Electron Inelastic-Mean-Free-Path Database
National Institute of Standards and Technology Data Gateway
SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge) This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.
Electron mean free path in elemental metals
NASA Astrophysics Data System (ADS)
Gall, Daniel
2016-02-01
The electron mean free path λ and carrier relaxation time τ of the twenty most conductive elemental metals are determined by numerical integration over the Fermi surface obtained from first-principles, using constant λ or τ approximations and wave-vector dependent Fermi velocities vf (k). The average vf deviates considerably from the free-electron prediction, even for elements with spherical Fermi surfaces including Cu (29% deviation). The calculated product of the bulk resistivity times λ indicates that, in the limit of narrow wires, Rh, Ir, and Ni are 2.1, 1.8, and 1.6 times more conductive than Cu, while various metals including Mo, Co, and Ru approximately match the Cu resistivity, suggesting that these metals are promising candidates to replace Cu for narrow interconnect lines.
Proton and electron mean free paths: The Palmer consensus revisited
NASA Technical Reports Server (NTRS)
Bieber, John W.; Matthaeus, William H.; Smith, Charles W.; Wanner, Wolfgang; Kallenrode, May-Britt; Wibberenz, Gerd
1994-01-01
We present experimental and theoretical evidence suggesting that the mean free path of cosmic-ray electrons and protons may be fundamentally different at low to intermediate (less than 50 MV) rigidities. The experimental evidence is from Helios observations of solar energetic particles, which show that the mean free path of 1.4 MV electrons is often similar to that of 187 MV protons, even though proton mean free paths continue to decrease comparatively rapidly with decreasing rigidty down to the lowest channels (about 100 MV) observed. The theoretical evidence is from computations of particle scattering in dynamical magnetic turbulence, which predict that electrons will have a larger mean free path than protons of the same rigidity. In the light of these new results, 'consensus' ideas about cosmic-ray mean free paths may require drastic revision.
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth
2015-06-14
We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.
Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets
NASA Astrophysics Data System (ADS)
Signorell, Ruth; Goldmann, Maximilian; Yoder, Bruce L.; Bodi, Andras; Chasovskikh, Egor; Lang, Lukas; Luckhaus, David
2016-08-01
Angle-resolved photoelectron spectroscopy of aerosol droplets is a promising method for the determination of electron mean free paths in liquids. It is particularly attractive for volatile liquids, such as water. Here we report the first angle-resolved photoelectron images of droplets with defined sizes, viz. of water, glycerol, and dioctyl phthalate droplets. Simulations of water droplet photoelectron images and data for electron mean free paths for liquid water at low kinetic energy (<3 eV) are provided. We present an approach that allows one to gradually vary the conditions from shadowing to nanofocusing to optimize the information content contained in the photoelectron images.
Spin-resolved inelastic mean free path of slow electrons in Fe.
Zdyb, R; Bauer, E
2013-07-10
The spin-dependent reflectivity of slow electrons from ultrathin Fe films on W(110) has been measured with spin polarized low energy electron microscopy. From the amplitude of the quantum size oscillations observed in the reflectivity curves the spin-dependent inelastic mean free path (IMFP) of electrons in Fe has been determined in the energy range from 5 to 16 eV above the vacuum level. The resulting IMFP values for the spin-up electrons are clearly larger than those for the spin-down electrons and the difference between the two values decreases with increasing electron energy in agreement with theoretical predictions.
Study of energy delivery and mean free path of low energy electrons in EUV resists
NASA Astrophysics Data System (ADS)
Bhattarai, Suchit; Neureuther, Andrew R.; Naulleau, Patrick P.
2016-03-01
The relative importance of secondary electrons in delivering energy in photoresist films was assessed by performing large area exposures and by quantifying the inelastic mean free path of electrons in a leading chemically amplified positive tone EUV resist. A low energy electron microscope was used to directly pattern large (~15μm x 20μm) features with 15-80 eV electrons followed by analyzing the resulting dissolution rate contrast curve data. In the 40 to 80 eV regime the energy delivery was found to scale roughly proportionally with electron energy. In 15 to 30 eV regime however, this energy scaling did not explain the resist thickness loss data. The dose required to lower the resist thickness down to 20 nm was found to be 2-5X larger for 15 eV electrons than for 20, 25 and 30 eV electrons. Using scattering models from the literature including phonon scattering and optical data deduced electron energy loss spectroscopy and optical reflectometry, the inelastic mean free path values at energies between 10 eV and 92 eV range between about 2.8 and 0.6 nm respectively.
Tachiya, M.; Schmidt, W.F.
1989-02-15
We investigated theoretically the geminate electron--ion recombination in the limit of large electron mean free path by using the concept of diffusion in energy space. The energy diffusion equation is derived and the energy diffusion coefficient is evaluated. An analytical expression for the escape probability of the electron--ion pair is derived. It reproduces the numerical results very well which were obtained previously by using a Monte Carlo method. Experimental implications of the present theoretical findings are discussed.
Chantler, C T; Bourke, J D
2014-02-01
We develop the many-pole dielectric theory of UV plasmon interactions and electron energy losses, and couple our advances with recent developments of Kohn-Sham density functional theory to address observed discrepancies between high-precision measurements and tabulated data for electron inelastic mean free paths (IMFPs). Recent publications have demonstrated that a five standard error difference exists between longstanding theoretical calculations and measurements of electron IMFPs for elemental solids at energies below 120 eV, a critical region for analysis of electron energy loss spectroscopy (EELS), X-ray absorption spectroscopy (XAS), and related technologies. Our implementation of improved optical loss spectra and a physical treatment of second-order excitation lifetimes resolves this problem in copper for the first time for energies in excess of 80 eV and substantially improves agreement for lower energy electrons.
Measurement of the hot electron mean free path and the momentum relaxation rate in GaN
Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.
2014-12-29
We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.
Experimental determination of the inelastic mean free path of electrons in GaSb and InSb
NASA Astrophysics Data System (ADS)
Gergely, G.; Sulyok, A.; Menyhard, M.; Toth, J.; Varga, D.; Jablonski, A.; Krawczyk, M.; Gruzza, B.; Bideux, L.; Robert, C.
1999-04-01
The inelastic mean free path (IMFP) of electrons is a fundamental material parameter for quantitative surface- and thin-film analysis by AES and XPS. Experimental determination of IMFP is based on the elastic peak electron spectroscopy (EPES) The intensity of the elastic peak recorded for the sample is compared with that of the Ni reference. The IMFP is evaluated from the Monte Carlo (MC) calculations of the elastic backscattering probability. The MC algorithm is based on elastic scattering cross-sections from the NIST 64 database and IMFP values of Ni. Experiments have been carried out in three laboratories working with different types of electron spectrometers and energy ranges: HSA, E=0.2-5 keV; CMA, E=0.2-2 keV, and RFA, E=0.2-1.5 keV. GaSb(100) and InSb(100) samples have been cleaned and their surface layer amorphized by an Ar + ion bombardment at Eion=2 keV. The surface composition after cleaning was checked in situ by XPS. No metallic Ga, In or Sb phases were evidenced by plasmon losses on the surface after Eion=2 keV Ar + ion treatment. The MC calculations were based on the real surface composition. Thus, the IMFP values experimentally obtained for the ion bombarded samples can be considered as the volume parameters for E>0.5 keV. A reasonable agreement was found with the calculated IMFP data of NIST and with other theoretically determined values of the IMFP.
NASA Technical Reports Server (NTRS)
Karasik, B. S.; Sergeev, A. V.
1998-01-01
Recent paper has raised again a question about the electron-phonon (EP) relaxation rate in impure metals. From weak localization (WL) measurements the authors have found that the dephasing rate in AuPd disordered films follows the T(sup 2)el-law (el is the mean free path).
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples.
Tan, Zhenyu; Liu, Wei
2013-12-01
Systematic calculations are performed for determining the stopping powers (SP) and inelastic mean free paths (IMFP) for 20 eV-20 keV electrons in 11 types of human tissue. The calculations are based on a dielectric model, including the Born-Ochkur exchange correction. The optical energy loss functions (OELF) are empirically evaluated, because of the lack of available experimental optical data for the 11 tissues under consideration. The evaluated OELFs are examined by the f-sum rule expected from the dielectric response theory, and by calculation of the mean excitation energy. The calculated SPs are compared with those for PMMA (polymethylmethacrylate, a tissue equivalent material) and liquid water. The SP and IMFP data presented here are the results for the 11 human tissues over the energy range of 20 eV-20 keV, and are of importance in radiotherapy planning and for studies of various radiation effects on human tissues.
Lubk, A.; Wolf, D.; Kern, F.; Röder, F.; Lichte, H.; Prete, P.; Lovergine, N.
2014-10-27
Electron holography at medium resolution simultaneously probes projected electrostatic and magnetostatic potentials as well as elastic and inelastic attenuation coefficients with a spatial resolution of a few nanometers. In this work, we derive how the elastic and inelastic attenuation can be disentangled. Using that result, we perform the first three dimensional tomographic reconstruction of potential and (in)elastic attenuation in parallel. The technique can be applied to distinguish between functional potentials and composition changes in nanostructures, as demonstrated using the example of a GaAs—Al{sub 0.33}Ga{sub 0.67}As core-shell nanowire.
The scattering mean free path in the Uranian atmosphere
NASA Technical Reports Server (NTRS)
Price, M. J.
1973-01-01
New measurements of the equivalent widths of the 4.0 S(0) and S(1) H2 quadrupole lines in the Uranian spectrum have been obtained using high dispersion (4.12 A/mm) image-tube spectrography. The measured equivalent widths are 62 plus or minus 19 mA and 58 plus or minus 13 mA for the S(0) and S(1) lines, respectively. Curve-of-growth analysis in terms of a reflecting layer model yields an H2 column density of 780 (+940 or -330) km amagat and a temperature of 78 (+80 or -24) K. Interpretation using a semiinfinite, homogeneous, isotropically scattering model for line formation yields a scattering mean free path at 6400 A of 550 plus or minus 250 km amagat. Quoted errors for both the H2 column density and the scattering mean free path include the effect of uncertainty in the choice of atmospheric temperature. The results are discussed in terms of current models for the Uranian atmosphere.
Inelastic interaction mean free path of negative pions in tungsten
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.; Orth, C. D.
1975-01-01
The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm.
Liu, Qixin; Cai, Zhiyong
2014-01-01
This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745
Neutrino mean free paths in cold symmetric nuclear matter
Cowell, S.; Pandharipande, V.R.
2004-09-01
The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.
Jana, R. N.; Sinha, S.; Meikap, A. K.
2015-05-15
We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V{sub 82}Al{sub 18-x}Fe{sub x} alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δρ(T)∝−ρ{sub 0}{sup 5/2}√(T), which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ{sub 0}{sup −1}∝l{sub e}, where l{sub e} is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τ{sub e−ph}{sup −1}∝T{sup 2}l{sub e}. This anomalous behavior of τ{sub e−ph}{sup −1} cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.
Mitchell, D R G
2006-11-01
Determining transmission electron microscope specimen thickness is an essential prerequisite for carrying out quantitative microscopy. The convergent beam electron diffraction method is highly accurate but provides information only on the small region being probed and is only applicable to crystalline phases. Thickness mapping with an energy filter is rapid, maps an entire field of view and can be applied to both crystalline and amorphous phases. However, the thickness map is defined in terms of the mean free path for energy loss (lambda), which must be known in order to determine the thickness. Convergent beam electron diffraction and thickness mapping methods were used to determine lambda for two materials, Si and P91 steel. These represent best- and worst-case scenario materials, respectively, for this type of investigation, owing to their radically different microstructures. The effects of collection angle and the importance of dynamical diffraction contrast are also examined. By minimizing diffraction contrast effects in thickness maps, reasonably accurate (+/-15%) values of lambda were obtained for P91 and accuracies of +/-5% were obtained for Si. The correlation between the convergent beam electron diffraction-derived thickness and the log intensity ratios from thickness maps also permits estimation of the thickness of amorphous layers on the upper and lower surfaces of transmission electron microscope specimens. These estimates were evaluated for both Si and P91 using cross-sectional transmission electron microscopy and were found to be quite accurate. PMID:17204066
Regner, Keith T; Sellan, Daniel P; Su, Zonghui; Amon, Cristina H; McGaughey, Alan J H; Malen, Jonathan A
2013-01-01
Non-metallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events-their mean free paths. Due to the breadth of the phonon mean free path spectrum, nanostructuring materials can reduce thermal conductivity from bulk by scattering long mean free path phonons, whereas short mean free path phonons are unaffected. Here we use a breakdown in diffusive phonon transport generated by high-frequency surface temperature modulation to identify the mean free path-dependent contributions of phonons to thermal conductivity in crystalline and amorphous silicon. Our measurements probe a broad range of mean free paths in crystalline silicon spanning 0.3-8.0 μm at a temperature of 311 K and show that 40±5% of its thermal conductivity comes from phonons with mean free path >1 μm. In a 500 nm thick amorphous silicon film, despite atomic disorder, we identify propagating phonon-like modes that contribute >35±7% to thermal conductivity at a temperature of 306 K.
NASA Astrophysics Data System (ADS)
Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui; Amon, Cristina H.; McGaughey, Alan J. H.; Malen, Jonathan A.
2013-03-01
Non-metallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events—their mean free paths. Due to the breadth of the phonon mean free path spectrum, nanostructuring materials can reduce thermal conductivity from bulk by scattering long mean free path phonons, whereas short mean free path phonons are unaffected. Here we use a breakdown in diffusive phonon transport generated by high-frequency surface temperature modulation to identify the mean free path-dependent contributions of phonons to thermal conductivity in crystalline and amorphous silicon. Our measurements probe a broad range of mean free paths in crystalline silicon spanning 0.3-8.0 μm at a temperature of 311 K and show that 40±5% of its thermal conductivity comes from phonons with mean free path >1 μm. In a 500 nm thick amorphous silicon film, despite atomic disorder, we identify propagating phonon-like modes that contribute >35±7% to thermal conductivity at a temperature of 306 K.
Mean free paths of energetic particles at very large heliodistances (Pioneer 11 at 20 AU)
NASA Technical Reports Server (NTRS)
Moussas, X.; Quenby, J. J.; Theodossiou-Ekaterinidi, Z.; Valdes-Galicia, J. F.; Drillia, A. G.; Roulias, D.; Smith, E. J.
1992-01-01
The parallel mean free path and the diffusion coefficient parallel to the magnetic field line are derived from magnetic field data at 20 AU to characterize heliospheric modulation and energetic-particle/magnetic-field interaction. The computational method of Moussas et al. (1975, 1982) is employed, and the values of the parallel mean free path are shown to be significantly larger than the values estimated in studies of up to 6 AU. The distance dependence of the parallel diffusion mean free path is found to follow a power law, and the diffusion coefficient dependence upon energy is determined by a constant mean free path and the velocity of the particle. The contribution of the diffusion coefficient perpendicular to the magnetic field is expected to dominate the radial diffusion coefficient of cosmic rays, although the contribution of the diffusion parallel to the field is important with respect to the small-scale structure of intensity gradients.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
NASA Astrophysics Data System (ADS)
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
An electrical probe of the phonon mean-free path spectrum
Ramu, Ashok T.; Halaszynski, Nicole I.; Peters, Jonathan D.; Meinhart, Carl D.; Bowers, John E.
2016-01-01
Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought. PMID:27677238
Magnetic-Phase Dependence of the Spin Carrier Mean Free Path in Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Li, Jing; Niquet, Yann-Michel; Delerue, Christophe
2016-06-01
We show theoretically that the intrinsic (phonon-limited) carrier mobility in graphene nanoribbons is considerably influenced by the presence of spin-polarized edge states. When the coupling between opposite edges switches from antiferromagnetic to ferromagnetic with increasing carrier density, the current becomes spin polarized and the mean free path rises from 10 nm to micrometers. In the ferromagnetic state, the current flows through one majority-spin channel which is ballistic over micrometers and several minority-spin channels with mean free paths as low as 1 nm. These features predicted in technology-relevant conditions could be nicely exploited in spintronic devices.
Magnetic-Phase Dependence of the Spin Carrier Mean Free Path in Graphene Nanoribbons.
Li, Jing; Niquet, Yann-Michel; Delerue, Christophe
2016-06-10
We show theoretically that the intrinsic (phonon-limited) carrier mobility in graphene nanoribbons is considerably influenced by the presence of spin-polarized edge states. When the coupling between opposite edges switches from antiferromagnetic to ferromagnetic with increasing carrier density, the current becomes spin polarized and the mean free path rises from 10 nm to micrometers. In the ferromagnetic state, the current flows through one majority-spin channel which is ballistic over micrometers and several minority-spin channels with mean free paths as low as 1 nm. These features predicted in technology-relevant conditions could be nicely exploited in spintronic devices.
NASA Astrophysics Data System (ADS)
Guo, Zehua; Tang, Xianzhu
2012-03-01
A tokamak fusion reactor dumps a large amount of heat and particle flux to the divertor through the scrape-off plasma (SOL). Situation exists either by necessity or through deliberate design that the SOL plasma attains long mean-free-path along large segments of the open field lines. The rapid parallel streaming of electrons requires a large parallel electric field to maintain ambipolarity. The confining effect of the parallel electric field on electrons leads to a trap/passing boundary in the velocity space for electrons. In the normal situation where the upstream electron source populates both the trapped and passing region, a mechanism must exist to produce a flux across the electron trap/passing boundary. In a short mean-free-path plasma, this is provided by collisions. For long mean-free-path plasmas, wave-particle interaction is the primary candidate for detrapping the electrons. Here we present simulation results and a theoretical analysis using a model distribution function of trapped electrons. The dominating electromagnetic plasma instability and the associated collisionless scattering, that produces both particle and energy fluxes across the electron trap/passing boundary in velocity space, are discussed.
Measurements of hadron mean free path for the particle-producing collisions in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.
Scattering mean free path in continuous complex media: beyond the Helmholtz equation.
Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud
2015-09-01
We present theoretical calculations of the ensemble-averaged (or effective or coherent) wave field propagating in a heterogeneous medium considered as one realization of a random process. In the literature, it is usually assumed that heterogeneity can be accounted for by a random scalar function of the space coordinates, termed the potential. Physically, this amounts to replacing the constant wave speed in Helmholtz' equation by a space-dependent speed. In the case of acoustic waves, we show that this approach leads to incorrect results for the scattering mean free path, no matter how weak the fluctuations. The detailed calculation of the coherent wave field must take into account both a scalar and an operator part in the random potential. When both terms have identical amplitudes, the correct value for the scattering mean free paths is shown to be more than 4 times smaller (13/3, precisely) in the low-frequency limit, whatever the shape of the correlation function. Based on the diagrammatic approach of multiple scattering, theoretical results are obtained for the self-energy and mean free path within Bourret's and on-shell approximations. They are confirmed by numerical experiments. PMID:26465578
Scattering mean free path in continuous complex media: beyond the Helmholtz equation.
Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud
2015-09-01
We present theoretical calculations of the ensemble-averaged (or effective or coherent) wave field propagating in a heterogeneous medium considered as one realization of a random process. In the literature, it is usually assumed that heterogeneity can be accounted for by a random scalar function of the space coordinates, termed the potential. Physically, this amounts to replacing the constant wave speed in Helmholtz' equation by a space-dependent speed. In the case of acoustic waves, we show that this approach leads to incorrect results for the scattering mean free path, no matter how weak the fluctuations. The detailed calculation of the coherent wave field must take into account both a scalar and an operator part in the random potential. When both terms have identical amplitudes, the correct value for the scattering mean free paths is shown to be more than 4 times smaller (13/3, precisely) in the low-frequency limit, whatever the shape of the correlation function. Based on the diagrammatic approach of multiple scattering, theoretical results are obtained for the self-energy and mean free path within Bourret's and on-shell approximations. They are confirmed by numerical experiments.
Universal phonon mean free path spectra in crystalline semiconductors at high temperature
Freedman, Justin P.; Leach, Jacob H.; Preble, Edward A.; Sitar, Zlatko; Davis, Robert F.; Malen, Jonathan A.
2013-01-01
Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K. We find that phonons with MFPs greater than 230 ± 120 nm, 1000 ± 200 nm, 2500 ± 800 nm, and 4200 ± 850 nm contribute 50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By non-dimensionalizing the data based on Umklapp scattering rates of phonons, we identified a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature. PMID:24129328
Schlickeiser, R.; Lazar, M.; Vukcevic, M. E-mail: mlazar@tp4.ruhr-uni-bochum.d
2010-08-20
The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free path is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.
Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs
NASA Astrophysics Data System (ADS)
Legrand, R.; Huynh, A.; Jusserand, B.; Perrin, B.; Lemaître, A.
2016-05-01
The phonon mean free path is generally inferred from the measurement of thermal conductivity and we are still lacking precise information on this quantity. Recent advances in the field of high-frequency phonons transduction using semiconductor superlattices give the opportunity to fill this gap. We present experimental results on the attenuation of longitudinal acoustic phonons in GaAs in the frequency and temperature ranges 0.2-1 THz and 10-80 K respectively. Surprisingly, we observe a plateau in the frequency dependence of the attenuation above 0.7 THz, that we ascribe to a breakdown of Herring processes.
Shaing, K. C.
2006-09-15
It is illustrated that plasma transport processes in the direction of the magnetic field are local in the vicinity of the magnetic island in the long mean-free-path regime where the collisionality parameter {nu}{sub *} is larger than 10{sup -2}, and the width of the island is about 3% of the minor radius or smaller. This is because the plasma temperature variation on the magnetic surface that results from the magnetic reconnection is gentle. Both the electron and the ion parallel transport fluxes including parallel heat flow in the banana regime where {nu}{sub *}<1 are calculated using a model Coulomb collision operator that conserves momentum.
Thermal conductivity of graphene and graphite: collective excitations and mean free paths.
Fugallo, Giorgia; Cepellotti, Andrea; Paulatto, Lorenzo; Lazzeri, Michele; Marzari, Nicola; Mauri, Francesco
2014-11-12
We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phonon collision rates obtained from density functional perturbation theory. For graphite, the results are found to be in excellent agreement with experiments; notably, the thermal conductivity is 1 order of magnitude larger than what found by solving the Boltzmann equation in the single mode approximation, commonly used to describe heat transport. For graphene, we point out that a meaningful value of intrinsic thermal conductivity at room temperature can be obtained only for sample sizes of the order of 1 mm, something not considered previously. This unusual requirement is because collective phonon excitations, and not single phonons, are the main heat carriers in these materials; these excitations are characterized by mean free paths of the order of hundreds of micrometers. As a result, even Fourier's law becomes questionable in typical sample sizes, because its statistical nature makes it applicable only in the thermodynamic limit to systems larger than a few mean free paths. Finally, we discuss the effects of isotopic disorder, strain, and chemical functionalization on thermal performance. Only chemical functionalization is found to play an important role, decreasing the conductivity by a factor of 2 in hydrogenated graphene, and by 1 order of magnitude in fluorogenated graphene.
Phonon mean free path of graphite along the c-axis
Wei, Zhiyong; Yang, Juekuan; Chen, Weiyu; Bi, Kedong; Chen, Yunfei
2014-02-24
Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000 nm contribute ∼80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100 nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.
Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J
2015-03-13
Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron.
Phonon Mean Free Path Spectra Measured by Broadband Frequency Domain Thermoreflectance
NASA Astrophysics Data System (ADS)
Malen, Jonathan
2014-03-01
Nonmetallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events -- their mean free paths (MFPs). Due to the breadth of the phonon MFP spectrum, nanostructuring of materials and devices can reduce thermal conductivity from bulk by scattering long MFP phonons, while short MFP phonons are unaffected. We have developed a novel approach called Broadband Frequency Domain Thermoreflectance (BB-FDTR) that uses high-frequency laser heating to generate non-Fourier heat conduction that can sort phonons based on their MFPs. BB-FDTR outputs thermal conductivity as a function of heating frequency. Through non-equilibrium Boltzmann Transport Equation models this data can be converted to thermal conductivity accumulation, which describes how thermal conductivity is summed from phonons with different MFPs. Relative to alternative approaches, BB-FDTR yields order-of-magnitude improvements in the resolution and breadth of the thermal conductivity accumulation function. We will present data for GaAs, GaN, AlN, Si, and SiC that show interesting commonalities near their respective Debye temperatures and suggest that there may be a universal phonon MFP spectrum for small unit cell non-metals in the high temperature limit. At the time of this abstract submission we are also working on measurements of semiconductor alloys and select metals that will be presented if completed by the conference.
NASA Astrophysics Data System (ADS)
Adhya, Souvik P.; Roy, P. K.; Dutt-Mazumder, Abhee K.
2013-04-01
In this work we have derived the expressions of the mean free path (MFP) and emissivity of the neutrinos by incorporating non-Fermi liquid (NFL) corrections upto next to leading order (NLO). We have shown how such corrections affect the cooling of the neutron star composed of quark matter core.
Wang, S.-Y.; Boyanovsky, D.; Vega, H. J. de; Lee, D.-S.; Ng, Y. J.
2000-03-15
We study the transport coefficients, damping rates, and mean free paths of soft fermion collective excitations in a hot fermion-gauge-scalar plasma with the goal of understanding the main physical mechanisms that determine transport of chirality in scenarios of nonlocal electroweak baryogenesis. The focus is on identifying the different transport coefficients for the different branches of soft collective excitations of the fermion spectrum. These branches correspond to collective excitations with opposite ratios of chirality to helicity and different dispersion relations. By combining results from the hard thermal loop (HTL) resummation program with a novel mechanism of fermion damping through heavy scalar decay, we obtain a robust description of the different damping rates and mean free paths for the soft collective excitations to leading order in HTL and lowest order in the Yukawa coupling. The space-time evolution of wave packets of collective excitations unambiguously reveals the respective mean free paths. We find that whereas both the gauge and scalar contribution to the damping rates are different for the different branches, the difference of mean free paths for both branches is mainly determined by the decay of the heavy scalar into a hard fermion and a soft collective excitation. We argue that these mechanisms are robust and are therefore relevant for nonlocal scenarios of baryogenesis either in the standard model or extensions thereof. (c) 2000 The American Physical Society.
NASA Astrophysics Data System (ADS)
Rukolaine, Sergey A.
2016-05-01
In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.
NASA Astrophysics Data System (ADS)
Liljequist, D.
2012-11-01
In an event-by-event simulation of the trajectory of a particle moving in matter it is usually assumed that the probability for the particle to travel a distance s without interaction is exp(-s/λ), where λ=(n·σ)-1 is the total mean free path, n the number of scatterers per unit volume and σ the total cross section per scatterer. The step length s between scattering events is then generated by means of a sampling formula s=-λ ln(1-R), where R a random number in the interval 0
He, H.-Q.; Schlickeiser, R. E-mail: rsch@tp4.rub.de
2014-09-10
The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standard forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck and Wibberenz, Bieber and Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.
Beranek, Leo L; Nishihara, Noriko
2014-01-01
The Eyring/Sabine equations assume that in a large irregular room a sound wave travels in straight lines from one surface to another, that the surfaces have an average sound absorption coefficient αav, and that the mean-free-path between reflections is 4 V/Stot where V is the volume of the room and Stot is the total area of all of its surfaces. No account is taken of diffusivity of the surfaces. The 4 V/Stot relation was originally based on experimental determinations made by Knudsen (Architectural Acoustics, 1932, pp. 132-141). This paper sets out to test the 4 V/Stot relation experimentally for a wide variety of unoccupied concert and chamber music halls with seating capacities from 200 to 5000, using the measured sound strengths Gmid and reverberation times RT60,mid. Computer simulations of the sound fields for nine of these rooms (of varying shapes) were also made to determine the mean-free-paths by that method. The study shows that 4 V/Stot is an acceptable relation for mean-free-paths in the Sabine/Eyring equations except for halls of unusual shape. Also demonstrated is the proper method for calibrating the dodecahedral sound source used for measuring the sound strength G, i.e., the reverberation chamber method. PMID:24437762
Beranek, Leo L; Nishihara, Noriko
2014-01-01
The Eyring/Sabine equations assume that in a large irregular room a sound wave travels in straight lines from one surface to another, that the surfaces have an average sound absorption coefficient αav, and that the mean-free-path between reflections is 4 V/Stot where V is the volume of the room and Stot is the total area of all of its surfaces. No account is taken of diffusivity of the surfaces. The 4 V/Stot relation was originally based on experimental determinations made by Knudsen (Architectural Acoustics, 1932, pp. 132-141). This paper sets out to test the 4 V/Stot relation experimentally for a wide variety of unoccupied concert and chamber music halls with seating capacities from 200 to 5000, using the measured sound strengths Gmid and reverberation times RT60,mid. Computer simulations of the sound fields for nine of these rooms (of varying shapes) were also made to determine the mean-free-paths by that method. The study shows that 4 V/Stot is an acceptable relation for mean-free-paths in the Sabine/Eyring equations except for halls of unusual shape. Also demonstrated is the proper method for calibrating the dodecahedral sound source used for measuring the sound strength G, i.e., the reverberation chamber method.
Ahmad, T.; Irfan, M.; Ahsan, M.Z. )
1991-06-14
This paper reports on interaction mean free paths of He-fragments produced by the collisions of carbon and silicon nuclei at 4.5 A GeV/c in nuclear emulsion for different distances from their production point. The authors do not observe any anomalous effect in the mean free paths of He-fragments.
Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux
Guo Zehua; Tang Xianzhu
2012-06-15
In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.
NASA Astrophysics Data System (ADS)
David, Denis; Godet, Christian
2016-11-01
Photoelectron Energy Loss Spectroscopy (PEELS) is a highly valuable non destructive tool in applied surface science because it gives access to both chemical composition and electronic properties of surfaces, including the near-surface dielectric function. An algorithm is proposed for real materials to make full use of experimental X-ray photoelectron spectra (XPS). To illustrate the capabilities and limitations of this algorithm, the near-surface dielectric function ε(ℏω) of a wide range of amorphous carbon (a-C) thin films is derived from energy losses measured in XPS, using a dielectric response theory which relates ε(ℏω) and the bulk plasmon (BP) loss distribution. Self-consistent separation of bulk vs surface plasmon excitations, deconvolution of multiple BP losses and evaluation of Bethe-Born sensitivity factors for bulk and surface loss distributions are crucial to obtain several material parameters: (1) energy loss function for BP excitation, (2) dielectric function of the near-surface material (3-5 nm depth sensitivity), (3) inelastic mean free path, λP (E0), for plasmon excitation, (4) surface excitation parameter, (5) effective number NEFF of valence electrons participating in the plasma oscillation. This photoelectron energy loss spectra analysis has been applied to a-C and a-C:H films grown by physical and chemical methods with a wide range of (sp3/sp2 + sp3) hybridization, optical gap and average plasmon energy values. Different methods are assessed to accurately remove the photoemission peak tail at low loss energy (0-10 eV) due to many-body interactions during the photo-ionization process. The σ + π plasmon excitation represents the main energy-loss channel in a-C; as the C atom density decreases, λP (970 eV) increases from 1.22 nm to 1.6 nm, assuming a cutoff plasmon wavenumber given by a free electron model. The π-π* and σ-σ* transitions observed in the retrieved dielectric function are discussed as a function of the average (sp3/sp
NASA Astrophysics Data System (ADS)
Bingi, J.; Hemalatha, M.; Anita, R. W.; Vijayan, C.; Murukeshan, V. M.
2015-11-01
Light transport and the physical phenomena related to light propagation in random media are very intriguing, they also provide scope for new paradigms of device functionality, most of which remain unexplored. Here we demonstrate, experimentally and by simulation, a novel kind of asymmetric light transmission (diffusion) in a stack of random media (SRM) with graded transport mean free path. The structure is studied in terms of transmission, of photons propagated through and photons generated within the SRM. It is observed that the SRM exhibits asymmetric transmission property with a transmission contrast of 0.25. In addition, it is shown that the SRM works as a perfect optical low-pass filter with a well-defined cutoff wavelength at 580 nm. Further, the photons generated within the SRM found to exhibit functionality similar to an optical diode with a transmission contrast of 0.62. The basis of this functionality is explained in terms of wavelength dependent photon randomization and the graded transport mean free path of SRM.
NASA Astrophysics Data System (ADS)
Davies, Frederick B.; Furlanetto, Steven R.
2016-08-01
Extremely large opaque troughs in the Lyα forest have been interpreted as a sign of an extended reionization process below z ˜ 6. Such features are impossible to reproduce with simple models of the intergalactic ionizing background that assume a uniform mean free path of ionizing photons. We build a self-consistent model of the ionizing background that includes fluctuations in the mean free path due to the varying strength of the ionizing background and large-scale density field. The dominant effect is the suppression of the ionizing background in large-scale voids due to `self-shielding' by an enhanced number of optically thick absorbers. Our model results in a distribution of 50 Mpc h-1 Lyα forest effective optical depths that significantly improves agreement with the observations at z ˜ 5.6. Extrapolation to z ˜ 5.4 and 5.8 appears promising, but matching the mean background evolution requires evolution in the absorber population beyond the scope of the present model. We also demonstrate the need for extremely large volumes (>400 Mpc on a side) to accurately determine the incidence of rare large-scale features in the Lyα forest.
NASA Astrophysics Data System (ADS)
Worseck, Gábor; Prochaska, J. Xavier; O'Meara, John M.; Becker, George D.; Ellison, Sara L.; Lopez, Sebastian; Meiksin, Avery; Ménard, Brice; Murphy, Michael T.; Fumagalli, Michele
2014-12-01
We have obtained spectra of 163 quasars at zem > 4.4 with the Gemini Multi Object Spectrometers, the largest publicly available sample of high-quality, low-resolution spectra at these redshifts. From this data set, we generated stacked quasar spectra in three redshift intervals at z ˜ 5 to model the average rest-frame Lyman continuum flux and to assess the mean free path λ _mfp^{912} of the intergalactic medium to H I-ionizing radiation. At mean redshifts zq = (4.56, 4.86, 5.16), we measure λ _mfp^{912}=(22.2 ± 2.3, 15.1 ± 1.8, 10.3 ± 1.6)h_{70}^{-1} proper Mpc with uncertainties dominated by sample variance. Combining our results with measurements from lower redshifts, the data are well modelled by a power law λ _mfp^{912}=A[(1+zright)/5]^η with A=(37 ± 2)h_{70}^{-1} Mpc and η = -5.4 ± 0.4 at 2.3 < z < 5.5. This rapid evolution requires a physical mechanism - beyond cosmological expansion - which reduces the effective Lyman limit opacity. We speculate that the majority of H I Lyman limit opacity manifests in gas outside galactic dark matter haloes, tracing large-scale structures (e.g. filaments) whose average density and neutral fraction decreases with cosmic time. Our measurements of the mean free path shortly after H I reionization serve as a valuable boundary condition for numerical models thereof. Our measured λ _mfp^{912}≈ 10 Mpc at z = 5.2 confirms that the intergalactic medium is highly ionized without evidence for a break that would indicate a recent end to H I reionization.
Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.
Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J
2016-03-01
Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids.
NASA Astrophysics Data System (ADS)
Wang, Mingchao; Lin, Shangchao
2015-12-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.
Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.
Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J
2016-03-01
Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids. PMID:26840052
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30–110 ps and mean free path of 0.5–2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn
2012-12-15
A direct approach for explicitly determining the perpendicular mean free path of solar energetic particles (SEPs) influenced by parallel diffusion and composite dynamical turbulence in a spatially varying magnetic field is presented. As theoretical applications of the direct approach, we investigate the inherent relations between the perpendicular mean free path and various parameters concerning physical properties of SEPs as well as those of interplanetary conditions such as the solar wind and the turbulent magnetic field. Comparisons of the perpendicular mean free paths with and without adiabatic focusing are also presented. The direct method shows encouraging agreement with spacecraft observations, suggesting it is a reliable and useful tool for use in theoretical investigations and space weather forecasting.
NASA Astrophysics Data System (ADS)
Vigil-Fowler, Derek; Bernardi, Marco; Louie, Steven G.
2015-03-01
The organometallic halide pervoskites have generated enormous interest due to the rapidly increasing efficiency of solar cells fabricated from these materials. Most research on the organometallic halide pervoskites has been experimental due to the challenges posed by these materials to theoretical study, including the size of the unit cell, the presence of many defects, the orientational disorder in of the methyammonium (MA) cation, and the heavy atoms involved with the corresponding large spin-orbit coupling (SOC). We study the room-temperature tetragonal structure of CH3NH3PbI3 using density functional theory (DFT) and a many-body Green's functions approach. We use DFT to study the effect of the dependence of the bandstructure on the orientation of the MA cation, while we perform GW and GW plus Bethe-Salpeter equation (GW-BSE) calculations to study the quasiparticle bandstructure and optical spectra, respectively, paying close attention to convergence and the effect of SOC. We particularly investigate the existence of a proposed charge-transfer state in this material. We also briefly discuss the mean free paths due to electron-phonon and electron-electron scattering in the ideal structure. This work was supported by NSF Grant No. DMR10-1006184, and U.S. DOE Contract No. DE-AC02-05CH11231 and the DOE SciDAC program. Computational resources were provided by NERSC. D.V.-F. acknowledges funding from the NSF's Blue Waters Fellowship.
Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon
Jiang, Puqing; Lindsay, Lucas R.; Koh, Yee Kan
2016-06-30
Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. In this study, we investigate the contribution of low-energy phonons with ℓ>0.8 μm by accurately measuring the cross-plane thermal conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1≤ hf ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our Λcrossmore » measurements. We find from our Λcross measurements that phonons with ℓ>0.8 μm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K while phonons with ℓ>3 μm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m-1 K-1 (47%) and 717 W m-1 K-1 (76%), respectively. Using a relaxation time approximation (RTA) model, we demonstrate that macroscopic damping (e.g., Akhieser s damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m-1 K-1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Finally, our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.« less
Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon
NASA Astrophysics Data System (ADS)
Jiang, Puqing; Lindsay, Lucas; Koh, Yee Kan
2016-06-01
Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. Here, we investigate the contribution of low-energy phonons with ℓ > 0.8 μm by accurately measuring the cross-plane thermal conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1 ≤ hf ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our Λcross measurements. We find from our Λcross measurements that phonons with ℓ > 0.8 μm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K, while phonons with ℓ > 3 μm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m-1 K-1 (47%) and 717 W m-1 K-1 (76%), respectively. Using a relaxation time approximation model, we demonstrate that macroscopic damping (e.g., Akhieser's damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m-1 K-1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.
NASA Astrophysics Data System (ADS)
Ghorbani, S. R.; Wang, X. L.; Dou, S. X.; Lee, Sung-Ik; Hossain, M. S. A.
2008-11-01
Flux-pinning mechanism of MgB2 doped with 10wt% silicone-oil sintered at low and high temperatures has been investigated by magnetic measurements. The field dependence of the critical current density, jc(B) , was analyzed within the collective pinning model. A crossover field, Bsb , from the single vortex to the small vortex bundle-pinning regime was observed. For both types of sintered samples, the temperature dependence of Bsb(T) at low temperature is in good agreement with the δl pinning mechanism, i.e., pinning associated with charge-carrier mean free path fluctuation. At temperatures close to the critical temperature, however, there is evidence for δTc pinning, which is associated with spatial fluctuations of the transition temperature. These results provide strong evidence that the liquid precursor, silicone oil, produces very small pinning centers and enhances the jc(B) .
ERIC Educational Resources Information Center
Jakoby, Bernhard
2009-01-01
The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…
Mean Free Path in Soccer and Gases
ERIC Educational Resources Information Center
Luzuriaga, J.
2010-01-01
The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could…
NASA Astrophysics Data System (ADS)
Kurudirek, Murat; Özdemir, Yüksel
2011-01-01
The gamma ray energy absorption ( EABF) and exposure buildup factors ( EBF) have been calculated for some essential amino acids, fatty acids and carbohydrates in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameter geometric progression (G-P) fitting approximation has been used to calculate both EABF and EBF. Variations of EABF and EBF with incident photon energy, penetration depth and weight fraction of elements have been studied. While the significant variations in EABF and EBF for amino acids and fatty acids have been observed at the intermediate energy region where Compton scattering is the main photon interaction process, the values of EABF and EBF appear to be almost the same for all carbohydrates in the continuous energy region. It has been observed that the fatty acids have the largest EABF and EBF at 0.08 and 0.1 MeV, respectively, whereas the maximum values of EABF and EBF have been observed for aminoacids and carbohydrates at 0.1 MeV. At the fixed energy of 1.5 MeV, the variation of EABF with penetration depth appears to be independent of the variations in chemical composition of the amino acids, fatty acids and carbohydrates. Significant variations were also observed between EABF and EBF which may be due to the variations in chemical composition of the given materials.
Mean free path effects in the shock-implosion problem
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.; Pullin, D. I.
2009-02-01
The effects of finite Knudsen number in the problem of a cylindrically imploding shock wave in a monatomic gas are investigated. Numerical solutions of the flow field are obtained with initial conditions in the ranges 1.25≤M0≤5 and 0.005≤Kn0≤0.1 using the direct simulation Monte Carlo method. Results show that as Kn0 decreases and M0 increases, the maximum implosion temperature scales increasingly well with the similarity exponent predicted in the Guderley solution for an imploding strong shock in the Euler limit. When the radius of curvature is large, the cylindrical shock thickness is found to be almost identical to the thickness of a planar shock for a given shock Mach number. For small radii of curvature, the cylindrical shock was found to be thicker than the corresponding planar shock.
Modeling ultrafast electronic processes in solids excited by femtosecond VUV-XUV laser Pulse
NASA Astrophysics Data System (ADS)
Medvedev, Nikita
2012-07-01
A detailed description of the method of calculation of electron inelastic scattering cross-section and mean free path in solid SiO2 is presented. The method is based upon the complex dielectric function formalism. It allows obtaining the inelastic mean free path of a charged particle in solids with high accuracy. The calculated inelastic mean free path of electrons in silicon dioxide presented in this contribution shows a very good agreement with the experimental data and with other theoretical calculations.
Path-length distribution of electrons reflected elastically from solids
NASA Astrophysics Data System (ADS)
Pázsit, I.; Chakarova, Rumjana
1994-11-01
The transport of electrons, reflected from solids while suffering elastic scattering only, is investigated in detail. The angular path length and the depth distributions of the reflected electrons are calculated by solving the relevant half-space transport problem in the DP1 approximation and with detailed Monte Carlo simulation. The incentive for the investigations is to calculate the energy spectrum of the reflected electrons in the vicinity of the elastic peak. According to a suggestion of Tougaard and Sigmund, this can be obtained from the path-length distribution of the elastically scattered electrons and a suitable energy-loss function. The purpose of the present paper is to determine the path-length distribution. It has been found that for certain elements, notably aluminium, carbon, and copper, at certain energies the path-length and depth distributions are not monotonic. The DP1 approximation is in general better than the P1 approximation, but for the nonmonotonic distributions, it is not satisfactory. The nonmonotonic behavior is shown to be related to certain properties of the scattering kernel.
Path integral approach to electron scattering in classical electromagnetic potential
NASA Astrophysics Data System (ADS)
Chuang, Xu; Feng, Feng; Ying-Jun, Li
2016-05-01
As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374360, 11405266, and 11505285) and the National Basic Research Program of China (Grant No. 2013CBA01504).
Tan, Lun C.; Malandraki, Olga E.; Patsou, Ioanna; Papaioannou, Athanasios; Reames, Donald V.; Ng, Chee K.; Wang, Linghua
2013-05-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of {+-}10% the deduced path length of low-energy ({approx}27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
NASA Astrophysics Data System (ADS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald V.; Ng, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-05-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of ±10% the deduced path length of low-energy (~27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
NASA Technical Reports Server (NTRS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-01-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
Measurement of the phonon mean free path spectra and the universality in the high temperature limit
NASA Astrophysics Data System (ADS)
Regner, Keith; Freedman, Justin; Sitar, Zlatko; Leach, Jacob; Davis, Robert; Malen, Jonathan
2013-03-01
Here, we use broadband frequency domain thermoreflectance (BB-FDTR) to measure thermal conductivity accumulation functions (kaccum) of Si, GaAs, GaN, AlN, and SiC at temperatures of 80 K, 150 K, 300 K, and 400 K and show that they collapse to a universal accumulation function (kuniv) in the high temperature limit. BB-FDTR is a novel technique developed to measure the spectral contributions of phonons to bulk thermal conductivity as a function of phonon MFP i.e., kaccum. BB-FDTR uses a heterodyne approach allowing for continuous resolution of the phonon MFP spectrum spanning two orders of magnitude (0.3 - 8 μm in Si at T = 300 K). Results in Si and GaAs compare favorably to numerical predictions (Esfarjani, et al., PRB, 2011) (Luo et al., arXiv, 2012) and show that phonons with long MFPs (>1 μm) contribute significantly to the bulk thermal conductivity at T = 300 K. Next, we present a method to predict kaccum as the temperature of the material approaches its Debye temperature. Using the measured spectra at T = 400 K and assuming Umklapp scattering as the dominant scattering mechanism, kuniv was found to exist in GaAs, GaN, and Si after normalizing the phonon MFP. The existence of kuniv suggests that the phonon MFP spectrum is a universal feature of matter in the high temperature limit, and can be used to predict kaccum for any crystalline semiconductor near its Debye temperature.
A hybrid model for computing nonthermal ion distributions in a long mean-free-path plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua; Berk, Herb
2014-10-01
Non-thermal ions, especially the suprathermal ones, are known to make a dominant contribution to a number of important physics such as the fusion reactivity in controlled fusion, the ion heat flux, and in the case of a tokamak, the ion bootstrap current. Evaluating the deviation from a local Maxwellian distribution of these non-thermal ions can be a challenging task in the context of a global plasma fluid model that evolves the plasma density, flow, and temperature. Here we describe a hybrid model for coupling such constrained kinetic calculation to global plasma fluid models. The key ingredient is a non-perturbative treatment of the tail ions where the ion Knudsen number approaches or surpasses order unity. This can be sharply constrasted with the standard Chapman-Enskog approach which relies on a perturbative treatment that is frequently invalidated. The accuracy of our coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space. Although our specific application examples will be drawn from laboratory controlled fusion experiments, the general approach is applicable to space and astrophysical plasmas as well. Work supported by DOE.
Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.; Brown, Forrest B.
2015-11-19
Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.
Chemical excitation of electrons: A dark path to melanoma.
Premi, Sanjay; Brash, Douglas E
2016-08-01
Sunlight's ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO) and superoxide (O2(-)); these combine to form the powerful oxidant peroxynitrite (ONOO(-)). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed "chemiexcitation", is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. PMID:27262612
Assurance of Complex Electronics. What Path Do We Take?
NASA Technical Reports Server (NTRS)
Plastow, Richard A.
2007-01-01
Many of the methods used to develop software bare a close resemblance to Complex Electronics (CE) development. CE are now programmed to perform tasks that were previously handled in software, such as communication protocols. For instance, Field Programmable Gate Arrays (FPGAs) can have over a million logic gates while system-on-chip (SOC) devices can combine a microprocessor, input and output channels, and sometimes an FPGA for programmability. With this increased intricacy, the possibility of "software-like" bugs such as incorrect design, logic, and unexpected interactions within the logic is great. Since CE devices are obscuring the hardware/software boundary, we propose that mature software methodologies may be utilized with slight modifications to develop these devices. By using standardized S/W Engineering methods such as checklists, missing requirements and "bugs" can be detected earlier in the development cycle, thus creating a development process for CE that will be easily maintained and configurable based on the device used.
Electron path control of high-order harmonic generation by a spatially inhomogeneous field
NASA Astrophysics Data System (ADS)
Mohebbi, Masoud; Nazarpoor Malaei, Sakineh
2016-04-01
We theoretically investigate the control of high-order harmonics cut-off and as-pulse generation by a chirped laser field using a metallic bow tie-shaped nanostructure. The numerical results show that the trajectories of the electron wave packet are strongly modified, the short quantum path is enhanced, the long quantum path is suppressed and the low modulated spectrum of the harmonics can be remarkably extended. Our calculated results also show that, by confining electron motion, a broadband supercontinuum with the width of 1670 eV can be produced which directly generates an isolated 34 as-pulse without phase compensation. To explore the underlying mechanism responsible for the cut-off extension and the quantum path selection, we perform time-frequency analysis and a classical simulation based on the three-step model.
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Cerenkov radiation generated by periodic electron bunches in a finite air path
NASA Astrophysics Data System (ADS)
Newton, L. A.
1983-12-01
Microwave Cerenkov radiation is measured for the case of bunched electron beams which exceed the velocity of light in a finite air path. The theoretical equation for prediction of the form of the power for Cerenkov radiation is tested experimentally for this case. Initial verification of the theory is observed.
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Measurement of the transmission phase of an electron in a quantum two-path interferometer
Takada, S. Watanabe, K.; Yamamoto, M.; Bäuerle, C.; Ludwig, A.; Wieck, A. D.; Tarucha, S.
2015-08-10
A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.
Weak measurement from the electron displacement current: new path for applications
NASA Astrophysics Data System (ADS)
Marian, D.; Colomés, E.; Zanghì, N.; Oriols, X.
2015-10-01
The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics.
NASA Astrophysics Data System (ADS)
Malandraki, Olga; Tan, Lun; Reames, Donald; Ng, Chee; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2014-05-01
The inconsistency of electron and ion path lengths during Solar Energetic Particle (SEP) events remains an open issue. In order to investigate the difference between the electron and ion path lengths during the Ground-Level Enhancement (GLE) events in solar cycle 23, electron and ion data from the WIND/3DP/SST and WIND/EPACT/LEMT instruments respectively have been used. The electron path lengths were determined for the GLEs in solar cycle 23 assuming that the solar release time of non-relativistic electrons is well represented by the onset time of metric type II or decametre-hectometric (DH) type III radio bursts. The values estimated for low-energy electrons (~ 27 keV) were compared to the ion path lengths deduced by Reames for the GLEs in solar cycle 23 based on the onset-time analysis and consistency within an error range of 10% was found. In addition, the electron path lengths were found to increase with increasing electron energies, with the increasing rate of path lengths corresponding to broader position angle distribution (PAD) of electrons, which suggests that electron path length enhancement is due to interplanetary scattering experienced by first-arriving electrons. Furthermore, the solar longitude distribution and IMF topology of the GLE events examined support that the non-relativistic electrons observed have been accelerated in shocks driven by CMEs. Finally, it should be stressed that the observed path length consistency leads to stability of magnetic flux tubes along which particles travel, with a maximum stability time of ~ 4.8 hours, which could be very important for forecasting since, based on the observed onset time of the electron event, it is possible to observe the arrival and duration of the proton event.
Motion of Electrons in Electric and Magnetic Fields: Introductory Laboratory and Computer Studies.
ERIC Educational Resources Information Center
Huggins, Elisha R.; Lelek, Jeffrey J.
1979-01-01
Describes a series of laboratory experiments and computer simulations of the motion of electrons in electric and magnetic fields. These experiments, which involve an inexpensive student-built electron gun, study the electron mean free path, magnetic focusing, and other aspects. (Author/HM)
NASA Technical Reports Server (NTRS)
Ko, H. C.
1973-01-01
The wave-normal emissivity and the ray emissivity formulas for an electron moving along a helical path in a magnetoactive medium are presented. Simplified formulas for the case of an isotropic plasma are also given. Because of the helical motion of the electron, a difference exists between the radiated power per unit solid angle and the received power per unit solid angle. The relation between these two quantities in a magnetoactive medium is shown. Results are compared with those obtained by others, and the sources of discrepancies are pointed out.
Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide
Yang, Ding-Shyue; Baum, Peter; Zewail, Ahmed H.
2016-01-01
Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions. PMID:27376103
Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide.
Yang, Ding-Shyue; Baum, Peter; Zewail, Ahmed H
2016-05-01
Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V-V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions. PMID:27376103
Turn on of new electronic paths in Fe-SiO{sub 2} granular thin film
Boff, M. A. S. E-mail: marcoaureliosilveiraboff@gmail.com; Canto, B.; Mesquita, F.; Fraga, G. L. F.; Pereira, L. G.; Hinrichs, R.; Baptista, D. L.
2014-10-06
The electrical properties of Fe-SiO{sub 2} have been studied in the low-field regime (eΔV ≪ k{sub B}T), varying the injected current and the bias potential. Superparamagnetism and a resistance drop of 4400 Ω (for a voltage variation of 15 V) were observed at room temperature. This resistance drop increased at lower temperatures. The electrical properties were described with the “Mott variable range hopping” model explaining the behavior of the electrical resistance and the electronic localization length as due to the activation of new electronic paths between more distant grains. This non-ohmic resistance at room temperature can be important for properties dependent of electrical current (magnetoresistance, Hall effect, and magnetoimpedance).
Gauvin, Raynald; Griffin, Brendan; Nockolds, Clive; Phillips, Mathew; Joy, David C
2002-01-01
A simple method is described to determine the effective gas path length when incident electrons scatter in the gas above the specimen. This method is based on the measurement of a characteristic x-ray line emitted from a region close to the incident beam. From various experimental measurements performed on various microscopes, it is shown that the effective gas path length may increase with the chamber pressure and that it is also often dependent of the type of x-ray bullet.
Sansone, G.; Benedetti, E.; Caumes, J.-P.; Stagira, S.; Vozzi, C.; De Silvestri, S.; Nisoli, M.
2006-05-15
In this work we report on the first experimental demonstration of selection of the long electron quantum paths in the process of high-order harmonic generation by phase-stabilized multiple-cycle light pulses. A complete experimental investigation of the role of intensity and carrier-envelope phase of the driving pulses on the spectral characteristics of the long quantum paths is performed. Simulations based on the nonadiabatic saddle-point method and on a complete nonadiabatic three-dimensional model reproduce the main features of the experimental results. The use of phase-stabilized driving pulses allows one to control, on an attosecond temporal scale, the spectral and temporal characteristics associated with the electron quantum paths involved in the harmonic generation process.
Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E
2016-07-01
Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.
Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E
2016-07-01
Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations. PMID:26936773
Effects of Auger electron elastic scattering in quantitative AES
NASA Astrophysics Data System (ADS)
Jablonski, Aleksander
1987-09-01
The Monte Carlo algorithm was developed for simulating the trajectories of electrons elastically scattered in the solid. The distribution of scattering angles was determined using the partial wave expansion method. This algorithm was used to establish the influence of Auger electron elastic collisions on the results of quantitative AES analysis. The calculations were performed for the most pronounced KLL, L 3 MM and M 5NN Auger transitions. It turned out that due to the elastic collisions the Auger electron signal is decreased by up to 10%. The corresponding decreased of the escape depth of Auger electrons reaches 30% as compared with the value derived from the inelastic mean free path. The values of the inelastic mean free path resulting from the overalyer method may be strongly affected by elastic scattering of Auger electrons.
On the basic relation between mean free slip length and work hardening of metals
NASA Astrophysics Data System (ADS)
Holmedal, Bjørn
2015-09-01
The basic theory for athermal dislocation storage and work hardening is revisited. The mean free slip length is redefined enabling a straightforward geometrical interpretation that can be directly compared to the grain size. It is realized that this geometrical mean free slip length is larger than the typical grain size of commercial alloys, i.e. linear stage II work hardening is predicted only for single crystals or very coarse-grained pure metals, in the athermal limit at sufficiently low temperatures. The new theory suggests that the distribution of obstacles in the slip plane can be represented by two parameters, a fractal dimension D and the density of obstacles n per area. For a given geometrical mean free slip length ? it is derived that the athermal storage rate of dislocations is proportional to ? and to ?. A new natural definition of a fractal dimension is proposed, enabling its calculation directly from discrete dislocation simulations. An estimate of D is given, based on line-tension simulations of a dislocation loop expanding through an array of obstacles of random cutting strengths.
Shaing, K. C.
2007-11-15
In Part I [Phys. Fluids B 2, 1190 (1990)] and Part II [Phys. Plasmas 12, 082508 (2005)], it was emphasized that the equilibrium plasma viscous forces when applied for the magnetohydrodynamic (MHD) modes are only rigorously valid at the mode rational surface where m-nq=0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety factor. This important fact has been demonstrated explicitly by calculating the viscous forces in the plateau regime in Parts I and II. Here, the effective viscous forces in the banana regime are calculated for MHD modes by solving the linear drift kinetic equation that is driven by the plasma flows first derived in Part I. At the mode rational surface, the equilibrium plasma viscous forces are reproduced. However, it is found that away from the mode rational surface, the viscous forces for MHD modes decrease, a behavior similar to that observed in the viscous forces for the plateau regime. The proper form of the momentum equation that is appropriate for the modeling of the MHD modes is also discussed.
Han, Sang Eon
2016-02-01
Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials.
NASA Astrophysics Data System (ADS)
Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh
2015-11-01
The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data accurate theoretical models for high density plasmas are needed which crucially depend on treatment of quantum effects in electron-electron interaction as well as in the interaction of electrons with uniform positive background. To comply with these requirements we have developed the new quantum path integral model of the UEG and present the results of related direct path integral Monte-Carlo (DPIMC) simulations. Contrary to the known in literature approaches treating the electron-background interaction classically our simulations take into account the quantum effects in this interaction. We have observed very good agreement with known in literature results only up to moderate densities when the ratio of the average interparticle distance to the Bohr radius is of order four (rs ≥ 4) and observe deviations for higher densities. At very high electron density (rs ≈ 1) presented in literature approaches as well as our simulations are problematic due to the strong degeneracy of electrons and increasing fermion sign problem.
Mangaud, E; de la Lande, A; Meier, C; Desouter-Lecomte, M
2015-12-14
The quantum dynamics of electron transfer in mixed-valence organic compounds is investigated using a reaction path model calibrated by constrained density functional theory (cDFT). Constrained DFT is used to define diabatic states relevant for describing the electron transfer, to obtain equilibrium structures for each of these states and to estimate the electronic coupling between them. The harmonic analysis at the diabatic minima yields normal modes forming the dissipative bath coupled to the electronic states. In order to decrease the system-bath coupling, an effective one dimensional vibronic Hamiltonian is constructed by partitioning the modes into a linear reaction path which connects both equilibrium positions and a set of secondary vibrational modes, coupled to this reaction coordinate. Using this vibronic model Hamiltonian, dissipative quantum dynamics is carried out using Redfield theory, based on a spectral density which is determined from the cDFT results. In a first benchmark case, the model is applied to a series of mixed-valence organic compounds formed by two 1,4-dimethoxy-3-methylphenylene fragments linked by an increasing number of phenylene bridges. This allows us to examine the coherent electron transfer in extreme situations leading to a ground adiabatic state with or without a barrier and therefore to the trapping of the charge or to an easy delocalization.
Tesoriero, A.J.; Liebscher, H.; Cox, S.E.
2000-01-01
The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive
Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results
ERIC Educational Resources Information Center
Beau, Mathieu
2012-01-01
In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…
Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.
2015-03-15
Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.
Mullaney, J
1997-01-01
Information poverty is one of the most significant obstacles to better health in the developing world. To address this problem, SatelLife, a Boston-based nonprofit organization has created HealthNet, a computer-based network linking healthworkers throughout the world to facilitate the exchange of health-related information. Using low-cost, sustainable technologies, SatelLife provides both electronic mail communications services and a variety of information services including electronic publications, electronic access to remote databases, and ongoing electronic conferences on topics of special relevance to health in the developing world. The article cautions that simply bringing high-speed Internet access to the developing world will not solve problems of information poverty, because such technology will be prohibitively expensive for all but the elite private sector and because of the need to provide targeted, high-quality information, not simply access to the vast, disorganized universe of information available on the Internet. PMID:10164998
NASA Astrophysics Data System (ADS)
Schüür, J.; Nunes, R. R.
2012-05-01
Emitters of current and future wireless ultra wideband technology (UWB) inside the cabin should not interfere with any aircraft system. Especially the radio altimeter (RA) system using antennas mounted outside the fuselage is potentially sensitive to UWB devices in the frequency range between 4.1 and 4.8 GHz. The measurement of the interference path loss (IPL) to the RA is therefore of interest and is presented for different aircraft. The need of a high dynamic setup with low parasitic coupling in the IPL measurement is stressed. In addition, electromagnetic interference (EMI) tests with different transmitted signals are made, showing that the susceptibility of the RA system actually increases with UWB modulation.
Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas
NASA Technical Reports Server (NTRS)
Levinson, Amir; Eichler, David
1992-01-01
Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.
Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai
2014-10-30
Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under T_{d} symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect state is the degenerated p-like state under T_{d} symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.
Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai
2014-10-30
Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect statemore » is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.« less
Theoretical study of electron tunneling through the spiral molecule junctions along spiral paths.
Xu, Xiaodong; Li, Weiqi; Zhou, Xin; Wang, Qiang; Feng, Jikang; Tian, Wei Quan; Jiang, Yongyuan
2016-02-01
The electronic transport properties of carbohelicenes and heterohelicenes absorbed between two metal electrodes have been investigated by using the nonequilibrium Green's function in combination with the density function theory. The transport properties of the molecular junctions are mainly dependent on the nature of spiral molecules. The detailed analyses of the transmission spectra, the energy levels as well as the spatial distribution of molecular projected self-consistent Hamiltonian explain how the geometry of molecules affects the intra-molecular electronic coupling. The spiral current in the configurations can be achieved by tuning the outer edge states of spiral-shaped molecules. Furthermore, the symmetric current-voltage characteristics are investigated with the bias changing for all devices as well as an negative differential resistance behavior is observed. PMID:26762548
Theoretical study of electron tunneling through the spiral molecule junctions along spiral paths.
Xu, Xiaodong; Li, Weiqi; Zhou, Xin; Wang, Qiang; Feng, Jikang; Tian, Wei Quan; Jiang, Yongyuan
2016-02-01
The electronic transport properties of carbohelicenes and heterohelicenes absorbed between two metal electrodes have been investigated by using the nonequilibrium Green's function in combination with the density function theory. The transport properties of the molecular junctions are mainly dependent on the nature of spiral molecules. The detailed analyses of the transmission spectra, the energy levels as well as the spatial distribution of molecular projected self-consistent Hamiltonian explain how the geometry of molecules affects the intra-molecular electronic coupling. The spiral current in the configurations can be achieved by tuning the outer edge states of spiral-shaped molecules. Furthermore, the symmetric current-voltage characteristics are investigated with the bias changing for all devices as well as an negative differential resistance behavior is observed.
Silicon electronics on silk as a path to bioresorbable, implantable devices.
Kim, Dae-Hyeong; Kim, Yun-Soung; Amsden, Jason; Panilaitis, Bruce; Kaplan, David L; Omenetto, Fiorenzo G; Zakin, Mitchell R; Rogers, John A
2009-09-28
Many existing and envisioned classes of implantable biomedical devices require high performance electronicssensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications. PMID:20145699
Silicon electronics on silk as a path to bioresorbable, implantable devices
Kim, Dae-Hyeong; Kim, Yun-Soung; Amsden, Jason; Panilaitis, Bruce; Kaplan, David L.; Omenetto, Fiorenzo G.; Zakin, Mitchell R.; Rogers, John A.
2009-01-01
Many existing and envisioned classes of implantable biomedical devices require high performance electronics∕sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications. PMID:20145699
Electron energy transport in ion waves and its relevance to laser-produced plasmas
Bell, A.R.
1983-01-01
Electron energy transport in plasmas is examined in the context of ion waves which are intermediate between collisionless isothermal ion acoustic waves and collisional adiabatic sound waves. The conductivity is found to be much less than the Spitzer-Haerm result for wavelengths less than 1000 electron mean free paths. This is expected to be relevant to laser-produced ablating plasmas in which the temperature can vary considerably over a distance of 10 to 100 mean free paths. The reduction in conductivity is independent of the wave amplitude thus differing from the reduction due to saturation found recently by numerical solution of the Fokker--Planck equation. At short wavelengths the heat flow approaches an upper limit which depends on the phase velocity of the wave. Diffusive ion wave damping is strong over a large range of wavelengths.
Electron Capture and Its Reverse Process in Hot and Dense Astronuclear Matter
NASA Astrophysics Data System (ADS)
Fu, Wei-jie; Wang, Guo-hua; Liu, Yu-xin
2008-05-01
Electron capture rate, e-neutrino absorption rate, and e-neutrino absorption mean free path in hot and dense astronuclear matter are calculated in the framework of relativistic mean field (RMF) theory. Their dependence on the density, temperature, and the neutrino abundance of the matter is investigated. We find that the electron capture rate and the neutrino absorption rate are proportional to the cube of the value of the temperature as e-neutrinos are trapped in the stellar matter, and the e-neutrino absorption mean free path is proportional to the inverse of the square of the temperature. The reaction rates increase with the density and the neutrino abundance of the matter. Exact calculation of the reaction rates and the neutrino absorption mean free path is compared with that utilizing the degeneracy approximation. It shows that the latter is inappropriate under the following circumstances: when the stellar matter has a low neutrino abundance, when the density is about or less than the nuclear saturation density, and when the temperature of the matter has a relatively high value, being of the order of 10 MeV or even higher. Kinematically suppressed electron capture or neutrino absorption can be reopened by increasing the temperature of the matter, and its threshold value is about several MeVs when the density of the stellar matter is around the nuclear saturation density. We also discuss the case which is out of beta equilibrium, and the relaxation timescale is estimated. In addition, we show that the strong interactions manifested by the RMF theory decrease the electron capture rate and enlarge the neutrino mean free path if the neutrinos are trapped.
Ambipolar transport via trapped-electron whistler instability along open magnetic field lines.
Guo, Zehua; Tang, Xian-Zhu
2012-09-28
An open field line plasma is bounded by a chamber wall which intercepts the magnetic field. Steady state requires an upstream plasma source balancing the particle loss to the boundary. In cases where the electrons have a long mean free path, ambipolarity in parallel transport critically depends on collisionless detrapping of the electrons via wave-particle interaction. The trapped-electron whistler instability, whose nonlinear saturation produces a spectrum of whistler waves that is responsible for the electron detrapping flux, is shown to be an unusually robust kinetic instability, which is essential to the universality of the ambipolar constraint in plasma transport.
Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.
2005-03-01
The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.
Electron heat transport down steep temperature gradients
Matte, J.P.; Virmont, J.
1982-12-27
Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Localized electron heating during magnetic reconnection in MAST
NASA Astrophysics Data System (ADS)
Yamada, T.; Tanabe, H.; Watanabe, T. G.; Hayashi, Y.; Imazawa, R.; Inomoto, M.; Ono, Y.; Gryaznevich, M.; Scannell, R.; Michael, C.; The MAST Team
2016-10-01
Significant increase in the plasma temperature above 1 keV was measured during the kilogauss magnetic field reconnection of two merging toroidal plasmas under the high-guide field and collision-less conditions. The electron temperature was observed to peak significantly at the X-point inside the current sheet, indicating Joule heating caused by the toroidal electric field along the X-line. This peaked temperature increases significantly with the guide field, in agreement with the electron mean-free path calculation. The slow electron heating in the downstream suggests energy conversion from ions to electrons through ion-electron collisions in the bulk plasma as the second electron heating mechanism in the bulk plasma. The electron density profile clearly reveals the electron density pile-up / fast shock structures in the downstream of reconnection, suggesting energy conversion from ion flow energy to ion thermal energy as well as significant ion heating by reconnection outflow.
Rigdon, J. Brian; Smith, Marcus Daniel; Mulder, Samuel A
2014-01-07
PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).
Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula
NASA Technical Reports Server (NTRS)
Cole, K. D.; Hoegy, W. R.
1998-01-01
Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.
Energy spectrum estimates for the ion-electron emission in the radioisotope battery
NASA Astrophysics Data System (ADS)
Balebanov, V. M.; Erokhin, N. S.; Mikhailovskaya, L. A.
2004-03-01
It is described the simple practical model of express-estimates of the ion-electron emission (IEE) induced by the fast ion fluxes in the emitter of radioisotope source of current. Under calculations performed it is taken into account the analytical approximations for medium stopping power and electrons inelastic mean free path, the source of suprathermal electrons (SE) generation and the probabilities of SE arriving at the film surface and their passage through surface potential barrier. The model developed may be used for computer simulations of processes in solid-state plasma of emitter films in the radioisotope battery.
Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver
NASA Technical Reports Server (NTRS)
Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.
1989-01-01
Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.
Influence of emitted electrons transiting between surfaces on plasma-surface interaction
Campanell, Michael; Wang, Hongyue
2013-09-02
Emitted electrons are accelerated back into the plasma by the sheath. If their mean free path is large, they can propagate directly to another surface without suffering collisions. We analyze the effects of “transit” on plasma-surface interaction. When transit occurs, surfaces exchanging electrons are intricately coupled. All surfaces float more negatively than they would if the emission collisionally remixed with the bulk plasma. Asymmetries of the system drive a net “transit current” between the surfaces, which influences their potential difference. The larger the initial energy spread of the emitted electrons, the larger the potential difference.
A new MetaPath information system was developed through a collaborative effort between the Laboratory of Mathematical Chemistry (Bourgas, Bulgaria), EPA’s Office of Research and Development (NHEERL, MED, Duluth, MN and NERL, ERD, Athens, GA), and EPA’s Office of Chemical Safety a...
Bizarro, J.P.; Belo, J.H.; Figueiredo, A.C.
1997-06-01
Knowing that short-time propagators for Fokker{endash}Planck equations are Gaussian, and based on a path-sum formulation, an efficient and simple numerical method is presented to solve the initial-value problem for electron kinetics during rf heating and current drive. The formulation is thoroughly presented and discussed, its advantages are stressed, and general, practical criteria for its implementation are derived regarding the time step and grid spacing. The new approach is illustrated and validated by solving the one-dimensional model for lower-hybrid current drive, which has a well-known steady-state analytical solution. {copyright} {ital 1997 American Institute of Physics.}
Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.
Gandi, Appala Naidu; Schwingenschlögl, Udo
2016-05-18
We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit.
Current driven due to localized electron power deposition in DIII-D
Harvey, R.W.; Lin-Liu, Y.R.; Luce, T.C.; Prater, R.; Sauter, O.; Smirnov, A.P.
1999-05-01
Due to spatial localization of electron cyclotron wave injection in DIII-D, electrons heated in an off-axis region must toroidally transit the tokamak 25--50 times before re-entering the heating region. This distance is of the order of the mean free path. The effect of such RF localization is simulated with a time-dependent Fokker-Planck code which is 2D-in-velocity, 1D-in-space-along-B, and periodic in space. An effective parallel electric field arises to maintain continuity of the driven current. Somewhat surprisingly, the localized current drive efficiency remains equal to that for a uniform medium.
Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.
Gandi, Appala Naidu; Schwingenschlögl, Udo
2016-05-18
We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. PMID:27156360
NASA Technical Reports Server (NTRS)
Bell, L. D.
1996-01-01
Ballistic-Electron-Emission Microscopy (BEEM) spectroscopy has been performed on Au/Si(111) structures as a function of Au thickness and temperature. At 77 K a direct signature of parallel momentum conservation at the Au/Si interface is observed in the BEEM spectra. The variation in spectral shape with both Au thickness and temperature places restrictions on allowable values of inelastic and elastic mean-free paths in the metal, and also requires the presence of multiple electron passes within the Au layer. An independent indication of multiple reflections is directly observed in the attenuation of BEEM current with Au thickness.
Siekhaus, W J; Nelson, A J
2011-10-26
Energy dependent electron emission (counts per second) between zero and 1.4 keV generated by the natural reactivity of uranium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron intensity decreases continuously with energy, but at different rates in different energy regimes, suggesting that a variety of processes may be involved in producing the observed electron emission. The spectrum was converted to energy dependent electron flux (e-/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The flux decreased rapidly from {approx}10{sup 6}/cm{sup 2}s to {approx}10{sup 5}/cm{sup 2}s in the energy range from zero to 200 eV, and then more slowly from {approx}10{sup 5}/cm{sup 2}s to {approx}3*10{sup 4}/cm{sup 2} s in the range from 200 to 1400 eV. The energy dependent electron mean free path in gases together with literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2}s within the inelastic mean free path of electrons, and found to be about 1.3*10{sup 8}/cm{sup 2}s and 1.5*10{sup 7}/cm{sup 2}s, respectively, for hydrogen. An estimate of the number of ionization and dissociation reactions occurring within the total range, rather than the mean free path of electrons in gases resulted in 6.2*10{sup 9}/cm{sup 2}s and 1.3*10{sup 9}/cm{sup 2}s, respectively. The total energy flux carried by electrons from the surface is suspiciously close to the total possible energy generated by one gram of uranium. A likely source of error is the assumption that the electron emission has a cosine distribution. Angular distribution measurements of the electron emission would check that assumption, and actual measurement of the total current emanating from the surface are needed to confirm the value of the current calculated in section II. These results must therefore be used with caution - until they are confirmed
Transport Properties of III-N Hot Electron Transistors
NASA Astrophysics Data System (ADS)
Suntrup, Donald J., III
Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons
NASA Astrophysics Data System (ADS)
Alekseev, P. S.
2016-10-01
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
2007-07-14
The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less
Snell, Mark K.
2007-07-14
The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.
NASA Astrophysics Data System (ADS)
Zhang, R. F.; Legut, D.; Wen, X. D.; Veprek, S.; Rajan, K.; Lookman, T.; Mao, H. K.; Zhao, Y. S.
2014-09-01
The energetically most stable orthorhombic structure of OsB2 and IrB2 is dynamically stable for OsB2 but unstable for IrB2. Both diborides have substantially lower shear strength in their easy slip systems than their metal counterparts. This is attributed to an easy sliding facilitated by out-of-plane weakening of metallic Os-Os bonds in OsB2 and by an in-plane bond splitting instability in IrB2. A much higher shear resistance of Os-B and B-B bonds than Os-Os ones is found, suggesting that the strengthened Os-B and B-B bonds are responsible for hardness enhancement in OsB2. In contrast, an in-plane electronic instability in IrB2 limits its strength. The electronic structure of deformed diborides suggests that the electronic instabilities of 5d orbitals are their origin of different bond deformation paths. Neither IrB2 nor OsB2 can be intrinsically superhard.
Liang, Xian-Ting
2014-07-28
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time. PMID:25084890
Liang, Xian-Ting
2014-07-28
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.
NASA Astrophysics Data System (ADS)
Shevkunov, S. V.
2016-08-01
A method for calculating the spin of the ground quantum state of nonrelativistic electrons and distance between energy levels of quantum states differing in the spin magnitude from first principles is proposed. The approach developed is free from the one-electron approximation and applicable in multielectron systems with allowance for all spatial correlations. The possibilities of the method are demonstrated by the example of calculating the energy gap between spin states in model ellipsoidal quantum dots with a harmonic confining field. The results of computations by the Monte Carlo method point to high sensitivity of the energy gap to the break of spherical symmetry of the quantum dot. For three electrons, the phenomenon of inversion has been revealed for levels corresponding to high and low values of the spin. The calculations demonstrate the practical possibility to obtain spin states with arbitrarily close energies by varying the shape of the quantum dot, which is a key condition for development prospects in technologies of storage systems based on spin qubits.
NASA Astrophysics Data System (ADS)
Honda, Yoshitake; Muto, Shunsuke; Tatsumi, Kazuyoshi; Kondo, Hiroki; Horibuchi, Kayo; Kobayashi, Tetsuro; Sasaki, Tsuyoshi
2015-09-01
We revisited the "path-dependence" problem, i.e., the differing polarization observed in LiFePO4 cathode charge/discharge curves depending on the electrochemical treatment history of the material. The phase distributions of the active material particles with different charge/discharge histories in the LiFePO4 cathode were investigated through spectral imaging (SI) using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The STEM-EELS-SI experiments revealed that LiFePO4 (LFP) and FePO4 (FP) almost always coexist in the individual primary particles of Li0.5FePO4 (50% state of charge (SOC)) electrodes, forming core/shell structures. This is unlike the conventional domino-cascade model, in that LFP-inside/FP-outside is observed in the lithium-extracted Li0.5FePO4 particles, whereas FP-inside/LFP-outside is seen in the lithium-inserted Li0.5FePO4 particles. We examined the particle-size dependence of the core/total volume ratio of each Li0.5FePO4 particle, and the essential features of the path-dependent charge/discharge curves were semi-quantitatively reproduced by a simple static model that considered the ionic conductivity of the shell phase.
Copper foil provides uniform heat sink path
NASA Technical Reports Server (NTRS)
Phillips, I. E., Jr.; Schreihans, F. A.
1966-01-01
Thermal path prevents voids and discontinuities which make heat sinks in electronic equipment inefficient. The thermal path combines the high thermal conductivity of copper with the resiliency of silicone rubber.
McLaughlin, Kevin; Coderre, Sylvain
2015-08-01
As medical trainees gain clinical experience, they increasingly form diagnoses based on their association with predisposing conditions and clinical features rather than pathophysiological explanations. Knowledge of these associations is housed as scripts in long-term memory, and data from the expertise literature imply that expert performance is largely explained by experts possessing more accurate scripts. In rotation-based clerkships, students typically spend a short period of time involved in the care of patients and are frequently deprived of the opportunity to observe the evolution and resolution of illness and the correct association between predisposing conditions, clinical features, and final diagnosis that is required for accurate script formation. Thanks to the introduction of an electronic health record (EHR), students now have the opportunity to track former patients until the final diagnosis and response to treatment is known. Although former patients are unlikely to benefit from being tracked by medical students, this type of learning experience may help students form more accurate scripts and, thus, improve their diagnostic performance on subsequent patients. But, because the purpose of EHRs is to improve clinical care of patients, is it ethically acceptable to allow students no longer involved in the care of patients to use these data solely for the purposes of learning? In this Commentary, the authors highlight the potential for ethical conflict whenever clinical care and teaching mingle, and discuss how these competing interests can still be balanced in the face of advancing technology by applying universal ethical principles and following the advice of Hippocrates. PMID:25565264
McLaughlin, Kevin; Coderre, Sylvain
2015-08-01
As medical trainees gain clinical experience, they increasingly form diagnoses based on their association with predisposing conditions and clinical features rather than pathophysiological explanations. Knowledge of these associations is housed as scripts in long-term memory, and data from the expertise literature imply that expert performance is largely explained by experts possessing more accurate scripts. In rotation-based clerkships, students typically spend a short period of time involved in the care of patients and are frequently deprived of the opportunity to observe the evolution and resolution of illness and the correct association between predisposing conditions, clinical features, and final diagnosis that is required for accurate script formation. Thanks to the introduction of an electronic health record (EHR), students now have the opportunity to track former patients until the final diagnosis and response to treatment is known. Although former patients are unlikely to benefit from being tracked by medical students, this type of learning experience may help students form more accurate scripts and, thus, improve their diagnostic performance on subsequent patients. But, because the purpose of EHRs is to improve clinical care of patients, is it ethically acceptable to allow students no longer involved in the care of patients to use these data solely for the purposes of learning? In this Commentary, the authors highlight the potential for ethical conflict whenever clinical care and teaching mingle, and discuss how these competing interests can still be balanced in the face of advancing technology by applying universal ethical principles and following the advice of Hippocrates.
Tan, Lun C.; Shao, Xi; Reames, Donald V.; Ng, Chee K.; Wang, Linghua
2014-05-10
Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts. The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.
Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles
NASA Astrophysics Data System (ADS)
Jain, Ankit; McGaughey, Alan J. H.
2016-02-01
Mode-dependent phonon and electron transport properties in Al, Ag, and Au are predicted using density functional theory and lattice dynamics calculations. The predicted thermal conductivities, electrical conductivities, electron-phonon coupling coefficients, and electron-phonon mass enhancement parameters are in agreement with experimental measurements. At a temperature of 100 K, the phonon contribution to the total thermal conductivity of Al is 5% in bulk and increases to 15% for a 50 nm thick film. In all three metals, phonons with mean free paths between 1 and 10 nm are the dominate contributors to the thermal conductivity at a temperature of 300 K, while the relevant electron mean free paths are 10-100 nm. Despite similar atomic masses, the phonon thermal conductivity of Al is an order of magnitude smaller than that of silicon due to a larger three-phonon phase space and stronger anharmonicity. These results will impact the interpretation of thermoreflectance experiments that can resolve carrier-level contributions to thermal conductivity.
Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials
NASA Astrophysics Data System (ADS)
Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun
2016-09-01
The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient.
Simulation of electron transport during electron-beam-induced deposition of nanostructures
Jeschke, Harald O; Valentí, Roser
2013-01-01
Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
A Hot-Electron Far-Infrared Direct Detector
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel
2016-06-01
In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ˜1.5-2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.
Nonadiabatic transition path sampling
NASA Astrophysics Data System (ADS)
Sherman, M. C.; Corcelli, S. A.
2016-07-01
Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 7(exp 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10(exp -3) to 10(exp -5) S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10(exp -22) 10(exp -21) W/Hz at 100 mK which is 10(exp 3) times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.
NASA Technical Reports Server (NTRS)
Kim, Jeong-Hee; Rapp, Richard H.
1990-01-01
In June 1986 a 1 x 1 deg/mean free-air anomaly data file containing 48955 anomalies was completed. In August 1986 a 30 x 30 min mean free-air anomaly file was defined containing 31787 values. For the past three years data has been collected to upgrade these mean anomaly files. The primary emphasis was the collection of data to be used for the estimation of 30 min means anomalies in land areas. The emphasis on land areas was due to the anticipated use of 30 min anomalies derived from satellite altimeter data in the ocean areas. There were 10 data sources in the August 1986 file. Twenty-eight sources were added based on the collection of both point and mean anomalies from a number of individuals and organizations. A preliminary 30 min file was constructed from the 38 data sources. This file was used to calculate 1 x 1 deg mean anomalies. This 1 x 1 deg file was merged with a 1 x 1 deg file which was a merger of the June 1986 file plus a 1 x 1 deg file made available by DMA Aerospace Center. Certain bad 30 min anomalies were identified and deleted from the preliminary 30 min file leading to the final 30 min file (the July 1989 30 min file) with 66990 anomalies and their accuracy. These anomalies were used to again compute 1 x 1 deg anomalies which were merged with the previous June 86 DMAAC data file. The final 1 x 1 deg mean anomaly file (the July 89 1 x 1 deg data base) contained 50793 anomalies and their accuracy. The anomaly data files were significantly improved over the prior data sets in the following geographic regions: Africa, Scandinavia, Canada, United States, Mexico, Central and South America. Substantial land areas remain where there is little or no available data.
ERIC Educational Resources Information Center
Fanaro, Maria de los Angeles; Arlego, Marcelo; Otero, Maria Rita
2012-01-01
This work comprises an investigation about basic Quantum Mechanics (QM) teaching in the high school. The organization of the concepts does not follow a historical line. The Path Integrals method of Feynman has been adopted as a Reference Conceptual Structure that is an alternative to the canonical formalism. We have designed a didactic sequence…
Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs
NASA Technical Reports Server (NTRS)
Walukiewicz, W.; Wang, L.; Pawlowicz, L. M.; Lagowski, J.; Gatos, H. C.
1986-01-01
It is shown that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 sq cm/V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.
A universal equation for computing the beam broadening of incident electrons in thin films.
Gauvin, Raynald; Rudinsky, Samantha
2016-08-01
A universal equation for computing the beam broadening of incident electrons in thin films is presented. This equation is based on the concepts of anomalous diffusion with the Hurst exponent H. When the thickness to elastic mean free path ratio, t/λ, is greater than 1, the Hurst exponent goes to 0.5 and this random walk behavior leads to the Goldstein et al. [1] beam broadening equation when non-relativistic screened Rutherford elastic cross-sections are used. When t/λ≪1, the lack of elastic collisions for the electron trajectories gives an H exponent of 1 and a different beam broadening equation is obtained. A general equation to compute the beam broadening that takes into account the variation of H with t/λ is presented and this equation was fitted and validated with Monte Carlo simulations of electron trajectories in thin films. PMID:27161415
Chantler, C T; Bourke, J D
2015-11-18
We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems. PMID:26490726
NASA Astrophysics Data System (ADS)
Chantler, C. T.; Bourke, J. D.
2015-11-01
We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.
Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures
Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried
2012-01-01
Excellent field electron emission properties of a diamond/CoSi2/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi2 conducting interlayer. The results show that the main emission properties were modified by varying the CoSi2 thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi2 interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi2 layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays. PMID:23082241
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
NASA Astrophysics Data System (ADS)
Springford, Michael
1997-03-01
1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.
NASA Astrophysics Data System (ADS)
Springford, Michael
2008-12-01
1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.
NASA Astrophysics Data System (ADS)
Uhlisch, D.; Appenzeller, J.; Tietze, M. F.; Schäpers, Th.; Hollfelder, M.; Lüth, H.
1998-01-01
Ballistic transport of hot electrons was used to characterize the relevant transport lengths in the two-dimensional electron gas formed in an In0.53Ga0.47As/In0.76Ga0.24As/InP heterostructure. This method allows a distinction between impurity scattering, alloy scattering, and electron-electron scattering. Using adjacent point contacts separated by only a few hundred nanometers, we determine the ballistic mean free path for cold electrons to be approximately Lbal=970 nm. Fitting the electron excess energy-dependent peak height of the focusing maxima, good agreement can be obtained by including the energy dependence of ionized impurity scattering. The mean distance between impurities Limp is determined to be approximately 1.2 μm and the alloy scattering length Lalloy is 4.5 μm.
NASA Technical Reports Server (NTRS)
Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison
2005-01-01
Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.
Path entanglement of surface plasmons
NASA Astrophysics Data System (ADS)
Fakonas, James S.; Mitskovets, Anna; Atwater, Harry A.
2015-02-01
Metals can sustain traveling electromagnetic waves at their surfaces supported by the collective oscillations of their free electrons in unison. Remarkably, classical electromagnetism captures the essential physics of these ‘surface plasma’ waves using simple models with only macroscopic features, accounting for microscopic electron-electron and electron-phonon interactions with a single, semi-empirical damping parameter. Nevertheless, in quantum theory these microscopic interactions could be important, as any substantial environmental interactions could decohere quantum superpositions of surface plasmons, the quanta of these waves. Here we report a measurement of path entanglement between surface plasmons with 95% contrast, confirming that a path-entangled state can indeed survive without measurable decoherence. Our measurement suggests that elastic scattering mechanisms of the type that might cause pure dephasing in plasmonic systems must be weak enough not to significantly perturb the state of the metal under the experimental conditions we investigated.
NASA Astrophysics Data System (ADS)
Dröge, W.; Kartavykh, Y. Y.; Dresing, N.; Heber, B.; Klassen, A.
2014-08-01
We analyze 65-105 keV electrons in the 7 February 2010 solar electron event observed simultaneously by STEREO-A, STEREO-B, and ACE. A method to reconstruct the full-electron pitch angle distributions from the four Solar Electron and Proton Telescope sensors on STEREO-A/B and the Solar Electron and Proton Telescope instrument on ACE in the energy range of approximately 60-300 keV for periods of incomplete angular coverage is presented. A transport modeling based on numerical solutions of a three-dimensional particle propagation model which includes pitch angle scattering and focused transport is applied to the intensity and anisotropy profiles measured on all three spacecraft. Based on an analysis of intensity gradients observed between the three spacecraft, we find that the lateral transport of the electrons occurs partially close to the Sun, due to effects of nonradial divergence of magnetic field lines or particle diffusion, and partially in the interplanetary medium. For the mean free paths characterizing the electron diffusion parallel and perpendicular to the interplanetary magnetic field, we derive values of λ∥˜ 0.1 AU and λ⟂˜ 0.01 AU. In comparison with results from other particle events which we had previously analyzed in a similar manner we discuss whether the diffusion mean free paths parallel and perpendicular to the average magnetic field might be related with each other, and whether the particle transport perpendicular to the average magnetic field is more likely due to particles following meandering magnetic field lines, or due to particles being scattered off individual field lines.
Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M
2016-02-18
We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles. PMID:26807653
Spaces of paths and the path topology
NASA Astrophysics Data System (ADS)
Low, Robert J.
2016-09-01
The natural topology on the space of causal paths of a space-time depends on the topology chosen on the space-time itself. Here we consider the effect of using the path topology on space-time instead of the manifold topology, and its consequences for how properties of space-time are reflected in the structure of the space of causal paths.
Conditions for electron runaway under leader breakdown of long gaps
Ul'yanov, K. N.
2008-04-15
An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined.
NASA Astrophysics Data System (ADS)
Hernandez, F. G. G.; Ullah, S.; Ferreira, G. J.; Kawahala, N. M.; Gusev, G. M.; Bakarov, A. K.
2016-07-01
We imaged the transport of current-induced spin coherence in a two-dimensional electron gas confined in a triple quantum well. Nonlocal Kerr rotation measurements, based on the optical resonant amplification of the electrically-induced polarization, revealed a large spatial variation of the electron g factor and the efficient generation of a current-controlled spin-orbit field in a macroscopic Hall bar device. We observed coherence times in the nanoseconds range transported beyond half-millimeter distances in a direction transverse to the applied electric field. The measured long spin transport length can be explained by two material properties: large mean free path for charge diffusion in clean systems and enhanced spin-orbit coefficients in the triple well.
NASA Astrophysics Data System (ADS)
Robles, Marcelo E.; Gonzalez-Fuentes, Claudio A.; Henriquez, Ricardo; Kremer, German; Moraga, Luis; Oyarzun, Simón; Suarez, Marco Antonio; Flores, Marcos; Munoz, Raul C.
2012-02-01
We report a comparison between the resistivity measured on thin gold films deposited on mica, with predictions based upon classical theories of size effects (Drude's, Sondheimer's and Calecki's), as well as predictions based upon quantum theories of electron-surface scattering (the modified theory of Sheng, Xing and Wang, the theory of Tesanovic, Jaric and Maekawa, and that of Trivedi and Aschroft). From topographic images of the surface recorded with a Scanning Tunneling Microscope, we determined the rms roughness amplitude, δ and the lateral correlation length, ξ corresponding to a Gaussian representation of the average height-height autocorrelation function, describing the roughness of each sample in the scale of length set by the Fermi wave length. Using (δ, ξ) as input data, we present a rigorous comparison between resistivity data and predictions based upon the theory of Calecki as well as quantum theoretical predictions without adjustable parameters. The resistivity was measured on gold films of different thickness evaporated onto mica substrates, between 4 K and 300 K. The resistivity data covers the range 0.1 < x(T) < 6.8, for 4 K < T < 300 K, where x(T) is the ratio between film thickness and electron mean free path in the bulk at temperature T. We experimentally identify electron-surface and electron-phonon scattering as the microscopic electron scattering mechanisms giving rise to the macroscopic resistivity. The different theories are all capable of estimating the thin film resistivity to an accuracy better than 10%; however the mean free path and the resistivity characterizing the bulk turn out to depend on film thickness. Surprisingly, only the Sondheimer theory and its quantum version, the modified theory of Sheng, Xing and Wang, predict and increase in resistivity induced by size effects that seems consistent with published galvanomagnetic phenomena also arising from electron-surface scattering measured at low temperatures.
The passage of fast electrons through matter
NASA Astrophysics Data System (ADS)
Sorini, Adam P.
This work regards the passage of fast electrons through matter, and in particular how electrons scatter and lose energy within a solid. The basic quantum theory of these scattering processes was first considered in the early- to mid-20th century by Bohr, Bethe, Fermi, and others. This work extends our understanding of how a relativistic electron scatters off, and loses energy to, a complex many-body system. The main idea of this work is that it is now possible to calculate, from first-principles, the inelastic losses of relativistic electrons in condensed matter. We present ab initio calculations based on a real-space Green's function approach, implemented in the FEFF8 computer program[1]. Our work focuses on three topics: Relativistic stopping power and associated loss parameters, electron energy loss spectroscopy in high energy transmission electron microscopes, and the inelastic electron scattering mixed dynamic form factor. We calculate, for the first time, ab initio stopping powers and inelastic mean free paths in real materials. The stopping powers are calculated over a broad energy range, from ten eV to above ten MeV. We also present the first ab initio calculations of the "mean excitation energy". We develop a relativistic theory of inelastic electron scattering, based on ab initio calculations of dielectric response, and the generalized Lorenz gauge. Using our relativistic dielectric theory, we calculate the EELS magic angle ratio for boron nitride and for graphite. In these anisotropic materials we find large relativistic corrections to the magic angle for high energy electron microscopes. We also predict and calculate large deviations in the EELS magic angle from the relativistic vacuum predictions in the low energy-loss regime. Finally, we present calculations of mixed dynamic form factor.
NASA Astrophysics Data System (ADS)
Yue, Y. T.; Li, H. M.; Ding, Z. J.
2005-06-01
Contrast simulation of scanning electron microscope (SEM) images for particle-matrix systems is important for understanding the contrast formation mechanism in such systems. Most of the previous works have been limited to backscattered electron (BSE) signals because of the difficulties involved in the simulation of the secondary electron (SE) signals. This limitation prevents some important information from being extracted from experimental SEM images. A comprehensive and accurate Monte Carlo model has been developed for simulation of electron-solid interactions, which enables the simulation of production and emission of cascade SEs and is then quite suitable for investigating both SE and BSE signals. In this paper, we have modified the simulation model for a particle-matrix system and performed a simulation of SE and BSE images for nano-size Pt particles in a carbon matrix. Since the size of the particles is comparable with the electron scattering mean free path, modification of the conventional Monte Carlo procedure for a solid is necessary in order to include the boundary correction due to different scattering mean free paths. SE and BSE line scans and two-dimensional images under various conditions (particle size, depth and beam incident angle) are obtained and discussed in detail. The results have shown that: (1) In the formation of Pt-C contrast, the material factor plays a dominant role. (2) Only those particles located on, or quite close to, the matrix surface can be clearly revealed in a SE image. The maximum visible depth in SE observation for a Pt particle embedded in carbon matrix is about three times the particle size, while it is twice deeper than that with BSE signals. (3) The maximum SE emission from Pt particles appears at the centre of, instead of the sides of, the particle when the size falls down to the nanometre region; (4) Both the SE and BSE contrast have maximum values at a certain primary energy for particles of a specific size. (5) For
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less
Moody, A.
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.
NASA Astrophysics Data System (ADS)
Dröge, W.; Kartavykh, Y. Y.; Dresing, N.; Klassen, A.
2016-08-01
During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ ∥ in the range of 0.15-0.6 au, and values of λ ⊥ in the range of 0.005-0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.
Igor D. Kaganovich; Oleg Polomarov
2003-05-19
In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated.
Generation and accretion of electrons in complex plasmas with cylindrical particles
Sodha, Mahendra Singh; Misra, Shikha; Mishra, S. K.
2009-12-15
This paper presents an analytical model for the physical understanding of the charging of cylindrical dust particles in an open complex plasma system. Two different mechanisms, viz., thermionic emission and photoelectric emission have been considered for the electron generation from the charged cylindrical dust particles; the corresponding expressions for the rate of emission of electrons and their mean energy have been derived. A simple approach has been adopted to derive the expression for the rate of electron accretion to the dust particle. Further a new expression for the mean energy associated with the accreted electrons due to cylindrical dust particle has been derived and presented. An interesting comparison of results obtained in the case of spherical and cylindrical dust particles has also been made. Using these expressions, a formalism has been developed for the electronic processes in an illuminated dust cloud with cylindrical particles, on the basis of charge neutrality condition and number and energy balance of electrons; the charge carried by the cylindrical dust particles, electron temperature, and electron density corresponding to a given situation have been determined. The limitation of the applicability of the theory, viz., that the mean free path of an electron for accretion by dust particles be less than the dimension of the dust cloud has been pointed out.
Kolkowitz, S; Safira, A; High, A A; Devlin, R C; Choi, S; Unterreithmeier, Q P; Patterson, D; Zibrov, A S; Manucharyan, V E; Park, H; Lukin, M D
2015-03-01
Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems.
Hostetler, J L; Smith, A N; Czajkowsky, D M; Norris, P M
1999-06-01
Femtosecond thermoreflectance data for thin films and bulk quantities of Au, Cr, and Al are compared with the parabolic two-step thermal diffusion model for the purpose of determining the electron-phonon coupling factor. The thin films were evaporated and sputtered onto different substrates to produce films that vary structurally. The measurement of the electron-phonon coupling factor is shown to be sensitive to grain size and film thickness. The thin-film thermoreflectance data are compared with that of the corresponding bulk material and to a theoretical model relating the coupling rate to the grain-boundary scattering and size effects on the mean free path of the relevant energy carrier.
Electron-phonon mediated heat flow in disordered graphene
NASA Astrophysics Data System (ADS)
Chen, Wei; Clerk, Aashish A.
2012-09-01
We calculate the heat flux and electron-phonon thermal conductance in a disordered graphene sheet, going beyond a Fermi’s golden rule approach to fully account for the modification of the electron-phonon interaction by disorder. Using the Keldysh technique combined with standard impurity averaging methods in the regime kFl≫1 (where kF is the Fermi wave vector and l is the mean free path), we consider both scalar potential (i.e., deformation potential) and vector-potential couplings between electrons and phonons. We also consider the effects of electronic screening at the Thomas-Fermi level. We find that the temperature dependence of the heat flux and thermal conductance is sensitive to the presence of disorder and screening, and reflects the underlying chiral nature of electrons in graphene and the corresponding modification of their diffusive behavior. In the case of weak screening, disorder enhances the low-temperature heat flux over the clean system (changing the associated power law from T4 to T3), and the deformation potential dominates. For strong screening, both the deformation potential and vector-potential couplings make comparable contributions, and the low-temperature heat flux obeys a T5 power law.
Effect of secondary electron emission on the plasma sheath
Langendorf, S. Walker, M.
2015-03-15
In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 10{sup 12} m{sup −3} at a pressure of 10{sup −4} Torr-Ar, with a 1%–16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (∼1 T{sub e}), and in four out of six cases deviate less than the measurement uncertainty of 1 V.
Nonlocal electron transport in magnetized plasmas with arbitrary atomic number
Bennaceur-Doumaz, D.; Bendib, A.
2006-09-15
The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.
Morgado, Leonor; Lourenço, Sílvia; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.
2014-01-01
PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e−/H+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e−/H+ transfer pathways. The results showed that the preferred e−/H+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e−/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities. PMID:25153891
NASA Astrophysics Data System (ADS)
Deris, Jamileh; Hajati, Shaaker; Tougaard, Sven; Zaporojtchenko, Vladimir
2016-07-01
In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261-3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm-6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.
ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HAeRM TO THE COLLISIONLESS LIMIT
Bale, S. D.; Quataert, E.; Pulupa, M.; Salem, C.; Chen, C. H. K.
2013-06-01
We use a statistically significant set of measurements to show that the field-aligned electron heat flux q{sub Parallel-To} in the solar wind at 1 AU is consistent with the Spitzer-Haerm collisional heat flux q{sub sh} for temperature gradient scales larger than a few mean free paths L{sub T} {approx}> 3.5{lambda}{sub fp}. This represents about 65% of the measured data and corresponds primarily to high {beta}, weakly collisional plasma ({sup s}low solar wind{sup )}. In the more collisionless regime {lambda}{sub fp}/L{sub T} {approx}> 0.28, the electron heat flux is limited to q{sub Parallel-To }/q{sub 0} {approx} 0.3, independent of mean free path, where q{sub 0} is the ''free-streaming'' value; the measured q{sub Parallel-To} does not achieve the full q{sub 0}. This constraint q{sub Parallel-To }/q{sub 0} {approx} 0.3 might be attributed to wave-particle interactions, effects of an interplanetary electric potential, or inherent flux limitation. We also show a {beta}{sub e} dependence to these results that is consistent with a local radial electron temperature profile T{sub e} {approx} r {sup -{alpha}} that is a function of the thermal electron beta {alpha} = {alpha}({beta}{sub e}) and that the {beta} dependence of the collisionless regulation constraint is not obviously consistent with a whistler heat flux instability. It may be that the observed saturation of the measured heat flux is a simply a feature of collisional transport. We discuss the results in a broader astrophysical context.
Path integral simulations for nanoelectronics
NASA Astrophysics Data System (ADS)
Shumway, John
2007-10-01
As computer circuits shrink, devices are entering the nanoscale regime and quantum physics is becoming important. The biggest barrier to further decreases in size and increases in clock speed is excessive heat generation. Some physicists are proposing that many-body correlated quantum states of electrons may be exploited to make more energy efficient switches. In our research we are developing new simulation techniques to study highly correlated electron states in realistic device geometries and finite temperatures. The simulations are based on Feynman path integrals, which cast quantum statistical mechanics as a sum over worldlines, a mathematically equivalent alternative Schroedinger's differetial equation. Using Monte Carlo sampling on dozens to hundreds of electrons, we can simulate properties of an interacting electron fluid in a nanowire. Linear response theory relates fluctuations about equilibrium to conductivity. This gives us a new perspective on quantum phenomena, including quantized conductance steps and spin-charge separation.
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Dreyer, Olaf
2016-02-01
Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.
Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.
2012-07-01
A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.
Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.
2012-07-01
A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.
1999-01-01
A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.
Drag of electrons in graphene by substrate surface polar phonons
NASA Astrophysics Data System (ADS)
Koniakhin, S. V.; Nalitov, A. V.
2016-09-01
It is known that electron scattering by surface polar phonons (SPPs) of the substrate reduces their mobility in supported graphene. However, there is no experimental evidence for the contribution of the drag of electrons by SPPs to thermoelectric phenomena in graphene: graphene thermopower exhibits good agreement with Mott's law, which means that the diffusion contribution to the thermopower is dominant in a wide range of carrier densities and temperatures. Here we develop a complete theory of drag of electrons in graphene by SPPs. By solving the Boltzmann transport equation for electrons scattered by SPPs we derive SPP-drag contribution to the thermopower in graphene. Compared to diffusion thermopower, obtained values appear to be one order of magnitude lower for various substrates. This can be explained by the low occupation number of the SPPs and short mean free path of such phonons stemming from their small group velocity. We conclude that experiments on thermopower in graphene can be treated within the framework of Mott's law.
Suppression of Electron Thermal Conduction in the High β Intracluster Medium of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Roberg-Clark, G. T.; Drake, J. F.; Reynolds, C. S.; Swisdak, M.
2016-10-01
Understanding the thermodynamic state of the hot intracluster medium (ICM) in a galaxy cluster requires knowledge of the plasma transport processes, especially thermal conduction. The basic physics of thermal conduction in plasmas with ICM-like conditions has yet to be elucidated, however. We use particle-in-cell simulations and analytic models to explore the dynamics of an ICM-like plasma (with small gyroradius, large mean free path, and strongly sub-dominant magnetic pressure) driven by the diffusive heat flux associated with thermal conduction. Linear theory reveals that whistler waves are driven unstable by electron heat flux, even when the heat flux is weak. The resonant interaction of electrons with these waves then plays a critical role in scattering electrons and suppressing the heat flux. In a 1D model where only whistler modes that are parallel to the magnetic field are captured, the only resonant electrons are moving in the opposite direction to the heat flux, and the electron heat flux suppression is small. In 2D or more, oblique whistler modes also resonate with electrons moving in the direction of the heat flux. The overlap of resonances leads to effective symmetrization of the electron distribution function and a strong suppression of heat flux. The results suggest that thermal conduction in the ICM might be strongly suppressed, possibly to negligible levels.
Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion
NASA Astrophysics Data System (ADS)
Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.
2015-12-01
Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.
NASA Astrophysics Data System (ADS)
Kang, Sungmu
In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also
Shagayda, Andrey
2012-08-15
Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.
Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.
2014-09-28
It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.
Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang Im, Hyunsik
2014-07-28
We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.
Collisionless electron heating in periodic arrays of inductively coupled plasmas
Czarnetzki, U.; Tarnev, Kh.
2014-12-15
A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is presented. In contrast to the well-known case of non-local heating related to the transversal conductivity, when the electrons move perpendicular to the planar coil, we investigate the problem of electrons moving in a plane parallel to the coils. Two types of periodic structures are studied. Resonance velocities where heating is efficient are calculated analytically by solving the Vlasov equation. Certain scaling parameters are identified. The concept is further investigated by a single particle simulation based on the ergodic principle and combined with a Monte Carlo code allowing for collisions with Argon atoms. Resonances, energy exchange, and distribution functions are obtained. The analytical results are confirmed by the numerical simulation. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.
Tortuous path chemical preconcentrator
Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
ERIC Educational Resources Information Center
Stegemoller, William; Stegemoller, Rebecca
2004-01-01
The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)
Self similar nonlocal electron heat flow
NASA Astrophysics Data System (ADS)
Matte, Jean-Pierre
2007-11-01
The well known self similar heat diffusion solutions of Zel'dovich and Raizer [1], for a heat wave advancing from a boundary at a fixed temperature or a fixed heat flux do not keep the ratio R of the scale length to the mean free path constant. Instead, R increases and the solution becomes increasingly valid because Spitzer-Harm [2] heat flow is increasingly applicable. A self similar solution exists which keeps R constant, if one assumes that the boundary heat flux increases in time. Similarly, for the problem of a uniform density plasma heated by a finite width laser beam, a self similar solution keeping R constant can be obtained by assuming that the beam intensity and width increase in time. Such solutions will be studied with the electron kinetic code FPI [3], and compared to simulations with more usual laser characteristics. [1] Ya. B. Zel'dovich and Yu. P. Raizer, ``Physics of Shock Waves '', Academic Press, New York, 1967. [2] L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953). [3] J.-P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984) ; ibid 49, 1936 (1982).
Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet
NASA Astrophysics Data System (ADS)
Principi, Alessandro; Vignale, Giovanni; Carrega, Matteo; Polini, Marco
2016-03-01
Hydrodynamic flow occurs in an electron liquid when the mean free path for electron-electron collisions is the shortest length scale in the problem. In this regime, transport is described by the Navier-Stokes equation, which contains two fundamental parameters, the bulk and shear viscosities. In this paper, we present extensive results for these transport coefficients in the case of the two-dimensional massless Dirac fermion liquid in a doped graphene sheet. Our approach relies on microscopic calculations of the viscosities up to second order in the strength of electron-electron interactions and in the high-frequency limit, where perturbation theory is applicable. We then use simple interpolation formulas that allow to reach the low-frequency hydrodynamic regime where perturbation theory is no longer directly applicable. The key ingredient for the interpolation formulas is the "viscosity transport time" τv, which we calculate in this paper. The transverse nature of the excitations contributing to τv leads to the suppression of scattering events with small momentum transfer, which are inherently longitudinal. Therefore, contrary to the quasiparticle lifetime, which goes as -1 /[T2ln(T /TF) ] , in the low-temperature limit we find τv˜1 /T2 .
Sampling diffusive transition paths
F. Miller III, Thomas; Predescu, Cristian
2006-10-12
We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.
Improved initial guess for minimum energy path calculations.
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes
2014-06-01
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Improved initial guess for minimum energy path calculations
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
2014-06-07
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Sullivan, Blair D; Seymour, Dr. Paul Douglas
2010-01-01
Say a digraph is k-free if it has no directed cycles of length at most k, for k {element_of} Z{sup +}. Thomasse conjectured that the number of induced 3-vertex directed paths in a simple 2-free digraph on n vertices is at most (n-1)n(n+1)/15. We present an unpublished result of Bondy proving there are at most 2n{sup 3}/25 such paths, and prove that for the class of circular interval digraphs, an upper bound of n{sup 3}/16 holds. We also study the problem of bounding the number of (non-induced) 4-vertex paths in 3-free digraphs. We show an upper bound of 4n{sup 4}/75 using Bondy's result for Thomasse's conjecture.
Libenson, B. N.
2011-10-15
The probability of single characteristic energy loss of a fast electron in a reflection experiment has been calculated. Unlike many works concerning this subject, the bremsstrahlung of bulk plasmons in the non- Cherenkov ranges of frequencies and wavevectors of a plasmon has been taken into account. The contributions to the probability of single loss and to the shape of the spectral line from a quantum correction that is due to the interference of elastic and inelastic electron scattering events have been determined. The probability has been calculated in the kinetic approximation for the relative permittivity, where the short-wavelength range of the plasmon spectrum is correctly taken into account. In view of these circumstances, the expression for the mean free path of the electron with respect to the emission of a bulk plasmon that was obtained by Pines [D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1963)] has been refined. The coherence length of the fast electron in the medium-energy range under consideration has been estimated. The shape of the spectral line of energy losses in the non-Cherenkov frequency range has been determined. It has been shown that the probability of the single emission of the bulk plasmon incompletely corresponds to the Poisson statistics.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Jeangros, Q; Hansen, T W; Wagner, J B; Dunin-Borkowski, R E; Hébert, C; Van Herle, J; Hessler-Wyser, A
2016-10-01
A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode in 1.3mbar of H2. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction. Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction.
Coherence-path duality relations for N paths
NASA Astrophysics Data System (ADS)
Hillery, Mark; Bagan, Emilio; Bergou, Janos; Cottrell, Seth
2016-05-01
For an interferometer with two paths, there is a relation between the information about which path the particle took and the visibility of the interference pattern at the output. The more path information we have, the smaller the visibility, and vice versa. We generalize this relation to a multi-path interferometer, and we substitute two recently defined measures of quantum coherence for the visibility, which results in two duality relations. The path information is provided by attaching a detector to each path. In the first relation, which uses an l1 measure of coherence, the path information is obtained by applying the minimum-error state discrimination procedure to the detector states. In the second, which employs an entropic measure of coherence, the path information is the mutual information between the detector states and the result of measuring them. Both approaches are quantitative versions of complementarity for N-path interferometers. Support provided by the John Templeton Foundation.
Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy
NASA Astrophysics Data System (ADS)
Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.
2016-09-01
Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.
NASA Technical Reports Server (NTRS)
Bill, R. C.; Johnson, R. D. (Inventor)
1979-01-01
A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…
Electron heat transport in a steep temperature gradient
Rogers, J.H.; De Groot, J.S.; Abou-Assaleh, Z.; Matte, J.P.; Johnston, T.W.; Rosen, M.D.
1989-04-01
Temporal and spatial measurements of electron heat transport are made in the University of California Davis AURORA device (J. H. Rogers, Ph.D. dissertation, University of California, Davis, 1987). In AURORA, a microwave pulse heats a region of underdense, collisional, plasma (n/n/sub cr/ approx. <1, where n/sub cr/ = 1.8 x 10/sup 10/ cm/sup -3/ is the critical density, T/sub e//sub 0/ approx. =0.15 eV, and the electron scattering mean free path lambda/sub perpendicular/approx. >2 cm). In this region, strong thermal heating (T/sub c/ approx. <0.7 eV) as well as suprathermal heating (T/sub h/approx. =3 eV) is observed. The strong heating results in a steep temperature gradient that violates the approximations of classical heat diffusion theory (L/sub T//lambda/sub perpendicular/approx. >3 for thermal electrons, where L/sub T/ = T/sub c/(partialT/sub c//partialz)/sup -1/ is the cold electron temperature scale length. The time evolution of the electron temperature profile is measured using Langmuir probes. The measured relaxation of the temperature gradient after the microwave pulse is compared to calculations using the Fokker--Planck International code (Phys. Rev. Lett. 49, 1936 (1982)) and the multigroup, flux-limited, target design code LASNEX (Comm. Plasma Phys. 2, 51 (1975)). The electron distribution function at the end of the microwave pulse is used as initial conditions for both codes. The Fokker--Planck calculations are found to agree very well with the measurements.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
NASA Astrophysics Data System (ADS)
Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.
2016-02-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm-2 to 1.8 × 1011 cm-2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm−2 to 1.8 × 1011 cm−2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential. PMID:26865160
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E.; Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Yadav, Ajay K.; Baldwin, Jon K.; Misra, Amit
2015-03-02
We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
NASA Astrophysics Data System (ADS)
Cheaito, Ramez; Hattar, Khalid; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.
2015-03-01
We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.
2015-03-05
The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; et al
2015-03-05
The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 1010 cm–2 to 1.8 × 1011 cm–2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 10^{10} cm^{–2} to 1.8 × 10^{11} cm^{–2}, with a peak mobility of 6.4 × 10^{5} cm^{2}/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.
Siekhaus, W J; Nelson, A J
2011-10-26
Energy dependent electron emission between zero and 1.4 keV generated by the natural reactivity of plutonium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron spectral intensity decreases continuously except for a distinctive feature of unknown origin at approximately 180eV. The spectrum was converted to energy dependent electron flux (e/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The energy dependent electron mean free path in gases and literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2} second, found to be about 8*10{sup 8}/cm{sup 2}s and 1.5*10{sup 8}/cm{sup 2}s, respectively, for hydrogen. These results are to be used with caution until complementary measurements can be made, e.g. independent measurement of the total emitted electron current, since the results here are based on the assumption that the electron emission has a cosine angular distribution. That is unlikely to be correct.
Studness, C.M.
1995-05-01
The financial community`s focus on utility competition has been riveted on the proceedings now in progress at state regulatory commissions. The fear that something immediately damaging will come out of these proceedings seems to have diminished in recent months, and the stock market has reacted favorably. However, regulatory developments are only one of four paths leading to competition; the others are the marketplace, the legislatures, and the courts. Each could play a critical role in the emergence of competition.
PATHS groundwater hydrologic model
Nelson, R.W.; Schur, J.A.
1980-04-01
A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.
Peters, John W; Miller, Anne-Frances; Jones, Anne K; King, Paul W; Adams, Michael Ww
2016-04-01
Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths. PMID:27016613
Design of III-Nitride Hot Electron Transistors
NASA Astrophysics Data System (ADS)
Gupta, Geetak
III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these
Surface sensitivity of elastic peak electron spectroscopy
NASA Astrophysics Data System (ADS)
Jablonski, A.
2016-08-01
New theoretical model describing the sampling depth of elastic peak electron spectroscopy (EPES) has been proposed. Surface sensitivity of this technique can be generally identified with the maximum depth reached by trajectories of elastically backscattered electrons. A parameter called the penetration depth distribution function (PDDF) has been proposed for this description. Two further parameters are descendant from this definition: the mean penetration depth (MPD) and the information depth (ID). From the proposed theory, relatively simple analytical expressions describing the above parameters can be derived. Although the Monte Carlo simulations can be effectively used to estimate the sampling depth of EPES, this approach may require a considerable amount of computations. In contrast, the analytical model proposed here (AN) is very fast and provides the parameters PDDF, MPD and ID that very well compare with results of MC simulations. As follows from detailed comparisons performed for four elements (Al, Ni, Pd and Au), the AN model practically reproduced complicated emission angle dependences of the MPDs and the IDs, correctly indicating numerous maximum and minimum positions. In the energy range from 200 eV to 5 keV, the averaged percentage differences between MPDs obtained from the MC and the AN models were close to 4%. An important conclusion resulting from the present studies refers to the procedure of determination of the inelastic mean free path (IMFP) from EPES. Frequently, the analyzed sample is deposited as a thin overlayer on a smooth substrate. From an analysis of the presently obtained IDs, is follows that 99% of trajectories in analyzed experimental configurations reaches depth not exceeding 2.39 in units of IMFP. Thus, one can postulate that a safe minimum thickness of an overlayer should be larger than about 3 IMFPs. For example, the minimum thickness of an Al overlayer shoud be about 8 nm at 5000 eV.
Kyriakou, Ioanna; Emfietzoglou, Dimitris; Garcia-Molina, Rafael; Abril, Isabel; Kostarelos, Kostas
2011-09-01
The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism. Calculations are based on a semiempirical dielectric response function for MWCNTs determined by means of a many-pole plasmon model with parameters adjusted to available experimental spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the context of electron gas theory via a boundary correction term in the plasmon dispersion relations, thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a function of electron energy and distance from the surface, valid over the energy range {approx}50-30,000 eV, are calculated with the individual contribution of bulk and surface excitations separated and analyzed for the case of normally incident and escaping electrons. The sensitivity of the results to the various approximations for the spatial dispersion of the electronic excitations is quantified. Surface excitations are shown to have a strong influence upon the shape and intensity of the energy-loss differential cross section in the near surface region whereas the general notion of a spatially invariant inelastic mean free path inside the material is found to be of good approximation.
NASA Technical Reports Server (NTRS)
Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)
2000-01-01
Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its
NASA Technical Reports Server (NTRS)
Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)
2000-01-01
Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content
Bleakley, Hoyt; Lin, Jeffrey
2012-01-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
NASA Technical Reports Server (NTRS)
Mehhtz, Peter
2005-01-01
JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.
Probing Carrier Transport across Patterned Interfaces with Ballistic Electron Emission Microscopy
NASA Astrophysics Data System (ADS)
Nolting, Westly; Durcan, Christopher; Balsano, Robert; Labella, Viincent
Electron scattering from sidewalls within aggressively scaled metallic interconnects dramatically increases the resistance, since the mean free path (~40 nm) is larger than the dimensions of the structure. One method to study hot-electron scattering in nm-thick metallic films is Ballistic Electron Emission Microscopy (BEEM), which is an STM based technique. In this work, we perform BEEM imaging and scattering measurements on lithographically patterned nanoscale oxide ``fin'' structures with a Schottky diode interface to determine its ability to measure sidewall scattering. This is accomplished by acquiring data from BEEM images and spectra on a regularly spaced grid and fitting the results to determine both the Schottky barrier height and the amplitude of the spectra. The amplitude of the spectra is related to the scattering in the film and interface. The position of fin structures is then determined by mapping both the Schottky height and amplitude over a square micron to observe scattering at the interface caused by the patterned structures. The fabrication of the patterned 50-nm-pitched sidewall structures and the preliminary BEEM imaging measurements on these structures will be presented.
Simultaneous ACE/STEREO Observations of Solar Electron Events in May 2007
NASA Astrophysics Data System (ADS)
Droege, Wolfgang; Gomez-Herrero, Raul; Mueller-Mellin, Reinhold; Klassen, Andreas; Kartavykh, Julia; Heber, Bernd; Haggerty, Dennis; Klecker, Berndt
A sequence of three small solar electron events was observed simultaneously in the energy range of approximately 60 - 300 keV by the IMPACT/SEPT instruments on STEREO-A and STEREO-B, and the EPAM instrument on ACE during the time period 2007 May 19 to 23. The events on May 19 and 20 do not exhibit significant anisotropies, indicating that the spacecraft were moving into magnetic fluxtubes which were already filled with particles. On the contrary, the event on May 23 which appears to be related to a small (B6) GOES X-ray flare at approximately N05 W55, shows a fast rise and a large anisotropy, which hints at an impulsive injection at the Sun and weak interplanetary scattering. We discuss methods to reconstruct the full electron pitch angle distributions from the four SEPT sensors and compare the results with EPAM observations which have more complete angular coverage. Fits based on numerical solutions of the model of focused transport are applied to the intensity and anisotropy profiles observed on all three spacecraft, from which scattering mean free paths in the interplanetary medium and injection histories at the Sun are derived. We also analyze the lateral gradients observed in all three events and discuss whether they can provide information about a possible tranport of electrons perpendicular to the interplanetary magnetic field.
Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm
Salvat-Pujol, F; Werner, W S M
2013-01-01
The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23794766
Primary cosmic ray electrons above 10 GeV: Evidence for a spectral break
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.
1973-01-01
A balloon borne measurement of the cosmic ray electron spectrum from 10 to 200 GeV is reported in which two new techniques have been used to remove proton background contamination. First, the depth of the spectrometer was more than 25 radiation lengths, the equivalent of more than 2 mean free paths of material, enabling hadronically and electromagnetically induced cascades to be differentiated for a subset of the data. Second, electromagnetic cascade starting points were determined to within + or - 0.1 radiation lengths based upon a calibration with electrons from 5.4 to 18 GeV at the Stanford Linear Accelerator, greatly reducing the chances for a proton to simulate an electron. The resulting spectrum, when fitted with a power law, is quite steep, -3.2 + or - 0.1, but the chi-square fit is marginal. A significantly better fit is achieved assuming a transition region model in which the source spectral index is 2.7 with a break occurring at about 50 GeV.
NASA Astrophysics Data System (ADS)
Agueda, Neus; Lario, David
2016-07-01
We present a detailed study of four 300-800 keV electron events observed on 1980 May 28-29 by Helios-1, when the spacecraft was located at 0.31 AU from the Sun. We use two different techniques to extract the release time history of the electrons at the Sun: 1) an inversion method that makes use of particle transport simulation results, and 2) a data-driven method based on the assumption that the interplanetary propagation between the Sun and the spacecraft is essentially scatter free. Both methods make use of the particle angular distributions measured relative to the local direction of the magnetic field (i.e., pitch-angle distributions). The general characteristics of the release time profile obtained for the four events is remarkably similar, specially when the inferred value of the electron mean free path is large. We use these results to compute the expected intensities at 1 AU. For an observer at 1 AU magnetically connected with Helios-1, our simulations predict the observation of four separate events, which does not agree with the interpretation of the IMP-8 observations suggesting that the discrete events observed at 0.31 AU merged into a single event at 1 AU. We discuss the processes that could contribute to the observation of one single time-extended event at 1 AU and how these techniques could be used to analyze upcoming measurements by Solar Orbiter and Solar Probe Plus close to the Sun.
Electronic transport in InGaAs/Al2O3 nFinFETs
NASA Astrophysics Data System (ADS)
Li, Shengwei; Hu, Yaodong; Wu, Yangqing; Huang, Daming; Ye, Peide D.; Li, Ming-Fu
2014-07-01
Based on the multiple subbands quasi-ballistic transport theory, we investigate the electronic transport of nano size In0.53Ga0.47As nFinFETs with Al2O3 gate dielectric, emphasizing the saturation current region. 1D mobile charge density and gate capacitance density are introduced for the first time to describe the nano-FinFET transport property under volume inversion. With the extracted effective channel mobility of electrons in the linear region from our experiments, the electron mean free path λ in the channel with the value of 5-9 nm is obtained. With only one fitting parameter α = 0.31 for the critical length l=L{{\\left( \\frac{kT/q}{{{V}_{d}}} \\right)}^{\\alpha }} in the quasi-ballistic transport theory, the calculated drain current can fit all experimental data for various gate voltage V g, source-drain voltage V d, and temperature (240-332 K) in overall very good agreement. The backscattering coefficient r in the saturation region is larger than 0.8, indicating a large room for improvement for the present InGaAs FinFET technology and performance.
A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU
Agueda, N.; Sanahuja, B.; Vainio, R.
2012-10-15
We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.
Salvat-Pujol, F; Werner, W S M
2013-05-01
The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23794766
Numerical evidence of mixing in rooms using the free path temporal distribution.
Billon, Alexis; Embrechts, Jean-Jacques
2011-09-01
The ergodic propriety of a room has strong effects on its reverberation. If the room is ergodic, the reverberation can be broken up in two steps: a deterministic process followed by a stochastic one. The late reverberation can be then modeled by a reverberation algorithm instead of more computationally consuming methods. In this study, the free path temporal distribution obtained by ray-tracing is used as an indicator of the room's mixing: the energetic average of the path lengths is computed at each time step. Ergodic rooms are thus characterized by rapidly convergent distributions. The free path value becomes independent of time. On the other hand, path selection mechanism and orbits are observed in non-ergodic rooms. The transition time from the deterministic process to the stochastic one is also studied through the evaluation of the room's time constant. It is shown that its value depends only on the mean free path and the boundaries scattering value. An empirical expression is obtained which agrees well with simulations carried out in a concert hall. This transition time from a deterministic model to a stochastic one can be used to speed up the acoustical predictions and auralizations in ergodic rooms. PMID:21895079
Park, Jeong Y.; Lee, Hyunjoo; Renzas, J. Russell; Zhang, Yawen; Somorjai, G.A.
2008-05-01
Hot electron flow generated on colloid platinum nanoparticles during exothermic catalytic carbon monoxide oxidation was directly detected with Au/TiO{sub 2} diodes. Although Au/TiO{sub 2} diodes are not catalytically active, platinum nanoparticles on Au/TiO{sub 2} exhibit both chemicurrent and catalytic turnover rate. Hot electrons are generated on the surface of the metal nanoparticles and go over the Schottky energy barrier between Au and TiO{sub 2}. The continuous Au layer ensures that the metal nanoparticles are electrically connected to the device. The overall thickness of the metal assembly (nanoparticles and Au thin film) is comparable to the mean free path of hot electrons, resulting in ballistic transport through the metal. The chemicurrent and chemical reactivity of nanoparticles with citrate, hexadecylamine, hexadecylthiol, and TTAB (Tetradecyltrimethylammonium Bromide) capping agents were measured during catalytic CO oxidation at pressures of 100 Torr O{sub 2} and 40 Torr CO at 373-513 K. We found that chemicurrent yield varies with each capping agent, but always decreases with increasing temperature. We suggest that this inverse temperature dependence is associated with the influence of charging effects due to the organic capping layer during hot electron transport through the metal-oxide interface.
NASA Astrophysics Data System (ADS)
Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu
2008-11-01
The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Handbook of Feynman Path Integrals
NASA Astrophysics Data System (ADS)
Grosche, Christian, Steiner, Frank
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
NASA Astrophysics Data System (ADS)
Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole
2014-01-01
Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ~ (108-109) cm for ~30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.
Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu
2014-01-10
Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ∼ (10{sup 8}-10{sup 9}) cm for ∼30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.
NASA Astrophysics Data System (ADS)
Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.
2015-02-01
We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance "d" giving rise to a Kronig-Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states (in the allowed KP bands) that transmit electrons unhindered, without reflections, while the electrons in the forbidden KP bands are localized. A distinctive feature of the quantum theory is that it provides a description of the temperature dependence of the resistivity where the contribution to the resistivity originating on electron-grain boundary scattering can be identified by a certain unique grain boundary reflectivity R, and the resistivity arising from electron-impurity scattering can be identified by a certain unique ℓIMP mean free path attributable to impurity scattering. This is in contrast to the classical theory of Mayadas and Shatzkes (MS), that does not discriminate properly between a resistivity arising from electron-grain boundary
Kinetic effects on the electron thermal transport in ignition target design
Honda, M.; Nishiguchi, A.; Takabe, H.; Azechi, H.; Mima, K.
1996-09-01
Preheating is one of the most critical issues in laser fusion, because of significant reduction of volume compression. The nonlocal heat transport in an ablative plasma is found to play an important role in the preheating under high intensity laser irradiation. Namely, the electron heat transport should be described by the Fokker{endash}Planck (FP) equation in the fluid implosion code. The Spitzer{endash}H{umlt a}rm (SH) thermal conduction model is not applicable because the electron mean free path is comparable to the temperature scale length. The numerical simulations of the implosion with the FP heat transport have been carried out for the fast (high entropy) implosion mode in which the implosion velocity reaches as high as 6{times}10{sup 7} cm/s. In the fast implosion, the required laser energy for ignition can be reduced. It is found in the simulation that the isentrope in the FP simulation code is higher by two to four times than that in the flux limited SH simulation. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Park, Sora; Kwon, Young-Kyun; Tománek, David
2012-02-01
We study the thermal and electronic transport properties of rigidly-interconnected structures having sp^2 carbon minimal surface called schwarzites. The system consists of core parts composed of schwarzite and interconnection parts with (4,4) carbon nanotube segments [1]. Using direct molecular dynamics simulations with the Tersoff potential, we compute the thermal conductivity of various configurations to explore the dependence on the number of core parts and on the length of interconnection parts. Our calculations show that each core part plays as a scattering center, which reduces the phonon mean free path and thus the thermal conductivity. We also investigate the electronic transport properties of the system by applying the non-equilibrium Green function approach in combination with density functional theory. We explore the effects of different core connectivity and structural defects introduced near the core parts on the electrical conductance. These thermal and electonic properties may be connected to the thermoelectric properties of the schwarzite system.[1] S. Park, K. Kittimanapun, J. S. Ahn, Y.-K. Kwon and D. Tom'anek, J. Phys.: Condens. Matter 22, 334220 (2010).
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Bhattacharjee, Sudeep; Paul, Samit; Dey, Indranuj
2013-04-15
This paper deals with random walk of electrons and collisional crossover in a gas evolving toward a plasma, in presence of electromagnetic (EM) waves and magnetostatic (B) fields, a fundamental subject of importance in areas requiring generation and confinement of wave assisted plasmas. In presence of EM waves and B fields, the number of collisions N suffered by an electron with neutral gas atoms while diffusing out of the volume during the walk is significantly modified when compared to the conventional field free square law diffusion; N=1.5({Lambda}/{lambda}){sup 2}, where {Lambda} is the characteristic diffusion length and {lambda} is the mean free path. There is a distinct crossover and a time scale associated with the transition from the elastic to inelastic collisions dominated regime, which can accurately predict the breakdown time ({tau}{sub c}) and the threshold electric field (E{sub BD}) for plasma initiation. The essential features of cyclotron resonance manifested as a sharp drop in {tau}{sub c}, lowering of E{sub BD} and enhanced electron energy gain is well reproduced in the constrained random walk.
NASA Astrophysics Data System (ADS)
Lu, Peng-Xian; Qu, Ling-Bo; Cheng, Qiao-Huan
2013-11-01
In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.
Bhattacharjee, Sudeep; Paul, Samit
2009-10-15
The average number of collisions N of seed electrons with neutral gas atoms during random walk in escaping from a given volume, in the presence of polarized electromagnetic waves, is found to vary as N=B({lambda}/{lambda}){sup 2}/[1+C({lambda}/{lambda})]{sup 2}, indicating a modification to the conventional field free square law N=A({lambda}/{lambda}){sup 2}, where {lambda} is the characteristic diffusion length and {lambda} the mean free path. It is found that for the field free case A=1.5 if all the electrons originate at the center and is 1.25 if they are allowed to originate at any random point in the given volume. The B and C coefficients depend on the wave electric field and frequency. Predictions of true discharge initiation time {tau}{sub c} can be made from the temporal evolution of seed electrons over a wide range of collision frequencies. For linearly polarized waves of 2.45 GHz and electric field in the range (0.6-1.0)x10{sup 5} V/m, {tau}{sub c}=5.5-1.6 ns for an unmagnetized microwave driven discharge at 1 Torr argon.
Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.
2014-03-28
Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.
Collabortive Authoring of Walden's Paths
Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major
2012-01-01
This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo_{3}Sb_{7–x}Te_{x}
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo_{3}Sb_{7–x}Te_{x} (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff path. 23.57 Section 23.57... path. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends... completed; and (1) The takeoff path must be based on the procedures prescribed in § 23.45; (2) The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 23.57 Section 23.57... path. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends... completed; and (1) The takeoff path must be based on the procedures prescribed in § 23.45; (2) The...
Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.
2015-01-01
PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797
Study of Ballistic Carrier Transport Using Ballistic Electron-Emission Microscopy
NASA Astrophysics Data System (ADS)
Lee, Edwin Yoon
Ballistic-electron-emission microscopy (BEEM) was used to study the ballistic carrier transport of electrons and holes. Several distinct transport processes were studied to model transport processes relevant to BEEM, in which a scanning-tunneling microscope (STM) tip functions as an emitter of electrons, and the electrons tunnel across the vacuum energy barrier into a metal overlayer region on a semiconductor substrate. Some of the injected electrons from the STM tip travel into the semiconductor and are collected as the BEEM current. By doing experiments in BEEM and by doing theoretical modeling, it was found that the quantum mechanical reflection and the phonon scattering at the Schottky barrier result in a nearly energy independent reduction of the ballistic transport across the Schottky barrier of Au/Si and of Au/GaAs. Also, the conservation of parallel wave vector and of energy at the plane of the Schottky barrier energy maximum was found necessary to explain the shape of the BEEM spectrum. For the coherent metal/semiconductor (M/S) interface formed by type-B CoSi _2/Si(111) (n-type), the conservation laws were found to hold even at the metallurgical M/S interface, and this gave rise to a novel phenomenon in which the electron transport across the M/S interface was forbidden at the energy of the top of the Schottky barrier. The transport in the metal overlayer was found to be dominated by elastic scattering of the electrons, and this was modeled by the Monte Carlo method. The Monte Carlo modeling showed that the ratio of the inelastic mean free path length to the elastic mean free path length for electron in Au should be about 10 in order to explain a set of existing BEEM data showing the attenuation of the BEEM current as a function of the metal overlayer thickness. The transport across the M/S interface was found to involve scattering involving M/S interface states and states in the semiconductor band gap near the interface. Among these processes, electron
NASA Technical Reports Server (NTRS)
Chandler, J. A.
1983-01-01
Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.
Scattering theory with path integrals
Rosenfelder, R.
2014-03-15
Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.
Code System to Perform Monte Carlo Simulation of Electron Gamma-Ray Showers in Arbitrary Marerials.
2002-10-15
Version 00 PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary materials. Initially, it was devised to simulate the PENetration and Energy LOss of Positrons and Electrons in matter; photons were introduced later. The adopted scattering model gives a reliable description of radiation transport in the energy range from a few hundred eV to about 1GeV. PENELOPE generates random electron-photon showers in complex material structures consisting of any number of distinct homogeneous regions (bodies)more » with different compositions. The Penelope Forum list archives and other information can be accessed at http://www.nea.fr/lists/penelope.html. PENELOPE-MPI extends capabilities of PENELOPE-2001 (RSICC C00682MNYCP02; NEA-1525/05) by providing for usage of MPI type parallel drivers and extends the original version's ability to read different types of input data sets such as voxel. The motivation is to increase efficiency of Monte Carlo simulations for medical applications. The physics of the calculations have not been changed, and the original description of PENELOPE-2001 (which follows) is still valid. PENELOPE-2001 contains substantial changes and improvements to the previous versions 1996 and 2000. As for the physics, the model for electron/positron elastic scattering has been revised. Bremsstrahlung emission is now simulated using partial-wave data instead of analytical approximate formulae. Photoelectric absorption in K and L-shells is described from the corresponding partial cross sections. Fluorescence radiation from vacancies in K and L-shells is followed. Refinements were also introduced in electron/positron transport mechanics, mostly to account for energy dependence of the mean free paths for hard events. Simulation routines were re-programmed in a more structured way, and new example MAIN programs were written with a more flexible input and expanded output.« less
Theory of bright-field scanning transmission electron microscopy for tomography
Levine, Zachary H.
2005-02-01
Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25 {mu}m thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Moliere's theory [V. G. Moliere, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [t ln(e{sup 1-2{gamma}}t/{tau})]{sup -1} where t is the path length of the beam, {tau} is the mean free path for elastic scattering, and {gamma} is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.
NASA Astrophysics Data System (ADS)
Yang, Yang; Liu, Xin-Dian; Li, Zhi-Qing
2016-05-01
In three-dimensional (3D) disordered metals, the electron-phonon (e-ph) scattering is the sole significant inelastic process. Thus the theoretical prediction concerning the electron-electron (e\\text-e) scattering rate 1/τ_\\varphi as a function of temperature T in 3D disordered metal has not been fully tested thus far, though it was proposed 40 years ago (Schmid A., Z. Phys., 271 (1974) 251). We report here the simultaneous observation of small- and large-energy-transfer e\\text-e scattering in 3D indium oxide thick films. In the temperature region T≳100 \\text{K} , the temperature dependence of resistivity of each film obeys Bloch-Grüneisen law, indicating that the films possess degenerate-semiconductor characteristics in electrical transport property. In the low-temperature regime, 1/τ_\\varphi as a function of T for each film can not be ascribed to e-ph scattering. To quantitatively describe the temperature behavior of 1/τ_\\varphi , both the 3D small- and large-energy-transfer e\\text-e scattering processes should be considered. (The small- and large-energy-transfer e\\text-e scattering rates are proportional to T3/2 and T 2, respectively.) In addition, the experimental prefactors of T3/2 and T 2 are proportional to k_F-5/2 \\ell-3/2 and E_F-1 (k F is the Fermi wave number, ℓ is the electron elastic mean free path, and E F is the Fermi energy), respectively, which are completely consistent with the theoretical predictions. Our experimental results fully demonstrate the validity of the theoretical predictions concerning both small- and large-energy-transfer e\\text-e scattering rates.
NASA Astrophysics Data System (ADS)
Nag Chowdhury, Basudev; Chattopadhyay, Sanatan
2016-09-01
In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.
NASA Astrophysics Data System (ADS)
Samoilov, A. V.; Yeh, N.-C.; Tsuei, C. C.
1998-01-01
The electrical resistivity ρ of three-dimensional amorphous superconducting films a-Mo3Si and a-Nb3Ge is measured in magnetic fields μ0H up to 30 T. At low temperatures and at magnetic fields above the upper critical field Hc2, ρ is temperature independent and decreases as a function of magnetic field. This field dependence is consistent with localization theory in the high-field limit [μ0H>>ħ/(4eL2φ), where Lφ is the phase-coherence length]. Above the superconducting transition temperature Tc, the temperature dependence of the conductivity is consistent with inelastic scattering processes which are destructive to the phase coherence for electron localization, thereby allowing estimates for Lφ(T). The Hall effect data on a-Mo3Si, in conjunction with the resistivity data, allow the determination of the carrier concentration and mean free path. The upper critical field is comparable to (in a-Mo3Si) and significantly larger than (in a-Nb3Ge) the Clogston-Chandrasekhar paramagnetic limit. This phenomenon is discussed in the context of electron localization.
Diffusive transport of energetic electrons in the 2004, May 21 solar flare
NASA Astrophysics Data System (ADS)
Musset, Sophie; Kontar, Eduard; Vilmer, Nicole
2016-07-01
Solar flares are associated with efficient particle acceleration, in particular with the production of energetic electrons which are diagnosed through the X-ray and radio emissions that they produce when interacting with the solar atmosphere. Particle transport from the acceleration sites to the radiation sites remains of the challenging topic in the field of high energy solar physics and has an important impact on the interpretation of the particle emissions in the context of acceleration models. In order to address the transport of flare associated energetic electrons in the low corona, we use imaging spectroscopic observations from RHESSI of the 2004 May 21 solar flare which presents together with the usually observed HXR footpoints a well observed coronal non-thermal X-ray source. The number of X-ray emitting energetic electrons in the coronal source is compared to the number of electrons needed to produce the hard X-ray emission in the footpoints and is found twice as large. Such an excess of the number of electrons in the coronal source cannot be explained in the context of the standard model of X-ray emissions in which the dominant electron transport is collisional. In the present flare, an additional process is needed to explain how energetic electrons can be efficiently trapped in the corona. In the hypothesis of turbulent pitch-angle scattering of hard X-ray producing energetic electrons (Kontar et al, 2014), diffusive transport can indeed lead to a confinement of energetic electrons in the coronal source. Based on this assumption, we estimated for the present event the mean-free path of energetic electrons and found a value of 10^8 - 10^9 meters, much smaller than the size of the observed flaring loop itself. This implies that a diffusive transport of energetic electrons is dominant in this flare which is in good agreement with the results of a previous study based on the gyrosynchrotron emissions from the energetic electrons (Kuznetsov & Kontar, 2015).
NASA Astrophysics Data System (ADS)
Strocov, Vladimir N.; Shi, Ming; Kobayashi, Masaki; Monney, Claude; Wang, Xiaoqiang; Krempasky, Juraj; Schmitt, Thorsten; Patthey, Luc; Berger, Helmuth; Blaha, Peter
2012-08-01
The resolution of angle-resolved photoelectron spectroscopy (ARPES) in three-dimensional (3D) momentum k is fundamentally limited by ill defined surface-perpendicular wave vector k⊥ associated with the finite photoelectron mean free path. Pushing ARPES into the soft-x-ray energy region sharpens the k⊥ definition, allowing accurate electronic structure investigations in 3D materials. We apply soft-x-ray ARPES to explore the 3D electron realm in a paradigm transition metal dichalcogenide VSe2. Essential to break through the dramatic loss of the valence band photoexcitation cross section at soft-x-ray energies is the advanced photon flux performance of our synchrotron instrumentation. By virtue of the sharp 3D momentum definition, the soft-x-ray ARPES experimental band structure and Fermi surface of VSe2 show a textbook clarity. We identify pronounced 3D warping of the Fermi surface and show that its concomitant nesting acts as the precursor for the exotic 3D charge-density waves in VSe2. Our results demonstrate the immense potential of soft-x-ray ARPES to explore details of 3D electronic structure.
Calculations of stopping powers of 100 eV-30 keV electrons in 31 elemental solids
Tanuma, S.; Powell, C. J.; Penn, D. R.
2008-03-15
We present calculated electron stopping powers (SPs) for 31 elemental solids (Li, Be, glassy C, graphite, diamond, Na, Mg, K, Sc, Ti, V, Fe, Y, Zr, Nb, Mo, Ru, Rh, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, and Bi). These SPs were determined with an algorithm previously used for the calculation of electron inelastic mean free paths and from energy-loss functions (ELFs) derived from experimental optical data. The SP calculations were made for electron energies between 100 eV and 30 keV and supplement our earlier SP calculations for ten additional solids (Al, Si, Cr, Ni, Cu, Ge, Pd, Ag, Pt, and Au). Plots of SP versus atomic number for the group of 41 solids show clear trends. Multiple peaks and shoulders are seen that result from the contributions of valence-electron and various inner-shell excitations. Satisfactory agreement was found between the calculated SPs and values from the relativistic Bethe SP equation with recommended values of the mean excitation energy (MEE) for energies above 10 keV. We determined effective MEEs versus maximum excitation energy from the ELFs for each solid. Plots of effective MEE versus atomic number showed the relative contributions of valence-electron and different core-electron excitations to the MEE. For a maximum excitation energy of 30 keV, our effective MEEs agreed well for Be, graphite, Na, Al, and Si with recommended MEEs; a difference for Li was attributed to sample oxidation in the SP measurements for the recommended MEE. Substantially different effective MEEs were found for the three carbon allotropes (graphite, diamond, and glassy C)
NASA Astrophysics Data System (ADS)
Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.
2013-12-01
Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
NASA Technical Reports Server (NTRS)
Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi
2013-01-01
Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
NASA Astrophysics Data System (ADS)
Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng
2014-12-01
Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ˜75% UV absorption and hot electron excitation can be achieved within the mean free path of ˜20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.
NASA Astrophysics Data System (ADS)
Lu, Zexi; Wang, Yan; Ruan, Xiulin
2016-02-01
The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.
Discrete Coherent State Path Integrals
NASA Astrophysics Data System (ADS)
Marchioro, Thomas L., II
1990-01-01
The quantum theory provides a fundamental understanding of the physical world; however, as the number of degrees of freedom rises, the information required to specify quantum wavefunctions grows geometrically. Because basis set expansions mirror this geometric growth, a strict practical limit on quantum mechanics as a numerical tool arises, specifically, three degrees of freedom or fewer. Recent progress has been made utilizing Feynman's Path Integral formalism to bypass this geometric growth and instead calculate time -dependent correlation functions directly. The solution of the Schrodinger equation is converted into a large dimensional (formally infinite) integration, which can then be attacked with Monte Carlo techniques. To date, work in this area has concentrated on developing sophisticated mathematical algorithms for evaluating the highly oscillatory integrands occurring in Feynman Path Integrals. In an alternative approach, this work demonstrates two formulations of quantum dynamics for which the number of mathematical operations does not scale geometrically. Both methods utilize the Coherent State basis of quantum mechanics. First, a localized coherent state basis set expansion and an approximate short time propagator are developed. Iterations of the short time propagator lead to the full quantum dynamics if the coherent state basis is sufficiently dense along the classical phase space path of the system. Second, the coherent state path integral is examined in detail. For a common class of Hamiltonians, H = p^2/2 + V( x) the path integral is reformulated from a phase space-like expression into one depending on (q,dot q). It is demonstrated that this new path integral expression contains localized damping terms which can serve as a statistical weight for Monte Carlo evaluation of the integral--a process which scales approximately linearly with the number of degrees of freedom. Corrections to the traditional coherent state path integral, inspired by a
Safont, Vicent S; González-Navarrete, Patricio; Oliva, Mónica; Andrés, Juan
2015-12-28
A detailed study on all stages associated with the reaction mechanisms for the denitrogenation of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives (DBX, with X substituents at the methano-bridge carbon atom, X = H and OH) is presented. In particular, we have characterized the processes leading to cycloalkene derivatives through migration-type mechanisms as well as the processes leading to cyclopentil-1,3-diradical species along concerted or stepwise pathways. The reaction mechanisms have been further analysed within the bonding evolution theory framework at B3LYP and M05-2X/6-311+G(2d,p) levels of theory. Analysis of the results allows us to obtain the intimate electronic mechanism for the studied processes, providing a new topological picture of processes underlying the correlation between the experimental measurements obtained by few-optical-cycle visible pulse radiation and the quantum topological analysis of the electron localization function (ELF) in terms of breaking/forming processes along this chemical rearrangement. The evolution of the population of the disynaptic basin V(N1,N2) can be related to the experimental observation associated with the N=N stretching mode evolution, relative to the N2 release, along the reaction process. This result allows us to determine why the N2 release is easier for the DBH case via a concerted mechanism compared to the stepwise mechanism found in the DBOH system. This holds the key to unprecedented insight into the mapping of the electrons making/breaking the bonds while the bonds change.
Safont, Vicent S; González-Navarrete, Patricio; Oliva, Mónica; Andrés, Juan
2015-12-28
A detailed study on all stages associated with the reaction mechanisms for the denitrogenation of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives (DBX, with X substituents at the methano-bridge carbon atom, X = H and OH) is presented. In particular, we have characterized the processes leading to cycloalkene derivatives through migration-type mechanisms as well as the processes leading to cyclopentil-1,3-diradical species along concerted or stepwise pathways. The reaction mechanisms have been further analysed within the bonding evolution theory framework at B3LYP and M05-2X/6-311+G(2d,p) levels of theory. Analysis of the results allows us to obtain the intimate electronic mechanism for the studied processes, providing a new topological picture of processes underlying the correlation between the experimental measurements obtained by few-optical-cycle visible pulse radiation and the quantum topological analysis of the electron localization function (ELF) in terms of breaking/forming processes along this chemical rearrangement. The evolution of the population of the disynaptic basin V(N1,N2) can be related to the experimental observation associated with the N=N stretching mode evolution, relative to the N2 release, along the reaction process. This result allows us to determine why the N2 release is easier for the DBH case via a concerted mechanism compared to the stepwise mechanism found in the DBOH system. This holds the key to unprecedented insight into the mapping of the electrons making/breaking the bonds while the bonds change. PMID:26584857
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.
1988-05-10
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.
1988-01-01
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko
2015-01-01
Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631
NASA Astrophysics Data System (ADS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko
2015-01-01
Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff path. 23.57 Section 23.57... path. Link to an amendment published at 76 FR 75753, December 2, 2011. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends from a standing start to a point...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff path. 23.57 Section 23.57... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum weight and commuter category airplanes, the takeoff path is as follows: (a) The takeoff path extends...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff path. 23.57 Section 23.57... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum weight and commuter category airplanes, the takeoff path is as follows: (a) The takeoff path extends...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...
NASA Astrophysics Data System (ADS)
Carles, R.; Bayle, M.; Benzo, P.; Benassayag, G.; Bonafos, C.; Cacciato, G.; Privitera, V.
2015-11-01
Since the discovery of surface-enhanced Raman scattering (SERS) 40 years ago, the origin of the "background" that is systematically observed in SERS spectra has remained questionable. To deeply analyze this phenomenon, plasmon-resonant Raman scattering was recorded under specific experimental conditions on a panel of composite multilayer samples containing noble metal (Ag and Au) nanoparticles. Stokes, anti-Stokes, and wide, including very low, frequency ranges have been explored. The effects of temperature, size (in the nm range), embedding medium (SiO2, Si3N4, or TiO2) or ligands have been successively analyzed. Both lattice (Lamb modes and bulk phonons) and electron (plasmon mode and electron-hole excitations) dynamics have been investigated. This work confirms that in Ag-based nanoplasmonics composite layers, only Raman scattering by single-particle electronic excitations accounts for the background. This latter appears as an intrinsic phenomenon independently of the presence of molecules on the metallic surface. Its spectral shape is well described by revisiting a model developed in the 1990s for analyzing electron scattering in dirty metals, and used later in superconductors. The gs factor, that determines the effective mean-free path of free carriers, is evaluated, gsexpt=0.33 ±0.04 , in good agreement with a recent evaluation based on time-dependent local density approximation gstheor=0.32 . Confinement and interface roughness effects at the nanometer range thus appear crucial to understand and control SERS enhancement and more generally plasmon-enhanced processes on metallic surfaces.
CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES
Agueda, N.; Sanahuja, B.; Vainio, R.; Dalla, S.; Lario, D.
2013-03-10
We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.
Electron-hole quantum physics in ZnO
NASA Astrophysics Data System (ADS)
Versteegh, M. A. M.
2011-09-01
This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only
Balanced Paths in Colored Graphs
NASA Astrophysics Data System (ADS)
Bianco, Alessandro; Faella, Marco; Mogavero, Fabio; Murano, Aniello
We consider finite graphs whose edges are labeled with elements, called colors, taken from a fixed finite alphabet. We study the problem of determining whether there is an infinite path where either (i) all colors occur with the same asymptotic frequency, or (ii) there is a constant which bounds the difference between the occurrences of any two colors for all prefixes of the path. These two notions can be viewed as refinements of the classical notion of fair path, whose simplest form checks whether all colors occur infinitely often. Our notions provide stronger criteria, particularly suitable for scheduling applications based on a coarse-grained model of the jobs involved. We show that both problems are solvable in polynomial time, by reducing them to the feasibility of a linear program.
Speckle Imaging Over Horizontal Paths
Carrano, C J
2002-05-21
Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
Torsional and cyclic fatigue resistances of glide path preparation instruments: G-file and PathFile.
Sung, Sang Yup; Ha, Jung-Hong; Kwak, Sang-Won; Abed, Rashid El; Byeon, Kyeongmin; Kim, Hyeon-Cheol
2014-01-01
This study aimed to compare cyclic fatigue and torsional resistances of glide path creating instruments with different tapers and tip sizes. Two sizes (G1 and G2) from G-File system and three sizes (PathFile #1, #2, and #3) from PathFile system were used for torsional resistance and cyclic fatigue resistance tests (n = 10). The torsional resistance was evaluated at 2-, 3-, 4-, 5-, and 6-mm from the file tip by plotting the torsional load changes until fracture by rotational loading of 2 rpm. The cyclic fatigue resistance was compared by measuring the number of cycles to failure. Data were analyzed statistically using one-way ANOVA and Duncan's post-hoc comparison. The length of the fractured file fragment was also measured. All fractured fragments were observed under a scanning electron microscope (SEM). Although G-2 file showed a lower torsional strength than PathFile #3 at 2- and 3-mm levels (p < 0.05), they had similar ultimate strengths at 4-, 5-, and 6-mm levels (p > 0.05). The smaller files of each brand had a significantly higher cyclic fatigue resistance than the bigger ones (p < 0.05). PathFile #1 and #2 had higher fatigue resistances than G-files (p < 0.05). While G-1 had a similar fatigue resistance as PathFile #3, G-2 showed the lowest and PathFile #1 showed the highest resistances among the tested groups (p < 0.05). The SEM examination showed typical appearances of cyclic fatigue and torsional fractures, regardless of the tested levels. Clinicians may consider the instruments' sizes for each clinical case in order to get efficient glide path with minimal risk of fracture.
Path Integral Monte Carlo Methods for Fermions
NASA Astrophysics Data System (ADS)
Ethan, Ethan; Dubois, Jonathan; Ceperley, David
2014-03-01
In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Perceived Shrinkage of Motion Paths
ERIC Educational Resources Information Center
Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart
2009-01-01
We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…
ERIC Educational Resources Information Center
Salmani-Nodoushan, Mohammad Ali
2007-01-01
The present paper underscores the importance of the cognitive orientation of English as a Foreign Language (EFL) students in their success in writing courses. A few suggestions are made as to how EFL teachers can put their students on the right cognitive path in their writings.
Career Paths in Environmental Sciences
Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...
Career Paths of Academic Deans.
ERIC Educational Resources Information Center
Wolverton, Mimi; Gonzales, Mary Jo
This paper examines various career paths leading to deanship and considers the implications of the findings for women and minorities who aspire to this position. The paper is part of a larger study of academic deanship conducted by the Center for Academic Leadership at Washington State University between October 1996 and January 1997. Data for the…
Employer Resource Manual. Project Path.
ERIC Educational Resources Information Center
Kane, Karen R.; Del George, Eve
Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…
Small Aircraft RF Interference Path Loss
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.
Small Aircraft RF Interference Path Loss Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.
Chord-length and free-path distribution functions for many-body systems
NASA Astrophysics Data System (ADS)
Lu, Binglin; Torquato, S.
1993-04-01
We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case
NASA Astrophysics Data System (ADS)
Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama
2015-01-01
The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems
Path querying system on mobile devices
NASA Astrophysics Data System (ADS)
Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun
2006-01-01
Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.
Can the electron heat flux at 1 AU be collisional ? Results from kinetic simulations.
NASA Astrophysics Data System (ADS)
Landi, Simone; Pantellini, Filippo; Matteini, Lorenzo
2014-05-01
Recent results using statistically significant data of the solar wind at 1AU (see Bale et al. ApJL 769:L22, 2013) have shown that when the thermal Knudsen number, the ratio between the electron mean free path and the temperature scale height, falls below ~0.3, the electron heat flux Q does rapidly approach the classical collisional Spitzer-Harm limit Q_SH ~ T5/2 dT/dr, where T is the temperature and r the heliocentric distance. This experimental finding seems to contradict a number of theoretical works which suggest that the collisional expression for the heat flux is only guaranteed for Knudsen numbers smaller than ~0.001 (e.g. Shoub ApJ, 266, 339-369, 1983; Scudder & Karimabadi, ApJ, 770:26, 2013) . Indeed, using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we do observe that the heat flux strength approaches the collisional value for Knudsen numbers below ~0.3, in rather good agreement with the experimental data of Bale et al (2013). However, closer inspection of the variation of the plasma parameters with heliocentric distance shows that for Knudsen numbers between 0.01-0.3 the heat flux Q does NOT vary with temperature as predicted by Q_SH. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity Q approaches the collisional limit Q_SH for Knudsen below ~0.3, the latter is not a generally valid closure in the solar wind for Knudsen large that 0.01.
Hauschild, Dirk; Handick, Evelyn; Göhl-Gusenleitner, Sina; Meyer, Frank; Schwab, Holger; Benkert, Andreas; Pohlner, Stephan; Palm, Jörg; Tougaard, Sven; Heske, Clemens; Weinhardt, Lothar; Reinert, Friedrich
2016-08-17
Using reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (InxSy) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-ε(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the InxSy film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties. In contrast, the properties of the CIGSSe surface differ significantly from the bulk. In particular, a larger (surface) band gap than for bulk-sensitive measurements is observed, providing a complementary and independent confirmation of earlier photoelectron spectroscopy results. Finally, we derive the inelastic mean free path λ for electrons in InxSy, annealed InxSy, and CIGSSe at a kinetic energy of 1000 eV. PMID:27463021
NASA Astrophysics Data System (ADS)
Khrabrov, Alexander V.; Kaganovich, Igor D.; Ventzek, Peter L. G.; Ranjan, Alok; Chen, Lee
2015-10-01
Low-pressure capacitively-coupled discharges with additional dc bias applied to a separate electrode are utilized in plasma-assisted etching for semiconductor device manufacturing. Measurements of the electron velocity distribution function (EVDF) of the flux impinging on the wafer, as well as in the plasma bulk, show a thermal population and additional peaks within a broad range of energies. That range extends from the thermal level up to the value for the ‘ballistic’ peak, corresponding to the bias potential. The non-thermal electron flux has been correlated to alleviating the electron shading effect and providing etch-resistance properties to masking photoresist layers. ‘Middle-energy peak electrons’ at energies of several hundred eV may provide an additional sustaining mechanism for the discharge. These features in the electron velocity (or energy) distribution functions are possibly caused by secondary electrons emitted from the electrodes and interacting with two high-voltage sheaths: a stationary sheath at the dc electrode and an oscillating self-biased sheath at the powered electrode. Since at those energies the mean free path for large-angle scattering (momentum relaxation length) is comparable to, or exceeds the size of the discharge gap, these ‘ballistic’ electrons will not be fully scattered by the background gas as they traverse the inter-electrode space. We have performed test-particle simulations in which the features in the EVDF of electrons impacting the RF electrode are fully resolved at all energies. An analytical model has been developed to predict existence of peaked and step-like structures in the EVDF. Those features can be explained by analyzing the kinematics of electron trajectories in the discharge gap. Step-like structures in the EVDF near the powered electrode appear due to accumulation of electrons emitted from the dc electrode within a portion of the RF cycle, and their subsequent release. Trapping occurs when the RF
Path similarity skeleton graph matching.
Bai, Xiang; Latecki, Longin Jan
2008-07-01
This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.
Automatic selection of switching paths
NASA Astrophysics Data System (ADS)
Meyer, B. A.
A unique solution is presented to the problem of switching path selection through an analog switch complex. Known as the ROUTER, the software package performs a dynamic allocation of switching paths at the time that an analog signal connection is required. The ROUTER also chooses the type of relay that is appropriate to the signal being transmitted. Different types of switches are furnished for small signal, RF, video, power, or logic signals. Devices using a multiple number of leads, such as synchros or resolvers, are switched as a single unit. The algorithm used by the ROUTER is based on a tree search and connection technique. The interconnections of the hardware switches and devices are described by a connection matrix as a set of data structures. Each node of the switching complex is described in terms of its connectivity and attributes.
NASA Astrophysics Data System (ADS)
Belof, Jonathan; Dubois, Jonathan
2013-06-01
Warm dense matter (WDM), the regime of degenerate and strongly coupled Coulomb systems, is of great interest due to it's importance in understanding astrophysical processes and high energy density laboratory experiments. Path Integral Monte Carlo (PIMC) presents a particularly attractive formalism for tackling outstanding questions in WDM, in that electron correlation can be calculated exactly, with the nuclear and electronic degrees of freedom on equal footing. Here we present an efficient means of solving the Feynman path integral numerically by variational optimization of a trial density matrix, a method originally proposed for simple potentials by Feynman and Kleinert, and we show that this formalism provides an accurate description of warm dense matter with a number of unique advantages over other PIMC approaches. An exchange interaction term is derived for the variationally optimized path, as well as a numerically efficient scheme for dealing with long-range electrostatics. Finally, we present results for the pair correlation functions and thermodynamic observables of the spin polarized electron gas, warm dense hydrogen and all-electron warm dense carbon within the presented VPT-PIMC formalism. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
Squeezed states and path integrals
NASA Technical Reports Server (NTRS)
Daubechies, Ingrid; Klauder, John R.
1992-01-01
The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.
Accelerating cleanup: Paths to closure
Edwards, C.
1998-06-30
This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.
Path optimization for oil probe
NASA Astrophysics Data System (ADS)
Smith, O'Neil; Rahmes, Mark; Blue, Mark; Peter, Adrian
2014-05-01
We discuss a robust method for optimal oil probe path planning inspired by medical imaging. Horizontal wells require three-dimensional steering made possible by the rotary steerable capabilities of the system, which allows the hole to intersect multiple target shale gas zones. Horizontal "legs" can be over a mile long; the longer the exposure length, the more oil and natural gas is drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. Horizontal drilling can help producers tap oil and natural gas deposits under surface areas where a vertical well cannot be drilled, such as under developed or environmentally sensitive areas. Drilling creates well paths which have multiple twists and turns to try to hit multiple accumulations from a single well location. Our algorithm can be used to augment current state of the art methods. Our goal is to obtain a 3D path with nodes describing the optimal route to the destination. This algorithm works with BIG data and saves cost in planning for probe insertion. Our solution may be able to help increase the energy extracted vs. input energy.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
NASA Astrophysics Data System (ADS)
Bae, Hyo Won; Yel Lee, Jung; Lee, Ho-Jun; Lee, Hae June
2011-10-01
Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 1 MHz to 50 MHz and with a gap distance from 60 to 500 micrometers. The variation of control parameters such as the gap distance, the driving wave form, and the applied voltage results in the change in the electron energy distribution function (EEDF). Through the relation between the ionization mean free path and the gap size, a significant change of EEDFs is achievable with the decrease of gap distance. Therefore, it is possible to categorize the operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals. This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100670).
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.
2016-05-01
This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.
Multiple Paths to Encephalization and Technical Civilizations
NASA Astrophysics Data System (ADS)
Schwartzman, David; Middendorf, George
2011-12-01
We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.
ELECTRON HEAT FLUX IN THE SOLAR WIND: ARE WE OBSERVING THE COLLISIONAL LIMIT IN THE 1 AU DATA?
Landi, S.; Matteini, L.; Pantellini, F.
2014-07-20
Using statistically significant data at 1 AU, it has recently been shown (Bale et al.) that in the solar wind, when the Knudsen number K {sub T} (the ratio between the electron mean free path and the electron temperature scale height) drops below about 0.3, the electron heat flux q intensity rapidly approaches the classical collisional Spitzer-Härm limit. Using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we observe that the heat flux strength does indeed approach the collisional value for Knudsen numbers smaller than about 0.3 in very good agreement with the observations. However, closer inspection of the heat flux properties, such as its variation with the heliocentric distance and its dependence on the plasma parameters, shows that for Knudsen numbers between 0.02 and 0.3 the heat flux is not conveniently described by the Spitzer-Härm formula. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity approaches the collisional limit when the Knudsen drops below ∼0.3, the collisional limit is not a generally valid closure for a Knudsen larger than 0.01. Moreover, the good agreement between the heat flux from our model and the heat flux from solar wind measurements in the high-Knudsen number regime seems to indicate that the heat flux at 1 AU is not constrained by electromagnetic instabilities as both wave-particle and wave-wave interactions are neglected in our calculations.
Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy
Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.
2014-12-31
Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.
Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy
Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.
2014-12-31
Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less
Weatherford, Brandon R. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Barnat, E. V. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Xiong, Zhongmin E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Kushner, Mark J. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu
2014-09-14
Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.
Individual carbon nanotubes for quantum electronic and quantum photonic devices
NASA Astrophysics Data System (ADS)
Ai, Nan
2011-12-01
Carbon nanotubes (CNTs) are promising materials since their unique one dimensional geometry leads to remarkable physical properties such as ballistic transport, long mean free path, large direct band gaps, high mechanical tensile strength and strong exciton binding energies, which make them attractive candidates for applications in high-performance nanoelectronics and nanophotonics. CNT-based field-effect transistors (CNT-FETs) are considered to be ideally suited for future nanoelectronics. Single CNT-FETs made by depositing metal electrodes on top of individual CNTs with E-beam lithography have achieved great performance but are limited for massive large area integrated circuit fabrication. Therefore, this thesis demonstrates characteristics of CNT-FETs made by registered in-plane growth utilizing tailored nanoscale catalyst patterns and chemical vapor deposition (CVD), resulting in CNT arrays directly bridging source and drain. The demonstrated access to individual CNTs with pronounced semiconducting behavior opens also the possibility to form more advanced nanoelectronic structures such as CNT quantum dots. CNT-based single electron transistors (CNT-SETS) are promising for quantum electronic devices operating with ultra-low power consumption and allow fundamental studies of electron transport. In addition to existing CNT-SETS based on individual CNTs, we have fabricated the first CNT-SETS based on in-plane grown CNTs using the CVD technique. The demonstrated utilization of registered in-plane growth opens possibilities to create novel SET device geometries which are more complex, i.e. laterally ordered and scalable, as required for advanced quantum electronic devices. Blinking and spectral diffusion are hallmarks of nanoscale light emitters and a challenge for creating stable fluorescent biomarkers or efficient nonclassical light sources. The studies of blinking of CNTs are still in the explorative stage. In this thesis, I show the first experimental
Evaluation of the Learning Path Specification
ERIC Educational Resources Information Center
Janssen, Jose; Berlanga, Adriana J.; Koper, Rob
2011-01-01
Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…
Performance Analysis of Path Planning Modeling
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Li, Shuanghong; Zhang, Ying; Du, Qiaoling
Ant colony system (ACS) algorithm was applied to the path planning for the robot. In the same working environment, path planning based on MAKLINK graph theory and Voronoi diagram were simulated and compared. MAKLINK graph theory is appropriate to apply to precise searching in small-scale district, and Voronoi diagram is suitable for fast path planning in a large area.
Chua, Lay-Lay; Dipankar, Mandal; Sivaramakrishnan, Sankaran; Gao, Xingyu; Qi, Dongchen; Wee, Andrew T S; Ho, Peter K H
2006-09-26
The information depth of near-edge X-ray absorption fine structure spectroscopy in the total electron yield mode (TEY-NEXAFS) is given by the escape depth of the TEY electrons z(TEY). This is determined by the effective ranges both of the inelastically scattered secondary electrons and of the primary excited electron before they thermalize below the vacuum level. For regioregular poly(3-hexylthiophene) (rreg-P3HT) thin films, we have measured the total electron emission efficiency to be 0.028 +/- 0.005 e/ph at an incident photon energy of 320 eV. The range of the primary electron was computed using optical dielectric-loss theory to be 7.5 nm. The range of the secondary electrons was then found by modeling to be 3.0 nm. This gives z(TEY) to be 2.5 nm, which is considerably less than the often-assumed value of 10 nm in the literature. It is also considerably smaller than the computed electron-electron scattering inelastic mean free path in the material, which suggests the predominance of electron-phonon scattering. Thus, TEY-NEXAFS has sufficient surface sensitivity to probe the frontier molecular layers of these organic conjugated polymers. In a second aspect of this report, the rreg-P3HT films have been characterized by in-situ core and valence photoemission spectroscopies and by ex-situ microattenuated total-reflection vibrational spectroscopy as a function of irradiation dose. No damage was observed in composition, bonding, orientation, and surface morphology under typical TEY-NEXAFS spectral acquisition conditions. For an integrated TEY that exceeds 2 x 10(-3) C cm(-2), however, the material degrades via alkyl side-chain dehydrogenation to unsaturated units, cross linking, ring opening of the backbone, and sulfur extrusion. Given that secondary electrons are the dominant cause of radiation damage, this exposure threshold measured by integrated TEY should also be valid at other X-ray energies.
Characterizing the Evolutionary Path(s) to Early Homo
Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.
2014-01-01
Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780
Relations between Coherence and Path Information.
Bagan, Emilio; Bergou, János A; Cottrell, Seth S; Hillery, Mark
2016-04-22
We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l_{1} measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy.
Link prediction based on path entropy
NASA Astrophysics Data System (ADS)
Xu, Zhongqi; Pu, Cunlai; Yang, Jian
2016-08-01
Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, first we study the information entropy or uncertainty of a path using the information theory. After that, we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream of link predictors.
Filtered backprojection proton CT reconstruction along most likely paths
Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel
2013-03-15
Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.
Attention trees and semantic paths
NASA Astrophysics Data System (ADS)
Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura
2007-02-01
In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial
Evaluation of guidewire path reproducibility.
Schafer, Sebastian; Hoffmann, Kenneth R; Noël, Peter B; Ionita, Ciprian N; Dmochowski, Jacek
2008-05-01
The number of minimally invasive vascular interventions is increasing. In these interventions, a variety of devices are directed to and placed at the site of intervention. The device used in almost all of these interventions is the guidewire, acting as a monorail for all devices which are delivered to the intervention site. However, even with the guidewire in place, clinicians still experience difficulties during the interventions. As a first step toward understanding these difficulties and facilitating guidewire and device guidance, we have investigated the reproducibility of the final paths of the guidewire in vessel phantom models on different factors: user, materials and geometry. Three vessel phantoms (vessel diameters approximately 4 mm) were constructed having tortuousity similar to the internal carotid artery from silicon tubing and encased in Sylgard elastomer. Several trained users repeatedly passed two guidewires of different flexibility through the phantoms under pulsatile flow conditions. After the guidewire had been placed, rotational c-arm image sequences were acquired (9 in. II mode, 0.185 mm pixel size), and the phantom and guidewire were reconstructed (512(3), 0.288 mm voxel size). The reconstructed volumes were aligned. The centerlines of the guidewire and the phantom vessel were then determined using region-growing techniques. Guidewire paths appear similar across users but not across materials. The average root mean square difference of the repeated placement was 0.17 +/- 0.02 mm (plastic-coated guidewire), 0.73 +/- 0.55 mm (steel guidewire) and 1.15 +/- 0.65 mm (steel versus plastic-coated). For a given guidewire, these results indicate that the guidewire path is relatively reproducible in shape and position.
Communication path for extreme environments
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)
2010-01-01
Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.
Multiple order common path spectrometer
NASA Technical Reports Server (NTRS)
Newbury, Amy B. (Inventor)
2010-01-01
The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.
Gibbs Ensembles of Nonintersecting Paths
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Shlosman, Senya
2010-01-01
We consider a family of determinantal random point processes on the two-dimensional lattice and prove that members of our family can be interpreted as a kind of Gibbs ensembles of nonintersecting paths. Examples include probability measures on lozenge and domino tilings of the plane, some of which are non-translation-invariant. The correlation kernels of our processes can be viewed as extensions of the discrete sine kernel, and we show that the Gibbs property is a consequence of simple linear relations satisfied by these kernels. The processes depend on infinitely many parameters, which are closely related to parametrization of totally positive Toeplitz matrices.
Electronic Paths to Resource Sharing: Widening Opportunities through the Internet.
ERIC Educational Resources Information Center
Engle, Mary E.
1991-01-01
Discussion of computer networking and information retrieval technology focuses on the usefulness of accessing remote library catalogs. Experiences with the University of California MELVYL online catalog and Internet are described, problems of remote access for the user are considered, and future possibilities are suggested. (nine references) (LRW)
Path integration: effect of curved path complexity and sensory system on blindfolded walking.
Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J; Stergiou, Nicholas
2013-02-01
Path integration refers to the ability to integrate continuous information of the direction and distance traveled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance traveled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration.
Path Integration: Effect of Curved Path Complexity and Sensory System on Blindfolded Walking
Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J.; Stergiou, Nicholas
2012-01-01
Path integration refers to the ability to integrate continuous information of the direction and distance travelled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance travelled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration. PMID:22840893
Electron and ion acceleration in relativistic shocks with applications to GRB afterglows
NASA Astrophysics Data System (ADS)
Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang
2015-09-01
We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.
Spatial and frequency coherence of oblique, one-hop, high-frequency paths
Fitzgerald, T.J.
1995-10-01
We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.
NASA Astrophysics Data System (ADS)
Tang, Jiali; Yu, Xinhai; Wang, Zhenyu; Tu, Shan-Tung; Wang, Zhengdong
2016-04-01
The effects of the gas pressure (pg), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter dh = 1000 μm) driven at constant voltage loading on the drive electrode (Vrf) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When pg increased, the maximum electron (ne) or ion density (nAr+) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λSEE-e). The peak ne and nAr+ were not a monotonic function of pg, resulting from the two conflicting effects of pg on ne and nAr+. The impact of ions on the electrode was enhanced when pg increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various pg. The effects of t on the peaks and distributions of ne and nAr+ were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for pg of 800 Pa and Vrf of 180 V. The Au vapor addition increased the peaks of ne and nAr+, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.
Integrated assignment and path planning
NASA Astrophysics Data System (ADS)
Murphey, Robert A.
2005-11-01
A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact
Channel blockade in a two-path triple-quantum-dot system
NASA Astrophysics Data System (ADS)
Kotzian, M.; Gallego-Marcos, F.; Platero, G.; Haug, R. J.
2016-07-01
Electronic transport through a two-path triple-quantum-dot system with two source leads and one drain is studied and the interaction between the two paths is analyzed. We observe a channel blockade as a result of interchannel Coulombic interaction. The experimental results are understood with the help of a theoretical model which allows one to obtain the parameters of the system, the stability regions of each state, and the full dynamical transport in the triple-dot resonances.
The path to adaptive microsystems
NASA Astrophysics Data System (ADS)
Zolper, John C.; Biercuk, Michael J.
2006-05-01
Scaling trends in microsystems are discussed frequently in the technical community, providing a short-term perspective on the future of integrated microsystems. This paper looks beyond the leading edge of technological development, focusing on new microsystem design paradigms that move far beyond today's systems based on static components. We introduce the concept of Adaptive Microsystems and outline a path to realizing these systems-on-a-chip. The role of DARPA in advancing future components and systems research is discussed, and specific DARPA efforts enabling and producing adaptive microsystems are presented. In particular, we discuss efforts underway in the DARPA Microsystems Technology Office (MTO) including programs in novel circuit architectures (3DIC), adaptive imaging and sensing (AFPA, VISA, MONTAGE, A-to-I) and reconfigurable RF/Microwave devices (SMART, TFAST, IRFFE).
The Logic Behind Feynman's Paths
NASA Astrophysics Data System (ADS)
García Álvarez, Edgardo T.
The classical notions of continuity and mechanical causality are left in order to reformulate the Quantum Theory starting from two principles: (I) the intrinsic randomness of quantum process at microphysical level, (II) the projective representations of symmetries of the system. The second principle determines the geometry and then a new logic for describing the history of events (Feynman's paths) that modifies the rules of classical probabilistic calculus. The notion of classical trajectory is replaced by a history of spontaneous, random and discontinuous events. So the theory is reduced to determining the probability distribution for such histories accordingly with the symmetries of the system. The representation of the logic in terms of amplitudes leads to Feynman rules and, alternatively, its representation in terms of projectors results in the Schwinger trace formula.
Counting paths with Schur transitions
NASA Astrophysics Data System (ADS)
Díaz, Pablo; Kemp, Garreth; Véliz-Osorio, Alvaro
2016-10-01
In this work we explore the structure of the branching graph of the unitary group using Schur transitions. We find that these transitions suggest a new combinatorial expression for counting paths in the branching graph. This formula, which is valid for any rank of the unitary group, reproduces known asymptotic results. We proceed to establish the general validity of this expression by a formal proof. The form of this equation strongly hints towards a quantum generalization. Thus, we introduce a notion of quantum relative dimension and subject it to the appropriate consistency tests. This new quantity finds its natural environment in the context of RCFTs and fractional statistics; where the already established notion of quantum dimension has proven to be of great physical importance.
An ab initio study on the transition paths from graphite to diamond under pressure.
Dong, Xiao; Zhou, Xiang-Feng; Qian, Guang-Rui; Zhao, Zhisheng; Tian, Yongjun; Wang, Hui-Tian
2013-04-10
We calculate and compare the transition paths from graphite to two types of diamond using the variable cell nudged elastic band method. For the phase transition from graphite to cubic diamond, we analyze in detail how the π bonds transit to the σ bonds in an electronic structure. Meanwhile, a new transition path with a lower energy barrier for the transformation from graphite to hexagonal diamond is discovered. The path has its own peculiar sp(2)-sp(3) bonding configurations, serving as a transition state. Further calculation suggests that the sp(2)-sp(3) transition state represents an expected general phenomenon for cold-compressed graphite.
Extracting Critical Path Graphs from MPI Applications
Schulz, M
2005-07-27
The critical path is one of the fundamental runtime characteristics of a parallel program. It identifies the longest execution sequence without wait delays. In other words, the critical path is the global execution path that inflicts wait operations on other nodes without itself being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an application's runtime and message behavior and to target optimizations. We have developed a toolset that identifies the critical path of MPI applications, extracts it, and then produces a graphical representation of the corresponding program execution graph to visualize it. To implement this, we intercept all MPI library calls, use the information to build the relevant subset of the execution graph, and then extract the critical path from there. We have applied our technique to several scientific benchmarks and successfully produced critical path diagrams for applications running on up to 128 processors.
Flexible-Path Human Exploration
NASA Technical Reports Server (NTRS)
Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.
2010-01-01
In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity. PMID:24810944
NASA Astrophysics Data System (ADS)
Kirsebom, K.; Medenwaldt, R.; Mikkelsen, U.; Møller, S. P.; Paludan, K.; Uggerhøj, E.; Worm, T.; Elsener, K.; Ballestrero, S.; Sona, P.; Romano, J.; Connell, S. H.; Sellschop, J. P. F.; Avakian, R. O.; Avetisian, A. E.; Taroian, S. P.
1996-10-01
Detailed experimental investigations of photon multiplicities for 150 GeV electrons/positrons traversing thin diamond and Si crystals have been performed. Along axial directions up to 10 photons are emitted in 1.5 mm diamond for a radiative energy loss larger than 4 GeV. This corresponds to a mean free path for photon emission of about two orders of magnitude shorter than in an amorphous target. This is in agreement with an enhanced radiative energy loss of ˜ 30 times that in amorphous targets. The strongly enhanced photon emission leads to radiation cooling which can result in particles exiting the crystal with a reduced angle to the axis. For incidences along planar directions the average multiplicity is still above one, even for the thinnest crystals used in the present experiment, so a single-photon spectrum can only be obtained for thicknesses ≤50 μm, which, on the other hand, is comparable to the coherence lengths for GeV photons, leading to destruction of the coherent effects.
Geodesics on path spaces and double category
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat
2016-09-01
Let M be a Riemannian manifold and 𝒫M be the space of all smooth paths on M. We describe geodesics on path space 𝒫M. Normal neighborhoods on 𝒫M have been discussed. We identify paths on M under “back-track” equivalence. Under this identification, we show that if M is complete, then geodesics on the path space yield a double category. This double category has a natural interpretation in terms of the worldsheets generated by freely moving (without any external force) strings.
A note on the path interval distance.
Coons, Jane Ivy; Rusinko, Joseph
2016-06-01
The path interval distance accounts for global congruence between locally incongruent trees. We show that the path interval distance provides a lower bound for the nearest neighbor interchange distance. In contrast to the Robinson-Foulds distance, random pairs of trees are unlikely to be maximally distant from one another under the path interval distance. These features indicate that the path interval distance should play a role in phylogenomics where the comparison of trees on a fixed set of taxa is becoming increasingly important. PMID:27040521
A note on the path interval distance.
Coons, Jane Ivy; Rusinko, Joseph
2016-06-01
The path interval distance accounts for global congruence between locally incongruent trees. We show that the path interval distance provides a lower bound for the nearest neighbor interchange distance. In contrast to the Robinson-Foulds distance, random pairs of trees are unlikely to be maximally distant from one another under the path interval distance. These features indicate that the path interval distance should play a role in phylogenomics where the comparison of trees on a fixed set of taxa is becoming increasingly important.
Multiple path length dual polarization interferometry.
Coffey, Paul D; Swann, Marcus J; Waigh, Thomas A; Schedin, Fred; Lu, Jian R
2009-06-22
An optical sensor for quantitative analysis of ultrathin films and adsorbed layers is described. Quantification of both layer thickness and refractive index (density) can be made for in situ and ex-situ coated films. With the use of two polarizations, in situ measurements are made via one path length in a young's interferometer arrangement while ex-situ measurements use multiple path lengths. The multiple path length young's interferometer arrangement is embodied in a solid state waveguide configuration called the multiple path length dual polarization interferometer (MPL-DPI). The technique is demonstrated with ultrathin layers of poly(methylmethacrylate) and human serum albumin.
Perturbative Methods in Path Integration
NASA Astrophysics Data System (ADS)
Johnson-Freyd, Theodore Paul
This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the
Leak Path Development in CO2 Wells
NASA Astrophysics Data System (ADS)
Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.
2014-12-01
Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.
The Feynman trajectories: determining the path of a protein using fixed-endpoint assays.
Ketteler, Robin
2010-03-01
Richard Feynman postulated in 1948 that the path of an electron can be best described by the sum or functional integral of all possible trajectories rather than by the notion of a single, unique trajectory. As a consequence, the position of an electron does not harbor any information about the paths that contributed to this position. This observation constitutes a classical endpoint observation. The endpoint assay is the desired type of experiment for high-throughput screening applications, mainly because of limitations in data acquisition and handling. Quite contrary to electrons, it is possible to extract information about the path of a protein using endpoint assays, and these types of applications are reviewed in this article.
Career Paths in Sport Management
ERIC Educational Resources Information Center
Schwab, Keri A.; Legg, Eric; Tanner, Preston; Timmerman, Danielle; Dustin, Daniel; Arthur-Banning, Skye G.
2015-01-01
Sport management alumni (N = 268) from five universities that offer undergraduate programs with an emphasis in sport management within departments of parks, recreation, and tourism were sampled via an electronic survey. The survey sought to learn where alumni were working, and how they felt about their career choice and undergraduate professional…
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…
The path dependence of deformation texture development
Takeshita, T.; Kocks, U.F.; Wenk, H.R.
1987-01-01
It is demonstrated for the case of three different strain paths, all of which end up with the same, elongated specimen shape, that the texture developed during straining is path dependent. This is true both for experiments on aluminum polycrystals and for simulations using the LApp code.
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
The Path of Carbon in Photosynthesis VI.
DOE R&D Accomplishments Database
Calvin, M.
1949-06-30
This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.
Career Path Guide for Adult Career Choices.
ERIC Educational Resources Information Center
Case, Clydia
Intended for adults who are considering career choices or changes, this booklet provides opportunities for self-study and reflection in six career paths. The booklet begins with tips for long-term career survival and myths and realities of career planning. After a brief career survey, readers are introduced to six career paths: arts and…
A Random Walk on a Circular Path
ERIC Educational Resources Information Center
Ching, W.-K.; Lee, M. S.
2005-01-01
This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
Decision paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene
1991-01-01
Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.
Gerbertian paths for the Jubilee
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2015-04-01
Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.
Practical correction procedures for elastic electron scattering effects in ARXPS
NASA Astrophysics Data System (ADS)
Lassen, T. S.; Tougaard, S.; Jablonski, A.
2001-06-01
Angle-resolved XPS and AES (ARXPS and ARAES) are widely used for determination of the in-depth distribution of elements in the surface region of solids. It is well known that elastic electron scattering has a significant effect on the intensity as a function of emission angle and that this has a great influence on the determined overlayer thicknesses by this method. However the applied procedures for ARXPS and ARAES generally neglect this because no simple and practical procedure for correction has been available. However recently, new algorithms have been suggested. In this paper, we have studied the efficiency of these algorithms to correct for elastic scattering effects in the interpretation of ARXPS and ARAES. This is done by first calculating electron distributions by Monte Carlo simulations for well-defined overlayer/substrate systems and then to apply the different algorithms. We have found that an analytical formula based on a solution of the Boltzmann transport equation provides a good account for elastic scattering effects. However this procedure is computationally very slow and the underlying algorithm is complicated. Another much simpler algorithm, proposed by Nefedov and coworkers, was also tested. Three different ways of handling the scattering parameters within this model were tested and it was found that this algorithm also gives a good description for elastic scattering effects provided that it is slightly modified so that it takes into account the differences in the transport properties of the substrate and the overlayer. This procedure is fairly simple and is described in detail. The model gives a much more accurate description compared to the traditional straight-line approximation (SLA). However it is also found that when attenuation lengths instead of inelastic mean free paths are used in the simple SLA formalism, the effects of elastic scattering are also reasonably well accounted for. Specifically, from a systematic study of several
Shortest path and Schramm-Loewner Evolution
Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
2014-01-01
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019
Converging towards the optimal path to extinction
Schwartz, Ira B.; Forgoston, Eric; Bianco, Simone; Shaw, Leah B.
2011-01-01
Extinction appears ubiquitously in many fields, including chemical reactions, population biology, evolution and epidemiology. Even though extinction as a random process is a rare event, its occurrence is observed in large finite populations. Extinction occurs when fluctuations owing to random transitions act as an effective force that drives one or more components or species to vanish. Although there are many random paths to an extinct state, there is an optimal path that maximizes the probability to extinction. In this paper, we show that the optimal path is associated with the dynamical systems idea of having maximum sensitive dependence to initial conditions. Using the equivalence between the sensitive dependence and the path to extinction, we show that the dynamical systems picture of extinction evolves naturally towards the optimal path in several stochastic models of epidemics. PMID:21571943
Vittitoe, C.N.
1993-08-01
A method is presented to unfold the two-dimensional vertical structure in electron density by using data on the total electron content for a series of paths through the ionosphere. The method uses a set of orthonormal basis functions to represent the vertical structure and takes advantage of curved paths and the eikonical equation to reduce the number of iterations required for a solution. Curved paths allow a more thorough probing of the ionosphere with a given set of transmitter and receiver positions. The approach can be directly extended to more complex geometries.
NASA Astrophysics Data System (ADS)
Feibel, C. S.
2004-12-01
A complex series of evolutionary steps, contingent upon a dynamic environmental context and a long biological heritage, have led to the ascent of Homo sapiens as a dominant component of the modern biosphere. In a field where missing links still abound and new discoveries regularly overturn theoretical paradigms, our understanding of the path of human evolution has made tremendous advances in recent years. Two major trends characterize the development of the hominin clade subsequent to its origins with the advent of upright bipedalism in the Late Miocene of Africa. One is a diversification into two prominent morphological branches, each with a series of 'twigs' representing evolutionary experimentation at the species or subspecies level. The second important trend, which in its earliest manifestations cannot clearly be ascribed to one or the other branch, is the behavioral complexity of an increasing reliance on technology to expand upon limited inherent morphological specializations and to buffer the organism from its environment. This technological dependence is directly associated with the expansion of hominin range outside Africa by the genus Homo, and is accelerated in the sole extant form Homo sapiens through the last 100 Ka. There are interesting correlates between the evolutionary and behavioral patterns seen in the hominin clade and environmental dynamics of the Neogene. In particular, the tempo of morphological and behavioral innovation may be tracking major events in Neogene climatic development as well as reflecting intervals of variability or stability. Major improvements in analytical techniques, coupled with important new collections and a growing body of contextual data are now making possible the integration of global, regional and local environmental archives with an improved biological understanding of the hominin clade to address questions of coincidence and causality.
Evolution paths for advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1990-01-01
As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.
Path integral approach to the quantum fidelity amplitude
2016-01-01
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called ‘dephasing representation,’ circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973
Path integral approach to the quantum fidelity amplitude.
Vaníček, Jiří; Cohen, Doron
2016-06-13
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact.
Path integral approach to the quantum fidelity amplitude.
Vaníček, Jiří; Cohen, Doron
2016-06-13
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Functional equivalence and spatial path memory.
Lyon, Don R; Gunzelmann, Glenn M
2011-11-01
Loomis, Klatzky, Avraamides, Lippa and Golledge ( 2007 ) suggest that, when it comes to spatial information, verbal description and perceptual experience are nearly functionally equivalent with respect to the cognitive representations they produce. We tested this idea for the case of spatial memory for complex paths. Paths consisted entirely of unit-length segments followed by 90-degree turns, thus assuring that a path could be described with equal precision using either an egocentric verbal description or a virtual self-motion experience. The verbal description was analogous to driving directions (e.g., turn left and go one block, then turn right, etc.) except in three dimensions (allowing rotation followed by up or down movement). Virtual self-motion was depicted as first-person travel through a 3D grid of featureless corridors. Comparison of these two conditions produced a result that may be surprising to some, but nevertheless appears to support the notion of functional equivalence: Virtual self-motion does not produce better path memory than verbal description, when care is taken to present equally precise path information. This result holds for even very complex paths and despite evidence from proximity-based interference that the memory representation of the path is spatial.
Nonholonomic catheter path reconstruction using electromagnetic tracking
NASA Astrophysics Data System (ADS)
Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor
2015-03-01
Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.
Automated flight path planning for virtual endoscopy.
Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S
1998-05-01
In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images. PMID:9608471
Kanematsu, Nobuyuki; Inaniwa, Taku; Koba, Yusuke
2012-02-15
Purpose: In treatment planning of charged-particle radiotherapy, patient heterogeneity is conventionally modeled as variable-density water converted from CT images to best reproduce the stopping power, which may lead to inaccuracies in the handling of multiple scattering and nuclear interactions. Although similar conversions can be defined for these individual interactions, they would be valid only for specific CT systems and would require additional tasks for clinical application. This study aims to improve the practicality of the interaction-specific heterogeneity correction. Methods: The authors calculated the electron densities and effective densities for stopping power, multiple scattering, and nuclear interactions of protons and ions, using the standard elemental-composition data for body tissues to construct the invariant conversion functions. The authors also simulated a proton beam in a lung-like geometry and a carbon-ion beam in a prostate-like geometry to demonstrate the procedure and the effects of the interaction-specific heterogeneity correction. Results: Strong correlations were observed between the electron density and the respective effective densities, with which the authors formulated polyline conversion functions. Their effects amounted to 10% differences in multiple-scattering angle and nuclear interaction mean free path for bones compared to those in the conventional heterogeneity correction. Although their realistic effect on patient dose distributions would be generally small, it could be at the level of a few percent when a carbon-ion beam traverses a large bone. Conclusions: The present conversion functions are invariant and may be incorporated in treatment planning systems with a common function relating CT number to electron density. This will enable improved beam dose calculation while minimizing initial setup and quality management of the user's specific system.
The terminal area automated path generation problem
NASA Technical Reports Server (NTRS)
Hsin, C.-C.
1977-01-01
The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.
Extending the application of critical path methods.
Coffey, R J; Othman, J E; Walters, J I
1995-01-01
Most health care organizations are using critical pathways in an attempt to reduce the variation in patient care, improve quality, enhance communication, and reduce costs. Virtually all of the critical path efforts to date have developed tables of treatments, medications, and so forth by day and have displayed them in a format known as a Gantt chart. This article presents a methodology for identifying the true "time-limiting" critical path, describes three additional methods for presenting the information--the network, precedent, and resource formats--and shows how these can significantly enhance current critical path efforts.
Steering Chiral Swimmers along Noisy Helical Paths
NASA Astrophysics Data System (ADS)
Friedrich, Benjamin M.; Jülicher, Frank
2009-08-01
Chemotaxis along helical paths towards a target releasing a chemoattractant is found in sperm cells and many microorganisms. We discuss the stochastic differential geometry of the noisy helical swimming path of a chiral swimmer. A chiral swimmer equipped with a simple feedback system can navigate in a concentration gradient of chemoattractant. We derive an effective equation for the alignment of helical paths with a concentration gradient which is related to the alignment of a dipole in an external field and discuss the chemotaxis index.
Modular electronics packaging system
NASA Technical Reports Server (NTRS)
Hunter, Don J. (Inventor)
2001-01-01
A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.
Complementarity with neutron two-path interferences and separated-oscillatory-field resonances
NASA Astrophysics Data System (ADS)
Ramsey, Norman F.
1993-07-01
The implications of complementarity on two-path neutron interferences and on separated-oscillatory-field resonances are discussed. The studies are extensions of those by Furry and Ramsey [Phys. Rev. 118, 623 (1960)] on two-path electron interferences which showed that an apparatus used to determine the electron path introduces uncertainties in the scalar and vector potentials which in turn disturb the phase of the electron wave function so much through the Aharonov-Bohm effects [Phys. Rev. 115, 485 (1959)] that the interference fringes disappear. A similar result is derived here for the neutron, but with the phase uncertainties coming from the magnetic moment's motion through an electric field as discussed by Anandan [Phys. Rev. Lett. 48, 1660 (1982)], and Aharonov and Casher [Phys. Rev. Lett. 53, 319 (1984)]. A corresponding result is also obtained for separated-oscillatory-fields resonances, which can be interpreted as an interference between two different paths in spin space. An interesting difference between the separated-path and separated-oscillatory-field experiments is that the latter may be interpreted classically.
Path discrepancies between great circle and rhumb line
NASA Technical Reports Server (NTRS)
Kaul, Rajan
1987-01-01
A simulation of a mathematical model to compute path discrepancies between great circle and rhumb line flight paths is presented. The model illustrates that the path errors depend on the latitude, the bearing, and the trip length of the flight.
Local-time representation of path integrals
NASA Astrophysics Data System (ADS)
Jizba, Petr; Zatloukal, Václav
2015-12-01
We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x -dependent local-time profiles. The latter quantify the time that the sample paths x (t ) in the Feynman path integral spend in the vicinity of an arbitrary point x . Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.
Riemann Curvature Tensor and Closed Geodesic Paths
ERIC Educational Resources Information Center
Morganstern, Ralph E.
1977-01-01
Demonstrates erroneous results obtained if change in a vector under parallel transport about a closed path in Riemannian spacetime is made in a complete circuit rather than just half a circuit. (Author/SL)
Critical paths: maximizing patient care coordination.
Spath, P L
1995-01-01
1. With today's emphasis on horizontal and vertical integration of patient care services and the new initiatives prompted by these challenges, OR nurses are considering new methods for managing the perioperative period. One such method is the critical path. 2. A critical path defines an optimal sequencing and timing of interventions by physicians, nurses, and other staff members for a particular diagnosis or procedure, designed to better use resources, maximize quality of care, and minimize delays. 3. Hospitals implementing path-based patient care have reported cost reductions and improved team-work. Critical paths have been shown to reduce patient care costs by improving hospital efficiency, not merely by reducing physician practice variations.
A chemist building paths to cell biology.
Weibel, Douglas B
2013-11-01
Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path.
Building a path in cell biology.
Voeltz, Gia; Cheeseman, Iain
2012-11-01
Setting up a new lab is an exciting but challenging prospect. We discuss our experiences in finding a path to tackle some of the key current questions in cell biology and the hurdles that we have encountered along the way.
Animation: Path of 2010 Solar Eclipse
On Sunday, 2010 July 11, a total eclipse of the Sun is visible from within a narrow corridor that traverses Earth's southern hemisphere. The path of the Moon's umbral shadow crosses the South Pacif...
IRIS Optical Instrument and Light Paths
The optical portion of the instrument and the light paths from the primary and secondary mirror of the telescope assembly into the spectrograph. The spectrograph then breaks the light into 2 Near U...
Local-time representation of path integrals.
Jizba, Petr; Zatloukal, Václav
2015-12-01
We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.
Identifying decohering paths in closed quantum systems
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1990-01-01
A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.
An Alternate Path To Stoichiometric Problem Solving.
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen
1997-01-01
Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)
Nonclassical paths in quantum interference experiments.
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-19
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. PMID:25279612
Nonclassical paths in quantum interference experiments.
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-19
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Nonclassical Paths in Quantum Interference Experiments
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Orbital Path of the International Space Station
Astronauts Don Pettit, Andre Kuipers and Dan Burbank explain the orbital path of the International Space Station. Earth video credit: Image Science and Analysis Laboratory, NASA's Johnson Space Cen...
Approximate Shortest Path Queries Using Voronoi Duals
NASA Astrophysics Data System (ADS)
Honiden, Shinichi; Houle, Michael E.; Sommer, Christian; Wolff, Martin
We propose an approximation method to answer point-to-point shortest path queries in undirected edge-weighted graphs, based on random sampling and Voronoi duals. We compute a simplification of the graph by selecting nodes independently at random with probability p. Edges are generated as the Voronoi dual of the original graph, using the selected nodes as Voronoi sites. This overlay graph allows for fast computation of approximate shortest paths for general, undirected graphs. The time-quality tradeoff decision can be made at query time. We provide bounds on the approximation ratio of the path lengths as well as experimental results. The theoretical worst-case approximation ratio is bounded by a logarithmic factor. Experiments show that our approximation method based on Voronoi duals has extremely fast preprocessing time and efficiently computes reasonably short paths.
A Path Algorithm for Constrained Estimation.
Zhou, Hua; Lange, Kenneth
2013-01-01
Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online.
The prediction of radio-path characteristics
NASA Astrophysics Data System (ADS)
Gitina, G. M.; Kalinin, Iu. K.
The paper examines algorithms for the long-term prediction of radio-path characteristics in the ionosphere, the main characteristic being the MUF at a given distance. The proposed approach is based on long-term memories called DATA BANKS. Attention is given to the characteritics of the various banks, including the BANK OF CITIES, the BANK OF RADIO PATHS, the REFERENCE DATA BANK, and the OUTPUT DATA BANK.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
Equivalence of trans paths in ion channels
NASA Astrophysics Data System (ADS)
Alvarez, Juan; Hajek, Bruce
2006-04-01
We explore stochastic models for the study of ion transport in biological cells. Analysis of these models explains and explores an interesting feature of ion transport observed by biophysicists. Namely, the average time it takes ions to cross certain ion channels is the same in either direction, even if there is an electric potential difference across the channels. It is shown for simple single ion models that the distribution of a path (i.e., the history of location versus time) of an ion crossing the channel in one direction has the same distribution as the time-reversed path of an ion crossing the channel in the reverse direction. Therefore, not only is the mean duration of these paths equal, but other measures, such as the variance of passage time or the mean time a path spends within a specified section of the channel, are also the same for both directions of traversal. The feature is also explored for channels with interacting ions. If a system of interacting ions is in reversible equilibrium (net flux is zero), then the equivalence of the left-to-right trans paths with the time-reversed right-to-left trans paths still holds. However, if the system is in equilibrium, but not reversible equilibrium, then such equivalence need not hold.
Path optimization with limited sensing ability
Kang, Sung Ha Kim, Seong Jun Zhou, Haomin
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.
Quantum cosmology based on discrete Feynman paths
Chew, Geoffrey F.
2002-10-10
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''.
Ant navigation: resetting the path integrator.
Knaden, Markus; Wehner, Rüdiger
2006-01-01
Desert ants use path integration as their predominant system of long-distance navigation, but they also make use of route-defining and nest-defining visual landmarks. Such landmark-gained information might override the information provided by the path integrator, but nevertheless the path integrator keeps running. Here we show that only cues that are associated with the ant being inside the nest are able to reset the path integrator to zero state. Ants were captured at a feeder, i.e. without having run off their home vector, and were forced to enter the nest. On their next outbound run their walking direction differed by 180 degrees from that of ants that had also been captured at the feeder but instead of having been forced to enter the interior of the nest were released at its entrance. Whereas these latter ants still ran off their home vector pointing in the feeder-nest direction (and by this departed from the nest in a direction opposite to the feeder direction) the former ants had reset their home vector to zero state, and had therefore been able to reload their learned feeder vector, and consequently departed from the nest in the feeder direction. Owing to its egocentric nature the path-integrator is error prone. Hence, it is a suitable strategy to reset the path integrator if the ant has appeared at its final goal, the nest. Otherwise during consecutive foraging runs navigational errors would steadily increase.
Path detection and the uncertainty principle
NASA Astrophysics Data System (ADS)
Storey, Pippa; Tan, Sze; Collett, Matthew; Walls, Daniel
1994-02-01
QUANTUM mechanics predicts that any detector capable of determining the path taken by a particle through a double slit will destroy the interference. This follows from the principle of complementarity formulated by Niels Bohr: simultaneous observation of wave and particle behaviour is prohibited. But such a description makes no reference to the physical mechanism by which the interference is lost. In the best studied welcher Weg (`which path') detection schemes1,2, interference is lost by the transfer of momentum to the particle whose path is being determined, the extent of momentum transfer satisfying the position-momentum uncertainty relation. This has prompted the question as to whether complementarity is always enforced in welcher Weg schemes by momentum transfer. Scully et al 3. have recently responded in the negative, suggesting that complementarity must be accepted as an independent component of quantum mechanics, rather than as simply a consequence of the uncertainty principle. But we show here that, in any path detection scheme involving a fixed double slit, the amount of momentum transferred to the particle by a perfectly efficient detector (one capable of resolving the path unambiguously) is related to the slit separation in accordance with the uncertainty principle. If less momentum than this is transferred, interference is not completely destroyed and the path detector cannot be perfectly efficient.
Infiltration Flow Path Distributions in Unsaturated Rocks
NASA Astrophysics Data System (ADS)
Tokunaga, T. K.; Olson, K. R.; Wan, J.
2004-12-01
Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy
Theologis, A; Laties, G G
1978-08-01
the alternate as well as the cytochrome path. The ripening of intact fruits is seemingly independent of the nature of the electron transport path.Uncouplers are thought to stimulate glycolysis to the point where the glycolytic flux exceeds the oxidative capacity of the cytochrome path, with the result that the alternate path is engaged.
Larson, D.C.; Larson, N.M.; Harvey, J.A.; Perey, F.G.; Pierce, D.E.; Seals, R.H.
1985-03-01
Flight-path lengths have been measured by laser techniques for the 200-, 80-, and 18-m stations along flight path 1, and for the 5-, 20-, 40-, and 150-m stations along flight path 6 at the Oak Ridge Electron Linear Accelerator (ORELA). In each case the distance evaluated from the measurements is the slope distance from the center of the neutron-producing target to a position along the beam path, directly above a suitable benchmark at the experiment station. A total of 25 laser measurements were performed between the various stations. These data, along with appropriate uncertainties, were combined using Bayes' method. From this analysis we obtained the desired flight-path lengths, which typically have uncertainties less than 1.5 mm. The measurment technique, uncertainties, analysis method, and results are documented in detail in this report.
Dispersion forces between solvated electrons.
Chuev, Gennady N
2010-04-14
Using the path integral centroid approach, we investigate dispersion interactions between electrons solvated in metal-ammonia solutions. We have argued that at finite metal concentrations, the behavior of the solvated electrons is controlled by these interactions. The latter result in a peculiar nonmetal-metal transition, which appears as a sharp dielectric enhancement and a mechanical instability of the system. Our results indicate also that the solvated electrons are to be considered as a two-component mixture consisting of localized and delocalized electrons beyond the critical density corresponding to this mechanical instability.
An electron optical sagnac experiment
NASA Astrophysics Data System (ADS)
Hasselbach, F.; Nicklaus, M.
1988-07-01
Using an electron biprism interferometer completely different in its technical design compared to conventional instruments, we hope to prove the rotationally induced phase shift of electron waves. Besides its unconventional design, another unique feature of our instrument is a Wien filter incorporated in its beam path which allows to shift the coherent wave packets relative to each other longitudinally. This provides the possibility of (1) reestablishing maximum overlap of the wave packets and in turn maximum contrast of the interference fringes and (2) of measuring coherence lengths of electron waves as well as, via Fourier spectroscopy, the energy distribution of the electrons.
Accurate free energy calculation along optimized paths.
Chen, Changjun; Xiao, Yi
2010-05-01
The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.
Curved paths in raptor flight: Deterministic models.
Lorimer, John W
2006-10-21
Two deterministic models for flight of Peregrine Falcons and possibly other raptors as they approach their prey are examined mathematically. Both models make two assumptions. The first, applicable to both models, is that the angle of sight between falcon and prey is constant, consistent with observations that the falcon keeps its head straight during flight and keeps on course by use of the deep foveal region in its eye which allows maximum acuity at an angle of sight of about 45 degrees . The second assumption for the first model (conical spiral), is that the initial direction of flight determines the overall path. For the second model (flight constrained to a tilted plane), a parameter that fixes the orientation of the plane is required. A variational calculation also shows that the tilted plane flight path is the shortest total path, and, consequently, the conical spiral is another shortest total path. Numerical calculations indicate that the flight paths for the two models are very similar for the experimental conditions under which observations have been made. However, the angles of flight and bank differ significantly. More observations are needed to investigate the applicability of the two models.
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff flight path. 23.61 Section 23.61... flight path. For each commuter category airplane, the takeoff flight path must be determined as follows: (a) The takeoff flight path begins 35 feet above the takeoff surface at the end of the...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff flight path. 23.61 Section 23.61... flight path. Link to an amendment published at 76 FR 75753, December 2, 2011. For each commuter category airplane, the takeoff flight path must be determined as follows: (a) The takeoff flight path begins 35...
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 23.61 Section 23.61... flight path. For each commuter category airplane, the takeoff flight path must be determined as follows: (a) The takeoff flight path begins 35 feet above the takeoff surface at the end of the...
An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles
Cunningham, C.T.; Roberts, R.S.
2000-09-12
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Adaptive path planning algorithm for cooperating unmanned air vehicles
Cunningham, C T; Roberts, R S
2001-02-08
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Bonded Paths and van der Waals Interactions in Orpiment, As2S3
Gibbs, Gerald V.; Wallace, Adam F.; Zallen, Richard; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.
2010-06-17
Bond critical properties and bond paths have been calculated for the thioarsenide molecular crystal orpiment, As2S3. In addition to the intramolecular As-S bond paths and van der Waals As-S and S-S bond paths within the layers, intermolecular S-S, As-S and As-As van der Waals paths exist between the layers. The S-S bond paths between the layers are identified with the main interlayer restoring forces responsible for the vibrational internal-mode splitting and the low frequency rigid layer modes previously documented in infrared and Raman studies of orpiment. These S-S bond paths are comparable with those calculated for orthorhombic native sulfur and the As4Sn (n = 3,4,5) molecules for several arsenide molecular crystals. The As-S bond paths show that the two nonequivalent arsenic atoms are each coordinated by a highly distorted octahedral array of sulfur atoms. The octahedra consist of three As-S intramolecular bonded interactions and three longer van der Waals interactions (two intramolecular and one intermolecular). One of the arsenic atoms is also coordinated by an arsenic atom in an interlayer As-As bonded interaction. Laplacian isosurface envelopes calculated for the arsenic and sulfur atoms are comparable with those calculated for native arsenic and orthorhombic sulfur. The intermolecular As-S bond paths connect Lewis acid domains on arsenic and an Lewis base domains on sulfur. Van der Waals interactions are traditionally defined as attractive interactions other than those ascribed to bond formation. However, theoretical evidence and arguments, as well as the connection between the bond paths and the vibrational spectra, indicate that the van der Waals interactions in orpiment are directed bonded interactions in the Slater sense. The experimental bond lengths for the As-S and S-S bonded interactions decrease nonlinearly with the increasing value of the electron density at the bond critical point, concomitant with a decrease in the bonded radii of arsenic and
A taxonomy of integral reaction path analysis
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.
Quantum state of wormholes and path integral
Garay, L.J. )
1991-08-15
The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.
Circular common-path point diffraction interferometer.
Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan
2012-10-01
A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.
Paths to Licensure: Things Physicists Should Know
NASA Astrophysics Data System (ADS)
Stewart, Gay; Stewart, John
2016-03-01
The path to licensure can be quite complicated, and can thwart a physics department's efforts to produce more and better prepared high school physics teachers. Each state has different pathways to licensure. Acronyms like CAEP and SPA are not within the normal physicist's vocabulary. Some understanding of this topic can allow physics faculty advisers to help our students so that fewer are derailed on their path to the classroom, or take a path that will leave them less well prepared if they do find themselves there. Examples of different approaches that work within state licensure systems from two different states will be presented. Physics teacher preparation efforts in both Arkansas and West Virginia have been supported in part by the Physics Teacher Education Coalition (PhysTEC).
Fermionic path integrals and local anomalies
NASA Astrophysics Data System (ADS)
Roepstorff, G.
2003-05-01
No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.
Theory of extreme correlations using canonical Fermions and path integrals
Shastry, B. Sriram
2014-04-15
The t–J model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson–Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the ‘caparison factor’, is obtained. The low energy electron spectral function in this theory, with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale Δ{sub 0} that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying very low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function, related simply to the Fano line shape, has a peculiar energy dependence unlike that of a Lorentzian. The resulting energy dispersion obtained by maximization is a hybrid of a massive and a massless Dirac spectrum E{sub Q}{sup ∗}∼γQ−√(Γ{sub 0}{sup 2}+Q{sup 2}), where the vanishing of Q, a momentum type variable, locates the kink minimum. Therefore the quasiparticle velocity interpolates between (γ∓1) over a width Γ{sub 0} on the two sides of Q=0, implying a kink there that strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations. -- Highlights: •Spectral function of the Extremely Correlated Fermi Liquid theory at low energy. •Electronic
A Comparison of Two Path Planners for Planetary Rovers
NASA Astrophysics Data System (ADS)
Tarokh, M.; Shiller, Z.; Hayati, S.
1999-01-01
The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.
Tornado Intensity Estimated from Damage Path Dimensions
Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Gas Path Sealing in Turbine Engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1978-01-01
A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.
Practical path planning among movable obstacles
Chen, Pang C.; Hwang, Yong K.
1990-09-05
Path planning among movable obstacles is a practical problem that is in need of a solution. In this paper an efficient heuristic algorithm that uses a generate-and-test paradigm: a good'' candidate path is hypothesized by a global planner and subsequently verified by a local planner. In the process of formalizing the problem, we also present a technique for modeling object interactions through contact. Our algorithm has been tested on a variety of examples, and was able to generate solutions within 10 seconds. 5 figs., 27 refs.
Gas path sealing in turbine engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1978-01-01
Survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperatures is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.
Gas path sealing in turbine engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1978-01-01
Gas path seals are discussed with emphasis on sealing clearance effects on engine component efficiency, compressor pressure ratio, and stall margin. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are examined qualitatively, and recent work on turbine-blade-tip sealing for high temperatures is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.
Optical tomography with discretized path integral
Yuan, Bingzhi; Tamaki, Toru; Kushida, Takahiro; Mukaigawa, Yasuhiro; Kubo, Hiroyuki; Raytchev, Bisser; Kaneda, Kazufumi
2015-01-01
Abstract. We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well. PMID:26839903
Path planning for everday robotics with SANDROS
Watterberg, P.; Xavier, P.; Hwang, Y.
1997-02-01
We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.
Ballistic InAs nanowire transistors.
Chuang, Steven; Gao, Qun; Kapadia, Rehan; Ford, Alexandra C; Guo, Jing; Javey, Ali
2013-02-13
Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as ~150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theoretically assessed by a method that combines Fermi's golden rule and a numerical Schrödinger-Poisson simulation to determine the surface scattering potential with the theoretical calculations being consistent with experiments. Near ballistic transport (~80% of the ballistic limit) is demonstrated experimentally for transistors with a channel length of ~60 nm, owing to the long mean free path of electrons in InAs NWs. PMID:23256503
Homing by path integration when a locomotion trajectory crosses itself.
Yamamoto, Naohide; Meléndez, Jayleen A; Menzies, Derek T
2014-01-01
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
Measuring and adjusting the path length at CEBAF
Krafft, G.A.; Crofford, M.; Douglas, D.R.
1995-12-31
Accurately setting the path length around the machine is central to the proper operation of the CEBAF accelerator. The CEBAF main accelerator consists of two recirculating superconducting linacs operating at 1497 MHz fundamental frequency. The electron beam can recirculate up to five times through the two linacs before it is extracted to the experimental halls. In order to obtain maximum energy gain and minimum energy spread through the linacs, all passes should arrive at the beginning of the linacs in phase at the crest of the RF cycle. In this paper we explain how the arrival times of higher pass beams are measured with respect to the first pass to less than one degree of RF phase and how the path length around the machine is adjusted. Following a brief introduction to the CEBAF design and some local nomenclature, these topics will be discussed: differential RF phase measurements of time delay, the energy method of cresting the higher pass beams, results obtained with the measurement techniques, future plans and improvements to the devices, and finally, a set of conclusions. 3 refs., 5 figs., 1 tab.
Proposal for a QND which-path measurement using photons
NASA Technical Reports Server (NTRS)
Raymer, M. G.; Yang, S.
1992-01-01
A scheme is proposed for experimentally realizing the famous two-slit gedaenken experiment using photons. As elegantly discussed for electrons by Feynman, a particle's quantum pathways interfere to produce fringes in the probability density for the particle to be found at a particle location. If the path taken by the particle is experimentally determined, the complementarity principle says that the fringes must disappear. To carry out this experiment with photons is difficult because normally the act of determining a photon's location destroys it. We propose to overcome this difficulty by putting a type-2 optical parametric amplifier (OPA) in each arm of a Mach-Zehnder interferometer, and observing fringes at the output. An OPA responds to an input photon by increasing its probability to produce a pair of photons with polarization orthogonal to the input, the detection of which allows partial inference about the path taken by the input photon without destroying it. Thus, the measurement is of the quantum nondemolition (QND) type.
A high performance magnetorheological valve with a meandering flow path
NASA Astrophysics Data System (ADS)
Imaduddin, Fitrian; Amri Mazlan, Saiful; Rahman, Mohd Azizi Abdul; Zamzuri, Hairi; Ubaidillah; Ichwan, Burhanuddin
2014-06-01
The huge developments in the field of magnetorheological (MR) fluid-based devices will have a great influence on the future of mechatronic applications due to the ease of interfacing between electronic controls and the mechanical components that they provide. Among various MR fluid-based devices, an MR valve would be particularly significant for the development of other devices, if it could be successfully achieved. One of the most challenging obstacles to MR valve development is the difficulty of achieving device miniaturization while, at the same time, improving the achievable performance. This study demonstrates a novel design for an MR valve, using the meandering flow path approach in order to increase the effective area so that the MR fluid can be regulated within a small-sized valve. The meandering flow path is formed by combining multiple annular, radial and orifice flow channels. In order to analyze the valve performance, a mathematical model of the proposed MR valve is derived and combined with numerical simulation using the finite element method, with the intention of predicting the achievable pressure drop that can be generated by the valve. The predicted MR valve performances are then experimentally evaluated using an oscillation-disturbed bypass hydraulic cylinder. The simulation results show that the proposed MR valve design could yield substantial pressure drop improvement, which is confirmed by the experiment.
Behavioral Path Analysis and Environmental Evaluation.
ERIC Educational Resources Information Center
Wise, James A.; Kahle, Ellen
Behavioral Path Analysis is both a theory and a methodology for studying person-environment interactions. It is designed to be applicable to the evaluation of both environments in use and proposed designed environments. This paper presents the basics of the theory, and some examples of recent applications that have guided its development. The…
Current SPE Hydrodynamic Modeling and Path Forward
Knight, Earl E.; Rougier, Esteban
2012-08-14
Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…
Explore the Many Paths to Leadership
ERIC Educational Resources Information Center
Crow, Tracy
2015-01-01
The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and…
Folded-path optical analysis gas cell
Carangelo, Robert M.; Wright, David D.
1995-01-01
A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.
Conflicting Paths: Growing Up in America.
ERIC Educational Resources Information Center
Graff, Harvey J.
This history of growing up is based on more than 500 first-person accounts relating to growing up from the middle of the 18th through the early 20th centuries. Major focus is on the formation, experience, and transformation of the principal paths of growing up. It considers transitions or turning points, particularly as they surround entries and…
Path to Scholarships: "Making Dreams Come True."
ERIC Educational Resources Information Center
McBride, June
This easy-to-read book with worksheets and instructional guides details a simple organizational portfolio method that has been used for over 6 years to obtain over one-half million dollars in scholarships for migrant students. Following an introduction, chapter 2, "Path of Hard Work," discusses scholarship qualifications such as a 3.0 grade point…
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Gender Differences in Career Paths in Banking.
ERIC Educational Resources Information Center
Morgan, Sandra; And Others
1993-01-01
Analyzed career paths of middle managers in bank. Study of matched pairs found that men (n=25) advanced faster and reached middle management through fewer promotions and positions than did women (n=25). Men had significantly more work experience outside of banking. In banking careers, men held more jobs in lending, whereas women occupied more…
Folded-path optical analysis gas cell
Carangelo, R.M.; Wright, D.D.
1995-08-08
A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Career Paths for Managers in the Arts
ERIC Educational Resources Information Center
Inglis, Loretta; Cray, David
2012-01-01
In this article we examine the career paths of top-level managers in the arts. By analysing the training and work history of 23 managers in a variety of arts organisations we evaluate the utility of several existing theories for understanding careers that are characterised by low levels of initial knowledge, the absence of a clear method of entry…
Learning to improve path planning performance
Chen, Pang C.
1995-04-01
In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful.
Ambivalent Journey: Teacher Career Paths in Oman
ERIC Educational Resources Information Center
Chapman, David W.; Al-Barwani, Thuwayba; Al Mawali, Fathiya; Green, Elizabeth
2012-01-01
This study investigated the career paths of 625 university graduates who prepared to be secondary school teachers in Oman, their assessment of their current work situation, and the extent to which their initial commitment to teaching was related to their subsequent career satisfaction and intention to remain in teaching. While nearly all graduates…
Judgments of Path, Not Heading, Guide Locomotion
ERIC Educational Resources Information Center
Wilkie, Richard M.; Wann, John P.
2006-01-01
To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient…
Local-time representation of path integrals.
Jizba, Petr; Zatloukal, Václav
2015-12-01
We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed. PMID:26764662
The Path Containment Condition and Argument Structure.
ERIC Educational Resources Information Center
Stroik, Thomas
The internal structure of verb phrases (VPs) are investigated. Using the Path Containment Condition, as developed by May (1985), to establish relations between quantified arguments, this study draws two conclusions about the structure of argument-relations within VPs. First, arguments have binary relations with projections of the verb, and second,…
Star-Paths, Stones and Horizon Astronomy
NASA Astrophysics Data System (ADS)
Brady, Bernadette
2015-05-01
Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.
The Erratic Path of Hungarian Higher Education
ERIC Educational Resources Information Center
Marcus, Jon
2014-01-01
This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier…
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…
Unified classical path theories of pressure broadening.
NASA Technical Reports Server (NTRS)
Bottcher, C.
1971-01-01
Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.
Administrator Career Paths and Decision Processes
ERIC Educational Resources Information Center
Farley-Ripple, Elizabeth N.; Raffel, Jeffrey A.; Welch, Jennie Christine
2012-01-01
Purpose: The purpose of this paper is to present qualitative evidence on the processes and forces that shape school administrator career paths. Design/methodology/approach: An embedded case study approach is used to understand more than 100 administrator career transitions within the Delaware education system. Semi-structured interview data were…
Powell, C.J.; Smekal, W.; Werner, W.S.M.
2005-09-09
We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.
NASA Astrophysics Data System (ADS)
Powell, C. J.; Smekal, W.; Werner, W. S. M.
2005-09-01
We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.