (ADS)
Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha
2018-05-01
We propose low-virtuality leptoproduction of open-charm, p^\\uparrow l→ D^0+X, as a probe of the gluon Sivers function (GSF). At leading-order, this process directly probes the gluon content of the proton, making detection of a trasverse single-spin asymmetry in the process a clear indication of a non-zero GSF. Considering the kinematics of the proposed future Electron-Ion Collider, we present predictions for asymmetry using fits of the GSF available in literature. We also study the asymmetry at the level of muons produced in D-meson decays and find that the asymmetry is preserved therein as well.
Gluon tomography from deeply virtual Compton scattering at small x
Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
2017-06-29
We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.
Observation of snake resonances at Relativistic Heavy Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, M.; Ahrens, L.; Alekseev, I.G.
2010-09-27
The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discovered by Lee and Tepikian. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protonsmore » collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonances is also presented.« less
Low emittance electron storage rings
NASA Astrophysics Data System (ADS)
Levichev, E. B.
2018-01-01
Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.
Physics perspectives of heavy-ion collisions at very high energy
Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; ...
2016-01-15
We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` (P.I., M. Reiser); TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` (Co-P.I.`s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,`` (Co-P.I.`s, V.L. Granatstein, W. Lawson, M.more » Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M.more » Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.« less
NASA Technical Reports Server (NTRS)
Bassiri, Sassan; Hajj, George A.
1993-01-01
Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.
Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch.
Quan, Ting; Wang, Xue; Wang, Zhong Lin; Yang, Ya
2015-12-22
We report a hybridized nanogenerator including a triboelectric nanogenerator (TENG) and six electromagnetic generators (EMGs) that can effectively scavenge biomechanical energy for sustainably powering an electronic watch. Triggered by the natural motions of the wearer's wrist, a magnetic ball at the center in an acrylic box with coils on each side will collide with the walls, resulting in outputs from both the EMGs and the TENG. By using the hybridized nanogenerator to harvest the biomechanical energy, the electronic watch can be continuously powered under different motion types of the wearer's wrist, where the best approach is to charge a 100 μF capacitor in 39 s to maintain the continuous operation of the watch for 456 s. To increase the working time of the watch further, a homemade Li-ion battery has been utilized as the energy storage unit for realizing the continuous working of the watch for about 218 min by using the hybridized nanogenerator to charge the battery within 32 min. This work will provide the opportunities for developing a nanogenerator-based built-in power source for self-powered wearable electronics such as an electronic watch.
Physics of Nonmagnetic Relativistic Thermal Plasmas. Ph.D. Thesis - Calif. Univ., San Diego
NASA Technical Reports Server (NTRS)
Dermer, C. D.
1984-01-01
A detailed treatment of the kinematics of relativistic systems of particles and photons is presented. In the case of a relativistic Maxwell-Boltzmann distribution of particles, the reaction rate and luminosity are written as single integrals over the invariant cross section, and the production spectrum is written as a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. The results are applied to the calculation of the annihilation spectrum of a thermal electron-positron plasma, confirming previous numerical and analytic results. Relativistic thermal electron-ion and electron-electron bremsstrahlung are calculated exactly to lowest order, and relativistic thermal electron-positron bremsstrahlung is calculated in an approximate fashion. An approximate treatment of relativistic Comptonization is developed. The question of thermalization of a relativistic plasma is considered. A formula for the energy loss or exchange rate from the interaction of two relativistic Maxwell-Boltzmann plasmas at different temperatures is derived. Application to a stable, uniform, nonmagnetic relativistic thermal plasma is made. Comparison is made with other studies.
Radiative return capabilities of a high-energy, high-luminosity e + e - collider
Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; ...
2015-08-14
An electron-positron collider operating at a center-of-mass energy E CM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at E CM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e +e - colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavymore » flavor spectroscopy are given.« less
NASA Technical Reports Server (NTRS)
Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace
2003-01-01
The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.
Inclusive inelastic scattering of heavy ions and nuclear correlations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.
1990-01-01
Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2005-04-01
This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.
Cooper, Fred; Liu, Ming X; Nayak, Gouranga C
2004-10-22
We study J/psi production in pp collisions at BNL Relativistic Heavy Ion Collider (RHIC) within the PHENIX detector acceptance range using the color singlet and color octet mechanism which are based on perturbative QCD and nonrelativistic QCD. Here we show that the color octet mechanism reproduces the RHIC data for J/psi production in pp collisions with respect to the p(T) distribution, the rapidity distribution, and the total cross section at square root = 200 GeV. The color singlet mechanism leads to a relatively small contribution to the total cross section when compared to the octet contribution.
Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B
2006-07-07
We report on measurements of directed flow as a function of pseudorapidity in Au + Au collisions at energies of square root of SNN = 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B
2005-04-01
This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.
NASA Astrophysics Data System (ADS)
Hussain, Nur; Bhattacharjee, Buddhadeb
2017-08-01
Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.
Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders
NASA Astrophysics Data System (ADS)
Lebrun, Philippe; Tavian, Laurent
Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.
Accelerator Science: Proton vs. Electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.
Pulse-by-pulse energy measurement at the Stanford Linear Collider
NASA Astrophysics Data System (ADS)
Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.
1992-01-01
The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.
Sterile neutrino searches at future e-e+, pp and e-p colliders
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Cazzato, Eros; Fischer, Oliver
2017-05-01
Sterile neutrinos are among the most attractive extensions of the SM to generate the light neutrino masses observed in neutrino oscillation experiments. When the sterile neutrinos are subject to a protective symmetry, they can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them testable at planned future particle colliders. We systematically discuss the production and decay channels at electron-positron, proton-proton and electron-proton colliders and provide a complete list of the leading order signatures for sterile neutrino searches. Among other things, we discuss several novel search channels, and present a first look at the possible sensitivities for the active-sterile mixings and the heavy neutrino masses. We compare the performance of the different collider types and discuss their complementarity.
NASA Technical Reports Server (NTRS)
2008-01-01
Even though comets are basically giant dirty snowballs, a few years ago they surprised astronomers by emitting X-radiation. These X-rays are not produced by multi-million degree gas (as is often the case) but rather by a process called 'charge exchange'. In this process, ionized atoms (which have lost one or more electrons) which are carried within the solar wind collide with neutral atoms in the comet's coma. The solar wind ion can collide with and capture an electron from the neutral comet atom, and in doing so some of the energy of the collision is observed in the form of X-rays. This produces a glow of X-rays on the sunward side of the comet's atmosphere. Charge exchange can occur in a variety of astrophysical settings, and cometary charge exchange provides astronomers a means to study this process up close. The image above is a pretty picture of comet 73P/Schwassmann-Wachmann 3 passing by the Ring Nebula. This image was obtained by the ultraviolet and optical telescope (UVOT) on the Swift gamma-ray burst hunter. The UVOT observations help astronomers to study the structure and chemistry of the comet, while Swift's X-ray Telescope (XRT) simultaneously monitors the charge exchange process. Comet 73P/Schwassmann-Wachmann 3 is currently in the process of breaking up, and the UVOT observations show important details of how this breakup is occurring.
Electron Production and Collective Field Generation in Intense Particle Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molvik, A W; Vay, J; Cohen, R
Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding.more » With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5 additional invitations for invited papers at upcoming conferences, we attracted collaborators who had SBIR funding, we are collaborating with scientists at CERN and GSI Darmstadt on gas desorption physics for submission to Physical Review Letters, and another PRL on absolute measurements of electron cloud density and Phys. Rev. ST-AB on electron emission physics are also being readied for submission.« less
Two solitons oblique collision in anisotropic non-extensive dusty plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Fouda, S. M.
2017-03-01
Using an extended Poincaré-Lighthill-Kue method, the oblique collision of two dust acoustic solitons (DASs) in a magnetized non-extensive plasma with the effect of dust pressure anisotropy is studied. The dust fluid is supposed to have an arbitrary charge. A couple of Korteweg-de Vries (KdV) equations are derived for the colliding DASs. The phase shift of each soliton is obtained. It is found that the dust pressure anisotropy, the non-extensive parameter for electrons and ions, plays an important role in determining the collision phase shifts. The present results show that, for the negative dust case, the phase shift of the first soliton decreases, while that of the second soliton increases as either the dust pressure ratio increases or the ion non-extensive parameter decreases. On the other hand, for the positive dust case, the phase shift of the first soliton decreases, while the phase shift of the second soliton increases as either the dust pressure ratio or the ion non-extensive parameter increases. The application of the present findings to some dusty plasma phenomena occurring in space and laboratory plasmas is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abelof, Gabriel; Boughezal, Radja; Liu, Xiaohui
2016-10-17
We compute the Oσ 2σ 2 s perturbative corrections to inclusive jet production in electron-nucleon collisions. This process is of particular interest to the physics program of a future Electron Ion Collider (EIC). We include all relevant partonic processes, including deep-inelastic scattering contributions, photon-initiated corrections, and parton-parton scattering terms that first appear at this order. Upon integration over the final-state hadronic phase space we validate our results for the deep-inelastic corrections against the known next-to-next-to-leading order (NNLO) structure functions. Our calculation uses the N-jettiness subtraction scheme for performing higher-order computations, and allows for a completely differential description of the deep-inelasticmore » scattering process. We describe the application of this method to inclusive jet production in detail, and present phenomenological results for the proposed EIC. The NNLO corrections have a non-trivial dependence on the jet kinematics and arise from an intricate interplay between all contributing partonic channels.« less
Operational experience with nanocoulomb bunch charges in the Cornell photoinjector
Bartnik, Adam; Gulliford, Colwyn; Bazarov, Ivan; ...
2015-08-19
Characterization of 9–9.5 MeV electron beams produced in the dc-gun based Cornell photoinjector is given for bunch charges ranging from 20 pC to 2 nC. Comparison of the measured emittances and longitudinal current profiles to optimized 3D space charge simulations yields excellent agreement for bunch charges up to 1 nC when the measured laser distribution is used to generate initial particle distributions in simulation. Analysis of the scaling of the measured emittance with bunch charge shows that the emittance scales roughly as the square root of the bunch charge up to 300 pC, above which the trend becomes linear. Furthermore,more » these measurements demonstrate that the Cornell photoinjector can produce cathode emittance dominated beams meeting the emittance and peak current specifications for next generation free electron lasers operating at high repetition rate. In addition, the 1 and 2 nC results are relevant to the electron ion collider community.« less
Luminosity Limitations of Linear Colliders Based on Plasma Acceleration
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2016-01-01
Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.
Accelerator Science: Proton vs. Electron
Lincoln, Don
2018-06-12
Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilabâs Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.
Tools for the Future of Nuclear Physics
NASA Astrophysics Data System (ADS)
Geesaman, Donald
2014-03-01
The challenges of Nuclear Physics, especially in understanding strongly interacting matter in all its forms in the history of the universe, place ever higher demands on the tools of the field, including the workhorse, accelerators. These demands are not just higher energy and higher luminosity. To recreate the matter that fleetingly was formed in the origin of the heavy elements, we need higher power heavy-ion accelerators and creative techniques to harvest the isotopes. We also need high-current low-energy accelerators deep underground to detect the very slow rate reactions in stellar burning. To explore the three dimensional distributions of high-momentum quarks in hadrons and to search for gluonic excitations we need high-current CW electron accelerators. Understanding the gluonic structure of nuclei and the three dimensional distributions of partons at lower x, we need high-luminosity electron-ion colliders that also have the capabilities to prepare, preserve and manipulate the polarization of both beams. A search for the critical point in the QCD phase diagram demands high luminosity beams over a broad range of species and energy. With advances in cavity design and construction, beam manipulation and cooling, and ion sources and targets, the Nuclear Physics community, in the U.S. and internationally has a coordinated vision to deliver this exciting science. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.
Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide
Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; ...
2017-09-06
Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). One part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on themore » beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. Thus, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. Additonally, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.« less
Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide
NASA Astrophysics Data System (ADS)
Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon
2017-09-01
Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.
Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan
Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). One part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on themore » beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. Thus, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. Additonally, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.« less
Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)
Brookhaven Lab - Fulvia Pilat
2017-12-09
To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as
9-D polarized proton transport in the MEIC figure 8 collider ring - first steps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Morozov, V. S.
2015-05-03
Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.
9-D polarized proton transport in the MEIC figure-8 collider ring: first steps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Thomas Jefferson National Accelerator Facility; Morozov, V. S.
2014-10-24
Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.
Design and R&D of RICH detectors for EIC experiments
NASA Astrophysics Data System (ADS)
Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.
2017-12-01
An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Dotto, A.; Wong, C. -P.; Allison, L.
An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less
Intense beams at the micron level for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1991-08-01
High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.
Design criteria for prompt radiation limits on the relativistic heavy ion collider site.
Stevens, A; Musolino, S; Harrison, M
1994-03-01
The Relativistic Heavy Ion Collider (RHIC) is a superconducting colliding beam accelerator facility that is currently under construction. Relatively small amounts of energy depositing in the coils of superconducting magnets can result in a "quench," the irreversible transition to the normal resistive state. The quench limit of superconducting magnets, therefore, constrains local beam loss throughout the injection, acceleration, and storage cycles to extremely low levels. From a practical standpoint, it follows that there is essentially no prompt radiation in most regions due to normal operations. The design of shielding is, therefore, principally driven by the consequences of a single pulse fault at full energy in one of the two storage rings. Since there are no regulatory requirements or guidance documents that prescribe radiological performance goals for this situation, the RHIC Project has proposed a scheme to classify the various areas of the RHIC complex based on Design Basis Accident faults. The criteria is then compared to existing regulatory requirements and guidance recommendations.
Construction and commissioning of the compact energy-recovery linac at KEK
NASA Astrophysics Data System (ADS)
Akemoto, Mitsuo; Arakawa, Dai; Asaoka, Seiji; Cenni, Enrico; Egi, Masato; Enami, Kazuhiro; Endo, Kuninori; Fukuda, Shigeki; Furuya, Takaaki; Haga, Kaiichi; Hajima, Ryoichi; Hara, Kazufumi; Harada, Kentaro; Honda, Tohru; Honda, Yosuke; Honma, Teruya; Hosoyama, Kenji; Kako, Eiji; Katagiri, Hiroaki; Kawata, Hiroshi; Kobayashi, Yukinori; Kojima, Yuuji; Kondou, Yoshinari; Tanaka, Olga; Kume, Tatsuya; Kuriki, Masao; Matsumura, Hiroshi; Matsushita, Hideki; Michizono, Shinichiro; Miura, Takako; Miyajima, Tsukasa; Nagahashi, Shinya; Nagai, Ryoji; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Norio; Nakanishi, Kota; Nigorikawa, Kazuyuki; Nishimori, Nobuyuki; Nogami, Takashi; Noguchi, Shuichi; Obina, Takashi; Qiu, Feng; Sagehashi, Hidenori; Sakai, Hiroshi; Sakanaka, Shogo; Sasaki, Shinichi; Satoh, Kotaro; Sawamura, Masaru; Shimada, Miho; Shinoe, Kenji; Shishido, Toshio; Tadano, Mikito; Takahashi, Takeshi; Takai, Ryota; Takenaka, Tateru; Tanimoto, Yasunori; Uchiyama, Takashi; Ueda, Akira; Umemori, Kensei; Watanabe, Ken; Yamamoto, Masahiro
2018-01-01
Energy-recovery linacs (ERLs) are promising for advanced synchrotron light sources, high-power free electron lasers (FELs), high-brightness gamma-ray sources, and electron-ion colliders. To demonstrate the critical technology of ERL-based light sources, we have designed and constructed a test accelerator, the compact ERL (cERL). Using advanced technology that includes a photocathode direct current (DC) electron gun and two types of 1.3-GHz-frequency superconducting cavities, the cERL was designed to be capable of recirculating low emittance (≤1 mm ṡ mrad) and high average-current (≥10 mA) electron beams while recovering the beam energy. During initial commissioning, the cERL demonstrated successful recirculation of high-quality beams with normalized transverse emittance of ∼0.14 mm ṡ mrad and momentum spread of ∼1.2 × 10-4 (rms) at a beam energy of 20 MeV and bunch charge below 100 fC. Energy recovery in the superconducting main linac was also demonstrated for high-average-current continuous-wave beams. These results constitute an important milestone toward realizing ERL-based light sources.
Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-02-13
We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.
Experimental results on chiral magnetic and vortical effects
Wang, Gang; Wen, Liwen
2017-01-12
Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. As a result, the goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment neededmore » to eliminate the existing uncertainties in the interpretation of the data.« less
NICA project management information system
NASA Astrophysics Data System (ADS)
Bashashin, M. V.; Kekelidze, D. V.; Kostromin, S. A.; Korenkov, V. V.; Kuniaev, S. V.; Morozov, V. V.; Potrebenikov, Yu. K.; Trubnikov, G. V.; Philippov, A. V.
2016-09-01
The science projects growth, changing of the efficiency criteria during the project implementation require not only increasing of the management specialization level but also pose the problem of selecting the effective planning methods, monitoring of deadlines and interaction of participants involved in research projects. This paper is devoted to choosing the project management information system for the new heavy-ion collider NICA (Nuclotron based Ion Collider fAcility). We formulate the requirements for the project management information system with taking into account the specifics of the Joint Institute for Nuclear Research (JINR, Dubna, Russia) as an international intergovernmental research organization, which is developed on the basis of a flexible and effective information system for the NICA project management.
NASA Astrophysics Data System (ADS)
Maglich, Bogdan; Hester, Tim; Calsec Collaboration
2015-10-01
Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.
Berges, Jürgen; Reygers, Klaus; Tanji, Naoto; ...
2017-05-09
Recent classical-statistical numerical simulations have established the “bottom-up” thermalization scenario of Baier et al. [Phys. Lett. B 502, 51 (2001)] as the correct weak coupling effective theory for thermalization in ultrarelativistic heavy-ion collisions. In this paper, we perform a parametric study of photon production in the various stages of this bottom-up framework to ascertain the relative contribution of the off-equilibrium “glasma” relative to that of a thermalized quark-gluon plasma. Taking into account the constraints imposed by the measured charged hadron multiplicities at Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), we find that glasma contributions are importantmore » especially for large values of the saturation scale at both energies. Finally, these nonequilibrium effects should therefore be taken into account in studies where weak coupling methods are employed to compute photon yields.« less
Qin, Guang-You; Ruppert, Jörg; Gale, Charles; Jeon, Sangyong; Moore, Guy D; Mustafa, Munshi G
2008-02-22
We calculate and compare bremsstrahlung and collisional energy loss of hard partons traversing a quark-gluon plasma. Our treatment of both processes is complete at leading order in the coupling and accounts for the probabilistic nature of the jet energy loss. We find that the nuclear modification factor R(AA) for neutral pi(0) production in heavy ion collisions is sensitive to the inclusion of collisional and radiative energy loss contributions while the averaged energy loss only slightly increases if collisional energy loss is included for parent parton energies E>T. These results are important for the understanding of jet quenching in Au+Au collisions at 200A GeV at the Relativistic Heavy Ion Collider (RHIC). Comparison with data is performed applying the energy loss calculation to a relativistic ideal (3+1)-dimensional hydrodynamic description of the thermalized medium formed at RHIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, D.L.
1998-07-01
There are important goals in particle physics to be addressed by a TeV-scale electron-positron linear collider. Recent developments in accelerator physics and technologies aimed for the realization of such a collider are discussed in this paper.
Radiation protection and environmental management at the relativistic heavy ion collider.
Musolino, S V; Briggs, S L; Stevens, A J
2001-01-01
The Relativistic Heavy Ion Collider (RHIC) is a high energy hadron accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon or protons at 250 GeV/c. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. Because there are only a few other high energy particle accelerators like RHIC in the world, the rules promulgated in the US Code of Federal Regulations under the Atomic Energy Act, State regulations, or international guidance documents do not cover prompt radiation from accelerators to govern directly the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance tor the design of radiation shielding. Environmental Management at RHIC is accomplished through the ISO 14001 Environmental Management System. The applicability, benefits, and implementation of ISO 14001 within the framework of a large research accelerator complex are discussed in the paper.
Gravitational waves from dark first order phase transitions and dark photons
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Marcianò, Antonino
2018-01-01
Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivi, M.T.F.; Collet, G.; King, F.
Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less
Considerations on Energy Frontier Colliders after LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2016-11-15
Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less
Predictive design and interpretation of colliding pulse injected laser wakefield experiments
NASA Astrophysics Data System (ADS)
Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.
2010-11-01
The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.
Scaling behavior of circular colliders dominated by synchrotron radiation
NASA Astrophysics Data System (ADS)
Talman, Richard
2015-08-01
The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in RF cavities that restore the lost energy. To the contrary, until now, the large proton to electron mass ratio has caused synchrotron radiation to be negligible in proton accelerators. The LHC beam energy has still been low enough that synchrotron radiation has little effect on beam dynamics; but the thermodynamic penalty in cooling the superconducting magnets has still made it essential for the radiated power not to be dissipated at liquid helium temperatures. Achieving this has been a significant challenge. For the next generation p, p collider this will be even more true. Furthermore, the radiation will effect beam distributions on time scales measured in minutes, for example causing the beams to be flattened, wider than they are high. In this regime scaling relations previously valid only for electrons will be applicable also to protons.
Final muon cooling for a muon collider
NASA Astrophysics Data System (ADS)
Acosta Castillo, John Gabriel
To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.
NASA Astrophysics Data System (ADS)
Bleicher, Markus; Caines, Helen; Calderón de la Barca Sanchez, Manuel; Fries, Rainer; Granier de Cassagnac, Raphaël; Hippolyte, Boris; Mischke, André; Mócsy, Ágnes; Petersen, Hannah; Ruan, Lijuan; Salgado, Carlos A.
2013-09-01
The 5th edition of the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2012) was held in Copamarina, Puerto Rico from 14-20 October 2012. As in previous years, this meeting gathered more than 70 participants in the early years of their scientific careers. This issue contains the proceedings of the workshop. As in the past, the Hot Quarks workshop offered a unique atmosphere for a lively discussion and interpretation of the current measurements from high energy nuclear collisions. Recent results and upgrades at CERN's Large Hadron Collider (LHC) and Brookhaven's Relativistic Heavy Ion Collider (RHIC) were presented. Measurements from the proton-led run at the CERN-LHC were shown for the first time at this meeting. Recent theoretical developments were also extensively discussed, as well as the proposals for future facilities such as the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, the Electron-Ion Collider at Brookhaven, and the LHeC. The conference's goal to provide a platform for young researchers to learn and foster their interactions was successfully met. We wish to thank the sponsors of the Hot Quarks 2012 Conference, who supported the authors of this volume: Brookhaven National Laboratory (USA), European Laboratory for Particle Physics CERN (Switzerland), European Research Council (EU), ExtreMe Matter Institute EMMI (Germany), Helmholtz International Center for FAIR (Germany), IN2P3/CNRS (France) and the European Research Council via grant #259612, Lawrence Berkeley National Laboratory (USA), Lawrence Livermore National Laboratory (USA), Los Alamos National Laboratory (USA), National Science Foundation (USA), and Netherlands Organization for Scientific Research (Netherlands). Marcus BleicherAndré Mischke Goethe-University Frankfurt and HIC4FAIRUtrecht University and Nikhef Amsterdam GermanyThe Netherlands Helen CainesÁgnes Mócsy Yale UniversityPratt Institute and Brookhaven National Laboratory USAUSA Manuel Calderón de la Barca SánchezHannah Petersen UC DavisFIAS USAGermany Rainer J FriesLijuan Ruan Texas A&M UniversityBrookhaven National Laboratory USAUSA Raphaël Granier de CassagnacCarlos A Salgado CNRS-IN2P3 and Ëcole polytechniqueUniversidade de Santiago de Compostela FranceSpain Boris Hippolyte CNRS-IN2P3 and Université de Strasbourg France The PDF also contains the conference poster.
NASA Astrophysics Data System (ADS)
2015-05-01
The 6th edition of the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2014) was held in Las Negras, Spain from 21-28 September 2014. Following the traditions of the conference, this meeting gathered more than 70 participants in the first years of their scientific careers. The present issue contains the proceedings of this workshop. As in the past, the Hot Quarks workshop offered a unique atmosphere for a lively discussion and interpretation of the current measurements from high energy nuclear collisions. Recent results and upgrades at CERN's Large Hadron Collider (LHC) and Brookhaven's Relativistic Heavy Ion Collider (RHIC) were presented. Recent theoretical developments were also extensively discussed as well as the perspectives for future facilities such as the Facility for Antiproton and Ion Research (FAIR) at Darmstadt and the Electron-Ion Collider at Brookhaven. The conference's goal to provide a platform for young researchers to learn and foster their interactions was successfully met. We wish to thank the sponsors of the Hot Quarks 2014 Conference, who supported the authors of this volume: Brookhaven National Laboratory (USA), CPAN (Spain), Czech Science Foundation (GACR) under grant 13-20841S (Czech Republic), European Laboratory for Particle Physics CERN (Switzerland), European Research Council under grant 259612 (EU), ExtreMe Matter Institute EMMI (Germany), Helmholtz Association and GSI under grant VH-NG-822, Helmholtz International Center for FAIR (Germany), National Science Foundation under grant No.1359622 (USA), Nuclear Physics Institute ASCR (Czech Republic), Patronato de la Alhambra y Generalife (Spain) and the Universidad de Granada (Spain). Javier López Albacete, Universidad de Granada (Spain) Jana Bielcikova, Nuclear Physics Inst. and Academy of Sciences (Czech Republic) Rainer J. Fries, Texas A&M University (USA) Raphaël Granier de Cassagnac, CNRS-IN2P3 and École polytechnique (France) Boris Hippolyte, CNRS-IN2P3 and Université de Strasbourg (France) Jiangyong Jia, Stony Brook University and Brookhaven National Laboratory (USA) André Mischke, Utrecht University and Nikhef Amsterdam (The Netherlands) Ágnes Mócsy, Pratt Institute and Brookhaven National Laboratory (USA) Hannah Petersen, Goethe University, FIAS and GSI (Germany) Lijuan Ruan, Brookhaven National Laboratory (USA) Sevil Salur, Rutgers University, (USA)
New generation electron-positron factories
NASA Astrophysics Data System (ADS)
Zobov, Mikhail
2011-09-01
In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
NASA Astrophysics Data System (ADS)
Queiroz, Farinaldo S.
2016-06-01
Reference [1 S. Mondal and S. K. Rai, Phys. Rev. D 93, 011702 (2016).] recently argued that the projected Large Hadron Electron Collider (LHeC) presents a unique opportunity to discover a left-right symmetry since the LHeC has availability for polarized electrons. In particular, the authors apply some basic pT cuts on the jets and claim that the on-shell production of right-handed neutrinos at the LHeC, which violates lepton number in two units, has practically no standard model background and, therefore, that the right-handed nature of WR interactions that are intrinsic to left-right symmetric models can be confirmed by using colliding beams consisting of an 80% polarized electron and a 7 TeV proton. In this Comment, we show that their findings, as presented, have vastly underestimated the SM background which prevents a Left-Right symmetry signal from being seen at the LHeC.
Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Previtali, Valentina; Valishev, Alexander
Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less
Working Group Report: Higgs Boson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Sally; Gritsan, Andrei; Logan, Heather
2013-10-30
This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less
NASA Astrophysics Data System (ADS)
Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.
2016-10-01
We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
NASA Astrophysics Data System (ADS)
Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju
2012-09-01
The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.
NASA Astrophysics Data System (ADS)
Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv
2016-06-01
Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.
Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Jaiswal, Amaresh; Bhaduri, Partha Pratim
2018-04-01
We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration
2016-03-01
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3
Noise estimation of beam position monitors at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, X.; Bai, M.; Lee, S. Y.
2014-02-10
Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable opticsmore » measurement and beam dynamics analysis based on turn-by-turn data.« less
Design and R&D of RICH detectors for EIC experiments
Del Dotto, A.; Wong, C. -P.; Allison, L.; ...
2017-03-18
An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less
Elastic and transport cross sections for inert gases in a hydrogen plasma
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2005-05-01
Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.
NASA Astrophysics Data System (ADS)
Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.
2014-02-01
The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian
Gaseous Electron Multiplier (GEM) Detectors
NASA Astrophysics Data System (ADS)
Gnanvo, Kondo
2017-09-01
Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.
Stupavska, Monika; Jerigova, Monika; Michalka, Miroslav; Hasko, Daniel; Szoecs, Vojtech; Velic, Dusan
2011-12-01
A technique for improving the sensitivity of high mass molecular analysis is described. Three carbon species, fullerenes, single walled carbon nanotubes, and highly ordered pyrolytic graphite are introduced as matrices for the secondary ion mass spectrometry analysis of cyclodextrin (C(42)H(70)O(35), 1134 u). The fullerene and nanotubes are deposited as single deposition, and 10, 20, or 30 deposition films and cyclodextrin is deposited on top. The cyclodextrin parent-like ions and two fragments were analyzed. A 30 deposition fullerene film enhanced the intensity of cationized cyclodextrin with Na by a factor of 37. While the C(6)H(11)O(5) fragment, corresponding to one glucopyranose unit, increased by a factor of 16. Although fragmentation on fullerene is not suppressed, the intensity is twice as low as the parent-like ion. Deprotonated cyclodextrin increases by 100× and its C(8)H(7)O fragment by 10×. While the fullerene matrix enhances secondary ion emission, the nanotubes matrix film generates a basically constant yield. Graphite gives rise to lower intensity peaks than either fullerene or nanotubes. Scanning electron microscopy and atomic force microscopy provide images of the fullerene and nanotubes deposition films revealing flat and web structured surfaces, respectively. A "colliding ball" model is presented to provide a plausible physical mechanism of parent-like ion enhancement using the fullerene matrix. © American Society for Mass Spectrometry, 2011
NASA Astrophysics Data System (ADS)
Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan
2018-03-01
We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.
The VEPP-2000 electron-positron collider: First experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.
2011-08-15
In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less
Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider
NASA Astrophysics Data System (ADS)
Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.
2016-05-01
The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.
NASA Astrophysics Data System (ADS)
Ahmad, Saeed; Holopainen, Hannu; Huovinen, Pasi
2017-05-01
In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to take place at a surface of constant temperature or energy density. A more physical approach is to assume that freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL (√{sNN}=200 GeV) and the Large Hadron Collider (√{sNN}=2760 GeV) energies. We see that once the numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial state calculations.
Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions
NASA Astrophysics Data System (ADS)
Upsal, Isaac; STAR Collaboration
2017-11-01
Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.
NASA Astrophysics Data System (ADS)
Buthelezi, Zinhle; Cleymans, Jean; Dietel, Tom; Förtsch, Siegfried; Horowitz, W. A.; Steinberg, Peter; Weigert, Heribert
2014-12-01
From November 4th-8th 2013, South Africa hosted the "6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2013)" in the beautiful Cape Winelands at the Stellenbosch Institute for Advanced Studies. This is the preëminent conference series for scientists from around the world to disseminate, discuss, and collaborate on their research on the Hard Probes of heavy ion collisions. The goal is a quantitative understanding of the nontrivial, emergent, many-body dynamics of hot and dense non-Abelian Quantum Chromodynamics (QCD), the quark-gluon plasma (QGP). This matter permeated the universe a microsecond after the Big Bang and is produced at facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in New York and at the Large Hadron Collider (LHC) at CERN in Geneva.
Absolute electron-impact total ionization cross sections of chlorofluoromethanes
NASA Astrophysics Data System (ADS)
Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando
2004-12-01
An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.
Testing of Front End Electronics for 10ps Time of Flight Detectors
NASA Astrophysics Data System (ADS)
Kimball, Matthew; EIC PID Consortium Collaboration
2016-09-01
To fully achieve the physics goals of the future Electron Ion Collider (EIC), continued development of the detectors involved is needed. One area of research involves improving the timing resolution of Time of Flight (ToF) detectors from 100ps to 10ps. When the timing resolution of these ToF detectors is improved, better particle identification can be achieved. In addition, as ToF detectors are being constructed with ever improving timing resolution, the need to improve the high speed performance of the fast electronics used in their front-end electronics (FEE) increases. A series of careful measurements has been performed to investigate the performance and efficiency of each element in the FEE chain. The focus of these tests lies on the amplitude transmission efficiency of the high speed signals as a function of frequency, also known as the bandwidth. The components tested include balanced to unbalanced (balun) boards, signal pre-amps, and waveform digitizers. These tests were performed on individual components and with all elements connected over a frequency range of 1MHz to 1GHz. The results of these tests will be presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
CEPC-SPPC accelerator status towards CDR
NASA Astrophysics Data System (ADS)
Gao, J.
2017-12-01
In this paper we will give an introduction to the Circular Electron Positron Collider (CEPC). The scientific background, physics goal, the collider design requirements and the conceptual design principle of the CEPC are described. On the CEPC accelerator, the optimization of parameter designs for the CEPC with different energies, machine lengths, single ring and crab-waist collision partial double ring, advanced partial double ring and fully partial double ring options, etc. have been discussed systematically, and compared. The CEPC accelerator baseline and alternative designs have been proposed based on the luminosity potential in relation with the design goals. The CEPC sub-systems, such as the collider main ring, booster, electron positron injector, etc. have also been introduced. The detector and the MAchine-Detector Interface (MDI) design have been briefly mentioned. Finally, the optimization design of the Super Proton-Proton Collider (SppC), its energy and luminosity potentials, in the same tunnel of the CEPC are also discussed. The CEPC-SppC Progress Report (2015-2016) has been published.
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
Integral Equation for the Equilibrium State of Colliding Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnock, Robert L.
2002-11-11
We study a nonlinear integral equation for the equilibrium phase distribution of stored colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. We prove existence of a unique solution, thus the existence of a unique equilibrium state, for sufficiently small current. This is done for the Chao-Ruth model of the beam-beam interaction in one degree of freedom. We expect no difficulty in generalizing the argument to more realistic models.
NASA Astrophysics Data System (ADS)
Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.
2016-10-01
The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.
PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.
Morton, O
2000-09-22
After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.
Study of a Large Prototype TPC for the ILC using Micro-Pattern Gas Detectors
NASA Astrophysics Data System (ADS)
Münnich, A.; LCTPC Collaboration
2016-04-01
In the last decade, R&D for detectors for the future International Linear Collider (ILC) has been performed by the community. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its tracking system consists of a Si vertex detector, forward tracking disks and a large volume Time Projection Chamber (TPC). Within the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. Its endplate is able to house up to seven identical modules with Micro-Pattern Gas Detectors (MPGD) amplification. Recently, the LP has been equipped with resistive anode Micromegas (MM) or Gas Electron Multiplier (GEM) modules. Both the MM and GEM technologies have been studied with an electron beam up to 6 GeV in a 1 Tesla solenoid magnet. After introducing the current R&D status, recent results will be presented including field distortions, ion gating and spatial resolution as well as future plans of the LCTPC R&D.
ER@CEBAF: A test of 5-pass energy recovery at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, S. A.; Douglas, D.; Dubbe, C.
2016-06-06
Jefferson Lab personnel have broad expertise in the design, commissioning, and operation of multiple energy recovery linacs (ERLs): the CEBAF Front-End Test (early 1990s), CEBAF-ER (2003), the IR Free Electron Laser (FEL) Demo, the IR FEL Upgrade, and the UV FEL Driver (1997-2014). Continued development of this core competency has led to this collaborative proposal to explore the forefronts of ERL technology at high energy in a unique expansion of CEBAF capability to a 5-pass ERL with negligible switchover time and programmatic impact to the CEBAF physics program. Such a capability would enable world-class studies of open issues in high-energymore » ERL beam dynamics that are relevant to future facilities such as electron-ion colliders (EICs). This proposal requests support from the CEBAF Program Advisory Committee to seek funding for hardware installation, and a prospective 12 days of beam time circa Fall 2018 for commissioning this high-energy multi-pass ERL experiment in CEBAF.« less
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Apadula, N.; Aphecetche, L.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Bennett, R.; Berdnikov, Y.; Bickley, A. A.; Boissevain, J. G.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Chang, B. S.; Charvet, J.-L.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Chujo, T.; Chung, P.; Churyn, A.; Cianciolo, V.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Das, K.; David, G.; Deaton, M. B.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dzhordzhadze, V.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hamagaki, H.; Han, R.; Harada, H.; Hartouni, E. P.; Haruna, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Ichihara, T.; Iinuma, H.; Imai, K.; Inaba, M.; Inoue, Y.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Jacak, B. V.; Jia, J.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kanou, H.; Kawall, D.; Kazantsev, A. V.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, E.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Konno, M.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, M. K.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Liška, T.; Litvinenko, A.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Miake, Y.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murata, J.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Norman, B. E.; Nouicer, R.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, J.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakata, H.; Samsonov, V.; Sato, S.; Sawada, S.; Seele, J.; Seidl, R.; Semenov, V.; Seto, R.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Taranenko, A.; Tarján, P.; Thomas, T. L.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, Y.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Phenix Collaboration
2014-09-01
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open-heavy-flavor production in Cu +Cu collisions at √sNN =200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu +Cu collisions an enhanced production of electrons is observed relative to p +p collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/c the nuclear modification factor is RAA˜1.4. As the system size increases to more central Cu +Cu collisions, the enhancement gradually disappears and turns into a suppression. For pT>3 GeV/c, the suppression reaches RAA˜0.8 in the most central collisions. The pT and centrality dependence of RAA in Cu +Cu collisions agree quantitatively with RAA in d +Au and Au +Au collisions, if compared at a similar number of participating nucleons
NASA Astrophysics Data System (ADS)
Parvaneh, Hamed
This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass-filtered FIB (MS-FIB) from Orsay Physics has been integrated with a VersaProbe 5000 XPS instrument from ULVAC-PHI. The integration process involved overcoming major mechanical and electrical obstacles and numerous problem-solving situations. The major reason for choosing the VersaProbe was to utilize its analytical concentric hemispherical analyzer (CHA) to measure the kinetic energy of the Auger electrons induced by the ions generated from a gold-silicon liquid alloy source. Subsequently the acquisition and detection parameters of both MS-FIB and the electron energy analyzer were successfully optimized and IAES of selected elements in third-row of the periodic table, namely Mg, Al, Si, and the ones in the fourth-row, namely Ti, V, Cr, Mn, Fe, Co, Ni and Cu acquired using Si++ and Au+ incident ions. As a result of energetic collisions between the incident and target atoms, in addition to plasmon excitations, Auger electrons from both colliding particles were generated and detected. Different components of the electron energy spectra acquired were carefully analyzed and the origin of different features observed identified. Then the relative efficiencies of Auger electron generation by ion impact from the above mentioned targets, acquired under the same conditions, were compared with each other and the origin of the differences in line shape were explained. The elements on the third row of periodic table in particular show narrow peaks emanat-ed mainly from the decay of excited atoms. For heavier elements, however, the increase of fluorescence yield by increasing atomic number and smaller lifetime for the inner shell vacancies result in reduction of atomic contribution to the spectrum. The absolute yield of Auger electrons were also evaluated using an indirect method using the ion-induced electron emission yield and, in particular, estimation for Al and Cr, where the values of ion-induced electron emission were available in the literature, was provided. The resolution of the technique both spatially (x-y) and in depth (z) were also evaluated. For spatial resolution mainly the Monte Carlo simulations were utilized to estimate the area from which the excited target atoms with inner shell vacancies originate. Attention was paid to the relationship between the Auger electron infor-mation depth and the depth-dependency of various energy-loss mechanisms for the incoming ions. In particular, an area from which target atoms with energies higher than a threshold energy sputter off the surface, was concluded to be an estimate for lateral spatial resolution. Finally the effects of hardware parameters, in particular the solid angle of the detector and the transmission of the electron energy analyzer, on the collected signal were characterized and used to put together an estimate for the edge length of an information cube representing the minimum amount of material that has to be removed before a meaningful signal can be collected.
DEPFET detectors for future electron-positron colliders
NASA Astrophysics Data System (ADS)
Marinas, C.
2015-11-01
The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.
Physics Division progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)
BNL
2017-12-09
Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.
Creating the Primordial Quark-Gluon Plasma at the LHC
NASA Astrophysics Data System (ADS)
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, Greg
In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
Energy Recovery Linacs (ERL) are important for a variety of applications, from high-power Free-Electron Lasers (FEL) to polarized-electron polarized-proton colliders. The ERL current is arguably the most important characteristic of ERLs for such applications. With that in mind, the Collider-Accelerator Department at Brookhaven National Laboratory embarked on the development of a 300 mA ERL to serve as an R and D test-bed for high-current ERL technologies. These include high-current, extremely well damped superconducting accelerating cavities, high-current superconducting laser-photocathode electron guns and high quantum-efficiency photocathodes. In this presentation I will cover these ERL related developments.
Left-right spin asymmetry in ℓ N ↑ → h X
Gamberg, Leonard; Kang, Zhong -Bo; Metz, Andreas; ...
2014-10-09
In this study, we consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We alsomore » give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less
Left-right spin asymmetry in ℓ N ↑ → h X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamberg, Leonard; Kang, Zhong -Bo; Metz, Andreas
In this study, we consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We alsomore » give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less
Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Marusic, A.; Minty, M.
2014-09-09
To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximizemore » the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.« less
Electron Source based on Superconducting RF
NASA Astrophysics Data System (ADS)
Xin, Tianmu
High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.
Adare, A.; Aidala, C.; Ajitanand, N. N.; ...
2016-03-07
We measured open heavy flavor production in minimum bias Au + Au collisions at √s( NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function ofmore » transverse momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s( NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p (T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R (AA) to calculate the R (AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p (T) < 4 GeV/c.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookhaven Lab
2009-07-31
A celebration of the contribution that Renaissance Technologies, Inc., made to the Relativistic Heavy Ion Collider, during which the entire Lab community participated in a series of RHIC Renaissance events, beginning with the Roads to Discovery ceremony,
John Marburger
2017-12-09
A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction.
Selective resputtering of bismuth in sputtered Bi-Sr-Ca-Cu-O films
NASA Astrophysics Data System (ADS)
Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.
1991-10-01
We present studies using a dc magnetron in an on-axis configuration to sputter Bi-Sr-Ca-Cu-O films from a composite target. These studies show that bismuth can be preferentially resputtered. The influence of ozone, molecular oxygen, and total pressure on the resputtering of bismuth is investigated and discussed. Ozone, in low concentrations, can dramatically affect the degree of resputtering. By comparing the effects of molecular oxygen and ozone, some insight is gained regarding the possible mechanisms of negative ion formation in the magnetron environment. Based on our results we suggest that molecular oxygen can bring about resputtering primarily by forming O+2, which collides with the target to produce energetic negative oxygen ions. In contrast, ozone may form negative ions by electron impact in the dark space above the target, giving rise to lower-energy negative ions, which can traverse the plasma unneutralized and can be stopped with an applied bias on the sample block. With no added oxidant, negative oxygen ions from the target oxygen may dominate the background resputtering. Similarity is found between our results and those for similar studies on Y-Ba-Cu-O by other workers. Bismuth in Bi-Sr-Ca-Cu-O behaves as barium in Y-Ba-Cu-O with regards to preferential resputtering; furthermore, the response of strontium, calcium, and copper to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for copper in Y-Ba-Cu-O.
Rotating field mass and velocity analyzer
NASA Technical Reports Server (NTRS)
Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)
1998-01-01
A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.
H- and He-like Charge-Exchange Induced X-ray Emission due to Ion Collisions with H, He, and H2
NASA Astrophysics Data System (ADS)
Cumbee, Renata; Mullen, Patrick; Miller, Ansley; Lyons, David; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.; Leutenegger, Maurice A.
2017-08-01
When a hot plasma collides with a cold neutral gas interactions occur between the microscopic constituents including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.Since the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models of astrophysical environments in which CX might be significant in order to correctly estimate the ion abundance and plasma velocities. Here, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for a variety of collision energies relevant to various astrophysical environments. Collisions of bare and H-like C, N, O, Ne, Mg, Al, Si, P, S, and Cl ions are shown with H, He, and H2 as the neutral collision targets. An X-ray model using line ratios for C-Si ions is then performed within XSPEC for a region of the Cygnus Loop supernova remnant for 8 collision energies in order to highlight the variation in CX spectral models with collision energy.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.
Double-differential cross section for ionization of H2O molecules by 4-MeV/u C6 + and Si13 + ions
NASA Astrophysics Data System (ADS)
Bhattacharjee, Shamik; Biswas, S.; Monti, J. M.; Rivarola, R. D.; Tribedi, L. C.
2017-11-01
Double-differential cross section (DDCS) for electrons ejected in collisions of fast C6 + and Si13 + projectiles, with a H2O vapor target, were measured. The electrons were detected over an energy range of 1-600 eV and an angular range of 20∘-160∘. The obtained DDCS spectra, for both the ions, were compared with the CDW-EIS model. Occasional reference has been made to the DDCS data for the case of 3.75-MeV/u O8 + colliding on the same molecule for an overall comparison. A reasonable agreement with theoretical results was seen for the case of C6 + and O8 + projectiles. However, between C6 + and O8 + projectiles, the deviation from theory is larger for the case of the carbon projectile. Substantial deviation starts to show up for the case of the Si13 + projectile. By numerical integration of the DDCS data, the single-differential cross section (SDCS) and total cross section (TCS) were obtained and compared with theoretical models. The present TCS data along with the other available data for p , He , and C ions were plotted together. A clear and gradual deviation from the Bethe-Born predicted q2 scaling was observed, where q is the projectile charge state. From all the data we find TCS varies as qn where n = 1.7 ± 0.1. The provided data set will be valuable in order to help model the radiation damage in hadron therapy, particularly in the Bragg peak region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, A. A.; Katsouleas, T. C.; Gessner, S.
2012-12-21
We study the various physical processes and their timescales involved in the excitation of wakefields in relativistically hot plasma. This has relevance to the design of a high repetition-rate plasma wakefield collider in which the plasma has not had time to cool between bunches in addition to understanding the physics of cosmic jets in relativistically hot astrophysical plasmas. When the plasma is relativistically hot (plasma temperature near m{sub e}c{sup 2}), the thermal pressure competes with the restoring force of ion space charge and can reduce or even eliminate the accelerating field of a wake. We will investigate explicitly the casemore » where the hot plasma is created by a preceding Wakefield drive bunch 10's of picoseconds to many nanoseconds ahead of the next drive bunch. The relativistically hot plasma is created when the excess energy (not coupled to the driven e{sup -} bunch) in the wake driven by the drive e{sup -} bunch is eventually converted into thermal energy on 10's of picosecond timescale. We will investigate the thermalization and diffusion processes of this non-equilibrium plasma on longer time scales, including the effects of ambi-polar diffusion of ions driven by hot electron expansion, possible Columbic explosion of ions producing higher ionization states and ionization of surrounding neutral atoms via collisions with hot electrons. Preliminary results of the transverse and longitudinal wakefields at different timescales of separation between a first and second bunch are presented and a possible experiment to study this topic at the FACET facility is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex; Bruning, Oliver; Cruz-Alaniz, E.
Unprecedently high luminosity of 10 34 cm -2 s -1, promised by the LHeC accelerator complex poses several beam dynamics and lattice design challenges. As part of accelerator design process, exploration of innovative beam dynamics solutions and their lattice implementations is the key to mitigating performance limitations due to fundamental beam phenomena, such as: synchrotron radiation and collective instabilities. This article will present beam dynamics driven approach to accelerator design, which in particular, addresses emittance dilution due to quantum excitations and beam breakup instability in a large scale, multi-pass Energy Recovery Linac (ERL). The use of ERL accelerator technology tomore » provide improved beam quality and higher brightness continues to be the subject of active community interest and active accelerator development of future Electron Ion Colliders (EIC). Here, we employ current state of though for ERLs aiming at the energy frontier EIC. We will follow conceptual design options recently identified for the LHeC. The main thrust of these studies was to enhance the collider performance, while limiting overall power consumption through exploring interplay between emittance preservation and efficiencies promised by the ERL technology. Here, this combined with a unique design of the Interaction Region (IR) optics gives the impression that luminosity of 10 34 cm -2 s -1 is indeed feasible.« less
Novel Lattice Solutions for the LHeC
Bogacz, Alex; Bruning, Oliver; Cruz-Alaniz, E.; ...
2017-08-01
Unprecedently high luminosity of 10 34 cm -2 s -1, promised by the LHeC accelerator complex poses several beam dynamics and lattice design challenges. As part of accelerator design process, exploration of innovative beam dynamics solutions and their lattice implementations is the key to mitigating performance limitations due to fundamental beam phenomena, such as: synchrotron radiation and collective instabilities. This article will present beam dynamics driven approach to accelerator design, which in particular, addresses emittance dilution due to quantum excitations and beam breakup instability in a large scale, multi-pass Energy Recovery Linac (ERL). The use of ERL accelerator technology tomore » provide improved beam quality and higher brightness continues to be the subject of active community interest and active accelerator development of future Electron Ion Colliders (EIC). Here, we employ current state of though for ERLs aiming at the energy frontier EIC. We will follow conceptual design options recently identified for the LHeC. The main thrust of these studies was to enhance the collider performance, while limiting overall power consumption through exploring interplay between emittance preservation and efficiencies promised by the ERL technology. Here, this combined with a unique design of the Interaction Region (IR) optics gives the impression that luminosity of 10 34 cm -2 s -1 is indeed feasible.« less
Electron density and plasma dynamics of a colliding plasma experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.
2016-07-15
We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less
The ERL-based Design of Electron-Hadron Collider eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptitsyn, Vadim
2016-06-01
Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (more » $$L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($$L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.« less
Kumar, Krishna
2017-12-09
The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.
Structure and Dynamics of Colliding Plasma Jets
Li, C.; Ryutov, D.; Hu, S.; ...
2013-12-01
Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
NASA Astrophysics Data System (ADS)
de Cassagnac, Raphael Granier
I present here a concise review of the experimental results obtained at the Relativistic Heavy Ion Collider (RHIC), which shed light on the hot and dense quark gluon matter produced at these high temperature and density conditions.
NASA Astrophysics Data System (ADS)
Zajc, W. A.; Fachini, P.
2002-10-01
An introduction to the PHENIX detector and to the PHENIX physics program is presented. The PHENIX physics results presented here are those from the the first RHIC (Relativistic Heavy Ion Collider) run with Au+Au collisions at RADICAL:[[RADICAND:[SNN
Small collision systems: Theory overview on cold nuclear matter effects
NASA Astrophysics Data System (ADS)
Armesto, Néstor
2018-02-01
Many observables measured at the Relativistic Heavy Ion Collider and the Large Hadron Collider show a smooth transition between proton-proton and protonnucleus collisions (small systems), and nucleus-nucleus collisions (large systems), when represented versus some variable like the multiplicity in the event. In this contribution I review some of the physics mechanisms, named cold nuclear matter effects, that may lead to a collective-like behaviour in small systems beyond the macroscopic description provided by relativistic hydrodynamics. I focus on the nuclear modification of parton densities, single inclusive particle production and correlations.
The PHOBOS experiment at the RHIC collider
NASA Astrophysics Data System (ADS)
Katzy, Judith M.; Back, B.; Baker, M. D.; Barton, D.; Betts, R.; Białas, A.; Budzanowski, A.; Busza, W.; Carroll, A.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Czyż, W.; Decowski, M. P.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia-Solis, E.; George, N.; Godlewski, J.; Gulbrandsen, K. H.; Gushue, S.; Halliwell, C.; Hayes, A.; Heintzelman, G.; Hołyński, R.; Holzman, B.; Jagadish, U.; Johnson, E.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Lemler, M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.; Pernegger, H.; Plesko, M.; Remsberg, L. P.; Reuter, M.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Stanskas, P. J.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Trzupek, A.; van Nieuwenhuizen, G.; Vale, C.; Verdier, R.; Wadsworth, B.; Wolfs, F.; Wosiek, B.; Woźniak, K.; Wuosmaa, A.; Wysłouch, B.; Zalewski, K.; Phobos Collaboration
1999-12-01
PHOBOS is one of four experiments at the Relativistic Heavy Ion Collider (RHIC), scheduled to start data collection in fall 1999. Its main goal is to collect events using minimum bias triggers. A search will then be made for interesting, and perhaps rare, classes of events that may indicate the formation of a quark gluon plasma (QGP) or the restoration of chiral symmetry. In this report we describe the PHOBOS detector design and present the first results in detector development. We will also present our expectations from the first year of operation.
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
NASA Astrophysics Data System (ADS)
Gale, Charles; Jeon, Sangyong; Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju
2013-01-01
Anisotropic flow coefficients v1-v5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time Glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The Glasma dynamics, as realized in the impact parameter dependent Glasma (IP-Glasma) model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic subnucleon scale color charge fluctuations; the preequilibrium flow of matter is then matched to the music algorithm describing viscous hydrodynamic flow and particle production at freeze-out. The IP-Glasma+MUSIC model describes well both transverse momentum dependent and integrated vn data measured at the Large Hadron Collider and the Relativistic Heavy Ion Collider. The model also reproduces the event-by-event distributions of v2, v3 and v4 measured by the ATLAS Collaboration. The implications of our results for better understanding of the dynamics of the Glasma and for the extraction of transport properties of the quark-gluon plasma are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FISCHER,W.; IRISO, U.; MUSTAFIN, E.
We report on molecular desorption of baked stainless steel from irradiation with high energy ions under perpendicular impact. Ion induced molecular desorption has affected the performance of a number of ion accelerators, in which the beam loss typically occurs under small angles. However, experimental parameters can be easier controlled in measurements with perpendicular impact. Desorption coefficients for small angle impact can be estimated from these measurements. The measurements were carried out at Brookhaven's Relativistic Heavy Ion Collider.
Molecular formation in the stagnation region of colliding laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.
2016-10-27
The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less
Gravitational mass of relativistic matter and antimatter
NASA Astrophysics Data System (ADS)
Kalaydzhyan, Tigran
2015-12-01
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65
Constraining the equation of state with identified particle spectra
NASA Astrophysics Data System (ADS)
Monnai, Akihiko; Ollitrault, Jean-Yves
2017-10-01
We show that in a central nucleus-nucleus collision, the variation of the mean transverse mass with the multiplicity is determined, up to a rescaling, by the variation of the energy over entropy ratio as a function of the entropy density, thus providing a direct link between experimental data and the equation of state. Each colliding energy thus probes the equation of state at an effective entropy density, whose approximate value is 19 fm-3 for Au+Au collisions at 200 GeV and 41 fm-3 for Pb+Pb collisions at 2.76 TeV, corresponding to temperatures of 227 and 279 MeV if the equation of state is taken from lattice calculations. The relative change of the mean transverse mass as a function of the colliding energy gives a direct measure of the pressure over energy density ratio P /ɛ , at the corresponding effective density. Using Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) data, we obtain P /ɛ =0.21 ±0.10 , in agreement with the lattice value P /ɛ =0.23 in the corresponding temperature range. Measurements over a wide range of colliding energies using a single detector with good particle identification would help reduce the error.
Brookhaven Lab
2017-12-09
An animation that follows polarized protons as they travel through the Relativistic Heavy Ion Collider (RHIC) accelerator complex to the experiments. The arrows indicate the direction of each proton's spin. The animation concludes with a fly-by of the RHI
Hot Quark Soup Produced at RHIC
None
2018-01-16
The Relativistic Heavy Ion Collider (RHIC, http://www.bnl.gov/rhic) is a 2.4-mile-circumference particle accelerator/collider that has been operating at Brookhaven Lab since 2000, delivering collisions of heavy ions, protons, and other particles to an international team of physicists investigating the basic structure and fundamental forces of matter. In 2005, RHIC physicists announced that the matter created in RHICs most energetic collisions behaves like a nearly perfect liquid in that it has extraordinarily low viscosity, or resistance to flow. Since then, the scientists have been taking a closer look at this remarkable form of matter, which last existed some 13 billion years ago, a mere fraction of a second after the Big Bang. Scientists have revealed new findings, including the first measurement of temperature very early in the collision events, and their implications for the nature of this early-universe matter.
Correlations of heavy quarks produced at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Younus, Mohammed; Jamil, Umme; Srivastava, Dinesh K.
2012-02-01
We study the correlations of heavy quarks produced in relativistic heavy-ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-antiquark (Q\\overline{Q}) pairs in pp collisions at {O}(α3s). This sets the stage for the identification and study of medium modification of similar correlations in the relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, namely jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from the prompt initial production at leading order and at next to leading order. Communicated by Professor Steffen Bass.
Event-by-Event Simulations of Early Gluon Fields in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Nickel, Matthew; Rose, Steven; Fries, Rainer
2017-09-01
Collisions of heavy ions are carried out at ultra relativistic speeds at the Relativistic Heavy Ion Collider and the Large Hadron Collider to create Quark Gluon Plasma. The earliest stages of such collisions are dominated by the dynamics of classical gluon fields. The McLerran-Venugopalan (MV) model of color glass condensate provides a model for this process. Previous research has provided an analytic solution for event averaged observables in the MV model. Using the High Performance Research Computing Center (HPRC) at Texas A&M, we have developed a C++ code to explicitly calculate the initial gluon fields and energy momentum tensor event by event using the analytic recursive solution. The code has been tested against previously known analytic results up to fourth order. We have also have been able to test the convergence of the recursive solution at high orders in time and studied the time evolution of color glass condensate.
Design of the large hadron electron collider interaction region
NASA Astrophysics Data System (ADS)
Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.
2015-11-01
The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.
Electron and photon identification in the D0 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
2014-06-01
The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.
Suppression of the Rayleigh Taylor instability and its implication for the impact ignition
NASA Astrophysics Data System (ADS)
Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.
2004-12-01
The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.
NASA Astrophysics Data System (ADS)
Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu
2018-07-01
In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.
Enhancing RHIC luminosity capabilities with in-situ beam piple coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.
Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel.more » The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).« less
Impact of the resistive wall impedance on beam dynamics in the Future Circular e+e- Collider
NASA Astrophysics Data System (ADS)
Migliorati, M.; Belli, E.; Zobov, M.
2018-04-01
The Future Circular Collider study, which aims at designing post-LHC particle accelerator options, is entering in the final stage, which foresees a conceptual design report containing the basic requirements for a hadron and a lepton collider, as well as options for an electron-proton machine. Due to the high beam intensities of these accelerators, collective effects have to be carefully analyzed. Among them, the finite conductivity of the beam vacuum chamber represents a major source of impedance for the electron-positron collider. By using numerical and analytical tools, a parametric study of longitudinal and transverse instabilities caused by the resistive wall is performed in this paper for the case of the Future Circular Collider lepton machine, by taking into account also the effects of coating, used to fight the electron cloud build up. It will be proved that under certain assumptions the coupling impedance of a two layer system does not depend on the conductivity of the coating and this property represents an important characteristic for the choice of the material itself. The results and findings of this study have an impact on the machine design in several aspects. In particular the quite low threshold of single bunch instabilities with respect to the nominal beam current and the not negligible power losses due to the resistive wall are shown, together with the necessity of a new feedback system to counteract the fast transverse coupled bunch instability. The importance of a round vacuum chamber to avoid the quadrupolar tune shift is also discussed. Finally the crucial importance of the beam pipe material coating and thickness choice for the above results is underlined.
A Study of Single Pass Ion Effects at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Thomson, J.; /LBL, Berkeley
2011-09-13
We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased alongmore » the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.« less
Neutron dosimetry at a high-energy electron-positron collider
NASA Astrophysics Data System (ADS)
Bedogni, Roberto
Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta Castillo, John Gabriel
To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2more » $$\\mathrm{\\mu s}$$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $$\\beta^{\\star} $$ region to cool the beam to the required limit with available low Z absorbers.« less
DOE R&D Accomplishments Database
Walsh, Karen McNulty
2011-03-28
Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered?and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.
Transverse energy per charged particle in heavy-ion collisions: Role of collective flow
NASA Astrophysics Data System (ADS)
Kumar Tiwari, Swatantra; Sahoo, Raghunath
2018-03-01
The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beebe-Wang,J.
There are three main sources of the radiation background in MeRHIC: forward synchrotron radiation generated upstream of the detector, the direct backward radiation caused by the photons hitting beampipe downstream of the detector, and the indirect secondary radiation caused by hard photons hitting vacuum systems, masks, collimators, absorbers or any other elements in the interaction region. In this paper, we first calculate the primary radiation distribution by employing electromagnetic theory. Then we obtain the direct backward scattering rate by applying the kinematic Born approximation deduced from scattering dynamics. The diffuse scattering cross section is calculated as a function of themore » surface properties of the MeRHIC vacuum system. Finally, the dominating physical processes and minimization of indirect secondary radiation is presented and discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanahan, Phiala A.
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCDmore » calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.« less
Multiple bunch HOM evaluation for ERL cavities
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; Hao, Yue; Ptitsyn, Vadim
2017-09-01
In this work we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron-ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when the ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.
2010-11-01
We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-08-01
Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2016-08-16
Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less
Universal pion freeze-out in heavy-ion collisions.
Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V
2003-01-17
Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.
Particle Tracking on the BNL Relativistic Heavy Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dell, G. F.
1986-08-07
Tracking studies including the effects of random multipole errors as well as the effects of random and systematic multipole errors have been made for RHIC. Initial results for operating at an off diagonal working point are discussed.
Radio frequency multicusp ion source development (invited)
NASA Astrophysics Data System (ADS)
Leung, K. N.
1996-03-01
The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.
Strikman, Mark; Vogt, Ramona; White, Sebastian
2006-03-03
We calculate photoproduction rates for several hard processes in ultraperipheral proton-lead and lead-lead collisions at the CERN Large Hadron Collider (LHC) with square root of sNN = 8.8 and 5.5 TeV, respectively, which could be triggered in the large LHC detectors. We use ATLAS as an example. The lead ion is treated as a source of (coherently produced) photons with energies and intensities greater than those of equivalent ep collisions at the DESY collider HERA. We find very large rates for both inclusive and diffractive production that will extend the HERA x range by nearly an order of magnitude for similar virtualities. We demonstrate that it is possible to reach the kinematic regime where nonlinear effects are larger than at HERA.
Deng, Haiqiang; Dick, Jeffrey E; Kummer, Sina; Kragl, Udo; Strauss, Steven H; Bard, Allen J
2016-08-02
We describe a method of observing collisions of single femtoliter (fL) oil (i.e., toluene) droplets that are dispersed in water on an ultramicroelectrode (UME) to probe the ion transfer across the oil/water interface. The oil-in-water emulsion was stabilized by an ionic liquid, in which the oil droplet trapped a highly hydrophobic redox probe, rubrene. The ionic liquid also functions as the supporting electrolyte in toluene. When the potential of the UME was biased such that rubrene oxidation would be possible when a droplet collided with the electrode, no current spikes were observed. This implies that the rubrene radical cation is not hydrophilic enough to transfer into the aqueous phase. We show that current spikes are observed when tetrabutylammonium trifluoromethanesulfonate or tetrahexylammonium hexafluorophosphate are introduced into the toluene phase and when tetrabutylammonium perchlorate is introduced into the water phase, implying that the ion transfer facilitates electron transfer in the droplet collisions. The current (i)-time (t) behavior was evaluated quantitatively, which indicated the ion transfer is fast and reversible. Furthermore, the size of these emulsion droplets can also be calculated from the electrochemical collision. We further investigated the potential dependence on the electrochemical collision response in the presence of tetrabutylammonium trifluoromethanesulfonate in toluene to obtain the formal ion transfer potential of tetrabutylammonium across the toluene/water interface, which was determined to be 0.754 V in the inner potential scale. The results yield new physical insights into the charge balance mechanism in emulsion droplet collisions and indicate that the electrochemical collision technique can be used to probe formal ion transfer potentials between water and solvents with very low (ε < 5) dielectric constants.
Coordinating the 2009 RHIC Run
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookhaven Lab - Mei Bai
2009-04-13
Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect
Peter Steinberg
2017-12-09
In a lecture titled "Hotter, Denser, Faster, Smaller...and Nearly Perfect: What's the Matter at RHIC?", Steinberg discusses the basic physics of the quark-gluon plasma and BNL's Relativistic Heavy Ion Collider, with a focus on several intriguing results from RHIC's recently ended PHOBOS experiment.
Coordinating the 2009 RHIC Run
Brookhaven Lab - Mei Bai
2017-12-09
Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect
Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)
Thomson, Mark
2018-04-16
Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.
The firehose instability during multiple reconnection in the Earth's magnetotail
NASA Astrophysics Data System (ADS)
Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia
2017-04-01
We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.
Commissioning and initial experience with the ALICE on-line
NASA Astrophysics Data System (ADS)
Altini, V.; Anticic, T.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Kiss, T.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soós, C.; Vande Vyvre, P.; von Haller, B.; ALICE Collaboration
2010-04-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the "battle field". It will also discuss the test protocol followed to integrate and validate each sub-detector with the online systems and it will conclude with the first results of the LHC injection tests and startup in September 2008. Several papers of the same conference present in more details some elements of the ALICE DAQ system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsouleas, Thomas C.; Sahai, Aakash A.
2016-08-08
There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of themore » laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.« less
NASA Astrophysics Data System (ADS)
Lin, Yufu; Chen, Lizhu; Li, Zhiming
2017-10-01
Fluctuations of conserved quantities are believed to be sensitive observables to probe the signature of the QCD phase transition and critical point. It was argued recently that measuring the genuine correlation functions (CFs) could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. With the AMPT (a multiphase transport) model, the centrality and energy dependence of various orders of CFs of net protons in Au + Au collisions at √{sN N}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV are investigated. The model results show that the number of antiprotons is important and should be taken into account in the calculation of CFs at high energy and/or in peripheral collisions. It is also found that the contribution of antiprotons is more important for higher order correlations than for lower ones. The CFs of antiprotons and mixed correlations play roles comparable to those of protons at high energies. Finally, we make comparisons between the model calculation and experimental data measured in the STAR experiment at the BNL Relativistic Heavy Ion Collider.
Suppression versus enhancement of heavy quarkonia in p A collisions
NASA Astrophysics Data System (ADS)
Kopeliovich, B. Z.; Schmidt, Iván; Siddikov, M.
2017-06-01
We describe the production of heavy quarkonia in p A collisions within the dipole approach by assuming the dominance of the perturbative color-singlet mechanism (CSM) in the pT-integrated cross section. Although accounting for a nonzero heavy Q -Q ¯ separation is a higher-twist correction that is usually neglected, we found it to be the dominant source of nuclear effects, significantly exceeding the effects of leading-twist gluon shadowing and energy loss. Moreover, this contribution turns out to be the most reliably predicted, relying on the precise measurements of the dipole cross section at the Hadron-Electron Ring Accelerator (HERA) at DESY. The nuclear suppression of quarkonia has been anticipated to become stronger with energy because the dipole cross section steeply rises. However, the measured nuclear effects remain essentially unchanged within the energy range from that of the BNL Relativistic Heavy Ion Collider (RHIC) to that of the Large Hadron Collider (LHC). A production mechanism is proposed that enhances the charmonium yield. Nuclear effects for the production of J /ψ , ψ (2 S ) , Υ (1 S ) , and Υ (2 S ) are calculated and are in agreement with data from RHIC and LHC. The dipole description offers a unique explanation for the observed significant nuclear suppression of the ψ (2 S ) -to-J /ψ ratio, which is related to the nontrivial features of the ψ (2 S ) wave function.
Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q
2013-07-05
The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.
High-yield positron systems for linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.
1989-04-01
Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Scardina, Francesco; Das, Santosh K.; Minissale, Vincenzo; Plumari, Salvatore; Greco, Vincenzo
2017-10-01
We describe the propagation of charm quarks in the quark-gluon plasma (QGP) by means of a Boltzmann transport approach. Nonperturbative interaction between heavy quarks and light quarks have been taken into account through a quasiparticle approach in which light partons are dressed with thermal masses tuned to lattice quantum chromodynamics (lQCD) thermodynamics. Such a model is able to describe the main feature of the nonperturbative dynamics: the enhancement of the interaction strength near Tc. We show that the resulting charm in-medium evolution is able to correctly predict simultaneously the nuclear suppression factor, RAA, and the elliptic flow, v2, at both Relativistic Heavy Ion Collider and Large Hadron Collider (LHC) energies and at different centralities. The hadronization of charm quarks is described by mean of an hybrid model of fragmentation plus coalescence and plays a key role toward the agreement with experimental data. We also performed calculations within the Langevin approach, which can lead to very similar RAA(pT) as Boltzmann, but the charm drag coefficient as to be reduced by about a 30 % and also generates an elliptic flow v2(pT) is about a 15 % smaller. We finally compare the space diffusion coefficient 2 π T Ds extracted by our phenomenological approach to lattice QCD results, finding a satisfying agreement within the present systematic uncertainties. Our analysis implies a charm thermalization time, in the p →0 limit, of about 4 -6 fm/c , which is smaller than the QGP lifetime at LHC energy.
NASA Astrophysics Data System (ADS)
Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.
2017-07-01
We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.
The Birth of Lepton Colliders in Italy and the United States
NASA Astrophysics Data System (ADS)
Paris, Elizabeth
2003-04-01
In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.
NASA Astrophysics Data System (ADS)
Almeida, Diogo Alexandre Fialho de
Radiation-induced damage to biological systems, both direct and indirect processes, has increasingly come under scrutiny by the international scientific community due to recent findings that electrons are a very effective agent in damaging DNA/RNA. Indeed, much remains to be discovered regarding the exact physico-chemical processes that occur in the nascent stages of DNA/RNA damage by incident radiation. However, it is also known that electrons do not exist freely in the physiological medium, but rather solvated and/or pre-solvated states. This leads to the need for new techniques that can better explore the damaging role of "bound" electrons to DNA/RNA. The work presented in this thesis consists on the study of electron transfer in collisions of atomic species with molecules of biological relevance. In order to study these processes, two experimental setups were used. One setup consists of a crossed beam experiment where a neutral potassium beam is created and made to collide with an effusive molecular target beam. The anionic products that stem from electron transfer in potassium atom to the molecular target collisions are then extracted and time-of-flight (TOF) mass analysed. In the second setup a beam of anionic species is formed and made to collide with a molecular target. Collisions with three different anionic beams were performed (H-, O- and OH-), as well as with different simple organic molecules, by measuring the positive and negative ion fragmentation patterns with a quadrupole mass spectrometer (QMS). A comparison between these two collisional systems can greatly help to understand the underlying mechanisms of the electron transfer processes. Finally, studies of potassium collisions with sugar surrogates D-Ribose and THF were performed. These studies show very different fragmentation patterns from DEA, although in the case of THF, it is suggested that the initially accessed states are the same as in DEA. With these studies was also possible to show for the first time collision induced site and bond selectivity breaking, where the electron is transferred into a given state of the acceptor molecule and the resulting fragmentation pathways are exclusive to the initial anionic state. Furthermore, the role of the potassium cation post collisionwas explored and indeed its presence is suggested to induce at least partial suppression of auto-detachment. The implications that ensue from this degradation are analysed in the light of the obtained fragmentation patterns.
Study of Higgs effective couplings at electron-proton colliders
NASA Astrophysics Data System (ADS)
Hesari, Hoda; Khanpour, Hamzeh; Najafabadi, Mojtaba Mohammadi
2018-05-01
We perform a search for beyond-the-Standard-Model (BSM) dimension-six operators relevant to the Higgs boson at the Large Hadron Electron Collider (LHeC) and the Future Circular Hadron Electron Collider (FCC-he). With a large amount of data (few ab-1 ) and collisions at the TeV scale, both LHeC and FCC-he provide excellent opportunities to search for the BSM effects. The study is done through the process e-p →h j νe , where the Higgs boson decays into a pair of b b ¯, and we consider the main sources of background processes, including a realistic simulation of detector effects. For the FCC-he case, in some signal scenarios, to obtain an efficient event reconstruction and to have a good background rejection, jet substructure techniques are employed to reconstruct the boosted Higgs boson in the final state. In order to assess the sensitivity to the dimension-six operators, a shape analysis on the differential cross sections is performed. Stringent bounds are found on the Wilson coefficients of dimension-six operators with the integrated luminosities of 1 ab-1 and 10 ab-1 , which in some cases show improvements with respect to the high-luminosity LHC results.
Thermal Photon Radiation in High Multiplicity p + Pb Collisions at the Large Hadron Collider
Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; ...
2016-02-18
We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low p T direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. Thismore » thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.« less
Improvements of the target lifetime in the RHIC polarimeter
NASA Astrophysics Data System (ADS)
Steski, D. B.; Huang, H.; Kewisch, J.; Sukhanova, L.; Zelenski, A.
2018-05-01
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is the only collider in the world to collide polarized protons. It is critical to the RHIC experimental program that the polarization of the proton beam is measured. This is accomplished with the Coulomb Nuclear Interference (CNI) polarimeter. The targets used in the RHIC CNI polarimeter are 50 nm thick, 25 mm long and <10 µm wide. As the beam intensity in RHIC has increased and the beam size has decreased, the lifetime of these targets has decreased dramatically. During the 2013 polarized proton experimental run, the targets needed to be replaced twice. This resulted in additional work and lost beam time. Before the 2015 experimental run, metal shields were installed around the ends of the targets which greatly improved the target lifetime. The results from the 2015 experimental run and plans for the 2017 experimental run will be discussed.
Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons
NASA Astrophysics Data System (ADS)
Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.
2018-03-01
Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.
Power supply and pulsing strategies for the future linear colliders
NASA Astrophysics Data System (ADS)
Brogna, A. S.; Göttlicher, P.; Weber, M.
2012-02-01
The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.
Coherent electron emission beyond Young-type interference from diatomic molecules
NASA Astrophysics Data System (ADS)
Agueny, H.; Makhoute, A.; Dubois, A.; Hansen, J. P.
2016-01-01
It has been known for more than 15 years that the differential cross section of electrons emitted from diatomic molecules during interaction with energetic charged particles oscillates as a function of electron momentum. The origin of the phenomenon is two-center interference, which naturally relates it back to the Young double-slit experiment. In addition to a characteristic frequency which can be described by lowest-order perturbation theories, the observation and origin of higher-order harmonics of the basic oscillation frequency has been much discussed. Here, we show that high harmonics of the fundamental Young-type oscillation frequency observed in electron spectra in fast ion-molecule collisions can be clearly exposed in numerical solutions of the time-dependent Schrödinger equation within a one-dimensional model. Momentum distribution of the ejected electron is analyzed and shows that the phenomenon emerges when the charged particle beam collides with diatomic molecules with substantial large internuclear distance. Frequency spectra from nonperturbative calculations for electron emission from Rb2+ and Cs2+ exhibit a pronounced high-order oscillation in contrast to similar close-coupling calculations performed on H2 targets. The electron emission from these heavy molecules contains second- and third-order harmonics which are fully reproduced in an analytic model based on the Born series. Extending to triatomic molecular targets displays an increased range of harmonics. This suggests that electron emission spectra from new experiments on heavy diatomic and linear polyatomic molecular targets may provide a unique insight into competing coherent emission mechanisms and their relative strength.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach
NASA Astrophysics Data System (ADS)
Sun, Yifeng; Ko, Che Ming
2017-08-01
Using a chiral kinetic approach based on initial conditions from a multiphase transport model, we study the spin polarizations of quarks and antiquarks in noncentral heavy ion collisions at the BNL Relativistic Heavy Ion Collider. Because of the nonvanishing vorticity field in these collisions, quarks and antiquarks are found to acquire appreciable spin polarizations in the direction perpendicular to the reaction plane. Converting quarks and antiquarks to hadrons via the coalescence model, we further calculate the spin polarizations of Λ and anti-Λ hyperons and find their values comparable to those measured in experiments by the STAR Collaboration.
NASA Astrophysics Data System (ADS)
Nicolas, Christophe; Torrents, Raquel; Gerlich, Dieter
2003-02-01
Absolute integral cross sections are measured in the collision energy range between 0.1 to 3.5 eV for the N2++CH4 and N2++CD4 reactions using the universal guided ion beam apparatus. The reaction branching ratio, CX3+:CX2+:N2X+ (X=H or D), is found to be 0.86:0.09:0.05 and 0.88:0.07:0.05 for the N2++CH4 and N2++CD4 reactions, respectively. The CH3+/CH2+ ratio is constant over the whole collision energy range and very similar to the one obtained for the almost isoenergetic Ar++CH4 reaction. Axial velocity distributions of the product ions are measured by time of flight at collision energies between 0.1 and 3.5 eV. The results provide direct insight into the reaction dynamics. The dissociative charge transfer channels, leading to CH3+ and CH2+ product ions, occur via an electron jump combined with some exchange of momentum between the colliding partners. The H (D) transfer leading to N2H+ can be described as a direct process, similar to a spectator stripping mechanism. Various isotope effects are observed, the dominant being that the cross sections for reaction with CH4 are up to 20% bigger than the corresponding ones for CD4.
An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision
Nasim, Md.; Esha, Roli; Huang, Huan Zhong
2016-01-01
For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7 GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less
Coherent J /ψ photoproduction in hadronic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.
2018-04-01
Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.
The gluon structure of hadrons and nuclei from lattice QCD
NASA Astrophysics Data System (ADS)
Shanahan, Phiala
2018-03-01
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.
NASA Astrophysics Data System (ADS)
The QCD Evolution 2016 workshop was held at the National Institute for Subatomic Physics (Nikhef) in Amsterdam, May 30 - June 3, 2016. The workshop is a continuation of a series of workshops held during five consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2016. The program of QCD Evolution 2016 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
NASA Astrophysics Data System (ADS)
2017-05-01
The QCD Evolution 2017 workshop was held at Jefferson Lab, May 22-26, 2017. The workshop is a continuation of a series of workshops held during six consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM, and in 2016 at the National Institute for Subatomic Physics (Nikhef) in Amsterdam. With the rapid developments in our understanding of the evolution of parton distributions including TMDs, GPDs, low-x, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2017. The program of QCD Evolution 2017 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to RHIC and LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
Alternate approaches to future electron-positron linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, G.A.
1998-07-01
The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.
NASA Astrophysics Data System (ADS)
Adloff, C.; Francis, K.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Calice Collaboration
2011-10-01
Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1×10-5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darden, C.; Rosenfeld, C.
1990-01-01
This paper discusses electron-positron annihilation at high energy. This work began in 1977 with the DASP II Collaboration at the DORIS storage ring of the DESY Laboratory in Hamburg. The collaboration's first publication reported the observation of the narrow {Upsilon} resonance at 9.46 GeV, confirming the original observation of this state in proton-nucleus collisions at Fermilab. To enable investigations of the {Upsilon} family of resonances the DORIS ring was rebuilt for reliable operation at the top of its energy range where the {Upsilon} states are accessible. In addition a new detector, ARGUS, was installed at one interaction region. This papermore » also discusses the AMY Collaboration which investigates electron-positron annihilation at energies from 50 to 65 GeV. The AMY detector is in the beam of the TRISTAN collider of the KEK Laboratory in Tsukuba, Japan.« less
Heavy Quark Correlations and J / Φ Production in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Niazi, Reza; Liu, Yunpeng; Ko, Che-Ming
2014-09-01
Quark Gluon Plasma (QGP), a phase of QCD matter, was the temporary state that all matter had in the universe microseconds after its creation, which has been produced in high energy nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Normally being bound inside a proton or neutron, due to the strong nuclear force, the QGP is a hot ``soup'' of quarks and gluons that move relatively freely. QGP is still a very enigmatic state of matter; therefore, active work is being done in trying to understand what is left behind after this short-lived state of matter disintegrates. This includes the abundance of the charmonium meson that consists of a pair of heavy charm and anticharm quarks. In this study, a QGP simulation called the Parton Cascade Model is used with two different initial conditions to see if charm and anticharm quarks can create a charmonium meson in the expanding QGP. In the simulation, the charm quark pair is initially either correlated, with opposite momenta but same position, or uncorrelated, with random momenta and positions, within the QGP. Understanding the difference of the amount of charmonium mesons produced in these two conditions will be helpful in developing theoretical models for charmonium production in heavy ion collisions and thus determining the properties of QGP from experimental measurements. Quark Gluon Plasma (QGP), a phase of QCD matter, was the temporary state that all matter had in the universe microseconds after its creation, which has been produced in high energy nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Normally being bound inside a proton or neutron, due to the strong nuclear force, the QGP is a hot ``soup'' of quarks and gluons that move relatively freely. QGP is still a very enigmatic state of matter; therefore, active work is being done in trying to understand what is left behind after this short-lived state of matter disintegrates. This includes the abundance of the charmonium meson that consists of a pair of heavy charm and anticharm quarks. In this study, a QGP simulation called the Parton Cascade Model is used with two different initial conditions to see if charm and anticharm quarks can create a charmonium meson in the expanding QGP. In the simulation, the charm quark pair is initially either correlated, with opposite momenta but same position, or uncorrelated, with random momenta and positions, within the QGP. Understanding the difference of the amount of charmonium mesons produced in these two conditions will be helpful in developing theoretical models for charmonium production in heavy ion collisions and thus determining the properties of QGP from experimental measurements. Funded by DOE and NSF-REU Program.
NASA Technical Reports Server (NTRS)
Fatyga, M.; Norbury, John W.
1992-01-01
An experimental program at the Relativistic Heavy Ion Collider (RHIC) which is designed to study nonperturbative aspects of electrodynamics is outlined. Additional possibilities for new studies of electrodynamics via multiple electromagnetic processes are also described.
Update on J /ψ regeneration in a hadron gas
NASA Astrophysics Data System (ADS)
Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.
2018-04-01
In heavy-ion collisions, after the quark-gluon plasma there is a hadronic gas phase. Using effective Lagrangians, we study the interactions of charmed mesons which lead to J /ψ production and absorption in this gas. We update and extend previous calculations introducing strange meson interactions and also including the interactions mediated by the recently measured exotic charmonium resonances Z (3900 ) and Z (4025 ) . These resonances open new reaction channels for the J /ψ , which could potentially lead to changes in its multiplicity. We compute the J /ψ production cross section in processes such as D(s) (*)+D¯(*)→J /ψ +(π ,ρ ,K ,K*) and also the J /ψ absorption cross section in the corresponding inverse processes. Using the obtained cross sections as input to solve the appropriate rate equation, we conclude that the interactions in the hadron gas phase lead to a 20-24% reduction of the J /ψ abundance. Within the uncertainties of the calculation, this reduction is the same at the Relativistic Heavy Ion Collider and the large Hadron Collider.
Matter formed at the BNL Relativistic Heavy Ion Collider.
Brown, G E; Gelman, B A; Rho, Mannque
2006-04-07
We suggest that the "new form of matter" found just above T(c) by the Relativistic Heavy Ion Collider is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of pi, sigma, rho, and a1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at T(c) just as they do from below T(c) as predicted by the vector manifestation of hidden local symmetry. This could explain the rapid rise in entropy up to T(c) found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue.
Relating centrality to impact parameter in nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Das, Sruthy Jyothi; Giacalone, Giuliano; Monard, Pierre-Amaury; Ollitrault, Jean-Yves
2018-01-01
In ultrarelativistic heavy-ion experiments, one estimates the centrality of a collision by using a single observable, say n , typically given by the transverse energy or the number of tracks observed in a dedicated detector. The correlation between n and the impact parameter b of the collision is then inferred by fitting a specific model of the collision dynamics, such as the Glauber model, to experimental data. The goal of this paper is to assess precisely which information about b can be extracted from data without any specific model of the collision. Under the sole assumption that the probability distribution of n for a fixed b is Gaussian, we show that the probability distribution of the impact parameter in a narrow centrality bin can be accurately reconstructed up to 5 % centrality. We apply our methodology to data from the Relativistic Heavy Ion Collider and the Large Hadron Collider. We propose a simple measure of the precision of the centrality determination, which can be used to compare different experiments.
Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield.
Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lipkowitz, N; Litos, M; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V; Yocky, G
2015-08-27
Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir
2015-11-15
In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
How Data Becomes Physics: Inside the RACF
Ernst, Michael; Rind, Ofer; Rajagopalan, Srini; Lauret, Jerome; Pinkenburg, Chris
2018-06-22
The RHIC & ATLAS Computing Facility (RACF) at the U.S. Department of Energyâs (DOE) Brookhaven National Laboratory sits at the center of a global computing network. It connects more than 2,500 researchers around the world with the data generated by millions of particle collisions taking place each second at Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC, a DOE Office of Science User Facility for nuclear physics research), and the ATLAS experiment at the Large Hadron Collider in Europe. Watch this video to learn how the people and computing resources of the RACF serve these scientists to turn petabytes of raw data into physics discoveries.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
NASA Astrophysics Data System (ADS)
Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.
2015-11-01
In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Towards future circular colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Zimmermann, Frank
2016-09-01
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.
The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview
NASA Astrophysics Data System (ADS)
Billing, M. G.
2015-07-01
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.
NASA Astrophysics Data System (ADS)
Altini, V.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Divià, R.; Fuchs, U.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soòs, C.; Vande Vyvre, P.; Von Haller, B.; ALICE Collaboration
2010-04-01
All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analysis. It will also present the web interface, including the different used technologies, the implemented security measures and the current main features. Finally it will present the roadmap for the future, including a migration to the web 2.0 paradigm, the handling of the database ever-increasing data volume and the deployment of data-mining tools.
Theory and measurements of emittance preservation in plasma wakefield acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederico, Joel
2016-12-01
In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditionsmore » necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.« less
Pion Condensation by Rotation in a Magnetic Field
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Zahed, Ismail
2018-01-01
We show that the combined effects of a rotation plus a magnetic field can cause charged pion condensation. We suggest that this phenomenon may yield to observable effects in current heavy ion collisions at collider energies, where large magnetism and rotations are expected in off-central collisions.
Performance of the PHOBOS silicon sensors
NASA Astrophysics Data System (ADS)
Decowski, M. P.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2002-02-01
The PHOBOS detector is designed to study the physics of Au+Au collisions at the Relativistic Heavy Ion Collider. The detector is almost entirely made of silicon pad detectors and was fully operational during the first year of operation. The detector is described, and key performance characteristics are summarized.
Electron Lenses for the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Valishev, Alexander; Bruce, Roderik
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less
ΛΛ correlation function in Au + Au collisions at √ sNN = 200 GeV
Adamczyk, L.
2015-01-12
In this study, we present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at √ sNN = 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for di-hyperon searches are discussed.
Elliptic flow in Au+Au collisions at RHIC
NASA Astrophysics Data System (ADS)
Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.
2005-04-01
Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.
Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly
NASA Astrophysics Data System (ADS)
Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg
2018-04-01
We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.
A flow paradigm in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Yan, Li
2018-04-01
The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada
Status of the Future Circular Collider Study
NASA Astrophysics Data System (ADS)
Benedikt, Michael
2016-03-01
Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.
Using polarized positrons to probe physics beyond the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furletova, Yulia; Mantry, Sonny
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-25
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
NASA Astrophysics Data System (ADS)
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
Online beam energy measurement of Beijing electron positron collider II linear accelerator
NASA Astrophysics Data System (ADS)
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Online beam energy measurement of Beijing electron positron collider II linear accelerator.
Wang, S; Iqbal, M; Liu, R; Chi, Y
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milardi, C.; Alesini, D.; Biagini, M.E.
DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less
R&D status of linear collider technology at KEK
NASA Astrophysics Data System (ADS)
Urakawa, Junji
1992-02-01
This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.
Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions.
Knapen, Simon; Lin, Tongyan; Lou, Hou Keong; Melia, Tom
2017-04-28
We show that ultraperipheral heavy-ion collisions at the Large Hadron Collider (LHC) can be used to search for axionlike particles with mass below 100 GeV. The Z^{4} enhanced photon-photon luminosity from the ions provides a large exclusive production rate, with a signature of a resonant pair of back-to-back photons and no other activity in the detector. In addition, we present both new and updated limits from recasting multiphoton searches at LEP II and the LHC, which are more stringent than those currently in the literature for the mass range 100 MeV to 100 GeV.
NASA Astrophysics Data System (ADS)
Seo, Byonghoon; Li, Hui; Bellan, Paul
2017-10-01
We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
2010-08-01
Hydrodynamic (hydro) models applied to heavy ion data from the relativistic heavy ion collider (RHIC) suggest that a dense QCD medium nearly opaque to partons—a strongly coupled quark-gluon plasma—is formed in more-central Au-Au collisions and may have a small viscosity ('perfect liquid'). Claimed evidence for radial and elliptic flows and possible coalescence of 'constituent quarks' seems to support the conclusion. But other measurements provide contradictory evidence. Unbiased angular correlations indicate that most back-to-back jets from initial-state scattered partons with energies as low as 3 GeV survive as 'minijet' hadron correlations even in central Au-Au collisions, suggesting near transparency. Two-component analysis of single-particle spectra reveals a spectrum hard component (parton fragment distribution) which can be mistaken for 'radial flow' in some forms of analysis. Based on recent results, reinterpretation of 'elliptic flow' as a QCD quadrupole scattering process including fragmentation may be possible. In this paper we review conventional analysis methods in the context of two paradigms: a hydrodynamics/hard-probes paradigm and a quadrupole/minijets paradigm. Re-examination of fiducial data suggests that hydrodynamics may not be relevant to RHIC collisions. Collision evolution may be dominated by QCD scattering and fragmentation, albeit strongly modified in more-central A-A collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai
2013-07-15
We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less
NASA Astrophysics Data System (ADS)
Kishimoto, Naoki; Ohno, Koichi
Excited metastable atoms colliding with target molecules can sensitively probe outer properties of molecules by chemi-ionization (Penning ionization) from molecular orbitals in the outer region, since metastable atoms cannot penetrate into the repulsive interaction wall around the molecules. By means of two-dimensional measurements using kinetic energy analysis of electrons combined with a velocity-resolved metastable beam, one can obtain information on the anisotropic interaction between the colliding particles without any control of orientation or alignment of target molecules. We have developed a classical trajectory method to calculate the collision energy dependence of partial ionization cross-sections (CEDPICS) on the anisotropic interaction potential energy surface, which has enabled us to study stereodynamics between metastable atoms and target molecules as well as the spatial distribution of molecular orbitals and electron ejection functions which have a relation with entrance and exit channels of the reaction. Based on the individual CEDPICS, the electronic structure of molecules can also be elucidated.
Correlations with Non-Photonic Electrons in√ sNN = 200 GeV Au+Au Collisions in STAR
NASA Astrophysics Data System (ADS)
Dunkelberger, Lloyd Edward, Jr.
At sufficiently high temperatures and densities quarks and gluons exist in a deconfined state called Quark Gluon Plasma (QGP). QGP existed in the Universe shortly after the Big Bang, and today is created in accelerator based experiments which collide heavy nuclei at high energies. Results from these experiments point to a hot, dense and strongly interacting state of deconfined quarks and gluons. The study of heavy flavor probes (those originating from c and b quarks) is an active area of research in heavy ion collisions. Heavy quarks are produced in the initial hard scatterings of collisions and thus are sensitive to the entire evolution of the medium. They also potentially have different sensitivity to medium induced energy loss compared to light flavors. This dissertation investigates the interactions of heavy flavor quarks with the medium by studying correlations between electrons from heavy flavor decays and hadrons. At high transverse momentum, the direction of the electron is highly correlated with the direction of the parent heavy flavor meson. We look for evidence of energy loss in the QGP as well as jet induced effects on the medium. We present electron-hadron correlations from Au+Au collisions in a wide range of centrality bins as well as correlations from p+p. The datasets used are the best currently available due to high statistics and low material in the detector. We also investigate the dependence on the orientation of the trigger particle to the event plane to look for path length dependent effects on the correlation as well as non-flow contributions to electron electron v2.
Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions
NASA Astrophysics Data System (ADS)
Telnov, V. I.
2018-03-01
At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2010-04-01
There is a classic episode of the US political-satire TV programme The Daily Show about the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL) in the US. The show was filmed in June 2000, just as scientists were firing up the collider to smash gold nuclei into each other for the first time. The quest of the machine was to recreate the hot, dense soup of free quarks, antiquarks and gluons - the "quark-gluon plasma" - that had previously only ever existed in the first few microseconds after the Big Bang. What had attracted the attention of the programme-makers, however, was not the science but rumours that RHIC would create a world-destroying black hole.
System-size independence of directed flow measured at the BNL relativistic heavy-ion collider.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kumar, A; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yang, Y Y; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X
2008-12-19
We measure directed flow (v_{1}) for charged particles in Au+Au and Cu+Cu collisions at sqrt[s_{NN}]=200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p_{t}), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v_{1} in different collision systems, and investigate possible explanations for the observed sign change in v_{1}(p_{t}).
Albacete, Javier L
2007-12-31
We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.
Gravitational mass of relativistic matter and antimatter
Kalaydzhyan, Tigran
2015-10-13
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, m g, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < m g/m <110 not excluding the so-calledmore » antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < m g/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10 -7 < m g/m <1 +2 ×10 -7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less
Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)
NASA Astrophysics Data System (ADS)
Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.
2017-12-01
Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.
Bruno Touschek: From Betatrons to Electron-Positron Colliders
NASA Astrophysics Data System (ADS)
Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio
Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.
Bruno Touschek: From Betatrons to Electron-Positron Colliders
NASA Astrophysics Data System (ADS)
Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio
Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.
NASA Astrophysics Data System (ADS)
Del Dotto, A.; Kaptari, L. P.; Pace, E.; Salmè, G.; Scopetta, S.
2017-12-01
The semi-inclusive deep-inelastic electron scattering off transversely polarized 3He, i.e., the process e +3He ⃗→e'+h +X , with h being a detected fast hadron, is studied beyond the plane-wave impulse approximation. To this end, a distorted spin-dependent spectral function of a nucleon inside an A =3 nucleus is actually evaluated through a generalized eikonal approximation, in order to take into account the final state interactions between the hadronizing system and the (A -1 ) nucleon spectator one. Our realistic description of both nuclear target and final state is a substantial step forward for achieving a reliable extraction of the Sivers and Collins single spin asymmetries of the free neutron. To illustrate how and to what extent the model dependence due to the treatment of the nuclear effects is under control, we apply our approach to the extraction procedure of the neutron single spin asymmetries from those measured for 3He for values of the kinematical variables relevant both for forthcoming experiments at Jefferson Laboratory and, with an exploratory purpose, for the future Electron Ion Collider.
NASA Astrophysics Data System (ADS)
Ganesh, S.; Singh, R., Captain; Mishra, M.
2018-03-01
Proton-nucleus collisions serve as an important baseline for the understanding and interpretation of the nucleus-nucleus collisions. These collisions have been employed to characterize the cold nuclear matter effects at SPS and Relativistic Heavy-Ion Collider energies for the past several years, as it was thought that quark-gluon plasma (QGP) is not formed in such collisions. However, at the Large Hadron Collider (LHC), there seems a possibility that QGP is formed during proton-lead (p-Pb) collisions. In this work, we have derived an expression for gluon induced excitation of J/\\psi to \\psi (2S), using pNRQCD, and show that the relative enhancement of \\psi (2S) vis-à-vis J/\\psi , especially at high p T , gives further indication that the QGP is indeed formed in p-Pb collisions at the most central collisions at LHC energy. J/\\psi and \\psi (2S) suppression effects seen at ALICE are also qualitatively explained.
NASA Astrophysics Data System (ADS)
Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong
2011-09-01
The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.
Focusing Electron Beams at SLAC.
ERIC Educational Resources Information Center
Taylor, Richard L.
1993-01-01
Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)
Multipacting optimization of a 750 MHz rf dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delayen, Jean R.; Castillo, Alejandro
2014-12-01
Crab crossing schemes have been proposed to re-instate luminosity degradation due to crossing angles at the interaction points in next generation colliders to avoid the use of sharp bending magnets and their resulting large synchrotron radiation generation, highly undessirable in the detector region. The rf dipole has been considered for a different set of applications in several machines, both rings and linear colliders. We present in this paper a study of the effects on the multipacting levels and location depending on geometrical variations on the design for a crabbing/deflecting application in a high current (3/0.5 A), high repetition (750 MHz)more » electron/proton collider, as a matter to provide a comparison point for similar applications of rf dipoles.« less
CERN and LHC - Their Place in Global Science
None
2018-01-09
The Large Hadron Collider (LHC) is the largest scientific instrument in the world. It brings into collision intense beams of protons and ions to explore the structure of matter and investigate the forces of nature at an unprecedented energy scale, thus serving a community of some 7,000 particle physicists from all over the world.
431st Brookhaven Lecture. Recombinant Science: The Birth of RHIC, A Drama of Three Acts
Crease, Robert
2017-12-22
Crease presents "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," a lecture that follows on the 429th Brookhaven Lecture, in which Crease talked about the early history of BNL. Both lectures are part of the ongoing celebration of BNL's 60th anniversary year.
Osaka Symposium and New Accelerator Projects in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jie
1997-04-25
The purpose of this presentation was to participate as an invited speaker at the XV RCNP Osaka International Symposium on Multi-GeV High-Performance Accelerators and Related Technology to collaborate with Kyoto University on laser cooling and beam crystallization projects and to give seminars in Beijing and Shanghai on the Relativistic Heavy Ion Collider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN ZEIJTS,J.; DOTTAVIO,T.; FRAK,B.
The Relativistic Heavy Ion Collider (RHIC) has a high level asynchronous time-line driven by a controlling program called the ''Sequencer''. Most high-level magnet and beam related issues are orchestrated by this system. The system also plays an important task in coordinated data acquisition and saving. We present the program, operator interface, operational impact and experience.
90-50-10 Celebration: Ernest Courant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest Courant
BNL hosts a celebration titled “90-50-10” to celebrate the 90th birthday of Ernest Courant (of “strong focusing” fame), the 50th anniversary of the startup of the Alternating Gradient Synchrotron (AGS, home of three Nobel Prizes), and the 10th anniversary of first collisions at the Relativistic Heavy Ion Collider (RHIC).
Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'Ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasznahorkay, A.; Krauss, D.; Kravchenko, A.; Kremer, J. A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciandra, A.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sopczak, A.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sydorenko, A.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.
2017-09-01
Light-by-light scattering (γγ --> γγ) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 μb-1 of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 +/- 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (γγ) --> Pb(*) + Pb(*)γγ, for photon transverse energy ET > 3 GeV, photon absolute pseudorapidity |η| < 2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 +/- 24 (stat.) +/- 17 (syst.) nb, which is in agreement with the standard model predictions.
Measurement of the H3Λ lifetime in Au+Au collisions at the BNL Relativistic Heavy Ion Collider
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Alford, J.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2018-05-01
An improved measurement of the H3Λ lifetime is presented. In this paper, the mesonic decay modes H3Λ→3He + π- and H3Λ→d +p +π- are used to reconstruct the H3Λ from Au+Au collision data collected by the STAR collaboration at Relativistic Heavy Ion Collider (RHIC). A minimum χ2 estimation is used to determine the lifetime of τ = 142-21+24(stat .) ±29 (syst .) ps. This lifetime is about 50% shorter than the lifetime τ =263 ±2 ps of a free Λ , indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R . (3He+π-)/(B.R . (3He+π-)+B.R . (d +p +π-)) = 0.32 ±0.05 (stat .) ±0.08 (syst .) . Our ratio result favors the assignment J (H3Λ) =1/2 over J (H3Λ) =3/2 . These measurements will help to constrain models of hyperon-baryon interactions.
Emission source functions in heavy ion collisions
NASA Astrophysics Data System (ADS)
Shapoval, V. M.; Sinyukov, Yu. M.; Karpenko, Iu. A.
2013-12-01
Three-dimensional pion and kaon emission source functions are extracted from hydrokinetic model (HKM) simulations of central Au+Au collisions at the top Relativistic Heavy Ion Collider (RHIC) energy sNN=200 GeV. The model describes well the experimental data, previously obtained by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of rescatterings and long-lived resonance decays in forming the mentioned long-range tails is investigated. The particle rescattering contribution to the out tail seems to be dominating. The model calculations also show substantial relative emission times between pions (with mean value 13 fm/c in the longitudinally comoving system), including those coming from resonance decays and rescatterings. A prediction is made for the source functions in Large Hadron Collider (LHC) Pb+Pb collisions at sNN=2.76 TeV, which are still not extracted from the measured correlation functions.
NASA Astrophysics Data System (ADS)
Das, Sabita; Mishra, Debadeepti; Chatterjee, Sandeep; Mohanty, Bedangadas
2017-01-01
The freeze-out conditions in proton-proton collisions at √{sNN}=200 , 900, and 7000 GeV have been extracted by fits to the mean hadron yields at midrapidity within the framework of the statistical model of an ideal gas of hadrons and resonances in the grand canonical ensemble. The variation of the extracted freeze-out thermal parameters and the goodness of the fits with √{sN N} are discussed. We find the extracted temperature and baryon chemical potential of the freeze-out surface to be similar in p +p and heavy-ion collisions. On the other hand, the thermal behavior of the strange hadrons is qualitatively different in p +p as compared to A +A collisions. We find an additional parameter accounting for nonequilibrium strangeness production is essential for describing the p +p data. This is in contrast to A +A where the nonequilibrium framework could be successfully replaced by a sequential and complete equilibrium model with an early freeze-out of the strange hadrons.
Event-by-event elliptic flow fluctuations from PHOBOS
Wosiek, Barbara; Alver, B.; Back, B. B.; ...
2009-04-01
Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in Au + Au collisions at √s NN =200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.
Event-by-Event Elliptic Flow Fluctuations from PHOBOS
NASA Astrophysics Data System (ADS)
Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2009-04-01
Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.
Maxwell-Chern-Simons hydrodynamics for the chiral magnetic effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oezoender, Sener
2010-06-15
The rate of vacuum-changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This chiral magnetic effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.
The ALICE experiment at the CERN LHC
NASA Astrophysics Data System (ADS)
ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.
2008-08-01
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
Anomalous inverse bremsstrahlung heating of laser-driven plasmas
NASA Astrophysics Data System (ADS)
Kundu, Mrityunjay
2016-05-01
Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 < 5 × 1014Wcm-2, v ei versus T e also exhibits so far unnoticed identical anomalous increase as v ei versus Io, even if the conventional k max ∝ v2 th, or k max ∝ v th is chosen. However, for higher T e > 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitterer, Miriam; Stancari, Giulio; Valishev, Alexander
We present the results of numerical simulations and experimental studies about the effects of resonant and random excitations on proton losses, emittances, and beam distributions in the Large Hadron Collider (LHC). In addition to shedding light on complex nonlinear effects, these studies are applied to the design of hollow electron lenses (HEL) for active beam halo control. In the High-Luminosity Large Hadron Collider (HL-LHC), a considerable amount of energy will be stored in the beam tails. To control and clean the beam halo, the installation of two hollow electron lenses, one per beam, is being considered. In standard electron-lens operation,more » a proton bunch sees the same electron current at every revolution. Pulsed electron beam operation (i.e., different currents for different turns) is also considered, because it can widen the range of achievable halo removal rates. For an axially symmetric electron beam, only protons in the halo are excited. If a residual field is present at the location of the beam core, these particles are exposed to time-dependent transverse kicks and to noise. We discuss the numerical simulations and the experiments conducted in 2016 and 2017 at injection energy in the LHC. The excitation patterns were generated by the transverse feedback and damping system, which acted as a flexible source of dipole kicks. Proton beam losses, emittances, and transverse distributions were recorded as a function of excitation patterns and strengths. The resonant excitations induced rich dynamical effects and nontrivial changes of the beam distributions, which, to our knowledge, have not previously been observed and studied in this detail. We conclude with a discussion of the tolerable and achievable residual fields and proposals for further studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Galand, M.; Shebanits, O.
2014-05-01
We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less
OBITUARY: Maurice Jacob (1933 2007)
NASA Astrophysics Data System (ADS)
Quercigh, Emanuele; Šándor, Ladislav
2008-04-01
Maurice Jacob passed away on 2 May 2007. With his death, we have lost one of the founding fathers of the ultra-relativistic heavy ion programme. His interest in high-energy nuclear physics started in 1981 when alpha alpha collisions could first be studied in the CERN ISR. An enthusiastic supporter of ion beam experiments at CERN, Maurice was at the origin of the 1982 Quark Matter meeting in Bielefeld [1] which brought together more than 100 participants from both sides of the Atlantic, showing a good enthusiastic constituency for such research. There were twice as many the following year at Brookhaven. Finally in the mid-eighties, a heavy ion programme was approved both at CERN and at Brookhaven involving as many nuclear as particle physicists. It was the start of a fruitful interdisciplinary collaboration which is nowadays continuing both at RHIC and at LHC. Maurice followed actively the development of this field, reporting at a number of conferences and meetings (Les Arcs, Bielefeld, Beijing, Brookhaven, Lenox, Singapore, Taormina,...). This activity culminated in 2000, when Maurice, together with Ulrich Heinz, summarized the main results of the CERN SPS heavy-ion experiments and the evidence was obtained for a new state of matter [2]. Maurice was a brilliant theoretical physicist. His many contributions have been summarized in a recent article in the CERN Courier by two leading CERN theorists, John Ellis and Andre Martin [3]. The following is an excerpt from their article: `He began his research career at Saclay and, while still a PhD student, he continued brilliantly during a stay at Brookhaven. It was there in 1959 that Maurice, together with Giancarlo Wick, developed the helicity amplitude formalism that is the basis of many modern theoretical calculations. Maurice obtained his PhD in 1961 and, after a stay at Caltech, returned to Saclay. A second American foray was to SLAC, where he and Sam Berman made the crucial observation that the point-like structures (partons) seen in deep-inelastic scattering implied the existence of high-transverse-momentum processes in proton proton collisions, as the ISR at CERN subsequently discovered. In 1967 Maurice joined CERN, where he remained, apart from influential visits to Yale, Fermilab and elsewhere, until his retirement in 1998. He became one of the most respected international experts on the phenomenology of strong interactions, including diffraction, scaling, high-transverse-momentum processes and the formation of quark gluon plasma. In particular, he pioneered the studies of inclusive hadron-production processes, including scaling and its violations. Also, working with Ron Horgan, he made detailed predictions for the production of jets at CERN's proton antiproton collider. The UA2 and UA1 experiments subsequently discovered these. He was also interested in electron positron colliders, making pioneering calculations, together with Tai Wu, of radiation in high-energy collisions. Maurice was one of the scientific pillars of CERN, working closely with experimental colleagues in predicting and interpreting results from successive CERN colliders. He was indefatigable in organizing regular meetings on ISR physics, bringing together theorists and experimentalists to debate the meaning of new results and propose new measurements. He was one of the strongest advocates of Carlo Rubbia's proposal for a proton antiproton collider at CERN, and was influential in preparing and advertising its physics. In 1978 he organized the Les Houches workshop that brought the LEP project to the attention of the wider European particle physics community. He also organized the ECFA workshop at Lausanne in 1984 that made the first exploration of the possible physics of the LHC. It is a tragedy that Maurice has not lived to enjoy data from the LHC.' References [1] Maurice Jacob and Helmut Satz (eds) 1982 Proc. Workshop on Quark Matter Formation and Heavy Ion Collisions, Bielefeld, 10 14 May 1982 (Singapore: World Scientific Publishing) [2] Heinz Ulrich W and Jacob Maurice 2000 Evidence for a new state of matter: An assessment of the results from the CERN lead beam program. Preprint nucl-th/0002042 [3] Ellis J and Martin A 2007 CERN Courier 47 issue 6