Science.gov

Sample records for electron mean-free path

  1. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  2. Electron mean free path dependence of the vortex surface impedance

    NASA Astrophysics Data System (ADS)

    Checchin, M.; Martinello, M.; Grassellino, A.; Romanenko, A.; Zasadzinski, J. F.

    2017-03-01

    In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning and flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. The dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.

  3. Ionization By Impact Electrons in Solids: Electron Mean Free Path Fitted Over A Wide Energy Range

    SciTech Connect

    Ziaja, B; London, R A; Hajdu, J

    2005-06-09

    We propose a simple formula for fitting the electron mean free paths in solids both at high and at low electron energies. The free-electron-gas approximation used for predicting electron mean free paths is no longer valid at low energies (E < 50 eV), as the band structure effects become significant at those energies. Therefore we include the results of the band structure calculations in our fit. Finally, we apply the fit to 9 elements and 2 compounds.

  4. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  5. The importance of the electron mean free path for superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Maniscalco, J. T.; Gonnella, D.; Liepe, M.

    2017-01-01

    Impurity-doping of niobium is an exciting new technology in the field of superconducting radio-frequency accelerators, producing cavities with record-high quality factor Q0 and Bardeen-Cooper-Schrieffer surface resistance that decreases with increasing radio-frequency field. Recent theoretical work has offered a promising explanation for this so-called "anti-Q-slope," but the link between the decreasing surface resistance and the shortened electron mean free path of doped cavities has remained elusive. In this work, we investigate this link, finding that the magnitude of this decrease varies directly with the mean free path: shorter mean free paths correspond to stronger anti-Q-slopes. We draw a theoretical connection between the mean free path and the overheating of the quasiparticles, which leads to the reduction of the anti-Q-slope towards the normal Q-slope of long-mean-free-path cavities. We also investigate the sensitivity of the residual resistance to trapped magnetic flux, a property that is greatly enhanced for doped cavities, and calculate an optimal doping regime for a given amount of trapped flux.

  6. Mean free path of a suddenly created fast electron moving in a degenerate electron gas

    NASA Astrophysics Data System (ADS)

    Nagy, I.; Echenique, P. M.

    2012-03-01

    A lower bound on the mean free path (l) of a swift electron moving in a degenerate electron gas is calculated by implementing a standard theoretical framework for the collision rate, 1/τ, with a scattering amplitude characterized by the matrix element of a hole-screened interaction potential taken between plane-wave states. The instantaneous hole around a system's electron is considered at the Hartree-Fock level for the ground-state wave function of the degenerate electron gas. The real transitions in the many-body system are considered by following Galitskii's treatment on an almost perfect Fermi gas of neutral atomic constituents. The analytical results show minima both in τ and l, and they appear at (E/EF)≃4.6 and (E/EF)≃2.5, respectively, where E is the kinetic energy of the fast electron and EF is the Fermi energy of the host. Comparison with mean free path data obtained recently for Cu is made and a reasonable agreement is found.

  7. Spin-resolved inelastic mean free path of slow electrons in Fe.

    PubMed

    Zdyb, R; Bauer, E

    2013-07-10

    The spin-dependent reflectivity of slow electrons from ultrathin Fe films on W(110) has been measured with spin polarized low energy electron microscopy. From the amplitude of the quantum size oscillations observed in the reflectivity curves the spin-dependent inelastic mean free path (IMFP) of electrons in Fe has been determined in the energy range from 5 to 16 eV above the vacuum level. The resulting IMFP values for the spin-up electrons are clearly larger than those for the spin-down electrons and the difference between the two values decreases with increasing electron energy in agreement with theoretical predictions.

  8. Extended Mermin Method for Calculating the Electron Inelastic Mean Free Path

    NASA Astrophysics Data System (ADS)

    Da, B.; Shinotsuka, H.; Yoshikawa, H.; Ding, Z. J.; Tanuma, S.

    2014-08-01

    We propose an improved method for calculating electron inelastic mean free paths (IMFPs) in solids from experimental energy-loss functions based on the Mermin dielectric function. The "extended Mermin" method employs a nonlimited number of Mermin oscillators and allows negative oscillators to take into account not only electronic transitions, as is common in the traditional approaches, but also infrared transitions and inner shell electron excitations. The use of only Mermin oscillators naturally preserves two important sum rules when extending to infinite momentum transfer. Excellent agreement is found between calculated IMFPs for Cu and experimental measurements from elastic peak electron spectroscopy. Notably improved fits to the IMFPs derived from analyses of x-ray absorption fine structure measurements for Cu and Mo illustrate the importance of the contribution of infrared transitions in IMFP calculations at low energies.

  9. Electron inelastic mean free path theory and density functional theory resolving discrepancies for low-energy electrons in copper.

    PubMed

    Chantler, C T; Bourke, J D

    2014-02-06

    We develop the many-pole dielectric theory of UV plasmon interactions and electron energy losses, and couple our advances with recent developments of Kohn-Sham density functional theory to address observed discrepancies between high-precision measurements and tabulated data for electron inelastic mean free paths (IMFPs). Recent publications have demonstrated that a five standard error difference exists between longstanding theoretical calculations and measurements of electron IMFPs for elemental solids at energies below 120 eV, a critical region for analysis of electron energy loss spectroscopy (EELS), X-ray absorption spectroscopy (XAS), and related technologies. Our implementation of improved optical loss spectra and a physical treatment of second-order excitation lifetimes resolves this problem in copper for the first time for energies in excess of 80 eV and substantially improves agreement for lower energy electrons.

  10. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    SciTech Connect

    Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  11. Photoionization cross sections, electron-impact inverse mean free paths, and stopping powers for each subshell of silvera)

    NASA Astrophysics Data System (ADS)

    Lin, D. L.; Strickland, D. J.

    1980-03-01

    Using the Herman-Skillman potentials and bound wave functions for each subshell of silver, we have computed the continuum wave functions, and subshell-by-subshell photoionization cross sections with photoelectron energies up to 10 keV. Applying a relationship between photoionization and electron impact ionization, we have obtained inverse mean free paths and stopping powers, again by subshell, for electrons penetrating through silver. The maximum electron energy considered is 100 keV. For the total photoionization cross section, comparison of our work with experiment shows excellent agreement for photon energies down to 100 eV, below which solid-state effects should be included. Theoretical total inverse mean free paths, being strongly dominated by contributions from 4d electrons, are in good agreement with data around 1 keV, but about a factor of 2 larger at energies below 100eV. Our stopping power is in good agreement with other theoretical work above 400 eV and approaches the relativistic Bethe formula above 10 keV. Range is also computed and is in good agreement with other theoretical work.

  12. Electron mean free path and conduction-band density-of-states in solid methane as determined from low-energy electron transmission experiments

    NASA Astrophysics Data System (ADS)

    Jay-Gerin, J.-P.; Plenkiewicz, B.; Plenkiewicz, P.; Perluzzo, G.; Sanche, L.

    1985-09-01

    Recently, Plenkiewicz et al. developed a theoretical model for analyzing the current I t transmitted by a thin dielectric film as a function of incident electron energy E. The purpose of this paper is to apply this model to the analysis of recent I t( E) results for solid methane. The analysis permits the determination of both the electron mean free path as a function of energy and the electronic conduction-band density-of-states in the quasi-elastic scattering region. The differences between our results and Kunz's solid methane band structure calculations are also discussed.

  13. Comment on Observation of a Linear Mean-Free-Path Dependence of the Electron-Phonon Scattering Rate in Thick AuPd Films

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; Sergeev, A. V.

    1998-01-01

    Recent paper has raised again a question about the electron-phonon (EP) relaxation rate in impure metals. From weak localization (WL) measurements the authors have found that the dephasing rate in AuPd disordered films follows the T(sup 2)el-law (el is the mean free path).

  14. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    NASA Astrophysics Data System (ADS)

    Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.

    2017-01-01

    Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo

  15. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples.

  16. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law

    PubMed Central

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027

  17. A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20-10000 eV.

    PubMed

    Tan, Zhenyu; Xia, Yueyuan; Liu, Xiangdong; Zhao, Mingwen; Zhang, Liming

    2009-04-01

    A new calculation of the stopping powers (SP) and inelastic mean free paths (IMFP) for electrons in toluene at energies below 10 keV has been presented. The calculation is based on the dielectric model and on an empirical evaluation approach of optical energy loss function (OELF). The reliability for the evaluated OELFs of several hydrocarbons with available experimental optical data has been systematically checked. For toluene, using the empirical OELF, the evaluated mean ionization potential, is compared with that given by Bragg's rule, and the calculated SP at 10 keV is also compared with the Bethe-Bloch prediction. The present results for SP and IMFP provide an alternative basic data for the study on the energy deposition of low-energy electrons transport through toluene, and also show that the method used in this work may be a good one for evaluating the SP and IMFP for hydrocarbons.

  18. Calculations of stopping powers and inelastic mean free paths for 20 eV-20 keV electrons in 11 types of human tissue.

    PubMed

    Tan, Zhenyu; Liu, Wei

    2013-12-01

    Systematic calculations are performed for determining the stopping powers (SP) and inelastic mean free paths (IMFP) for 20 eV-20 keV electrons in 11 types of human tissue. The calculations are based on a dielectric model, including the Born-Ochkur exchange correction. The optical energy loss functions (OELF) are empirically evaluated, because of the lack of available experimental optical data for the 11 tissues under consideration. The evaluated OELFs are examined by the f-sum rule expected from the dielectric response theory, and by calculation of the mean excitation energy. The calculated SPs are compared with those for PMMA (polymethylmethacrylate, a tissue equivalent material) and liquid water. The SP and IMFP data presented here are the results for the 11 human tissues over the energy range of 20 eV-20 keV, and are of importance in radiotherapy planning and for studies of various radiation effects on human tissues.

  19. Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20-20,000 eV.

    PubMed

    Tan, Zhenyu; Xia, Yueyuan

    2012-01-01

    Systematic calculations of the stopping powers (SP) and inelastic mean free paths (IMFP) for 20-20,000eV electrons in a group of 10 important scintillators have been carried out. The calculations are based on the dielectric model including the Born-Ochkur exchange correction and the optical energy loss functions (OELFs) are empirically evaluated because of the lack of available experimental optical data for the scintillators under consideration. The evaluated OELFs are examined by both the f-sum rule and the calculation of mean ionization potential. The SP and IMFP data presented here are the first results for the 10 scintillators over the energy range of 20-20,000eV, and are of key importance for the investigation of liquid scintillation counting.

  20. First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs

    NASA Astrophysics Data System (ADS)

    Liu, Te-Huan; Zhou, Jiawei; Liao, Bolin; Singh, David J.; Chen, Gang

    2017-02-01

    We present a first-principles framework to investigate the electron scattering channels and transport properties for polar materials by combining the exact solution of the linearized electron-phonon (e-ph) Boltzmann transport equation in its integral-differential form associated with the e-ph coupling matrices obtained from the polar Wannier interpolation scheme. No ad hoc parameter is required throughout this calculation, and GaAs, a well-studied polar material, is used as an example to demonstrate this method. In this work, the long-range and short-range contributions as well as the intravalley and intervalley transitions in the e-ph interactions (EPIs) have been quantitatively addressed. Promoted by such mode-by-mode analysis, we find that in GaAs, the piezoelectric scattering is comparable to deformation-potential scattering for electron scatterings by acoustic phonons in EPI even at room temperature, and it makes a significant contribution to mobility. Furthermore, we achieved good agreement with experimental data for the mobility, and we identified that electrons with mean free paths between 130 and 210 nm provide the dominant contribution to the electron transport at 300 K. Such information provides a deeper understanding of the electron transport in GaAs, and the presented framework can be readily applied to other polar materials.

  1. Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20-20,000 eV.

    PubMed

    Tan, Zhenyu; Xia, Yueyuan; Zhao, Mingwen; Liu, Xiangdong

    2006-07-01

    Systematic calculations of stopping power (SPs) and inelastic mean free path (IMFP) values for 20-20,000 eV electrons in a group of 15 amino acids and a simple protein have been performed. The calculations are based on the dielectric response model and take into account the exchange effect between the incident electron and target electrons. The optical energy-loss functions for the 15 investigated amino acids and the protein are evaluated by using an empirical approach, because of the lack of experimental optical data. For all the considered materials, the calculated mean ionization potentials are in good agreement with those given by Bragg's rule, and the evaluated SP values at 20 keV converge well to the Bethe-Bloch predictions. The data shown represent the first results of SP and IMFP, for these 15 amino acids and the protein in the energy range below 20 keV, and might be useful for studies of various radiation effects in these materials. In addition, the average energy deposited by inelastic scattering of the electrons on this group of 15 amino acids, on the protein, on Formvar and on DNA, respectively, has been estimated for energies below 20 keV. The dependences of the average energy deposition on the electron energy are given. These results are important for any detailed studies of radiation-induced inactivation of proteins and the DNA.

  2. Computational methods for long mean free path problems

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew Jason

    This document describes work being done on particle transport in long mean free path environments. Two non statistical computational models are developed based on the method of propagators, which can have significant advantages in accuracy and efficiency over other methods. The first model has been developed primarily for charged particle transport and the second primarily for neutral particle transport. Both models are intended for application to transport in complex geometry using irregular meshes. The transport model for charged particles was inspired by the notion of obtaining a simulation that could handle complex geometry and resolve the bulk and sheath characteristics of a discharge, in a reasonable amount of computation time. The charged particle transport model has been applied in a self- consistent manner to the ion motion in a low density inductively coupled discharge. The electrons were assumed to have a Boltzmann density distribution for the computation of the electric field. This work assumes cylindrical geometry and focuses on charge exchange collisions as the primary ion collisional effect that takes place in the discharge. The results are compared to fluid simulations. The neutral transport model was constructed to solve the steady state Boltzmann equation on 3-D arbitrary irregular meshes. The neutral transport model was developed with the intent of investigating gas glow on the scale of micro-electrical-mechanical systems (MEMS), and is meant for tracking multiple species. The advantage of these methods is that the step size is determined by the mean free path of the particles rather than the mesh employed in the simulation.

  3. Inelastic interaction mean free path of negative pions in tungsten

    NASA Technical Reports Server (NTRS)

    Cheshire, D. L.; Huggett, R. W.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.; Orth, C. D.

    1975-01-01

    The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm.

  4. Neutrino mean free paths in cold symmetric nuclear matter

    SciTech Connect

    Cowell, S.; Pandharipande, V.R.

    2004-09-01

    The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.

  5. Finite temperature inelastic mean free path and quasiparticle lifetime in graphene

    NASA Astrophysics Data System (ADS)

    Li, Qiuzi; Das Sarma, S.

    2013-02-01

    We adopt the GW and random phase approximations to study finite temperature effects on the inelastic mean free path and quasiparticle lifetime by directly calculating the imaginary part of the finite temperature self-energy induced by electron-electron interaction in extrinsic and intrinsic graphene. In particular, we provide the density-dependent leading order temperature correction to the inelastic scattering rate for both single-layer and double-layer graphene systems. We find that the inelastic mean free path is strongly influenced by finite-temperature effects. We present the similarity and the difference between graphene with linear chiral band dispersion and conventional two-dimensional electron systems with parabolic band dispersion. We also compare the calculated finite temperature inelastic scattering length with the elastic scattering length due to Coulomb disorder and comment on the prospects for quantum interference effects showing up in low-density graphene transport. We also carry out inelastic scattering calculation for electron-phonon interaction, which by itself gives rather long carrier mean free paths and lifetimes since the deformation potential coupling is weak in graphene, and therefore electron-phonon interaction contributes significantly to the inelastic scattering only at relatively high temperatures.

  6. Linear mean free path and quadratic temperature dependence of electron-phonon scattering rate in V{sub 82}Al{sub 18-x}Fe{sub x} alloys at low temperature

    SciTech Connect

    Jana, R. N.; Sinha, S.; Meikap, A. K.

    2015-05-15

    We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V{sub 82}Al{sub 18-x}Fe{sub x} alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δρ(T)∝−ρ{sub 0}{sup 5/2}√(T), which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ{sub 0}{sup −1}∝l{sub e}, where l{sub e} is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τ{sub e−ph}{sup −1}∝T{sup 2}l{sub e}. This anomalous behavior of τ{sub e−ph}{sup −1} cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.

  7. Measuring the scattering mean free path of Rayleigh waves on a volcano from spatial phase decoherence

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Larose, Eric; Margerin, Ludovic; Rossetto, Vincent

    2014-04-01

    We analyse the statistics of phase fluctuations of seismic signals obtained from a temporary small aperture array deployed on a volcano in the French Auvergne. We demonstrate that the phase field satisfies Circular Gaussian statistics. We then determine the scattering mean free path of Rayleigh waves from the spatial phase decoherence. This phenomenon, observed for diffuse wavefields, is found to yield a good approximation of the scattering mean free path. Contrary to the amplitude, spatial phase decoherence is free from absorption effects and provides direct access to the scattering mean free path.

  8. Mean free paths of energetic particles at very large heliodistances (Pioneer 11 at 20 AU)

    NASA Technical Reports Server (NTRS)

    Moussas, X.; Quenby, J. J.; Theodossiou-Ekaterinidi, Z.; Valdes-Galicia, J. F.; Drillia, A. G.; Roulias, D.; Smith, E. J.

    1992-01-01

    The parallel mean free path and the diffusion coefficient parallel to the magnetic field line are derived from magnetic field data at 20 AU to characterize heliospheric modulation and energetic-particle/magnetic-field interaction. The computational method of Moussas et al. (1975, 1982) is employed, and the values of the parallel mean free path are shown to be significantly larger than the values estimated in studies of up to 6 AU. The distance dependence of the parallel diffusion mean free path is found to follow a power law, and the diffusion coefficient dependence upon energy is determined by a constant mean free path and the velocity of the particle. The contribution of the diffusion coefficient perpendicular to the magnetic field is expected to dominate the radial diffusion coefficient of cosmic rays, although the contribution of the diffusion parallel to the field is important with respect to the small-scale structure of intensity gradients.

  9. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    SciTech Connect

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  10. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

    PubMed Central

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-01-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032

  11. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures.

    PubMed

    Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  12. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE PAGES

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  13. Reconstruction of an effective magnon mean free path distribution from spin Seebeck measurements in thin films

    NASA Astrophysics Data System (ADS)

    Chavez-Angel, E.; Zarate, R. A.; Fuentes, S.; Guo, E. J.; Kläui, M.; Jakob, G.

    2017-01-01

    A thorough understanding of the mean-free-path (MFP) distribution of the energy carriers is crucial to engineer and tune the transport properties of materials. In this context, a significant body of work has investigated the phonon and electron MFP distribution, however, similar studies of the magnon MFP distribution have not been carried out so far. In this work, we used thickness-dependence measurements of the longitudinal spin Seebeck (LSSE) effect of yttrium iron garnet films to reconstruct the cumulative distribution of a SSE related effective magnon MFP. By using the experimental data reported by (Guo et al 2016 Phys. Rev. X 6 031012), we adapted the phonon MFP reconstruction algorithm proposed by (Minnich 2012 Phys. Rev. Lett. 109 205901) and apply it to magnons. The reconstruction showed that magnons with different MFP contribute in different manner to the total LSSE and the effective magnon MFP distribution spreads far beyond their typical averaged values.

  14. An electrical probe of the phonon mean-free path spectrum

    NASA Astrophysics Data System (ADS)

    Ramu, Ashok T.; Halaszynski, Nicole I.; Peters, Jonathan D.; Meinhart, Carl D.; Bowers, John E.

    2016-09-01

    Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought.

  15. Triggering waves in nonlinear lattices: Quest for anharmonic phonons and corresponding mean-free paths

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liu, Junjie; Hänggi, Peter; Wu, Changqin; Li, Baowen

    2014-11-01

    Guided by a stylized experiment we develop a self-consistent anharmonic phonon concept for nonlinear lattices which allows for explicit "visualization." The idea uses a small external driving force which excites the front particles in a nonlinear lattice slab and subsequently one monitors the excited wave evolution using molecular dynamics simulations. This allows for a simultaneous, direct determination of the existence of the phonon mean-free path with its corresponding anharmonic phonon wave number as a function of temperature. The concept for the mean-free path is very distinct from known prior approaches: the latter evaluate the mean-free path only indirectly, via using both a scale for for the phonon relaxation time and yet another one for the phonon velocity. Notably, the concept here is neither limited to small lattice nonlinearities nor to small frequencies. The scheme is tested for three strongly nonlinear lattices of timely current interest which either exhibit normal or anomalous heat transport.

  16. An electrical probe of the phonon mean-free path spectrum

    PubMed Central

    Ramu, Ashok T.; Halaszynski, Nicole I.; Peters, Jonathan D.; Meinhart, Carl D.; Bowers, John E.

    2016-01-01

    Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought. PMID:27677238

  17. Controllable transport mean free path of light in xerogel matrixes embedded with polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Bret, Boris P.; Couto, Nuno J.; Amaro, Mariana; Nunes-Pereira, Eduardo J.; Belsley, Michael

    2009-04-01

    Xerogel matrices, made by sol-gel techniques, are embedded with polystyrene spheres to promote multiple scattering of light. Varying the concentration of the spheres inside the matrix allows one to adjust the transport mean free path of light inside the material. Coherent backscattering measurements show that a range of transport mean free paths from 90 to 600 nm is easily achieved. The determination of the matrix refractive index permits a direct comparison to multiple scattering and Mie theory. Such tunable diffusive sol-gel derived samples can be further optimized as random laser materials.

  18. Wave-particle interaction in parallel transport of long mean-free-path plasmas along open field magnetic field lines

    NASA Astrophysics Data System (ADS)

    Guo, Zehua; Tang, Xianzhu

    2012-03-01

    A tokamak fusion reactor dumps a large amount of heat and particle flux to the divertor through the scrape-off plasma (SOL). Situation exists either by necessity or through deliberate design that the SOL plasma attains long mean-free-path along large segments of the open field lines. The rapid parallel streaming of electrons requires a large parallel electric field to maintain ambipolarity. The confining effect of the parallel electric field on electrons leads to a trap/passing boundary in the velocity space for electrons. In the normal situation where the upstream electron source populates both the trapped and passing region, a mechanism must exist to produce a flux across the electron trap/passing boundary. In a short mean-free-path plasma, this is provided by collisions. For long mean-free-path plasmas, wave-particle interaction is the primary candidate for detrapping the electrons. Here we present simulation results and a theoretical analysis using a model distribution function of trapped electrons. The dominating electromagnetic plasma instability and the associated collisionless scattering, that produces both particle and energy fluxes across the electron trap/passing boundary in velocity space, are discussed.

  19. Neutrino mean free path in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Yuan Yefei; Liu Yuxin

    2009-05-15

    The {delta}-isobar degrees of freedom are taken into account in neutron star matter and their contributions to neutrino mean free paths are evaluated. It is found that the charged-current contributions are comparable to those from the neutral-current reactions. The contributions of {delta}-isobars may be a leading sector of neutrino opacities in neutron star matter, but the effects of the process in which the baryon transforms between nucleon and {delta} are unimportant.

  20. Illustrative numerical comparisons between phonon mean free paths and phonon thermal conductivity

    NASA Astrophysics Data System (ADS)

    MacDonald, W. M.; Anderson, A. C.

    Measurements of thermal conductivity are often used as an interrogative technique to learn about phonon scattering processes in solids. In general the relationship between thermal conductivity lambda and a phonon mean free path 1 is complex and it is therefore necessary to make some simplifying assumptions in order to make this relationship tractable. These assumptions may lead to erroneous conclusions, many of which have appeared in the published literature. An intuitive insight is provided to the relationship between lambda and 1.

  1. Scattering mean free path in continuous complex media: beyond the Helmholtz equation.

    PubMed

    Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud

    2015-09-01

    We present theoretical calculations of the ensemble-averaged (or effective or coherent) wave field propagating in a heterogeneous medium considered as one realization of a random process. In the literature, it is usually assumed that heterogeneity can be accounted for by a random scalar function of the space coordinates, termed the potential. Physically, this amounts to replacing the constant wave speed in Helmholtz' equation by a space-dependent speed. In the case of acoustic waves, we show that this approach leads to incorrect results for the scattering mean free path, no matter how weak the fluctuations. The detailed calculation of the coherent wave field must take into account both a scalar and an operator part in the random potential. When both terms have identical amplitudes, the correct value for the scattering mean free paths is shown to be more than 4 times smaller (13/3, precisely) in the low-frequency limit, whatever the shape of the correlation function. Based on the diagrammatic approach of multiple scattering, theoretical results are obtained for the self-energy and mean free path within Bourret's and on-shell approximations. They are confirmed by numerical experiments.

  2. Scattering mean free path in continuous complex media: Beyond the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud

    2015-09-01

    We present theoretical calculations of the ensemble-averaged (or effective or coherent) wave field propagating in a heterogeneous medium considered as one realization of a random process. In the literature, it is usually assumed that heterogeneity can be accounted for by a random scalar function of the space coordinates, termed the potential. Physically, this amounts to replacing the constant wave speed in Helmholtz' equation by a space-dependent speed. In the case of acoustic waves, we show that this approach leads to incorrect results for the scattering mean free path, no matter how weak the fluctuations. The detailed calculation of the coherent wave field must take into account both a scalar and an operator part in the random potential. When both terms have identical amplitudes, the correct value for the scattering mean free paths is shown to be more than 4 times smaller (13/3, precisely) in the low-frequency limit, whatever the shape of the correlation function. Based on the diagrammatic approach of multiple scattering, theoretical results are obtained for the self-energy and mean free path within Bourret's and on-shell approximations. They are confirmed by numerical experiments.

  3. Estimation of the Mean Free Path using Cross-Correlations in the Seismic Coda

    NASA Astrophysics Data System (ADS)

    Clerc, V.; Roux, P.; Campillo, M.; Maynard, R.; Chaput, J. A.

    2014-12-01

    We present recent results concerning the extraction of Green's functions from coda waves. Campillo and Paul 2003 used earthquakes codas and found that the causal and anticausal parts of the cross-correlation are asymmetrical for some stations, depending on the earthquake source region. The lapse time in the coda window is a key parameter to understand causal to anticausal amplitude ratio. We show that this ratio result from the competition between the source signature (non-symmetric cross-correlations when the distribution of sources is non-isotropic around the receivers) and the scattering processes which tend to restore the time symmetry of the correlations. The theoretical analysis is derived from wave propagation theory for single scattering and multiple scattering as initiated by Roux 2005. We propose to use the temporal evolution of cross-correlation function amplitude in coda waves to estimate the value of the mean free path in the propagation medium. The equipartition of the energy is clearly observed in the numerical simulations conducted in a two-dimensional acoustic medium. The cross-correlations between the distinct time windows in synthetic coda records at two points are measured for a set of events for which we obtain a good estimate of the medium mean free path. We perform the same analysis on a set of icequakes recorded at Mount Erebus. The correlations averaged over sources and time exhibit a temporal evolution that obeys to convergence patterns similar to those observed in numerical studies.

  4. Thermal conductivity of graphene and graphite: collective excitations and mean free paths.

    PubMed

    Fugallo, Giorgia; Cepellotti, Andrea; Paulatto, Lorenzo; Lazzeri, Michele; Marzari, Nicola; Mauri, Francesco

    2014-11-12

    We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phonon collision rates obtained from density functional perturbation theory. For graphite, the results are found to be in excellent agreement with experiments; notably, the thermal conductivity is 1 order of magnitude larger than what found by solving the Boltzmann equation in the single mode approximation, commonly used to describe heat transport. For graphene, we point out that a meaningful value of intrinsic thermal conductivity at room temperature can be obtained only for sample sizes of the order of 1 mm, something not considered previously. This unusual requirement is because collective phonon excitations, and not single phonons, are the main heat carriers in these materials; these excitations are characterized by mean free paths of the order of hundreds of micrometers. As a result, even Fourier's law becomes questionable in typical sample sizes, because its statistical nature makes it applicable only in the thermodynamic limit to systems larger than a few mean free paths. Finally, we discuss the effects of isotopic disorder, strain, and chemical functionalization on thermal performance. Only chemical functionalization is found to play an important role, decreasing the conductivity by a factor of 2 in hydrogenated graphene, and by 1 order of magnitude in fluorogenated graphene.

  5. Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Chiloyan, Vazrik; Zeng, Lingping; Huberman, Samuel; Maznev, Alexei A.; Nelson, Keith A.; Chen, Gang

    2016-04-01

    The phonon Boltzmann transport equation (BTE) is a powerful tool for studying nondiffusive thermal transport. Here, we develop a new universal variational approach to solving the BTE that enables extraction of phonon mean free path (MFP) distributions from experiments exploring nondiffusive transport. By utilizing the known Fourier heat conduction solution as a trial function, we present a direct approach to calculating the effective thermal conductivity from the BTE. We demonstrate this technique on the transient thermal grating experiment, which is a useful tool for studying nondiffusive thermal transport and probing the MFP distribution of materials. We obtain a closed form expression for a suppression function that is materials dependent, successfully addressing the nonuniversality of the suppression function used in the past, while providing a general approach to studying thermal properties in the nondiffusive regime.

  6. Inelastic-interaction mean free path of negative pions in tungsten

    NASA Technical Reports Server (NTRS)

    Cheshire, D. L.; Huggett, R. W.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.; Orth, C. D.

    1975-01-01

    The inelastic-interaction mean free paths (lambda) of 5-, 10-, and 15-GeV/c pions have been measured by determining the distribution of first-interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi-squared distribution is employed to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy has been observed. In tungsten, lambda for pions is 206 (plus or minus 6) g/sq cm.

  7. Phonon mean free path of graphite along the c-axis

    SciTech Connect

    Wei, Zhiyong; Yang, Juekuan; Chen, Weiyu; Bi, Kedong; Chen, Yunfei

    2014-02-24

    Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000 nm contribute ∼80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100 nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.

  8. Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures

    PubMed Central

    Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J.

    2015-01-01

    Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977

  9. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    SciTech Connect

    He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn

    2012-03-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  10. Reduction of phonon mean free path: From low-temperature physics to room temperature applications in thermoelectricity

    NASA Astrophysics Data System (ADS)

    Bourgeois, Olivier; Tainoff, Dimitri; Tavakoli, Adib; Liu, Yanqing; Blanc, Christophe; Boukhari, Mustapha; Barski, André; Hadji, Emmanuel

    2016-12-01

    It has been proposed for a long time now that the reduction of the thermal conductivity by reducing the phonon mean free path is one of the best way to improve the current performance of thermoelectrics. By measuring the thermal conductance and thermal conductivity of nanowires and thin films, we show different ways of increasing the phonon scattering from low-temperature up to room-temperature experiments. It is shown that playing with the geometry (constriction, periodic structures, nano-inclusions), from the ballistic to the diffusive limit, the phonon thermal transport can be severely altered in single crystalline semiconducting structures; the phonon mean free path is in consequence reduced. The diverse implications on thermoelectric properties will be eventually discussed.

  11. Mean-free-paths in concert and chamber music halls and the correct method for calibrating dodecahedral sound sources.

    PubMed

    Beranek, Leo L; Nishihara, Noriko

    2014-01-01

    The Eyring/Sabine equations assume that in a large irregular room a sound wave travels in straight lines from one surface to another, that the surfaces have an average sound absorption coefficient αav, and that the mean-free-path between reflections is 4 V/Stot where V is the volume of the room and Stot is the total area of all of its surfaces. No account is taken of diffusivity of the surfaces. The 4 V/Stot relation was originally based on experimental determinations made by Knudsen (Architectural Acoustics, 1932, pp. 132-141). This paper sets out to test the 4 V/Stot relation experimentally for a wide variety of unoccupied concert and chamber music halls with seating capacities from 200 to 5000, using the measured sound strengths Gmid and reverberation times RT60,mid. Computer simulations of the sound fields for nine of these rooms (of varying shapes) were also made to determine the mean-free-paths by that method. The study shows that 4 V/Stot is an acceptable relation for mean-free-paths in the Sabine/Eyring equations except for halls of unusual shape. Also demonstrated is the proper method for calibrating the dodecahedral sound source used for measuring the sound strength G, i.e., the reverberation chamber method.

  12. Modification of the parallel scattering mean free path of cosmic rays in the presence of adiabatic focusing

    SciTech Connect

    He, H.-Q.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-09-10

    The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standard forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck and Wibberenz, Bieber and Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.

  13. Derivation of dielectric function and inelastic mean free path from photoelectron energy-loss spectra of amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    David, Denis; Godet, Christian

    2016-11-01

    Photoelectron Energy Loss Spectroscopy (PEELS) is a highly valuable non destructive tool in applied surface science because it gives access to both chemical composition and electronic properties of surfaces, including the near-surface dielectric function. An algorithm is proposed for real materials to make full use of experimental X-ray photoelectron spectra (XPS). To illustrate the capabilities and limitations of this algorithm, the near-surface dielectric function ε(ℏω) of a wide range of amorphous carbon (a-C) thin films is derived from energy losses measured in XPS, using a dielectric response theory which relates ε(ℏω) and the bulk plasmon (BP) loss distribution. Self-consistent separation of bulk vs surface plasmon excitations, deconvolution of multiple BP losses and evaluation of Bethe-Born sensitivity factors for bulk and surface loss distributions are crucial to obtain several material parameters: (1) energy loss function for BP excitation, (2) dielectric function of the near-surface material (3-5 nm depth sensitivity), (3) inelastic mean free path, λP (E0), for plasmon excitation, (4) surface excitation parameter, (5) effective number NEFF of valence electrons participating in the plasma oscillation. This photoelectron energy loss spectra analysis has been applied to a-C and a-C:H films grown by physical and chemical methods with a wide range of (sp3/sp2 + sp3) hybridization, optical gap and average plasmon energy values. Different methods are assessed to accurately remove the photoemission peak tail at low loss energy (0-10 eV) due to many-body interactions during the photo-ionization process. The σ + π plasmon excitation represents the main energy-loss channel in a-C; as the C atom density decreases, λP (970 eV) increases from 1.22 nm to 1.6 nm, assuming a cutoff plasmon wavenumber given by a free electron model. The π-π* and σ-σ* transitions observed in the retrieved dielectric function are discussed as a function of the average (sp3/sp

  14. Violation of the isotropic mean free path approximation for overdoped La2-xSrxCuO4

    NASA Astrophysics Data System (ADS)

    Narduzzo, A.; Albert, G.; French, M. M. J.; Mangkorntong, N.; Nohara, M.; Takagi, H.; Hussey, N. E.

    2008-06-01

    Magnetotransport measurements on the overdoped cuprate La1.7Sr0.3CuO4 are fitted using the Ong construction [Phys. Rev. B 43, 193 (1991)] and band parameters inferred from angle-resolved photoemission. Within a band picture, the low-temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean free path ℓ . This violation of the isotropic- ℓ approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We conjecture that both band anisotropy and anisotropy in the elastic-scattering channel strongly renormalize the Hall coefficient in La2-xSrxCuO4 across the entire overdoped regime.

  15. Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sääskilahti, K.; Oksanen, J.; Tulkki, J.; McGaughey, A. J. H.; Volz, S.

    2016-12-01

    The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon are predicted from the length dependence of the spectrally decomposed heat current (SDHC) obtained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency)- 2 scaling of the room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating localized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement is found with independent molecular dynamics simulations. Weighting the SDHC by the frequency-dependent quantum occupation function provides a simple and convenient method to account for quantum statistics and provides reasonable agreement with the experimentally-measured trend and magnitude.

  16. ANOMALOUS REACTION MEAN FREE PATHS OF NUCLEAR PROJECTILE FRAGMENTS FROM HEAVY ION COLLISIONS AT 2 AGeV

    SciTech Connect

    Friedlander, E.M.; Gimpel, R.W.; Heckman, H.H.; Karant, Y.J.; Judek, B.; Ganssauge, E.

    1982-08-01

    We present in detail the description and the analysis of two independent experiments using Bevalac beams of {sup 16}O and {sup 56}Fe. From their results it is concluded that the reaction mean free paths of relativistic projectile fragments, 3 {<=} Z {<=} 26, are shorter for a few centimeters after emission than at large distances where they are compatible with values predicted from experiments on beam nuclei. The probability that this effect is due to a statistical fluctuation is <10{sup -3}. The effect is enhanced in later generations of fragments, the correlation between successive generations suggesting a kind of "memory" for the anomaly. Various systematic and spurious effects as well as conventional explanations are discussed mainly on the basis of direct experimental observations internal to our data, and found not to explain our results. The data can be interpreted by the relatively rare occurrence of anomalous fragments that interact with an unexpectedly large cross section. The statistical methods used in the analysis of the observations are fully described.

  17. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths

    NASA Astrophysics Data System (ADS)

    Liu, Honglin; Xu, Xiao; Lai, Puxiang; Wang, Lihong V.

    2011-08-01

    In turbid media such as biological tissue, multiple scattering hinders direct light focusing at depths beyond one transport mean free path. As a solution to this problem, time-reversed ultrasonically encoded (TRUE) optical focusing is proposed based on ultrasonic encoding of diffused laser light and optical time reversal. In TRUE focusing, a laser beam of long coherence length illuminates a turbid medium, where the incident light undergoes multiple scattering and part of it gets ultrasonically encoded within the ultrasonic focal zone. A conjugated wavefront of the ultrasonically encoded light is then generated by a phase conjugate mirror outside the medium, which traces back the trajectories of the ultrasonically encoded diffused light and converges light to the ultrasonic focal zone. Here, we report the latest experimental improvement in TRUE optical focusing that increases its penetration in tissue-mimicking media from a thickness of 3.75 to 7.00 mm. We also demonstrate that the TRUE focus depends on the focal diameter of the ultrasonic transducer.

  18. A DIRECT APPROACH FOR DETERMINING THE PERPENDICULAR MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES IN A TURBULENT AND SPATIALLY VARYING MAGNETIC FIELD

    SciTech Connect

    He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn

    2012-12-15

    A direct approach for explicitly determining the perpendicular mean free path of solar energetic particles (SEPs) influenced by parallel diffusion and composite dynamical turbulence in a spatially varying magnetic field is presented. As theoretical applications of the direct approach, we investigate the inherent relations between the perpendicular mean free path and various parameters concerning physical properties of SEPs as well as those of interplanetary conditions such as the solar wind and the turbulent magnetic field. Comparisons of the perpendicular mean free paths with and without adiabatic focusing are also presented. The direct method shows encouraging agreement with spacecraft observations, suggesting it is a reliable and useful tool for use in theoretical investigations and space weather forecasting.

  19. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration

    NASA Astrophysics Data System (ADS)

    Feng, Tianli; Ruan, Xiulin; Ye, Zhenqiang; Cao, Bingyang

    2015-06-01

    The spectral phonon properties in defected graphene have been unclear due to the lack of advanced techniques for predicting the phonon-defect scattering rate without fitting parameters. Taking advantage of the extended phonon normal mode analysis, we obtained the spectral phonon relaxation time and mean free path (MFP) in defected graphene and studied the impacts of three common types of defects: Stone-Thrower-Wales (STW) defect, double vacancy (DV), and monovacancy (MV). The phonon-STW defect scattering rate is found to have no significant frequency dependence, and as a result, the relative contribution of long-wavelength phonons sharply decreases. In contrast, the phonon scattering by DVs or MVs exhibits a frequency dependence of τp-d -1˜ω1.1 -1.3 except for a few long-wavelength phonons, revisiting the traditionally used ˜ω4 dependence. We note that although MV-defected graphene has the lowest thermal conductivity as compared to the other two defected graphene samples at the same defect concentration, it has a portion of phonons with the longest MFP. The contribution from the long-MFP and long-wavelength phonons does not decrease much as the vacancy concentration increases. STW defect and MV block more out-of-plane modes than in-plane modes, while DV has less bias for which mode to block. As the MV concentration increases from 0 to 1.1%, the relative contribution from out-of-plane modes decreases from 30% to 18%, while that of the transverse acoustic mode remains at around 30%. These findings of spectral phonon properties can provide more insight than the effective properties and benefit the prospective phononic engineering.

  20. Observation of anomalous reaction mean free paths of nuclear-projectile fragments in research emulsion from 2 A GeV heavy-ion collisions

    SciTech Connect

    Karant, Y.J.

    1981-07-01

    From an analysis of 1460 projectile fragment collisions in nuclear research emulsion exposed to 2.1 A GeV /sup 16/O and 1.9 A GeV /sup 56/Fe at the Bevalac, evidence is presented for the existence of an anomalously short interaction mean free path of projectile fragments for the first several cm after emission. The result is significant to beyond the 3 standard deviation confidence level.

  1. Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon

    DOE PAGES

    Jiang, Puqing; Lindsay, Lucas R.; Koh, Yee Kan

    2016-06-30

    Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. In this study, we investigate the contribution of low-energy phonons with ℓ>0.8 μm by accurately measuring the cross-plane thermal conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1≤ hf ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our Λcrossmore » measurements. We find from our Λcross measurements that phonons with ℓ>0.8 μm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K while phonons with ℓ>3 μm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m-1 K-1 (47%) and 717 W m-1 K-1 (76%), respectively. Using a relaxation time approximation (RTA) model, we demonstrate that macroscopic damping (e.g., Akhieser s damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m-1 K-1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Finally, our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.« less

  2. Investigation of the full spectrum phonon lifetime in thin silicon films from the bulk spectral phonon mean-free-path distribution by using kinetic theory

    NASA Astrophysics Data System (ADS)

    Jin, Jae Sik

    2017-03-01

    Phonon dynamics in nanostructures is critically important to thermoelectric and optoelectronic devices because it determines the transport and other crucial properties. However, accurately evaluating the phonon lifetimes is extremely difficult. This study reports on the development of a new semi-empirical method to estimate the full-spectrum phonon lifetimes in thin silicon films at room temperature based on the experimental data on the phonon mean-free-path spectrum in bulk silicon and a phenomenological consideration of phonon transport in thin films. The bulk of this work describes the theory and the validation; then, we discuss the trend of the phonon lifetimes in thin silicon films when their thicknesses decrease.

  3. Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon

    SciTech Connect

    Jiang, Puqing; Lindsay, Lucas R.; Koh, Yee Kan

    2016-06-30

    Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (ℓ), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% between different first-principles calculations. In this study, we investigate the contribution of low-energy phonons with ℓ>0.8 μm by accurately measuring the cross-plane thermal conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thicknesses 1≤ hf ≤ 10 μm and temperatures 100 ≤ T ≤ 300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our Λcross measurements. We find from our Λcross measurements that phonons with ℓ>0.8 μm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K while phonons with ℓ>3 μm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower than first-principles predictions of 68 W m-1 K-1 (47%) and 717 W m-1 K-1 (76%), respectively. Using a relaxation time approximation (RTA) model, we demonstrate that macroscopic damping (e.g., Akhieser s damping) eliminates the contribution of phonons with mean-free-paths >20 μm at 300 K, which contributes 15 W m-1 K-1 (10%) to calculated heat conduction in Si. Thus, we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed differences between our measurements and calculations. Finally, our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.

  4. A Generalized Two-component Model of Solar Wind Turbulence and ab initio Diffusion Mean-Free Paths and Drift Lengthscales of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiengarten, T.; Oughton, S.; Engelbrecht, N. E.; Fichtner, H.; Kleimann, J.; Scherer, K.

    2016-12-01

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  5. The Relation between Relaxation Time, Mean Free Path, Collision Time and Drift Velocity--Pitfalls and a Proposal for an Approach Illustrating the Essentials

    ERIC Educational Resources Information Center

    Jakoby, Bernhard

    2009-01-01

    The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…

  6. Mean Free Path in Soccer and Gases

    ERIC Educational Resources Information Center

    Luzuriaga, J.

    2010-01-01

    The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could…

  7. A DRIFT ORDERED SHORT MEAN-FREE DESCRIPTION FOR PARTIALLY IONIZED MAGNETIZED PLASMA

    SciTech Connect

    SIMAKOV, ANDERI N.

    2007-02-08

    Effects of neutral particles, most prominently the associated heat flux and viscosity, can be very important or even dominant at the edge of a tokamak and so must be self-consistently accounted for in a description of magnetized tokamak edge plasma. To the best of our knowledge, this has only been done so far for short mean-free path plasma under MHD-like Braginskii's orderings i.e. assuming that species velocities are on the order of the ion thermal speed. Since plasma flows in modern tokamaks are usually slow compared with the ion thermal speed (at least in the absence of strong external momentum sources) it is more appropriate to use drift orderings in which the plasma flow velocity is instead comparable with the diamagnetic heat flow divided by pressure. Employing drift orderings and evaluating species distribution functions through second order in the small gyroradius and mean-free path expansion parameters allows accounting for the important effects of heat fluxes on species momentum transport (viscosities), which are missing from the large flow ordered treatments. In this work we consider short mean-free path plasma consisting of electrons and single species of singly-charged ions and neutrals. We neglect neutral-neutral and elastic electron-neutral collisions and approximate the neutral-ion charge-exchange cross-section with a constant. We employ drift orderings to evaluate ion, neutral, and electron heat fluxes, viscosity tensors, and momentum and energy exchange terms and formulate a self-consistent system of electron, ion, and neutral fluid equations, thereby generalizing the drift-ordered treatment of fully ionized plasma.

  8. Electronic Stroke CarePath: Integrated Approach to Stroke Care.

    PubMed

    Katzan, Irene L; Fan, Youran; Speck, Micheal; Morton, Johanna; Fromwiller, Lauren; Urchek, John; Uchino, Ken; Griffith, Sandra D; Modic, Michael

    2015-10-01

    We describe the development, implementation, and outcomes of the first 2 years of the Electronic Stroke CarePath, an initiative developed for management of ischemic stroke patients in an effort to improve efficiency and quality of care for patients. The CarePath consists of care pathways for ischemic stroke that are integrated within the electronic health record. Patient-reported outcomes are collected using an external software platform. Documentation tools, order sets, and clinical decision support were designed to improve efficiency, optimize process measure adherence, and produce clinical data as a byproduct of care that are available for future analyses. Inpatient mortality and length of stay were compared before and after CarePath implementation in ischemic stroke patients after adjustment for case-mix. Postdischarge functional outcomes of patients with ischemic stroke were compared between the first 3 months of rollout and remainder of the study period. From January 2011 to December 2012, there were 1106 patients with ischemic stroke on the CarePath. There was a decline in inpatient mortality in patients with ischemic stroke, but not in control patients with intracerebral or subarachnoid hemorrhage. Completion rate of patient-reported questionnaires at postdischarge stroke follow-up was 72.9%. There was a trend toward improved functional outcomes at follow-up with CarePath implementation. Implementation of the Electronic Stroke CarePath is feasible and may be associated with a benefit in multiple different outcomes after ischemic stroke. This approach may be an important strategy for optimizing stroke care in the future.

  9. Path integral approach to electron scattering in classical electromagnetic potential

    NASA Astrophysics Data System (ADS)

    Chuang, Xu; Feng, Feng; Ying-Jun, Li

    2016-05-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374360, 11405266, and 11505285) and the National Basic Research Program of China (Grant No. 2013CBA01504).

  10. Comparison Between Path Lengths Traveled by Solar Electrons and Ions in Ground-Level Enhancement Events

    NASA Technical Reports Server (NTRS)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios

    2013-01-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  11. Phase-space averaging and natural branching of nuclear paths for nonadiabatic electron wavepacket dynamics.

    PubMed

    Yonehara, Takehiro; Takatsuka, Kazuo

    2008-10-07

    We propose a simple and tractable method to treat quantum electron wavepacket dynamics that nonadiabatically couples with "classical" nuclear motions in mixed quantum-classical representation. The electron wavepacket is propagated inducing electronic-state mixing along our proposed paths. It has been shown in our previous studies that classical force working on nuclei in a nonadiabatic region is represented in a matrix form (called the force matrix), and the solutions of the Hamilton canonical equations of motion for nuclei based on this force matrix give rise to a cascade of infinitely many branching paths when solved simultaneously with electronic-state mixing. As a tractable approximation to these rigorous solutions, we here devise a method to provide much simpler nonadiabatic paths: (i) extract one or a few number of representative paths by taking an average over the paths in phase space (not averaging over the forces) that should be otherwise undergo the fine branching. (ii) After the nonadiabatic coupling becomes sufficiently small, let these paths naturally branch by running them with their own individual eigenforces (the eigenvalues of the force matrix). Since the eigenforces coincide with the forces of adiabatic potential energy surfaces in the limit of zero nonadiabatic coupling, these branching paths eventually run on one of possible adiabatic potential energy surfaces, converging to a classical path (Born-Oppenheimer path). The paths thus created are theoretically satisfactory in that they realize the coherent mixing of electronic states in the manner of quantum entanglement and yet eventually become consistent with the Born-Oppenheimer classical trajectories. We test the present method numerically with the use of two- and three-state systems that are extracted from ab initio calculations for the excited states of LiH molecule.

  12. Engineering of an alternative electron transfer path in photosystem II

    PubMed Central

    Larom, Shirley; Salama, Faris; Schuster, Gadi; Adir, Noam

    2010-01-01

    The initial steps of oxygenic photosynthetic electron transfer occur within photosystem II, an intricate pigment/protein transmembrane complex. Light-driven electron transfer occurs within a multistep pathway that is efficiently insulated from competing electron transfer pathways. The heart of the electron transfer system, composed of six linearly coupled redox active cofactors that enable electron transfer from water to the secondary quinone acceptor QB, is mainly embedded within two proteins called D1 and D2. We have identified a site in silico, poised in the vicinity of the QA intermediate quinone acceptor, which could serve as a potential binding site for redox active proteins. Here we show that modification of Lysine 238 of the D1 protein to glutamic acid (Glu) in the cyanobacterium Synechocystis sp. PCC 6803, results in a strain that grows photautotrophically. The Glu thylakoid membranes are able to perform light-dependent reduction of exogenous cytochrome c with water as the electron donor. Cytochrome c photoreduction by the Glu mutant was also shown to significantly protect the D1 protein from photodamage when isolated thylakoid membranes were illuminated. We have therefore engineered a novel electron transfer pathway from water to a soluble protein electron carrier without harming the normal function of photosystem II. PMID:20457933

  13. Interrelation of Resistivity and Inelastic Electron-Phonon Scattering Rate in Impure NbC Films

    NASA Technical Reports Server (NTRS)

    Il'in, K. S.; Ptitsina, N. G.; Sergeev, A. V.; Goltsman, G. N.; Gershenzon, E. M.; Karasik, B. S.; Pechen, E. V.; Krasnosvobodtsev, S. I.

    1998-01-01

    A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2-13 nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities.

  14. Nonequilibrium heterogeneous catalysis in the long mean-free-path regime.

    PubMed

    Sheehan, D P

    2013-09-01

    It is shown that a standard principle of traditional catalysis-that a catalyst does not alter the final thermodynamic equilibrium of a reaction-can fail in low-pressure, heterogeneous gas-surface reactions. Kinetic theory for this epicatalysis is presented, and two well-documented experimental examples are detailed: surface ionized plasmas and hydrogen dissociation on refractory metals. This phenomenon should be observable over a wide range of temperatures and pressures, and for a broad spectrum of heterogeneous reactions. By transcending some constraints of equilibrium thermodynamics, epicatalysis might provide additional control parameters and synthetic routes for reactions, and enable product streams boosted in thermochemical energy or desirable species.

  15. GPU Acceleration of Mean Free Path Based Kernel Density Estimators for Monte Carlo Neutronics Simulations

    SciTech Connect

    Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.; Brown, Forrest B.

    2015-11-19

    Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.

  16. Assurance of Complex Electronics. What Path Do We Take?

    NASA Technical Reports Server (NTRS)

    Plastow, Richard A.

    2007-01-01

    Many of the methods used to develop software bare a close resemblance to Complex Electronics (CE) development. CE are now programmed to perform tasks that were previously handled in software, such as communication protocols. For instance, Field Programmable Gate Arrays (FPGAs) can have over a million logic gates while system-on-chip (SOC) devices can combine a microprocessor, input and output channels, and sometimes an FPGA for programmability. With this increased intricacy, the possibility of "software-like" bugs such as incorrect design, logic, and unexpected interactions within the logic is great. Since CE devices are obscuring the hardware/software boundary, we propose that mature software methodologies may be utilized with slight modifications to develop these devices. By using standardized S/W Engineering methods such as checklists, missing requirements and "bugs" can be detected earlier in the development cycle, thus creating a development process for CE that will be easily maintained and configurable based on the device used.

  17. Simulations of one- and two-electron systems by Bead-Fourier path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.

    2005-07-01

    The Bead-Fourier path integral molecular dynamics technique introduced earlier [S. D. Ivanov, A. P. Lyubartsev, and A. Laaksonen, Phys. Rev. E 67 066710 (2003)] is applied for simulation of electrons in the simplest molecules: molecular hydrogen, helium atom, and their ions. Special attention is paid to the correct description of electrons in the core region of a nucleus. In an attempt to smooth the Coulomb potential at small distances, a recipe is suggested. The simulation results are in excellent agreement with the analytical solution for the "harmonic helium atom", as well as with the vibrational potential of the H2 molecule and He ionization energies. It is demonstrated, that the Bead-Fourier path integral molecular dynamics technique is able to provide the accuracy required for the description of electron structure and chemical bonds in cases when electron exchange effects need not be taken into account.

  18. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  19. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  20. Path integral investigation of the electronic spectra of He-tetracene clusters

    NASA Astrophysics Data System (ADS)

    Whitley, Heather D.; Whaley, K. Birgitta

    2008-03-01

    Planar aromatic molecules (PAMs) are nanoscale precursors to bulk graphite. Their electronic spectra have been extensively studied in ^4He nanodroplets and show a number of unusual spectroscopic features. We have conducted many-body quantum simulations of tetracene in He nanodroplets to probe the 1.1 cm-1 spectral splitting of the electronic origin seen for this PAM. We calculate spectral shifts and He density profiles via path integral quantum Monte Carlo simulations. The spectral splitting is examined using a path integral correlation function approach to determine the lowest-lying vibrational excitation frequencies for small HeN-tetracene clusters. Simulations in the S1 state of tetracene utilize a semi-empirical perturbative interaction potential for a He atom with a PAM. Results for the splitting of the electronic origin and the spectral shifts are in good agreement with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Measurement of the transmission phase of an electron in a quantum two-path interferometer

    SciTech Connect

    Takada, S. Watanabe, K.; Yamamoto, M.; Bäuerle, C.; Ludwig, A.; Wieck, A. D.; Tarucha, S.

    2015-08-10

    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.

  2. Motion of Electrons in Electric and Magnetic Fields: Introductory Laboratory and Computer Studies.

    ERIC Educational Resources Information Center

    Huggins, Elisha R.; Lelek, Jeffrey J.

    1979-01-01

    Describes a series of laboratory experiments and computer simulations of the motion of electrons in electric and magnetic fields. These experiments, which involve an inexpensive student-built electron gun, study the electron mean free path, magnetic focusing, and other aspects. (Author/HM)

  3. Path integral study of the correlated electronic states of Na4-Na6

    NASA Astrophysics Data System (ADS)

    Hall, Randall W.

    1990-12-01

    Feynman's path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4-Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born-Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results show that the electrons are localized, rather than delocalized as previous workers have concluded from examination of the single-particle orbitals. We find that the best picture of these clusters is that they contain three-center, two-electron bonds.

  4. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature.

    PubMed

    Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael

    2015-11-28

    The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density.

  5. Restricted Path-Integral Molecular Dynamics for Simulating the Correlated Electron Plasma in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Kapila, Vivek; Deymier, Pierre; Runge, Keith

    2011-10-01

    Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces. Quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values. The molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method. Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as

  6. Path Integral Monte Carlo finite-temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2003-03-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We apply the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in a single and double quantum dots. With this approach we evaluate the electronic distributions and correlations, and finite temperature effects on those. Temperature increase broadens the one-electron distribution as expected. This effect is smaller for correlated electrons than for single ones. The simulated one and two electron distributions of a single and two coupled quantum dots are also compared to those from experiments and other theoretical (0 K) methods [3]. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. This and other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  7. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.

    PubMed

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.

  8. Iron-Oxide Minerals Affect Extracellular Electron-Transfer Paths of Geobacter spp

    PubMed Central

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment. PMID:23363619

  9. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide

    PubMed Central

    Yang, Ding-Shyue; Baum, Peter; Zewail, Ahmed H.

    2016-01-01

    Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions. PMID:27376103

  10. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature.

    PubMed

    Filinov, V S; Fortov, V E; Bonitz, M; Moldabekov, Zh

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

  11. Turn on of new electronic paths in Fe-SiO2 granular thin film

    NASA Astrophysics Data System (ADS)

    Boff, M. A. S.; Hinrichs, R.; Canto, B.; Mesquita, F.; Baptista, D. L.; Fraga, G. L. F.; Pereira, L. G.

    2014-10-01

    The electrical properties of Fe-SiO2 have been studied in the low-field regime (eΔV ≪ kBT), varying the injected current and the bias potential. Superparamagnetism and a resistance drop of 4400 Ω (for a voltage variation of 15 V) were observed at room temperature. This resistance drop increased at lower temperatures. The electrical properties were described with the "Mott variable range hopping" model explaining the behavior of the electrical resistance and the electronic localization length as due to the activation of new electronic paths between more distant grains. This non-ohmic resistance at room temperature can be important for properties dependent of electrical current (magnetoresistance, Hall effect, and magnetoimpedance).

  12. Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species

    PubMed Central

    Kato, Souichiro

    2017-01-01

    Geobacter species are capable of utilizing solid-state compounds, including anodic electrodes, as electron acceptors of respiration via extracellular electron transfer (EET) and have attracted considerable attention for their crucial role as biocatalysts of bioelectrochemical systems (BES’s). Recent studies disclosed that anode potentials affect power output and anodic microbial communities, including selection of dominant Geobacter species, in various BES’s. However, the details in current-generating properties and responses to anode potentials have been investigated only for a model species, namely Geobacter sulfurreducens. In this study, the effects of anode potentials on the current generation and the EET paths were investigated by cultivating six Geobacter species with different anode potentials, followed by electrochemical analyses. The electrochemical cultivation demonstrated that the G. metallireducens clade species (G. sulfurreducens and G. metallireducens) constantly generate high current densities at a wide range of anode potentials (≥−0.3 or −0.2 V vs. Ag/AgCl), while the subsurface clades species (G. daltonii, G. bemidjensis, G. chapellei, and G. pelophilus) generate a relatively large current only at limited potential regions (−0.1 to −0.3 V vs. Ag/AgCl). The linear sweep voltammetry analyses indicated that the G. metallireducens clade species utilize only one EET path irrespective of the anode potentials, while the subsurface clades species utilize multiple EET paths, which can be optimized depending on the anode potentials. These results clearly demonstrate that the response features to anode potentials are divergent among species (or clades) of Geobacter. PMID:28067820

  13. An adiabatic linearized path integral approach for quantum time correlation functions: electronic transport in metal-molten salt solutions.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Montemayor, Daniel; Bonella, Sara; Coker, David F

    2005-04-14

    We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.

  14. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. II. Transport across impurities

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Lothar; Ankerhold, Joachim

    2005-05-01

    Electron transfer (ET) across molecular chains including an impurity is studied based on a recently improved real-time path-integral Monte Carlo (PIMC) approach [L. Mühlbacher, J. Ankerhold, and C. Escher, J. Chem. Phys. 121 12696 (2004)]. The reduced electronic dynamics is studied for various bridge lengths and defect site energies. By determining intersite hopping rates from PIMC simulations up to moderate times, the relaxation process in the extreme long-time limit is captured within a sequential transfer model. The total transfer rate is extracted and shown to be enhanced for certain defect site energies. Superexchange turns out to be relevant for extreme gap energies only and then gives rise to different dynamical signatures for high- and low-lying defects. Further, it is revealed that the entire bridge compound approaches a steady state on a much shorter time scale than that related to the total transfer. This allows for a simplified description of ET along donor-bridge-acceptor systems in the long-time range.

  15. Control of long electron quantum paths in high-order harmonic generation by phase-stabilized light pulses

    SciTech Connect

    Sansone, G.; Benedetti, E.; Caumes, J.-P.; Stagira, S.; Vozzi, C.; De Silvestri, S.; Nisoli, M.

    2006-05-15

    In this work we report on the first experimental demonstration of selection of the long electron quantum paths in the process of high-order harmonic generation by phase-stabilized multiple-cycle light pulses. A complete experimental investigation of the role of intensity and carrier-envelope phase of the driving pulses on the spectral characteristics of the long quantum paths is performed. Simulations based on the nonadiabatic saddle-point method and on a complete nonadiabatic three-dimensional model reproduce the main features of the experimental results. The use of phase-stabilized driving pulses allows one to control, on an attosecond temporal scale, the spectral and temporal characteristics associated with the electron quantum paths involved in the harmonic generation process.

  16. Theory of probing attosecond electron wave packets via two-path interference of angle-resolved photoelectrons

    SciTech Connect

    Choi, N. N.; Jiang, T. F.; Morishita, T.; Lee, M.-H.; Lin, C. D.

    2010-07-15

    We study theoretically the electron wave packet generated by an attosecond pulse train (APT) which is probed with a time-delayed infrared (IR) laser pulse. The APT creates an excited state and a continuum electron wave packet. By ionizing the excited state with an IR, a delayed new continuum electron wave packet is created. The interference of the wave packets from the two paths, as reflected in angle-resolved photoelectron spectra, is analyzed analytically. Using the analytical expressions, we examine the possibility of retrieving information on the electron wave packet generated by the APT.

  17. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    PubMed

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  18. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.

    PubMed

    Han, Sang Eon

    2016-02-08

    Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials.

  19. Stationary Conditions of the Electron Density Along the Reaction Path: Connection with Conceptual DFT and Information Theory.

    PubMed

    Gonzalez, Carlos A; Squitieri, Emilio; Franco, Hector J; Rincon, Luis C

    2017-01-26

    The Kohn-Sham density functional theory (DFT) formalism has been used to investigate the influence of the stationary behavior of the electron density (ρ(r⃗;s)) along a minimum energy path on the corresponding stationary conditions observed in the total potential energy of the reactive system, information theory measures (Shannon information entropy and Onicescu information energy), and chemical reactivity indexes (the chemical hardness). The theoretical treatment presented in this work, combined with DFT calculations on 3 different test reactions: Ḣ' + H2, Ḣ' + CH4 and H(-) + CH4, suggest that for any reactive system, properties that can be cast as a functional of the electron density, must exhibit stationary points along the IRC path modulated by the corresponding stationary behavior of the electron density.

  20. Coherent control of the electron quantum paths for the generation of single ultrashort atto second laser pulse

    SciTech Connect

    Liu, I-Lin; Li, Peng-Cheng; Chu, Shih-I

    2011-09-15

    We report a mechanism and a realizable approach for the coherent control of the generation of an isolated and ultrashort atto second (as) laser pulse from atoms by optimizing the two-color laser fields with a proper time delay. Optimizing the laser pulse shape allows the control of the electron quantum paths and enables high-harmonic generation from the long- and short-trajectory electrons to be enhanced and split near the cutoff region. In addition, it delays the long-trajectory electron emission time and allows the production of extremely short atto second pulses in a relatively narrow time duration. As a case study, we show that an isolated 30 as pulse with a bandwidth of 127 eV can be generated directly from the contribution of long-trajectory electrons alone.

  1. Simulation of the Correlated Electron Plasma in the Warm Dense Matter Regime by Restricted Path-Integral Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kapila, Vivek; Deymier, Pierre; Runge, Keith

    2012-02-01

    Warm dense matter (WDM) can be characterized by electron temperatures of a few eV and densities an order of magnitude or more beyond ambient. This regime currently lacks any adequate highly developed class of simulation methods. Recent developments in orbital-free Density Functional Theory (ofDFT) aim to provide such a simulation method, however, little benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces, while, quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values and a molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method.

  2. Temperature Dependence of the Kinetic Energy of the Correlated Electron Plasma by Restricted Path-Integral Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Runge, Keith; Deymier, Pierre

    2013-03-01

    Recent progress in orbital-free Density Functional Theory (OF-DFT), particularly with regard to temperature dependent functionals, has promise for the simulation of warm dense matter (WDM) systems. WDM includes systems with densities of an order of magnitude beyond ambient or more and temperatures measured in kilokelvin. A challenge for the development of temperature dependent OF-DFT functionals is the lack of benchmark information with temperature and pressure dependence on simple models under WDM conditions. We present an approach to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Electrons are described as harmonic necklaces within the discrete path integral representation while quantum exchange takes the form of cross linking between electron necklaces. A molecular dynamics algorithm is used to sample phase space and the fermion sign problem is addressed by restricting the density matrix to positive values. The temperature dependence of kinetic energies for the strongly coupled electron plasma is presented for a number of Wigner-Seitz radii in terms of a fourth order Sommerfeld expansion. Supported by US DoE Grant DE-SC0002139

  3. Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator

    NASA Astrophysics Data System (ADS)

    Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L.; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C.; Shreiber, Daniel; Ivill, Mathew P.; Fridkin, Vladimir M.; Spanier, Jonathan E.

    2017-03-01

    We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO3 (001 ) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.

  4. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    USGS Publications Warehouse

    Tesoriero, A.J.; Liebscher, H.; Cox, S.E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive

  5. Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results

    ERIC Educational Resources Information Center

    Beau, Mathieu

    2012-01-01

    In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…

  6. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Viktor F.; Shao, Tao; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Wang, Ruixue; Sorokin, Dmitry A.; Yan, Ping

    2015-03-01

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05-0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08-0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%-50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  7. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  8. On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer

    SciTech Connect

    Zhang, Zi-Hui; Ji, Yun; Liu, Wei; Tiam Tan, Swee; Kyaw, Zabu; Ju, Zhengang; Zhang, Xueliang; Hasanov, Namig; Lu, Shunpeng; Zhang, Yiping; Zhu, Binbin; Wei Sun, Xiao E-mail: volkan@stanfordalumni.org; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-02-17

    In this work, the origin of electron blocking effect of n-type Al{sub 0.25}Ga{sub 0.75}N electron blocking layer (EBL) for c+ InGaN/GaN light-emitting diodes has been investigated through dual-wavelength emission method. It is found that the strong polarization induced electric field within the n-EBL reduces the thermal velocity and correspondingly the mean free path of the hot electrons. As a result, the electron capture efficiency of the multiple quantum wells is enhanced, which significantly reduces the electron overflow from the active region and increases the radiative recombination rate with holes.

  9. Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas

    NASA Technical Reports Server (NTRS)

    Levinson, Amir; Eichler, David

    1992-01-01

    Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.

  10. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: The case in CdTe

    DOE PAGES

    Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; ...

    2014-10-30

    Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect statemore » is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.« less

  11. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: The case in CdTe

    SciTech Connect

    Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai

    2014-10-30

    Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect state is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.

  12. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. I. Sequential hopping and super exchange

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Lothar; Ankerhold, Joachim; Escher, Charlotte

    2004-12-01

    An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high-lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for long bridges. The approach can be extended to electronic systems with more complicated topologies including impurities and in presence of external time-dependent forces.

  13. Magnetic turbulent electron transport in a reversed field pinch

    SciTech Connect

    Schoenberg, K.; Moses, R.

    1990-01-01

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs.

  14. Free-path distribution and Knudsen-layer modeling for gaseous flows in the transition regime

    NASA Astrophysics Data System (ADS)

    To, Quy Dong; Léonard, Céline; Lauriat, Guy

    2015-02-01

    In this paper, we use molecular dynamics (MD) simulations to study the mean free path distribution of nonequilibrium gases in micronanochannel and to model the Knudsen (Kn) layer effect. It is found that the mean free path is significantly reduced near the wall and rather insensitive to flow types (Poiseuille or Couette). The Cercignani relation between the mean free path and the viscosity is adopted to capture the velocity behavior of the special zone in the framework of the extended Navier-Stokes (NS) equations. MD simulations of flows are carried out at different Kn numbers. Results are then compared with the theoretical model.

  15. Order-N electron transport calculation from ballistic to diffusive regimes by time-dependent wave-packet diffusion method -Application to carbon nanotubes-

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2010-03-01

    Using a time-dependent wave-packet diffusion method[1], which treats the quantum electron transport problems of huge systems of up to 80 million atoms, combining with molecular dynamics simulations, we study the electron transport of carbon nanotubes from ballistic to diffusive regimes from an atomistic viewpoint in the unified way. We can simulate the effects of electron- phonon couplings on the transport properties of the nanotubes at various temperatures. We confirm that the obtained mean free path and mobility agree well with recent experimental observations and theoretical calculations, and succeed in evaluating the resistance in entire regime between ballistic and diffusive transport limits. We clarify the resistance is remarkably different from that at the two transport limits, when the length of nanotubes is comparable to the mean free path. [1]H.Ishii, N.Kobayashi, and K.Hirose, Appl.Phys.Express 1(2008) 123002.

  16. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  17. Observations of the HF induced total electron content variations along the paths of the gps signals above the sura facility

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Ryabov, Alexander; Kotik, Dmitry; Sergeev, Evgeny; Shindin, Alexey

    Recently several authors reported experimental evidences total electron content (TEC) varia-tions along the paths of GPS satellite signals caused by the HF heating of the F2 region of the ionosphere [1,2]. Here we present results on TEC variations caused by the vertical pumping of the ionosphere by radiation of the SURA facility at a frequency 4.3 MHz. In our experiments we used differ-ent pump radiation schedules, like [30 s "on", 30 s "off"]; [2 minutes "on" 2 minutes "off"]; [2 min "on" 4 minutes "off"]; and continuous pumping. The most reliable evidence of the pump-induced TEC variations was obtained on August 27, 2009. During the experiment the continuous pumping of the ionosphere with effective radiated power 60 MW started approxi-mately 5 minutes prior to Ionospheric Penetration Point (IPP) for GPS G21 signal entrance to the heated volume of the ionosphere (at (-3) dB level of the heater beam). The TEC variations were observed during whole IPP pass across the heated volume (from 17:45 to 18:22 UT, LT DST=UT+4 hours) despite of the switch of the pumping schedule from continuous one to [2 minutes "on", 4 minutes "off"] after the IPP passed the culmination point (18:05 UT, 6° to the South from zenith above the SURA facility). The TEC variations achieved a value 0.3 TECU (1 TEC Unit = 1.0 · 1016 el/m2 ), which was approximately 0.7% of the average measured TEC. Estimations performed with the use of ionograms, IRI 2007 model and existing knowledge of the large scale pump induced irregularities in the F2 region of the ionosphere have shown that the TEC variations observed can be attributed to the irregularities with the scales ˜ 5-15 km along the IPP track (i.e. across the pump beam) and 100 km along the geomagnetic field. The work is supported by RFBR grants 10-02-00642, 09-02-01150 and Federal Special-purpose Program "Scientific and pedagogical personnel of innovative Russia". [1] G. Milikh, A.Gurevich, K. Zybin, J. Secan, Geophys. Res. Lett., 2008, 35, L

  18. Viscous magnetoresistance of correlated electron liquids

    NASA Astrophysics Data System (ADS)

    Levchenko, Alex; Xie, Hong-Yi; Andreev, A. V.

    2017-03-01

    We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth disorder potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor structures with strongly correlated carriers when the mean free path due to electron-electron collisions is sufficiently short. The dominant contribution to magnetoresistance arises from the modification of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic at weak fields. Although the resistivity is governed by both the viscosity and thermal conductivity of the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables the extraction of viscosity of the electron liquid from magnetotransport measurements.

  19. Effect of temperature on the formation of electronic bound states in an expanded bcc hydrogenoid crystal: A restricted path-integral molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Dong; Deymier, P. A.

    2004-04-01

    We have used the restricted path-integral molecular dynamics method to study the correlated electronic structure of a half-filled expanded three-dimensional hydrogenoid body-centered cubic lattice at finite temperatures. Starting from a paramagnetic metallic state with electron gas character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their center for the motion of gyration located on ionic positions. The region of coexistence of bound and unbound states in the temperature-density plane is reminiscent of that associated with a first-order transition. At constant temperature, the number of bound electrons increases monotonously with decreasing density. The width of the region of coexistence narrows with increasing temperature.

  20. Free-standing graphene by scanning transmission electron microscopy.

    PubMed

    Song, F Q; Li, Z Y; Wang, Z W; He, L; Han, M; Wang, G H

    2010-11-01

    Free-standing graphene sheets have been imaged by scanning transmission electron microscopy (STEM). We show that the discrete numbers of graphene layers enable an accurate calibration of STEM intensity to be performed over an extended thickness and with single atomic layer sensitivity. We have applied this calibration to carbon nanoparticles with complex structures. This leads to the direct and accurate measurement of the electron mean free path. Here, we demonstrate potentials using graphene sheets as a novel mass standard in STEM-based mass spectrometry.

  1. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  2. Localized electron heating during magnetic reconnection in MAST

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Tanabe, H.; Watanabe, T. G.; Hayashi, Y.; Imazawa, R.; Inomoto, M.; Ono, Y.; Gryaznevich, M.; Scannell, R.; Michael, C.; The MAST Team

    2016-10-01

    Significant increase in the plasma temperature above 1 keV was measured during the kilogauss magnetic field reconnection of two merging toroidal plasmas under the high-guide field and collision-less conditions. The electron temperature was observed to peak significantly at the X-point inside the current sheet, indicating Joule heating caused by the toroidal electric field along the X-line. This peaked temperature increases significantly with the guide field, in agreement with the electron mean-free path calculation. The slow electron heating in the downstream suggests energy conversion from ions to electrons through ion-electron collisions in the bulk plasma as the second electron heating mechanism in the bulk plasma. The electron density profile clearly reveals the electron density pile-up / fast shock structures in the downstream of reconnection, suggesting energy conversion from ion flow energy to ion thermal energy as well as significant ion heating by reconnection outflow.

  3. Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Hoegy, W. R.

    1998-01-01

    Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.

  4. Path Finder

    SciTech Connect

    Rigdon, J. Brian; Smith, Marcus Daniel; Mulder, Samuel A

    2014-01-07

    PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

  5. Influence of emitted electrons transiting between surfaces on plasma-surface interaction

    SciTech Connect

    Campanell, Michael; Wang, Hongyue

    2013-09-02

    Emitted electrons are accelerated back into the plasma by the sheath. If their mean free path is large, they can propagate directly to another surface without suffering collisions. We analyze the effects of “transit” on plasma-surface interaction. When transit occurs, surfaces exchanging electrons are intricately coupled. All surfaces float more negatively than they would if the emission collisionally remixed with the bulk plasma. Asymmetries of the system drive a net “transit current” between the surfaces, which influences their potential difference. The larger the initial energy spread of the emitted electrons, the larger the potential difference.

  6. Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver

    NASA Technical Reports Server (NTRS)

    Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.

    1989-01-01

    Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.

  7. Electronic properties and electron-phonon interaction in complex, multicomponent alloys in application to high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Samolyuk, German; Daene, Markus; Stocks, George Malcolm; Caro, Jose Alfredo; Stoller, Roger

    2015-03-01

    High-entropy alloys (HEAs) have recently been developed as nontraditional alloy systems. They are composed of multiple elements at or near equiatomic ratios that form random solid solutions on simple underlying fcc or bcc lattices. In recent years HEAs have attracted significant attention due to their high strength, ductility and possible high radiation resistance. The complexity of the alloys results in very interesting electronic system behavior. Even in thermal equilibrium, disorder, especially extreme disorder, has important impacts on all electronic, atomic, and magnetic properties. In the current work we present results of first principle investigation of the electronic and magnetic properties of Ni-based multicomponent concentrated alloys using the coherent potential approximation (CPA). The influence of electronic structure modifications on the electron mean free path and values of electron-phonon coupling are calculated, together with preliminary results on similar quantities obtained by Time Dependent DFT. We discuss possible effects of tuning the mean free path and energy dissipation mechanisms to defect production and recombination in HEAs under irradiation.

  8. MetaPath: An Electronic Knowledge Base for Collating, Exchanging and Analyzing Case Studies of Xenobiotic Metabolism

    EPA Science Inventory

    A new MetaPath information system was developed through a collaborative effort between the Laboratory of Mathematical Chemistry (Bourgas, Bulgaria), EPA’s Office of Research and Development (NHEERL, MED, Duluth, MN and NERL, ERD, Athens, GA), and EPA’s Office of Chemical Safety a...

  9. A Didactic Proposed for Teaching the Concepts of Electrons and Light in Secondary School Using Feynman's Path Sum Method

    ERIC Educational Resources Information Center

    Fanaro, Maria de los Angeles; Arlego, Marcelo; Otero, Maria Rita

    2012-01-01

    This work comprises an investigation about basic Quantum Mechanics (QM) teaching in the high school. The organization of the concepts does not follow a historical line. The Path Integrals method of Feynman has been adopted as a Reference Conceptual Structure that is an alternative to the canonical formalism. We have designed a didactic sequence…

  10. Large electronic sputtering yield of nanodimensional Au thin films: Dominant role of thermal conductivity and electron phonon coupling factor

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Pannu, Compesh; Agarwal, Dinesh C.; Ojha, Sunil; Khan, Saif A.; Ghosh, Santanu; Avasthi, Devesh K.

    2017-03-01

    Detailed experiments and theoretical calculations on electronic sputtering of Au thin films (5-200 nm) on a quartz substrate are performed, revealing unusually large electronic sputtering, dependent on the thickness of the films. The dependence of electronic thermal conductivity (κe), electron-phonon coupling factor (g), and lattice thermal conductivity (κa) on the effective electron mean free path is taken into account in the thermal spike calculation for nanodimensional systems to elucidate the combined effect of the thickness and grain size on the electronic sputtering yield. The thermal spike simulation with refined parameters for nanodimensional systems gives a better explanation of the electronic sputtering process with a very good correlation between the experimental and theoretical yields than that of the thermal spike model with bulk parameters.

  11. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  12. Ionization Induced Instability in an Electron Collecting Sheath,

    DTIC Science & Technology

    1985-06-01

    shown to be equivalent to a mean free path for ionization by electrons "Xie < 6iiii ’ ( DS /aJ’ where DS is the sheath thickness and at is a- geometry...CLASSIFICATION UNCLASSIFOEO/UNLIMI1TEO - SAME AS RPT IDTIC USERS .UNCLASSIFIED 22a. ’JAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c CFF CE SyABCL Michael...anode does not emit, then we have the usual planar Child -Langmuir diode ( Child , 1911; Langmuir, 1913) where the separation DCL, potential drop V, and

  13. Evidence of Momentum Conservation at a Nonepitaxial Metal/Semiconductor Interface Using Ballistic Electron Emission Microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.

    1996-01-01

    Ballistic-Electron-Emission Microscopy (BEEM) spectroscopy has been performed on Au/Si(111) structures as a function of Au thickness and temperature. At 77 K a direct signature of parallel momentum conservation at the Au/Si interface is observed in the BEEM spectra. The variation in spectral shape with both Au thickness and temperature places restrictions on allowable values of inelastic and elastic mean-free paths in the metal, and also requires the presence of multiple electron passes within the Au layer. An independent indication of multiple reflections is directly observed in the attenuation of BEEM current with Au thickness.

  14. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.

    PubMed

    Gandi, Appala Naidu; Schwingenschlögl, Udo

    2016-05-18

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit.

  15. Proportionality between Doppler noise and integrated signal path electron density validated by differenced S-X range

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.

  16. Indium √(7)×√(3) on Si(111): A Nearly Free Electron Metal in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Rotenberg, Eli; Koh, H.; Rossnagel, K.; Yeom, H. W.; Schäfer, J.; Krenzer, B.; Rocha, M. P.; Kevan, S. D.

    2003-12-01

    We present measurements of the Fermi surface and underlying band structure of a single layer of indium on Si(111) with √(7)×√(3) periodicity. Electrons from both indium valence electrons and silicon dangling bonds contribute to a nearly free, two-dimensional metal on a pseudo-4-fold lattice, which is almost completely decoupled at the Fermi level from the underlying hexagonal silicon lattice. The mean free path inferred from our data is quite long, suggesting the system might be a suitable model for studying the ground state of two-dimensional metals.

  17. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke

    2014-01-01

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  18. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    SciTech Connect

    Guo, Hongxuan E-mail: msxu@zju.edu.cn; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng E-mail: msxu@zju.edu.cn; Fujita, Daisuke

    2014-01-20

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  19. Path Pascal

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.

    1983-01-01

    Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.

  20. Correlation of electron path lengths observed in the highly wound outer region of magnetic clouds with the slab fraction of magnetic turbulence in the dissipation range

    SciTech Connect

    Tan, Lun C.; Shao, Xi; Reames, Donald V.; Ng, Chee K.; Wang, Linghua

    2014-05-10

    Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts. The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.

  1. MoS2 : Choice Substrate for Accessing and Tuning the Electronic Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Pin; Li, Guohong; Watanabe, K.; Taniguchi, T.; Andrei, Eva Y.

    2014-10-01

    One of the enduring challenges in graphene research and applications is the extreme sensitivity of its charge carriers to external perturbations, especially those introduced by the substrate. The best available substrates to date, graphite and hexagonal boron nitride (h -BN ), still pose limitations: graphite being metallic does not allow gating, while both h -BN and graphite, having lattice structures closely matched to that of graphene, may cause significant band structure reconstruction. Here we show that the atomically smooth surface of exfoliated MoS2 provides access to the intrinsic electronic structure of graphene without these drawbacks. Using scanning tunneling microscopy and Landau-level (LL) spectroscopy in a device configuration that allows tuning of the carrier concentration, we find that graphene on MoS2 is ultraflat, producing long mean free paths, while avoiding band structure reconstruction. Importantly, the screening of the MoS2 substrate can be tuned by changing the position of the Fermi energy with relatively low gate voltages. We show that shifting the Fermi energy from the gap to the edge of the conduction band gives rise to enhanced screening and to a substantial increase in the mean free path and quasiparticle lifetime. MoS2 substrates thus provide unique opportunities to access the intrinsic electronic properties of graphene and to study in situ the effects of screening on electron-electron interactions and transport.

  2. A Deterministic Computational Procedure for Space Environment Electron Transport

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.

    2010-01-01

    A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.

  3. Neutron decay electrons after the solar flare of 1980 June 21

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Dröge, W.; Klecker, B.

    1996-06-01

    We have found evidence for fluxes of energetic electrons in interplanetary space on board the ISEE-3/ICE spacecraft which we interpret as the decay products of neutrons generated in a solar flare on 1980 June 21. The decay electrons arrived at the spacecraft shortly before the electrons from the flare and can be distinguished from the latter by their distinctive energy spectrum. The time profile of the decay electrons is in good agreement with the results from a simulation based on a scattering mean free path derived from a fit to the flare electron data. The comparison with simultaneously observed decay protons and a published direct measurement of high-energy neutrons places important constraints on the parent neutron spectrum.

  4. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  5. PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2016-06-01

    In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ˜1.5-2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.

  6. Electron transport in the solar wind -results from numerical simulations

    NASA Astrophysics Data System (ADS)

    Smith, Håkan; Marsch, Eckart; Helander, Per

    A conventional fluid approach is in general insufficient for a correct description of electron trans-port in weakly collisional plasmas such as the solar wind. The classical Spitzer-Hürm theory is a not valid when the Knudsen number (the mean free path divided by the length scale of tem-perature variation) is greater than ˜ 10-2 . Despite this, the heat transport from Spitzer-Hürm a theory is widely used in situations with relatively long mean free paths. For realistic Knud-sen numbers in the solar wind, the electron distribution function develops suprathermal tails, and the departure from a local Maxwellian can be significant at the energies which contribute the most to the heat flux moment. To accurately model heat transport a kinetic approach is therefore more adequate. Different techniques have been used previously, e.g. particle sim-ulations [Landi, 2003], spectral methods [Pierrard, 2001], the so-called 16 moment method [Lie-Svendsen, 2001], and approximation by kappa functions [Dorelli, 2003]. In the present study we solve the Fokker-Planck equation for electrons in one spatial dimension and two velocity dimensions. The distribution function is expanded in Laguerre polynomials in energy, and a finite difference scheme is used to solve the equation in the spatial dimension and the velocity pitch angle. The ion temperature and density profiles are assumed to be known, but the electric field is calculated self-consistently to guarantee quasi-neutrality. The kinetic equation is of a two-way diffusion type, for which the distribution of particles entering the computational domain in both ends of the spatial dimension must be specified, leaving the outgoing distributions to be calculated. The long mean free path of the suprathermal electrons has the effect that the details of the boundary conditions play an important role in determining the particle and heat fluxes as well as the electric potential drop across the domain. Dorelli, J. C., and J. D. Scudder, J. D

  7. Unsymmetrical hot electron heating in quasi-ballistic nanocontacts

    PubMed Central

    Tsutsui, Makusu; Kawai, Tomoji; Taniguchi, Masateru

    2012-01-01

    Electrons are allowed to pass through a single atom connected to two electrodes without being scattered as the characteristic size is much smaller than the inelastic mean free path. In this quasi-ballistic regime, it is difficult to predict where and how power dissipation occurs in such current-carrying atomic system. Here, we report direct assessment of electrical heating in a metallic nanocontact. We find asymmetric electrical heating effects in the essentially symmetric single-atom contact. We simultaneously identified the voltage polarity independent onset of the local heating by conducting the inelastic noise spectroscopy. As a result, we revealed significant heat dissipation by hot electrons transmitting ballistically through the junction that creates a hot spot at the current downstream. This technique can be used as a platform for studying heat dissipation and transport in atomic/molecular systems. PMID:22355731

  8. TOPICAL REVIEW: Electron dynamics in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Nogaret, Alain

    2010-06-01

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation.

  9. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  10. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  11. Nonadiabatic transition path sampling

    NASA Astrophysics Data System (ADS)

    Sherman, M. C.; Corcelli, S. A.

    2016-07-01

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.

  12. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: The effects of current-path patterns on magnetotransport in spatially-confined structures by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Chun; Sun, Hua; Li, Zhen-Ya

    2009-11-01

    Simulations are performed on clusters of finite size to study the effects of size and current-path structure on magnetotransport in spatially-confined samples. Magnetotransport networks are established and calculated based on fractal structures including Koch curves and percolation backbones extracted from regular lattices. The structure pattern of clusters is shown to play an important role in the magnetotransport behaviours by affecting the magnetoresistance fluctuations due to spin disorder in the systems of small size, which suggests the possibility of controlling the magnetotransport by the design of current-path configurations.

  13. The development of the July 1989 1 deg x 1 deg and 30' x 30' terrestrial mean free-air anomaly data bases

    NASA Technical Reports Server (NTRS)

    Kim, Jeong-Hee; Rapp, Richard H.

    1990-01-01

    In June 1986 a 1 x 1 deg/mean free-air anomaly data file containing 48955 anomalies was completed. In August 1986 a 30 x 30 min mean free-air anomaly file was defined containing 31787 values. For the past three years data has been collected to upgrade these mean anomaly files. The primary emphasis was the collection of data to be used for the estimation of 30 min means anomalies in land areas. The emphasis on land areas was due to the anticipated use of 30 min anomalies derived from satellite altimeter data in the ocean areas. There were 10 data sources in the August 1986 file. Twenty-eight sources were added based on the collection of both point and mean anomalies from a number of individuals and organizations. A preliminary 30 min file was constructed from the 38 data sources. This file was used to calculate 1 x 1 deg mean anomalies. This 1 x 1 deg file was merged with a 1 x 1 deg file which was a merger of the June 1986 file plus a 1 x 1 deg file made available by DMA Aerospace Center. Certain bad 30 min anomalies were identified and deleted from the preliminary 30 min file leading to the final 30 min file (the July 1989 30 min file) with 66990 anomalies and their accuracy. These anomalies were used to again compute 1 x 1 deg anomalies which were merged with the previous June 86 DMAAC data file. The final 1 x 1 deg mean anomaly file (the July 89 1 x 1 deg data base) contained 50793 anomalies and their accuracy. The anomaly data files were significantly improved over the prior data sets in the following geographic regions: Africa, Scandinavia, Canada, United States, Mexico, Central and South America. Substantial land areas remain where there is little or no available data.

  14. Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Wang, L.; Pawlowicz, L. M.; Lagowski, J.; Gatos, H. C.

    1986-01-01

    It is shown that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 sq cm/V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.

  15. Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs

    SciTech Connect

    Walukiewicz, W.; Wang, L.; Pawlowicz, L.M.; Lagowski, J.; Gatos, H.C.

    1986-05-01

    We show that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 cm/sup 2//V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.

  16. New constraints for low-momentum electronic excitations in condensed matter: fundamental consequences from classical and quantum dielectric theory.

    PubMed

    Chantler, C T; Bourke, J D

    2015-11-18

    We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.

  17. Solar Modulation of 50-500 Mev Cosmic Ray Electrons and the Electron Spectrum from 1964-1994

    NASA Astrophysics Data System (ADS)

    Huber, David M.

    1998-11-01

    Cosmic ray electrons have been directly measured since 1960. Over the last four decades a wealth of data has been collected on these particles, but perhaps none as valuable as the measurements made by the University of Chicago MEH experiment on the ISEE-3/ICE spacecraft and the University of Chicago/Bartol Research Institute Low Energy Electron (LEE) balloon experiment. These data span parts of four solar cycles and cover three solar polarity reversals. The MEH dataset itself has continuous electron coverage spanning seventeen years and two polarity reversals. A new analysis has been done on the MEH dataset to determine the spectrum of electrons with energies from about 30 to 500 MeV and interpret the evolution of the spectrum in the context of the modulation of cosmic electrons over the last four solar cycles. The spectral index for electrons between 30 and 500 MeV was observed to be at all times negative between the years 1979 and 1994. This observation supports recent theoretical calculations that predict fundamental differences between the behavior of electrons and protons at low energies, namely that electrons have a much longer mean free path at low energies than previously assumed. Recent modulation calculations have focused attention on the A-positive solar polarity state, but the compilation of electron spectrum observations and calculations in this work provides a basis for future exploration of the A-negative solar cycle.

  18. The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, Nicolas H.; Emslie, A. Gordon; Kontar, Eduard P.

    2017-02-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  19. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  20. Electron presheaths: the outsized influence of positive boundaries on plasmas

    NASA Astrophysics Data System (ADS)

    Yee, B. T.; Scheiner, B.; Baalrud, S. D.; Barnat, E. V.; Hopkins, M. M.

    2017-02-01

    Electron sheaths form near the surface of objects biased more positive than the plasma potential, such as a Langmuir probe collecting electron saturation current. Generally, the formation of electron sheaths requires that the electron-collecting area be sufficiently smaller (\\sqrt{2.3{m}e/M} times) than the ion-collecting area. They are commonly thought to be local phenomena that collect the random thermal electron current, but do not otherwise perturb a plasma. Here, using experiments on an electrode embedded in a wall in a helium discharge, particle-in-cell simulations, and theory it is shown that under low temperature plasma conditions ({T}e\\gg {T}i) electron sheaths are far from local. Instead, a long presheath region (27 mm, approximately an electron’s mean free path) extends into the plasma where electrons are accelerated via a pressure gradient to a flow speed exceeding the electron thermal speed at the sheath edge. This fast flow is found to excite instabilities, causing strong fluctuations near the sheath edge.

  1. Conditions for electron runaway under leader breakdown of long gaps

    SciTech Connect

    Ul'yanov, K. N.

    2008-04-15

    An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined.

  2. Time-resolved electron kinetics in swift heavy ion irradiated solids

    NASA Astrophysics Data System (ADS)

    Medvedev, N. A.; Rymzhanov, R. A.; Volkov, A. E.

    2015-09-01

    The event-by-event Monte Carlo model, TREKIS, was developed to describe the excitation of the electron subsystems of various solids by a penetrating swift heavy ion (SHI), the spatial spreading of generated fast electrons, and secondary electron and hole cascades. Complex dielectric function formalism is used to obtain relevant cross sections. This allows the recognition of fundamental effects resulting from the collective response of the electron subsystem of a target for excitation that is not possible within the binary collision approximation of these cross sections, e.g. the differences in the electronic stopping of an ion and in the electron mean free paths for different structures (phases) of a material. A systematic study performed with this model for different materials (insulators, semiconductors and metals) revealed effects which may be important for an ion track: e.g. the appearance of a second front of excess electronic energy propagation outwards from the track core following the primary front of spreading of generated electrons. We also analyze how the initial ballistic spatial spreading of fast electrons generated in a track turns to the diffusion ~10 fs after ion passage. Detailed time-resolved simulations of electronic subsystem kinetics helped in understanding the reasons behind enhanced silicon resistance to SHI irradiation in contrast to easily produced damage in this material by femtosecond laser pulses. We demonstrate that the fast spreading of excited electrons from the track core on a sub-100 fs timescale prevents the Si lattice from nonthermal melting in a relaxing SHI track.

  3. Experimental determination of the transmission factor for the Omicron EA125 electron analyzer

    NASA Astrophysics Data System (ADS)

    Ruffieux, P.; Schwaller, P.; Gröning, O.; Schlapbach, L.; Gröning, P.; Herd, Q. C.; Funnemann, D.; Westermann, J.

    2000-10-01

    In this article a study of the transmission factor of the Omicron EA125 analyzer equipped with the universal lens is presented. The procedure is based on a model by Cross and Castle [J. Electron Spectrosc. Relat. Phenom. 22, 53 (1981)] and is applicable to every spectrometer which can be operated in the constant analyzer energy (CAE) and in the constant retarding ratio measuring mode. The advantage of the method is its independence on the sample and on the inelastic mean free path of the electrons. We find that the transmission factor for the CAE mode is proportional to Ekin-1 for most measuring setups. This dependence is predicted by theory for an ideal analyzer. Deviations from this behavior are observed if the retarding ratio for a given kinetic energy is too small. The limit value of the retarding ratio for ideal behavior, i.e., an Ekin-1 transmission factor, depends on the analyzer entrance slit aperture which has been selected.

  4. The passage of fast electrons through matter

    NASA Astrophysics Data System (ADS)

    Sorini, Adam P.

    This work regards the passage of fast electrons through matter, and in particular how electrons scatter and lose energy within a solid. The basic quantum theory of these scattering processes was first considered in the early- to mid-20th century by Bohr, Bethe, Fermi, and others. This work extends our understanding of how a relativistic electron scatters off, and loses energy to, a complex many-body system. The main idea of this work is that it is now possible to calculate, from first-principles, the inelastic losses of relativistic electrons in condensed matter. We present ab initio calculations based on a real-space Green's function approach, implemented in the FEFF8 computer program[1]. Our work focuses on three topics: Relativistic stopping power and associated loss parameters, electron energy loss spectroscopy in high energy transmission electron microscopes, and the inelastic electron scattering mixed dynamic form factor. We calculate, for the first time, ab initio stopping powers and inelastic mean free paths in real materials. The stopping powers are calculated over a broad energy range, from ten eV to above ten MeV. We also present the first ab initio calculations of the "mean excitation energy". We develop a relativistic theory of inelastic electron scattering, based on ab initio calculations of dielectric response, and the generalized Lorenz gauge. Using our relativistic dielectric theory, we calculate the EELS magic angle ratio for boron nitride and for graphite. In these anisotropic materials we find large relativistic corrections to the magic angle for high energy electron microscopes. We also predict and calculate large deviations in the EELS magic angle from the relativistic vacuum predictions in the low energy-loss regime. Finally, we present calculations of mixed dynamic form factor.

  5. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  6. Multi-spacecraft Observations and Transport Modeling of Energetic Electrons for a Series of Solar Particle Events in August 2010

    NASA Astrophysics Data System (ADS)

    Dröge, W.; Kartavykh, Y. Y.; Dresing, N.; Klassen, A.

    2016-08-01

    During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ ∥ in the range of 0.15-0.6 au, and values of λ ⊥ in the range of 0.005-0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.

  7. Particle-in-cell simulations of discharges with intense electron emission

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro

    2013-09-01

    In many plasma devices, the plasma is bounded by walls which emit electrons due to secondary electron emission or thermionic emission. At low pressures, the electron mean free path exceeds the plasma dimensions, and the emitted electrons accelerated by the intense electric field of the near-wall sheath propagate through the plasma as an electron beam. The beam dynamics in a finite length system is different from theoretical predictions for infinite or periodic plasmas. This presentation gives a summary of numerical studies of beam-plasma interaction in Hall thrusters and dc discharges carried out with a particle-in-cell code. The code resolves one spatial coordinate and three velocity components, it is based on the direct implicit algorithm, the electron-to-ion mass ratio is realistic, numerous collisions between electrons and neutrals and the Coulomb collisions are included, code performance is enhanced with the help of MPI parallelization. The following effects are discussed: vanishing of the two-stream instability due to modification of the bulk electron velocity distribution, sheath instability in Hall thrusters, intermittency and multiple regimes of the two-stream instability in dc discharges. In collaboration with I. D. Kaganovich, Y. Raitses, A. V. Khrabrov (Princeton Plasma Physics Laboratory, Princeton, NJ), P. L. G. Ventzek, L. Chen (Tokyo Electron America, Austin, TX), A. Smolyakov (University of Saskatchewan, Saskatoon, SK, Canada).

  8. Generation and accretion of electrons in complex plasmas with cylindrical particles

    SciTech Connect

    Sodha, Mahendra Singh; Misra, Shikha; Mishra, S. K.

    2009-12-15

    This paper presents an analytical model for the physical understanding of the charging of cylindrical dust particles in an open complex plasma system. Two different mechanisms, viz., thermionic emission and photoelectric emission have been considered for the electron generation from the charged cylindrical dust particles; the corresponding expressions for the rate of emission of electrons and their mean energy have been derived. A simple approach has been adopted to derive the expression for the rate of electron accretion to the dust particle. Further a new expression for the mean energy associated with the accreted electrons due to cylindrical dust particle has been derived and presented. An interesting comparison of results obtained in the case of spherical and cylindrical dust particles has also been made. Using these expressions, a formalism has been developed for the electronic processes in an illuminated dust cloud with cylindrical particles, on the basis of charge neutrality condition and number and energy balance of electrons; the charge carried by the cylindrical dust particles, electron temperature, and electron density corresponding to a given situation have been determined. The limitation of the applicability of the theory, viz., that the mean free path of an electron for accretion by dust particles be less than the dimension of the dust cloud has been pointed out.

  9. Electron scattering at surfaces and grain boundaries in thin Au films

    NASA Astrophysics Data System (ADS)

    Henriquez, Ricardo; Flores, Marcos; Moraga, Luis; Kremer, German; González-Fuentes, Claudio; Munoz, Raul C.

    2013-05-01

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ0(T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K < T < 300 K. Cooling the samples to 4 K increases ℓ0(T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ0(300) = 37 nm, the electron mean free path in the

  10. Monte Carlo Study of Secondary Electrons and X Rays Produced by Vertical vs. Horizontal Arrival of Precipitating Electrons at the Top of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Sheldon, W. R.

    2004-05-01

    Electron precipitation from the outer belt is an important input of energy and electric charge to the atmosphere. The ionization profile (ionization rate vs. altitude) may be affected by the direction at which electrons enter the top of the atmosphere. Definitive measurements of the angular distribution of precipitating electrons at the top of the atmosphere have not been made; studies of the problem have made a number of assumptions in this regard. Consideration of the mechanism by which electrons in the drift loss cone enter the atmosphere due to eastward drift suggests horizontal entry: an electron in the process of mirroring near the top of the atmosphere encounters a region where its gyro-circumference is equal to its mean-free- path and it collides with an atmospheric molecule. In order to study whether horizontal entry at the top of the atmospere could have a significant effect, we have investigated this question by comparing horizontal to vertical entry with a Monte Carlo study using the FLUKA code. Assuming an energy spectrum typical of outer belt electrons up to 10 MeV at entry, both electrons and X rays were followed down to energies of 100 keV. The Monte Carlo results are compared to measurements in the atmosphere of electrons made below 80 km on rocket-boosted, parachute-deployed payloads, and to measurements of X rays made on balloon payloads at altitudes of about 35 km.

  11. Thermal conductivity of the pyrochlore superconductor KOs2O6: strong electron correlations and fully gapped superconductivity.

    PubMed

    Kasahara, Y; Shimono, Y; Shibauchi, T; Matsuda, Y; Yonezawa, S; Muraoka, Y; Hiroi, Z

    2006-06-23

    To elucidate the nature of the superconducting ground state of the geometrically frustrated pyrochlore KOs2O6 (Tc=9.6 K), the thermal conductivity was measured down to low temperatures (approximately Tc/100). We found that the quasiparticle mean free path is strikingly enhanced below a transition at Tp=7.8 K, indicating enormous electron inelastic scattering in the normal state. In magnetic fields, the conduction at T-->0 K is nearly constant up to approximately 0.4Hc2, in contrast with the rapid growth expected for superconductors with an anisotropic gap. This unambiguously indicates a fully gapped superconductivity, in contrast with previous studies. These results highlight that KOs2O6 is unique among superconductors with strong electron correlations.

  12. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit.

    PubMed

    Kolkowitz, S; Safira, A; High, A A; Devlin, R C; Choi, S; Unterreithmeier, Q P; Patterson, D; Zibrov, A S; Manucharyan, V E; Park, H; Lukin, M D

    2015-03-06

    Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems.

  13. Nonlocal electron transport in magnetized plasmas with arbitrary atomic number

    SciTech Connect

    Bennaceur-Doumaz, D.; Bendib, A.

    2006-09-15

    The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.

  14. Effect of secondary electron emission on the plasma sheath

    SciTech Connect

    Langendorf, S. Walker, M.

    2015-03-15

    In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 10{sup 12} m{sup −3} at a pressure of 10{sup −4} Torr-Ar, with a 1%–16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (∼1 T{sub e}), and in four out of six cases deviate less than the measurement uncertainty of 1 V.

  15. Electron-phonon mediated heat flow in disordered graphene

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Clerk, Aashish A.

    2012-09-01

    We calculate the heat flux and electron-phonon thermal conductance in a disordered graphene sheet, going beyond a Fermi’s golden rule approach to fully account for the modification of the electron-phonon interaction by disorder. Using the Keldysh technique combined with standard impurity averaging methods in the regime kFl≫1 (where kF is the Fermi wave vector and l is the mean free path), we consider both scalar potential (i.e., deformation potential) and vector-potential couplings between electrons and phonons. We also consider the effects of electronic screening at the Thomas-Fermi level. We find that the temperature dependence of the heat flux and thermal conductance is sensitive to the presence of disorder and screening, and reflects the underlying chiral nature of electrons in graphene and the corresponding modification of their diffusive behavior. In the case of weak screening, disorder enhances the low-temperature heat flux over the clean system (changing the associated power law from T4 to T3), and the deformation potential dominates. For strong screening, both the deformation potential and vector-potential couplings make comparable contributions, and the low-temperature heat flux obeys a T5 power law.

  16. Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy: Nano-metalized polymer as case study

    NASA Astrophysics Data System (ADS)

    Deris, Jamileh; Hajati, Shaaker; Tougaard, Sven; Zaporojtchenko, Vladimir

    2016-07-01

    In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261-3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm-6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.

  17. ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HAeRM TO THE COLLISIONLESS LIMIT

    SciTech Connect

    Bale, S. D.; Quataert, E.; Pulupa, M.; Salem, C.; Chen, C. H. K.

    2013-06-01

    We use a statistically significant set of measurements to show that the field-aligned electron heat flux q{sub Parallel-To} in the solar wind at 1 AU is consistent with the Spitzer-Haerm collisional heat flux q{sub sh} for temperature gradient scales larger than a few mean free paths L{sub T} {approx}> 3.5{lambda}{sub fp}. This represents about 65% of the measured data and corresponds primarily to high {beta}, weakly collisional plasma ({sup s}low solar wind{sup )}. In the more collisionless regime {lambda}{sub fp}/L{sub T} {approx}> 0.28, the electron heat flux is limited to q{sub Parallel-To }/q{sub 0} {approx} 0.3, independent of mean free path, where q{sub 0} is the ''free-streaming'' value; the measured q{sub Parallel-To} does not achieve the full q{sub 0}. This constraint q{sub Parallel-To }/q{sub 0} {approx} 0.3 might be attributed to wave-particle interactions, effects of an interplanetary electric potential, or inherent flux limitation. We also show a {beta}{sub e} dependence to these results that is consistent with a local radial electron temperature profile T{sub e} {approx} r {sup -{alpha}} that is a function of the thermal electron beta {alpha} = {alpha}({beta}{sub e}) and that the {beta} dependence of the collisionless regulation constraint is not obviously consistent with a whistler heat flux instability. It may be that the observed saturation of the measured heat flux is a simply a feature of collisional transport. We discuss the results in a broader astrophysical context.

  18. Non-equilibrium electron features in X-ray emission spectrum from inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Thorn, D.; Schneider, M. B.; Bradley, D.; Kilkenny, J. D.

    2016-10-01

    An X-ray spectrometer proposed for the National Ignition Facility will infer the imploded core electron temperature from the free-free continuum spectra of the emitted photons with energies of 15 to 30 keV. In this range reabsorption rates are low so one might expect a rather unambiguous temperature measurement from the spectrum slope at the higher energy cut-off. It can be noticed, however, that the harder X-ray radiation is emitted by the tail of the electron distribution. The mean- free-path for the suprathermal electrons is much larger than for their thermal counterparts, making this tail to deviate from Maxwellian and obscuring interpretation of the data. We utilize solutions for the reduced kinetic equation to investigate modification to the X-ray spectra due to suprathermal electrons' deviation from equilibrium. The logarithmic slope of the spectrum from the depleted electron distribution is found to increasingly drop at higher photon energies compared to the case of perfectly Maxwellian electrons. Interpreting the spectrum from a depleted distribution with assumption of Maxwellian electrons enforced gives the electron temperature lower than the actual one. The newly predicted effects are further enhanced in the presence of hydrodynamic mix. This work is performed under the auspices of the U.S. Department of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  19. Photoinduced electron detachment and proton transfer: the proposal for alternative path of formation of triplet states of guanine (G) and cytosine (C) pair.

    PubMed

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2015-02-12

    A viable pathway is proposed for the formation of the triplet state of the GC Watson-Crick base pair. It includes the following steps: (a) a low-energy electron is captured by cytosine in the GC pair, forming the cytosine base-centered radical anion GC(-•); and (b) photoradiation with energy around 5 eV initiates the electron detachment from either cytosine (in the gas phase) or guanine (in aqueous solutions). This triggers interbase proton transfer from G to C, creating the triplet state of the GC pair. Double proton transfer involving the triplet state of GC pair leads to the formation of less stable tautomer G(N2-H)(•)C(O2H)(•). Tautomerization is accomplished through a double proton transfer process in which one proton at the N3 of C(H)(•) migrates to the N1 of G(-H)(•); meanwhile, the proton at the N2 of G transfers to the O2 of C. This process is energetically viable; the corresponding activation energy is around 12-13 kcal/mol. The base-pairing energy of the triplet is found to be ∼3-5 kcal/mol smaller than that of the singlet state. Thus, the formation of the triplet state GC pair in DNA double strand only slightly weakens its stability. The obtained highly reactive radicals are expected to cause serious damage in the DNA involved in biochemical processes, such as DNA replication where radicals are exposed in the single strands.

  20. Multiple Objectives and the Path Determination Problem.

    DTIC Science & Technology

    1980-07-03

    planners. Pipeline systems, water supply systems, communication systems, electronic systems design, aircraft routing, and the routing of shipments of...existing transportation routes and rates as expressed by commercial water , road, rail and air freight charts. Algorithmic approaches to the...path is dropped from further considera- ti on. 3) Path attribute A (or B) is better than the corresponding attribute level of at least one of the label 2

  1. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  2. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  3. The universal path integral

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Dreyer, Olaf

    2016-02-01

    Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  4. Pulled Motzkin paths

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  5. Path Integrals and Hamiltonians

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2014-03-01

    1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.

  6. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.

    1999-01-01

    A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.

  7. Fast electron heating of dense plasma relevant to shock ignition

    NASA Astrophysics Data System (ADS)

    Fox, T. E.; Robinson, A. P. L.; Pasley, J.

    2013-10-01

    With an intensity in the range of 1016 W/cm2, the ignitor pulse in shock-ignition inertial confinement fusion is well above the threshold of parametric instabilities. Simulations (e.g. Klimo et al. 2011 Phys. Plasmas 18, 082709) indicate that a significant amount of energy will be deposited in energetic electrons with energies <100 keV and it has been proposed that these may play a beneficial role in enhancing the ignitor shock. Simulations by Gus'kov et al. (Phys. Rev. Lett. 109, 255004 (2012)) show that, under shock-ignition relevant conditions, a mono-energetic electron beam can drive strong shocks in a uniform plasma. We extend this study to the more realistic case of a Maxwellian energy distribution in the fast electron population. Having a distribution of electron mean-free-paths results in a more extended heating profile compared to a mono-energetic beam. However, we show it is still possible to launch strong shocks in this more realistic scenario and achieve equivalent pressures. The peak pressures achieved compare well with analytic scalings. We thank AWE for their financial assistance in support of the doctoral research of T. E. F.

  8. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  9. Investigating the thermal stability of electron transport properties in modulation-doped semiconductor heterostructure systems

    NASA Astrophysics Data System (ADS)

    Pilgrim, Ian; Scannell, Billy; See, Andrew; Montgomery, Rick; Morse, Peter; Fairbanks, Matt; Marlow, Colleen; Linke, Heiner; Farrer, Ian; Ritchie, David; Hamilton, Alex; Micolich, Adam; Eaves, Laurence; Taylor, Richard

    2013-03-01

    Since the 1950s, materials scientists have pursued the fabrication of solid-state heterostructure (HS) devices of sufficient purity to replicate electron interference effects originally observed in vacuum. The ultimate goal of HS engineering is to create a semiconductor ``billiard table'' in which electrons travel ballistically in a 2-D plane--that is, with scattering events minimized such that the electron's mean free path exceeds the device size. For the past two decades, the modulation-doped (MD) HS architecture has yielded devices supporting very high electron mobilities. In this architecture, ionized dopants are spatially removed from the plane of the electrons, such that their influence on electron trajectories is felt through presumably negligible small-angle scattering events. However, we observe that thermally induced charge redistribution in the doped layers of AlGaAs/GaAs and GaInAs/InP MD heterostructures significantly alters electron transport dynamics as measured by magnetoconductance fluctuations. This result demonstrates that small-angle scattering plays a far larger role than expected in influencing conduction properties. Funded by the Office of Naval Research, US Air Force, Australian Research Council, and Research Corporation for Science Advancement

  10. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.

    2015-12-01

    Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.

  11. Utilization of path length fuzing in the Peacekeeper Weapon System

    NASA Astrophysics Data System (ADS)

    Jackson, A. D.

    This paper presents a discussion of the utilization and implementation of path length fuzing in the Peacekeeper Weapon System. Some background information which introduces the concept of path length fuzing and discusses its applicability to the Peacekeeper is first presented. Mathematical modeling of path length fuzing is discussed, and some novel algorithms and techniques developed by the author for implementation of path length fuzing in the Peacekeeper Operational Flight Program are presented. The scope of this paper is confined to the flight software and targeting aspects of path length fuzing; details of of the fuze hardware and electronics are not addressed.

  12. Surface studies of praseodymium by electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Krawczyk, Mirosław; Pisarek, Marcin; Lisowski, Wojciech; Jablonski, Aleksander

    2016-12-01

    Electron transport properties in praseodymium (Pr) foil samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the Pr sample surface was pre-sputtered by Ar ions with ion energy of 2-3 keV. After such treatment, the Pr sample still contained about 10 at.% of residual oxygen in the surface region, as detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses. The inelastic mean free path (IMFP), characterizing electron transport within this region (4 nm-thick), was evaluated from EPES using both Ni and Au standards as a function of energy in the range of 0.5-2 keV. Experimental IMFPs, λ, were approximated by the simple function λ = kEp, where E is energy (in eV), and k = 0.1549 and p = 0.7047 were the fitted parameters. These values were compared with IMFPs for the praseodymium surface in which the presence of oxygen was tentatively neglected, and also with IMFPs resulting from the TPP-2M predictive equation for bulk praseodymium. We found that the measured IMFP values to be only slightly affected by neglect of oxygen in calculations. The fitted function applied here was consistent with the energy dependence of the EPES-measured IMFPs. Additionally, the measured IMFPs were found to be from 2% to 4.2% larger than the predicted IMFPs for praseodymium in the energy range of 500-1000 eV. For electron energies of 1500 eV and 2000 eV, there was an inverse correlation between these values, and then the resulting deviations of -0.4% and -2.7%, respectively, were calculated.

  13. REVIEWS OF TOPICAL PROBLEMS: Solid-surface electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gomoyunova, M. V.

    1982-01-01

    Electron spectroscopy (ES) of the surface of a solid comprises a set of methods of studying its elemental composition, structure, electronic structure, and dynamics. The essence of almost all the methods consists in obtaining and studying the energy spectra and angular distributions of electrons emitted by the surface of the solid upon irradiation with fluxes of photons, electrons, or ions, or upon creating a strong electric field near it. Depending on the nature of the probe, one can distinguish photoelectron, secondary-electron, ion-electron, and field spectroscopy. Each of them is realized by several methods. In practically all the methods analysis of the characteristics that are obtained consists of singling out certain unitypical elementary events of interaction of the probe agent with the surface layers of the solid. As a rule, the depth of probing is determined by the mean free path of the electron with respect to inelastic interaction. In the electron energy range from tens to approximately hundreds of electron volts in various materials, it constitutes from one to several atomic layers. In determining elemental composition, the sensitivity of most of the ES methods is approximately equal to hundredths of a monolayer. One can employ a scanning probe to obtain the distribution of the elements over the surface of the specimen. Most of the ES methods have been invented in the past decade. At present the studies in the field of surface physics are intensively developing and have great scientific and important applied significance. This review briefly treats the physical fundamentals of the ES methods, their potentialities, classifies the methods, gives examples to illustrate them, and cursorily throws light on the fundamental technical means of realizing the methods.

  14. Devices using ballistic transport of two dimensional electron gas in delta doped gallium arsenide high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Kang, Sungmu

    In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also

  15. Effect of the chirality of residues and γ-turns on the electronic excitation spectra, excited-state reaction paths and conical intersections of capped phenylalanine-alanine dipeptides.

    PubMed

    Shemesh, Dorit; Domcke, Wolfgang

    2011-07-11

    The capped dipeptides Ac-L-Phe-Xxx-NH(2) , Xxx=L-Ala, D-Ala, Aib, where Aib (aminoisobutyric acid) is a non-chiral amino acid, have been investigated by means of UV/IR double-resonance spectroscopy in supersonic jets and density functional theory calculations by Gloaguen et al. [Phys. Chem. Chem. Phys. 2007, 9, 4491]. The UV and IR spectra of five different species were observed and their structures assigned by comparison with calculated vibrational frequencies in the NH-stretching region. The peptides with two chiral residues can form homochiral or heterochiral species. In addition, γ-turns exist as two helical forms (γ(D), γ(L)) of opposite handedness. Herein, we explore the excited-state potential-energy surfaces of these dipeptides with ab initio calculations. Vertical and adiabatic excitation energies, excited-state reaction paths and conical intersections are characterized with the ADC(2) propagator method. It is shown that electron/proton transfer along the hydrogen bond of the γ-turn gives rise to efficient radiationless deactivation of the (1)ππ* state of the chromophore via several conical intersections. While the homo/hetero chirality of the residues appears to have a negligible effect on the photophysical dynamics, we found evidence that the γ(L) conformers may have shorter excited-state lifetimes (and thus higher photostability) than the γ(D) conformers.

  16. Momentum-Dependent Lifetime Broadening of Electron Energy Loss Spectra: A Self-Consistent Coupled-Plasmon Model.

    PubMed

    Bourke, J D; Chantler, C T

    2015-02-05

    The complex dielectric function and associated energy loss spectrum of a condensed matter system is a fundamental material parameter that determines both the optical and electronic scattering behavior of the medium. The common representation of the electron energy loss function (ELF) is interpreted as the susceptibility of a system to a single- or bulk-electron (plasmon) excitation at a given energy and momentum and is commonly derived as a summation of noninteracting free-electron resonances with forms constrained by adherence to some externally determined optical standard. This work introduces a new causally constrained momentum-dependent broadening theory, permitting a more physical representation of optical and electronic resonances that agrees more closely with both optical attenuation and electron scattering data. We demonstrate how the momentum dependence of excitation resonances may be constrained uniquely by utilizing a coupled-plasmon model, in which high-energy excitations are able to relax into lower-energy excitations within the medium. This enables a robust and fully self-consistent theory with no free or fitted parameters that reveals additional physical insight not present in previous work. The new developments are applied to the scattering behavior of solid molybdenum and aluminum. We find that plasmon and single-electron lifetimes are significantly affected by the presence of alternate excitation channels and show for molybdenum that agreement with high-precision electron inelastic mean free path data is dramatically improved for energies above 20 eV.

  17. Atomically Thin Graphene Windows That Enable High Contrast Electron Microscopy without a Specimen Vacuum Chamber.

    PubMed

    Han, Yimo; Nguyen, Kayla X; Ogawa, Yui; Park, Jiwoong; Muller, David A

    2016-12-14

    Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.

  18. Stationary electron velocity distribution function in crossed electric and magnetic fields with collisions

    SciTech Connect

    Shagayda, Andrey

    2012-08-15

    Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.

  19. Monte Carlo study of secondary electrons and X-rays produced by different angular distributions of primary precipitating electrons interacting with the atmosphere

    NASA Astrophysics Data System (ADS)

    Sheldon, W. R.; Andersen, V.; Pinsky, L. S.

    Electron precipitation from the outer belt is an important input of energy and electric charge to the atmosphere. Its effect on the electrodynamics of the atmosphere depends on the resulting ionization profile (ionization rate vs. altitude). It is likely that the ionization profile is strongly affected by the angular distribution of precipitating electrons absorbed by the atmosphere. Definitive measurements of precipitating electrons at the top of the atmosphere have not been made; the usual assumption for calculations of this problem is that they have an isotropic distribution over the zenithal hemisphere. However, consideration of the mechanism leading to the precipitation of outer belt electrons suggests a different distribution: a trapped electron in the process of mirroring encounters a region near the top of the atmosphere where its gyro-circumference is equal to its mean-free-path and thus collides with an atmospheric molecule. In this case, precipitating electrons are traveling horizontally when they are absorbed in the atmosphere. In order to investigate differences in the ionization profile that may depend on the angular distribution of precipitating electrons, we have conducted a Monte Carlo study of this problem using the FLUKA code. The two angular distributions described previously were assumed with an energy spectrum typical for outer belt electrons up to 10 MeV; both electrons and X-rays were followed down to energies of 100 keV. The Monte Carlo results are compared to measurements of electrons in the atmosphere below 80 km made from rocket-boosted, parachute-deployed payloads, and to measurements of X-rays made on balloon payloads at altitudes of about 35 km. Also, the flux and energy spectrum of backscattered electrons traveling upward from the atmosphere are determined for the two angular distributions of precipitating electrons, isotropic over the zenithal hemisphere and horizontal absorption.

  20. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    SciTech Connect

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang Im, Hyunsik

    2014-07-28

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  1. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  2. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  3. Inelastic scattering of electron and light ion beams in organic polymers

    SciTech Connect

    Vera, Pablo de; Abril, Isabel; Garcia-Molina, Rafael

    2011-05-01

    We have calculated the inelastic mean free path, stopping power, and energy-loss straggling of swift electron, proton, and {alpha}-particle beams in a broad incident energy range in four organic polymers: poly(methyl methacrylate) (PMMA), Kapton, polyacetylene (PA), and poly(2-vinylpyridine) (P2VP). These calculations have been done through a suitable description of their optical properties and its extension into the whole momentum and energy transfer excitation spectrum. For electrons, we take into account the exchange effect between the projectile and the target electrons, while the charge-state fractions have been considered for ions. Our results are compared with other models and with the available experimental data. An excellent agreement with experimental data is obtained in the case of proton and {alpha}-particle beams in Kapton and a reasonably good agreement has been achieved for electron beams in PMMA, Kapton, and PA. We have parameterized by means of simple analytical expressions our results for electron beams interacting with these four polymers, which can be easily implemented in Monte Carlo calculations.

  4. Temperature dependence of electron focusing in In1-xGaxAs/InP heterojunctions

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Fuller, B. K.; Thrush, C. M.; Partin, D. L.

    1995-08-01

    Transverse electron focusing is studied in a two-dimensional electron gas in the lattice-matched In1-xGaxAs/InP system, as a function of temperature (3 Kelectron density (5×1011 cm-2electron mean free path in this system is influenced by phonon scattering at temperatures above 30 K. The purpose of this study is to provide experimental data on the dependence of the amplitude of the focusing peak on temperature, along with mobility data in the same temperature range. The decay of the focusing peak amplitude with increasing temperature is not solely correlated with the reduction in electron relaxation time τ, as calculated from mobility. The results could possibly indicate a temperature dependence for the small-angle scattering. The energies involved in this focusing experiment scale as ħ/2τ~=kT<ħωc at low temperature (4 K), while they scale as ħ/2τ<ħωc15 K. This implies that thermal smearing of the Fermi surface is also important.

  5. Improved initial guess for minimum energy path calculations

    SciTech Connect

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt

    2014-06-07

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.

  6. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  7. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.

    2016-09-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.

  8. Linearized path integral approach for calculating nonadiabatic time correlation functions.

    PubMed

    Bonella, Sara; Montemayor, Daniel; Coker, David F

    2005-05-10

    We show that quantum time correlation functions including electronically nonadiabatic effects can be computed by using an approach in which their path integral expression is linearized in the difference between forward and backward nuclear paths while the electronic component of the amplitude, represented in the mapping formulation, can be computed exactly, leading to classical-like equations of motion for all degrees of freedom. The efficiency of this approach is demonstrated in some simple model applications.

  9. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  10. Gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Johnson, R. D. (Inventor)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  11. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential

    PubMed Central

    Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.

    2016-01-01

    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm−2 to 1.8 × 1011 cm−2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential. PMID:26865160

  12. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential

    SciTech Connect

    Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.

    2016-01-01

    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm–2 to 1.8 × 1011 cm–2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.

  13. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential

    DOE PAGES

    Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...

    2016-01-01

    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 1010 cm–2 to 1.8 × 1011 cm–2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less

  14. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    SciTech Connect

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  15. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    DOE PAGES

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; ...

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less

  16. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    SciTech Connect

    Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E.; Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Yadav, Ajay K.; Baldwin, Jon K.; Misra, Amit

    2015-03-02

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  17. A deterministic computational model for the two dimensional electron and photon transport

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Nealy, John E.

    2014-12-01

    A deterministic (non-statistical) two dimensional (2D) computational model describing the transport of electron and photon typical of space radiation environment in various shield media is described. The 2D formalism is casted into a code which is an extension of a previously developed one dimensional (1D) deterministic electron and photon transport code. The goal of both 1D and 2D codes is to satisfy engineering design applications (i.e. rapid analysis) while maintaining an accurate physics based representation of electron and photon transport in space environment. Both 1D and 2D transport codes have utilized established theoretical representations to describe the relevant collisional and radiative interactions and transport processes. In the 2D version, the shield material specifications are made more general as having the pertinent cross sections. In the 2D model, the specification of the computational field is in terms of a distance of traverse z along an axial direction as well as a variable distribution of deflection (i.e. polar) angles θ where -π/2<θ<π/2, and corresponding symmetry is assumed for the range of azimuth angles (0<φ<2π). In the transport formalism, a combined mean-free-path and average trajectory approach is used. For candidate shielding materials, using the trapped electron radiation environments at low Earth orbit (LEO), geosynchronous orbit (GEO) and Jupiter moon Europa, verification of the 2D formalism vs. 1D and an existing Monte Carlo code are presented.

  18. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential.

    PubMed

    Lu, T M; Laroche, D; Huang, S-H; Chuang, Y; Li, J-Y; Liu, C W

    2016-02-11

    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2), with a peak mobility of 6.4 × 10(5) cm(2)/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential.

  19. High efficiency improvements in AlGaN-based ultraviolet light-emitting diodes with specially designed AlGaN superlattice hole and electron blocking layers

    NASA Astrophysics Data System (ADS)

    Yi, Xinyan; Sun, Huiqing; Sun, Jie; Yang, Xian; Fan, Xuancong; Zhang, Zhuding; Guo, Zhiyou

    2017-04-01

    AlxGa1-xN/Al0.6Ga0.4N graded superlattice hole blocking layers (GSL-HBLs) and AlxGa1-xN/Al0.6Ga0.4N graded superlattice electron blocking layers (GSL-EBLs) are applied to the traditional AlGaN-based ultraviolet light-emitting diodes (UVLEDs). This can obtain much higher internal quantum efficiency (IQE) and output power. In order to reveal the underlying physical mechanism of this unique structure, we have studied it numerically by APSYS simulation programs. We find that GSL-EBLs can obviously increase the electron potential height and reduce the hole potential height, produce less electron leakage and more hole injection, leading to higher carrier contration. GSL-HBLs can obviously reduce the hole leakage, reduce the thermal velocity and correspondingly the mean free path of the hot electrons, and increase the electron injection. This enhanced the electron capture efficiency of the multiple quantum wells, which can also help to reduce electron leakage.

  20. Electron Bifurcation

    SciTech Connect

    Peters, John W.; Miller, Anne-Frances; Jones, Anne K.; King, Paul W.; Adams, Michael W. W.

    2016-04-01

    Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths.

  1. Monte Carlo simulation of electron drift velocity in low-temperature-grown gallium arsenide in a Schottky-barrier model

    NASA Astrophysics Data System (ADS)

    Arifin, P.; Goldys, E.; Tansley, T. L.

    1995-08-01

    We present a method of simulating the electron transport in low-temperature-grown GaAs by the Monte Carlo method. Low-temperature-grown GaAs contains microscopic inclusions of As and these inhomogeneities render impossible the standard Monte Carlo mobility simulations. Our method overcomes this difficulty and allows the quantitative prediction of electron transport on the basis of principal microscopic material parameters, including the impurity and the precipitate concentrations and the precipitate size. The adopted approach involves simulations of a single electron trajectory in real space, while the influence of As precipitates on the GaAs matrix is treated in the framework of a Schottky-barrier model. The validity of this approach is verified by evaluation of the drift velocity in homogeneous GaAs where excellent agreement with other workers' results is reached. The drift velocity as a function of electric field in low-temperature-grown GaAs is calculated for a range of As precipitate concentrations. Effect of compensation ratio on drift velocity characteristics is also investigated. It is found that the drift velocity is reduced and the electric field at which the onset of the negative differential mobility occurs increases as the precipitate concentration increases. Both these effects are related to the reduced electron mean free path in the presence of precipitates. Additionally, comparatively high low-field electron mobilities in this material are theoretically explained.

  2. Entanglement by Path Identity.

    PubMed

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-24

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  3. Entanglement by Path Identity

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  4. PathMaster

    PubMed Central

    Mattie, Mark E.; Staib, Lawrence; Stratmann, Eric; Tagare, Hemant D.; Duncan, James; Miller, Perry L.

    2000-01-01

    Objective: Currently, when cytopathology images are archived, they are typically stored with a limited text-based description of their content. Such a description inherently fails to quantify the properties of an image and refers to an extremely small fraction of its information content. This paper describes a method for automatically indexing images of individual cells and their associated diagnoses by computationally derived cell descriptors. This methodology may serve to better index data contained in digital image databases, thereby enabling cytologists and pathologists to cross-reference cells of unknown etiology or nature. Design: The indexing method, implemented in a program called PathMaster, uses a series of computer-based feature extraction routines. Descriptors of individual cell characteristics generated by these routines are employed as indexes of cell morphology, texture, color, and spatial orientation. Measurements: The indexing fidelity of the program was tested after populating its database with images of 152 lymphocytes/lymphoma cells captured from lymph node touch preparations stained with hematoxylin and eosin. Images of “unknown” lymphoid cells, previously unprocessed, were then submitted for feature extraction and diagnostic cross-referencing analysis. Results: PathMaster listed the correct diagnosis as its first differential in 94 percent of recognition trials. In the remaining 6 percent of trials, PathMaster listed the correct diagnosis within the first three “differentials.” Conclusion: PathMaster is a pilot cell image indexing program/search engine that creates an indexed reference of images. Use of such a reference may provide assistance in the diagnostic/prognostic process by furnishing a prioritized list of possible identifications for a cell of uncertain etiology. PMID:10887168

  5. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  6. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  7. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  8. Energy loss of proton, alpha particle, and electron beams in hafnium dioxide films

    SciTech Connect

    Behar, Moni; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Abril, Isabel; Denton, Cristian D.; Garcia-Molina, Rafael; Arista, Nestor R.

    2009-12-15

    The electronic stopping power, S, of HfO{sub 2} films for proton and alpha particle beams has been measured and calculated. The experimental data have been obtained by the Rutherford backscattering technique and cover the range of 120-900 and 120-3000 keV for proton and alpha particle beams, respectively. Theoretical calculations of the energy loss for the same projectiles have been done by means of the dielectric formalism using the Mermin energy loss function--generalized oscillator strength (MELF-GOS) model for a proper description of the HfO{sub 2} target on the whole momentum-energy excitation spectrum. At low projectile energies, a nonlinear theory based on the extended Friedel sum rule has been employed. The calculations and experimental measurements show good agreement for protons and a quite good one for alpha particles. In particular, the experimental maximums of both stopping curves (around 120 and 800 keV, respectively) are well reproduced. On the basis of this good agreement, we have also calculated the inelastic mean-free path (IMFP) and the stopping power for electrons in HfO{sub 2} films. Our results predict a minimum value of the IMFP and a maximum value of the S for electrons with energies around 120 and 190 eV, respectively.

  9. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    SciTech Connect

    Agueda, N.; Sanahuja, B.; Vainio, R.

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  10. Release History of Solar Energetic Electrons Inferred from In-situ Observations in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Agueda, Neus; Lario, David

    2016-07-01

    We present a detailed study of four 300-800 keV electron events observed on 1980 May 28-29 by Helios-1, when the spacecraft was located at 0.31 AU from the Sun. We use two different techniques to extract the release time history of the electrons at the Sun: 1) an inversion method that makes use of particle transport simulation results, and 2) a data-driven method based on the assumption that the interplanetary propagation between the Sun and the spacecraft is essentially scatter free. Both methods make use of the particle angular distributions measured relative to the local direction of the magnetic field (i.e., pitch-angle distributions). The general characteristics of the release time profile obtained for the four events is remarkably similar, specially when the inferred value of the electron mean free path is large. We use these results to compute the expected intensities at 1 AU. For an observer at 1 AU magnetically connected with Helios-1, our simulations predict the observation of four separate events, which does not agree with the interpretation of the IMP-8 observations suggesting that the discrete events observed at 0.31 AU merged into a single event at 1 AU. We discuss the processes that could contribute to the observation of one single time-extended event at 1 AU and how these techniques could be used to analyze upcoming measurements by Solar Orbiter and Solar Probe Plus close to the Sun.

  11. Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm.

    PubMed

    Salvat-Pujol, F; Werner, W S M

    2013-05-01

    The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm

    PubMed Central

    Salvat-Pujol, F; Werner, W S M

    2013-01-01

    The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23794766

  13. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  14. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    NASA Astrophysics Data System (ADS)

    Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  15. Tracking hurricane paths

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Nagarajan; Rishe, Naphtali; Athauda, Rukshan

    1997-01-01

    The South East coastal region experiences hurricane threat for almost six months in every year. To improve the accuracy of hurricane forecasts, meteorologists would need the storm paths of both the present and the past. A hurricane path can be established if we could identify the correct position of the storm at different times right from its birth to the end. We propose a method based on both spatial and temporal image correlations to locate the position of a storm from satellite images. During the hurricane season, the satellite images of the Atlantic ocean near the equator are examined for the hurricane presence. This is accomplished in two steps. In the first step, only segments with more than a particular value of cloud cover are selected for analysis. Next, we apply image processing algorithms to test the presence of a hurricane eye in the segment. If the eye is found, the coordinate of the eye is recorded along with the time stamp of the segment. If the eye is not found, we examine adjacent segments for the existence of hurricane eye. It is probable that more than one hurricane eye could be found from different segments of the same period. Hence, the above process is repeated till the entire potential area for hurricane birth is exhausted. The subsequent/previous position of each hurricane eye will be searched in the appropriate adjacent segments of the next/previous period to mark the hurricane path. The temporal coherence and spatial coherence of the images are taken into account by our scheme in determining the segments and the associated periods required for analysis.

  16. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content

  17. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its

  18. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  19. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  20. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    NASA Astrophysics Data System (ADS)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  1. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    DOE PAGES

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; ...

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less

  2. Interactive cutting path analysis programs

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.; Williams, D. S.; Colley, S. R.

    1975-01-01

    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.

  3. Path-integral approach to lattice polarons

    NASA Astrophysics Data System (ADS)

    Kornilovitch, P. E.

    2007-06-01

    The basic principles behind a path integral approach to the lattice polaron are reviewed. Analytical integration of phonons reduces the problem to one self-interacting imaginary-time path, which is then simulated by Metropolis Monte Carlo. Projection operators separate states of different symmetry, which provides access to various excited states. Shifted boundary conditions in imaginary time enable calculation of the polaron mass, spectrum and density of states. Other polaron characteristics accessible by the method include the polaron energy, number of excited phonons and isotope exponent on mass. Monte Carlo updates are formulated in continuous imaginary time on infinite lattices and as such provide statistically unbiased results without finite-size and finite time-step errors. Numerical data are presented for models with short-range and long-range electron-phonon interactions.

  4. Multi-Criteria Path Finding

    NASA Astrophysics Data System (ADS)

    Mohammadi, E.; Hunter, A.

    2012-07-01

    Path finding solutions are becoming a major part of many GIS applications including location based services and web-based GIS services. Most traditional path finding solutions are based on shortest path algorithms that tend to minimize the cost of travel from one point to another. These algorithms make use of some cost criteria that is usually an attribute of the edges in the graph network. Providing one shortest path limits user's flexibility when choosing a possible route, especially when more than one parameter is utilized to calculate cost (e.g., when length, number of traffic lights, and number of turns are used to calculate network cost.) K shortest path solutions tend to overcome this problem by providing second, third, and Kth shortest paths. These algorithms are efficient as long as the graphs edge weight does not change dynamically and no other parameters affect edge weights. In this paper we try to go beyond finding shortest paths based on some cost value, and provide all possible paths disregarding any parameter that may affect total cost. After finding all possible paths, we can rank the results by any parameter or combination of parameters, without a substantial increase in time complexity.

  5. An introduction to critical paths.

    PubMed

    Coffey, Richard J; Richards, Janet S; Remmert, Carl S; LeRoy, Sarah S; Schoville, Rhonda R; Baldwin, Phyllis J

    2005-01-01

    A critical path defines the optimal sequencing and timing of interventions by physicians, nurses, and other staff for a particular diagnosis or procedure. Critical paths are developed through collaborative efforts of physicians, nurses, pharmacists, and others to improve the quality and value of patient care. They are designed to minimize delays and resource utilization and to maximize quality of care. Critical paths have been shown to reduce variation in the care provided, facilitate expected outcomes, reduce delays, reduce length of stay, and improve cost-effectiveness. The approach and goals of critical paths are consistent with those of total quality management (TQM) and can be an important part of an organization's TQM process.

  6. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.

    2015-02-01

    We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance "d" giving rise to a Kronig-Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states (in the allowed KP bands) that transmit electrons unhindered, without reflections, while the electrons in the forbidden KP bands are localized. A distinctive feature of the quantum theory is that it provides a description of the temperature dependence of the resistivity where the contribution to the resistivity originating on electron-grain boundary scattering can be identified by a certain unique grain boundary reflectivity R, and the resistivity arising from electron-impurity scattering can be identified by a certain unique ℓIMP mean free path attributable to impurity scattering. This is in contrast to the classical theory of Mayadas and Shatzkes (MS), that does not discriminate properly between a resistivity arising from electron-grain boundary

  7. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  8. Random walk of electrons in a gas in the presence of polarized electromagnetic waves: Genesis of a wave induced discharge

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Paul, Samit

    2009-10-01

    The average number of collisions N of seed electrons with neutral gas atoms during random walk in escaping from a given volume, in the presence of polarized electromagnetic waves, is found to vary as N =B(Λ /λ)2/[1+C(Λ /λ)]2, indicating a modification to the conventional field free square law N =A(Λ /λ)2, where Λ is the characteristic diffusion length and λ the mean free path. It is found that for the field free case A =1.5 if all the electrons originate at the center and is 1.25 if they are allowed to originate at any random point in the given volume. The B and C coefficients depend on the wave electric field and frequency. Predictions of true discharge initiation time τc can be made from the temporal evolution of seed electrons over a wide range of collision frequencies. For linearly polarized waves of 2.45 GHz and electric field in the range (0.6-1.0)×105 V/m, τc=5.5-1.6 ns for an unmagnetized microwave driven discharge at 1 Torr argon.

  9. Electron random walk and collisional crossover in a gas in presence of electromagnetic waves and magnetostatic fields

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Dey, Indranuj; Paul, Samit

    2013-04-01

    This paper deals with random walk of electrons and collisional crossover in a gas evolving toward a plasma, in presence of electromagnetic (EM) waves and magnetostatic (B) fields, a fundamental subject of importance in areas requiring generation and confinement of wave assisted plasmas. In presence of EM waves and B fields, the number of collisions N suffered by an electron with neutral gas atoms while diffusing out of the volume during the walk is significantly modified when compared to the conventional field free square law diffusion; N =1.5(Λ /λ)2, where Λ is the characteristic diffusion length and λ is the mean free path. There is a distinct crossover and a time scale associated with the transition from the elastic to inelastic collisions dominated regime, which can accurately predict the breakdown time (τc) and the threshold electric field (EBD) for plasma initiation. The essential features of cyclotron resonance manifested as a sharp drop in τc, lowering of EBD and enhanced electron energy gain is well reproduced in the constrained random walk.

  10. Plasma charging and electron-based reactions at the plasma-liquid interface of an isolated liquid droplet

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Rutherford, David; Mariotti, Davide; Diver, Declan

    2016-09-01

    The study of plasma-liquid interactions opens up exciting new opportunities for applications but numerous investigative challenges remain. The use of isolated and stable spherical liquid microdroplets in a non-thermal equilibrium atmospheric pressure plasma offers a new platform for experimental and theoretical investigations. Since the droplet assumes floating potential, a high flux of electrons with low net energy ( thermal) becomes fixed and solvated within the first monolayers of the liquid leading to highly reactive and rapid chemical reactions. We observe such reactions, e.g. H2 O2 and metal nanoparticle formation, at rates that are much higher than reported elsewhere. Since the isolated droplet radius is greater than Debye lengths and mean free paths, we have an opportunity to directly compare, for the first time, long-standing collisional probe theories in this important regime. We measure a lower bound average charge of >1E5 electrons on a 13um droplet. Simulations of unipolar corona charging for this size predict 1E3 electrons. A Comsol-based drift-diffusion model is currently under development and so far experiment and theory match within 1 order of magnitude but improvements in measurement technique are in progress. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  11. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  12. Path Analysis: A Brief Introduction.

    ERIC Educational Resources Information Center

    Carducci, Bernardo J.

    Path analysis is presented as a technique that can be used to test on a priori model based on a theoretical conceptualization involving a network of selected variables. This being an introductory source, no previous knowledge of path analysis is assumed, although some understanding of the fundamentals of multiple regression analysis might be…

  13. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  14. The path planning of UAV based on orthogonal particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Wei, Haiguang; Zhou, Chengping; Li, Shujing

    2013-10-01

    To ensure the attack mission success rate, a trajectory with high survivability and accepted path length and multiple paths with different attack angles must be planned. This paper proposes a novel path planning algorithm based on orthogonal particle swarm optimization, which divides population individual and speed vector into independent orthogonal parts, velocity and individual part update independently, this improvement advances optimization effect of traditional particle swarm optimization in the field of path planning, multiple paths are produced by setting different attacking angles, this method is simulated on electronic chart, the simulation result shows the effect of this method.

  15. Collabortive Authoring of Walden's Paths

    SciTech Connect

    Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major

    2012-01-01

    This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.

  16. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    SciTech Connect

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.

  17. Transition Path Theory

    NASA Astrophysics Data System (ADS)

    vanden-Eijnden, E.

    The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to

  18. Scanning electron microscopic evaluation of the influence of manual and mechanical glide path on the surface of nickel-titanium rotary instruments in moderately curved root canals: An in-vivo study

    PubMed Central

    Patel, Dishant; Bashetty, Kusum; Srirekha, A.; Archana, S.; Savitha, B.; Vijay, R.

    2016-01-01

    Aim: The aim of this study was to evaluate the influence of manual versus mechanical glide path (GP) on the surface changes of two different nickel-titanium rotary instruments used during root canal therapy in a moderately curved root canal. Materials and Methods: Sixty systemically healthy controls were selected for the study. Controls were divided randomly into four groups: Group 1: Manual GP followed by RaCe rotary instruments, Group 2: Manual GP followed by HyFlex rotary instruments, Group 3: Mechanical GP followed by RaCe rotary instruments, Group 4: Mechanical GP followed by HyFlex rotary instruments. After access opening, GP was prepared and rotary instruments were used according to manufacturer's instructions. All instruments were evaluated for defects under standard error mean before their use and after a single use. The scorings for the files were given at apical and middle third. Statistical Analysis Used: Chi-squared test was used. Results: The results showed that there is no statistical difference between any of the groups. Irrespective of the GP and rotary files used, more defects were present in the apical third when compared to middle third of the rotary instrument. Conclusion: Within the limitations of this study, it can be concluded that there was no effect of manual or mechanical GP on surface defects of subsequent rotary file system used. PMID:27994317

  19. An Introduction to Path Analysis

    ERIC Educational Resources Information Center

    Wolfe, Lee M.

    1977-01-01

    The analytical procedure of path analysis is described in terms of its use in nonexperimental settings in the social sciences. The description assumes a moderate statistical background on the part of the reader. (JKS)

  20. Scattering theory with path integrals

    SciTech Connect

    Rosenfelder, R.

    2014-03-15

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  1. Simultaneous observation of small- and large-energy-transfer electron-electron scattering in three-dimensional indium oxide thick films

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Liu, Xin-Dian; Li, Zhi-Qing

    2016-05-01

    In three-dimensional (3D) disordered metals, the electron-phonon (e-ph) scattering is the sole significant inelastic process. Thus the theoretical prediction concerning the electron-electron (e\\text-e) scattering rate 1/τ_\\varphi as a function of temperature T in 3D disordered metal has not been fully tested thus far, though it was proposed 40 years ago (Schmid A., Z. Phys., 271 (1974) 251). We report here the simultaneous observation of small- and large-energy-transfer e\\text-e scattering in 3D indium oxide thick films. In the temperature region T≳100 \\text{K} , the temperature dependence of resistivity of each film obeys Bloch-Grüneisen law, indicating that the films possess degenerate-semiconductor characteristics in electrical transport property. In the low-temperature regime, 1/τ_\\varphi as a function of T for each film can not be ascribed to e-ph scattering. To quantitatively describe the temperature behavior of 1/τ_\\varphi , both the 3D small- and large-energy-transfer e\\text-e scattering processes should be considered. (The small- and large-energy-transfer e\\text-e scattering rates are proportional to T3/2 and T 2, respectively.) In addition, the experimental prefactors of T3/2 and T 2 are proportional to k_F-5/2 \\ell-3/2 and E_F-1 (k F is the Fermi wave number, ℓ is the electron elastic mean free path, and E F is the Fermi energy), respectively, which are completely consistent with the theoretical predictions. Our experimental results fully demonstrate the validity of the theoretical predictions concerning both small- and large-energy-transfer e\\text-e scattering rates.

  2. Formal language constrained path problems

    SciTech Connect

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  3. Unusual impact of electron-phonon scattering in Si nanowire field-effect-transistors: A possible route for energy harvesting

    NASA Astrophysics Data System (ADS)

    Nag Chowdhury, Basudev; Chattopadhyay, Sanatan

    2016-09-01

    In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.

  4. Order- N electron transport calculations from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method: Application to transport properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2010-08-01

    We present an order- N [O(N)] calculation method for the quantum electron transport of huge systems up to 80 million atoms. Based on the linear-response Kubo-Greenwood formula, we calculate the conductance through time-dependent diffusion coefficients using the time-dependent wave-packet diffusion approach, which treats the electron wave-packet motion with an O(N) and very high-speed calculation. Combining with molecular-dynamics simulations, we can study the temperature dependence of electron transport properties of materials from atomistic viewpoints from ballistic to diffusive regimes. We apply the present calculation method to transport of the carbon nanotubes (CNTs) with various lengths at various temperatures. In metallic CNTs, the mean-free paths are in good agreements with recent experiments, which reach about 500 nm at room temperature and increase up to several micrometers at low temperature. We find that the resistance increases almost linearly with temperature and takes larger values than expected in the quasiballistic regime. In semiconducting CNTs, the mobilities are affected strongly by the contacts with metallic electrodes through Schottky barriers. The mobilities are maximally 30000cm2/Vs and cut-off frequencies of 300 GHz at room temperature. These calculated results provide useful information to the design of CNT field-effect-transistor devices.

  5. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.

    1988-05-10

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.

  6. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.

    1988-01-01

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.

  7. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-12-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ˜75% UV absorption and hot electron excitation can be achieved within the mean free path of ˜20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  8. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  9. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Technical Reports Server (NTRS)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  10. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-02-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

  11. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy.

    PubMed

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-02-23

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

  12. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    PubMed Central

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631

  13. Single-electron gap in the spectrum of twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, Franco

    2017-01-01

    We investigate the gap in the single-electron spectrum of twisted bilayer graphene. In a perfect infinite lattice of a twisted bilayer, the gap varies exponentially in response to weak changes of the twist angle. Such a large sensitivity makes theoretical predictions of the gap nearly impossible, since experimentally the twist angle is always known with finite accuracy. To address this issue, we numerically study finite clusters of twisted bilayer graphene. For finite systems, changing the twist angle causes a gradual crossover between gapless and gapped regimes. The crossover occurs when the finite-size quantization energy becomes comparable to the matrix elements responsible for the generation of the gap. We further argue that disorder scattering can induce similar crossover, in which the mean-free path plays the same role as the system size for the finite clusters. It is demonstrated that to observe the gap experimentally, it is necessary to have a sample of suitable purity and to possess the ability to tune the twist angle accurately.

  14. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    SciTech Connect

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  15. Electron-hole quantum physics in ZnO

    NASA Astrophysics Data System (ADS)

    Versteegh, M. A. M.

    2011-09-01

    This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only

  16. Thermal and electronic properties of rare-earth Ba2Cu3Ox superconductors

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Morelli, D. T.; Smith, G. W.; Strite, S. C., III

    1988-02-01

    We have measured the electrical resistivity, thermal conductivity, and specific heat of a series of high-temperature superconducting compounds of the form RBa2Cu3O7, with R=Y, Eu, Gd, Dy, and Er. Our results show that the afore-mentioned physical properties are virtually identical for all samples considered. In particular, the molar specific heats are identical to within +/-2% and exhibit Debye-type behavior. We observe a nearly constant thermal conductivity above Tc, but a rather sudden increase developes as the temperature is lowered below the critical temperature. The electrical resistivity is nearly linear in the normal state. Thermal and electrical conductivities indicate that for T>Tc, the predominant electron scattering mechanism is due to phonon interactions. Using electrical resistivity data and the Wiedemann-Franz law, we estimate the magnitude of the electronic component of the thermal conductivity to be an order of magnitude smaller than the measured thermal conductivity. We thus conclude that heat transport is predominantly by phonons. The enhancement of the lattice conduction below the critical temperature is understood as a reduction of carrier-phonon scattering as electrons condense into Cooper pairs. This lends support to standard Bardeen-Cooper-Schrieffer-type superconductivity. An estimate of the superconducting transition temperatures is made using the electron-phonon coupling constants and Debye temperatures deduced from the data which brackets the observed Tc quite well. We discuss the thermal conductivity at very low temperature in terms of a phonon mean-free path limited by pores in the samples.

  17. Gas-path seal technology

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    Improved gas-path seals are needed for better fuel economy, longer performance retention, and lower maintenance, particularly in advanced, high-performance gas turbine engines. Problems encountered in gas-path sealing are described, as well as new blade-tip sealing approaches for high-pressure compressors and turbines. These include a lubricant coating for conventional, porous-metal, rub-strip materials used in compressors. An improved hot-press metal alloy shows promise to increase the operating surface temperatures of high-pressure-turbine, blade-tip seals to 1450 K (2150 F). Three ceramic seal materials are also described that have the potential to allow much higher gas-path surface operating temperatures than are possible with metal systems.

  18. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  19. Torsional and cyclic fatigue resistances of glide path preparation instruments: G-file and PathFile.

    PubMed

    Sung, Sang Yup; Ha, Jung-Hong; Kwak, Sang-Won; Abed, Rashid El; Byeon, Kyeongmin; Kim, Hyeon-Cheol

    2014-01-01

    This study aimed to compare cyclic fatigue and torsional resistances of glide path creating instruments with different tapers and tip sizes. Two sizes (G1 and G2) from G-File system and three sizes (PathFile #1, #2, and #3) from PathFile system were used for torsional resistance and cyclic fatigue resistance tests (n = 10). The torsional resistance was evaluated at 2-, 3-, 4-, 5-, and 6-mm from the file tip by plotting the torsional load changes until fracture by rotational loading of 2 rpm. The cyclic fatigue resistance was compared by measuring the number of cycles to failure. Data were analyzed statistically using one-way ANOVA and Duncan's post-hoc comparison. The length of the fractured file fragment was also measured. All fractured fragments were observed under a scanning electron microscope (SEM). Although G-2 file showed a lower torsional strength than PathFile #3 at 2- and 3-mm levels (p < 0.05), they had similar ultimate strengths at 4-, 5-, and 6-mm levels (p > 0.05). The smaller files of each brand had a significantly higher cyclic fatigue resistance than the bigger ones (p < 0.05). PathFile #1 and #2 had higher fatigue resistances than G-files (p < 0.05). While G-1 had a similar fatigue resistance as PathFile #3, G-2 showed the lowest and PathFile #1 showed the highest resistances among the tested groups (p < 0.05). The SEM examination showed typical appearances of cyclic fatigue and torsional fractures, regardless of the tested levels. Clinicians may consider the instruments' sizes for each clinical case in order to get efficient glide path with minimal risk of fracture.

  20. Innovative development path of ethnomedicines: the interpretation of the path.

    PubMed

    Zhu, Zhaoyun; Fu, Dehuan; Gui, Yali; Cui, Tao; Wang, Jingkun; Wang, Ting; Yang, Zhizhong; Niu, Yanfei; She, Zhennan; Wang, Li

    2017-03-01

    One of the primary purposes of the innovative development of ethnomedicines is to use their excellent safety and significant efficacy to serve a broader population. To achieve this purpose, modern scientific and technological means should be referenced, and relevant national laws and regulations as well as technical guides should be strictly followed to develop standards and to perform systemic research in producing ethnomedicines. Finally, ethnomedicines, which are applied to a limited extent in ethnic areas, can be transformed into safe, effective, and quality-controllable medical products to relieve the pain of more patients. The innovative development path of ethnomedicines includes the following three primary stages: resource study, standardized development research, and industrialization of the achievements and efforts for internationalization. The implementation of this path is always guaranteed by the research and development platform and the talent team. This article is based on the accumulation of long-term practice and is combined with the relevant disciplines, laws and regulations, and technical guidance from the research and development of ethnomedicines. The intention is to perform an in-depth analysis and explanation of the major research thinking, methods, contents, and technical paths involved in all stages of the innovative development path of ethnomedicines to provide useful references for the development of proper ethnomedicine use.

  1. Coulomb path'' interference in low energy He sup + + He collisions

    SciTech Connect

    Swenson, J.K. ); Burgdoerfer, J. ); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. )

    1990-01-01

    A new interference mechanism, analogous to classic'' double-slit electron scattering, has been identified in low energy ion-atom collisions. This Coulomb path'' interference results from the existence of two trajectories, indistinguishable with respect to laboratory energy and emission angle, along which ejected autoionizing electrons may be scattered by the attractive Coulomb potential of the slowly receding spectator ion. We present a simple semi-classical model for this effect in which we account for the path dependence of the amplitude of the ejected electron following decay of the autoionizing state. Calculated model lineshapes are found to be in excellent agreement with strong angular dependence of the interference structure observed in the He target 2s{sup 2} {sup 1}S autoionizing lineshape measured near 0{degree} following 10 keV He{sup +} + He collisions.

  2. Speckle Imaging Over Horizontal Paths

    SciTech Connect

    Carrano, C J

    2002-05-21

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  3. Multiple paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene; Wiegand, Thomas; Mark, Gloria

    1987-01-01

    The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.

  4. Cockpit simulation study of use of flight path angle for instrument approaches

    NASA Technical Reports Server (NTRS)

    Hanisch, B.; Ernst, H.; Johnston, R.

    1981-01-01

    The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.

  5. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  6. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  7. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali

    1989-01-01

    The complicated high-pressure cycle of the space shuttle main engine (SSME) propellant path provides many opportunities for external propellant path leaks while the engine is running. This mode of engine failure may be detected and analyzed with sufficient speed to save critical engine test hardware from destruction. The leaks indicate hardware failures which will damage or destroy an engine if undetected; therefore, detection of both cryogenic and hot gas leaks is the objective of this investigation. The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-the-art technology infrared (IR) thermal imaging systems combined with computer, digital image processing, and expert systems for the engine protection. The feasibility of IR leak plume detection is evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application.

  8. Career Path of School Superintendents.

    ERIC Educational Resources Information Center

    Mertz, Norma T.; McNeely, Sonja R.

    This study of the career paths of 147 Tennessee school superintendents sought to determine to what extent coaching and principalships are routes to that office. The majority of respondents were white males; only one was black, and 10 were female. The data were analyzed by group, race, sex, years in office, and method of selection (elected or…

  9. Employer Resource Manual. Project Path.

    ERIC Educational Resources Information Center

    Kane, Karen R.; Del George, Eve

    Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…

  10. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  11. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  12. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  13. Spreading paths in partially observed social networks

    PubMed Central

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-01-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, structurally realistic social network as a platform for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is. PMID:22587148

  14. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  15. Can the electron heat flux at 1 AU be collisional ? Results from kinetic simulations.

    NASA Astrophysics Data System (ADS)

    Landi, Simone; Pantellini, Filippo; Matteini, Lorenzo

    2014-05-01

    Recent results using statistically significant data of the solar wind at 1AU (see Bale et al. ApJL 769:L22, 2013) have shown that when the thermal Knudsen number, the ratio between the electron mean free path and the temperature scale height, falls below ~0.3, the electron heat flux Q does rapidly approach the classical collisional Spitzer-Harm limit Q_SH ~ T5/2 dT/dr, where T is the temperature and r the heliocentric distance. This experimental finding seems to contradict a number of theoretical works which suggest that the collisional expression for the heat flux is only guaranteed for Knudsen numbers smaller than ~0.001 (e.g. Shoub ApJ, 266, 339-369, 1983; Scudder & Karimabadi, ApJ, 770:26, 2013) . Indeed, using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we do observe that the heat flux strength approaches the collisional value for Knudsen numbers below ~0.3, in rather good agreement with the experimental data of Bale et al (2013). However, closer inspection of the variation of the plasma parameters with heliocentric distance shows that for Knudsen numbers between 0.01-0.3 the heat flux Q does NOT vary with temperature as predicted by Q_SH. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity Q approaches the collisional limit Q_SH for Knudsen below ~0.3, the latter is not a generally valid closure in the solar wind for Knudsen large that 0.01.

  16. Aircraft flight path angle display system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1991-01-01

    A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.

  17. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  18. Structure of the velocity distribution of sheath-accelerated secondary electrons in an asymmetric RF-dc discharge

    NASA Astrophysics Data System (ADS)

    Khrabrov, Alexander V.; Kaganovich, Igor D.; Ventzek, Peter L. G.; Ranjan, Alok; Chen, Lee

    2015-10-01

    Low-pressure capacitively-coupled discharges with additional dc bias applied to a separate electrode are utilized in plasma-assisted etching for semiconductor device manufacturing. Measurements of the electron velocity distribution function (EVDF) of the flux impinging on the wafer, as well as in the plasma bulk, show a thermal population and additional peaks within a broad range of energies. That range extends from the thermal level up to the value for the ‘ballistic’ peak, corresponding to the bias potential. The non-thermal electron flux has been correlated to alleviating the electron shading effect and providing etch-resistance properties to masking photoresist layers. ‘Middle-energy peak electrons’ at energies of several hundred eV may provide an additional sustaining mechanism for the discharge. These features in the electron velocity (or energy) distribution functions are possibly caused by secondary electrons emitted from the electrodes and interacting with two high-voltage sheaths: a stationary sheath at the dc electrode and an oscillating self-biased sheath at the powered electrode. Since at those energies the mean free path for large-angle scattering (momentum relaxation length) is comparable to, or exceeds the size of the discharge gap, these ‘ballistic’ electrons will not be fully scattered by the background gas as they traverse the inter-electrode space. We have performed test-particle simulations in which the features in the EVDF of electrons impacting the RF electrode are fully resolved at all energies. An analytical model has been developed to predict existence of peaked and step-like structures in the EVDF. Those features can be explained by analyzing the kinematics of electron trajectories in the discharge gap. Step-like structures in the EVDF near the powered electrode appear due to accumulation of electrons emitted from the dc electrode within a portion of the RF cycle, and their subsequent release. Trapping occurs when the RF

  19. Physarum can compute shortest paths.

    PubMed

    Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish

    2012-09-21

    Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years.

  20. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  1. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  2. Accelerating cleanup: Paths to closure

    SciTech Connect

    Edwards, C.

    1998-06-30

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

  3. Path planning under spatial uncertainty.

    PubMed

    Wiener, Jan M; Lafon, Matthieu; Berthoz, Alain

    2008-04-01

    In this article, we present experiments studying path planning under spatial uncertainties. In the main experiment, the participants' task was to navigate the shortest possible path to find an object hidden in one of four places and to bring it to the final destination. The probability of finding the object (probability matrix) was different for each of the four places and varied between conditions. Givensuch uncertainties about the object's location, planning a single path is not sufficient. Participants had to generate multiple consecutive plans (metaplans)--for example: If the object is found in A, proceed to the destination; if the object is not found, proceed to B; and so on. The optimal solution depends on the specific probability matrix. In each condition, participants learned a different probability matrix and were then asked to report the optimal metaplan. Results demonstrate effective integration of the probabilistic information about the object's location during planning. We present a hierarchical planning scheme that could account for participants' behavior, as well as for systematic errors and differences between conditions.

  4. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  5. Time optimal paths for high speed maneuvering

    SciTech Connect

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  6. Individual carbon nanotubes for quantum electronic and quantum photonic devices

    NASA Astrophysics Data System (ADS)

    Ai, Nan

    2011-12-01

    Carbon nanotubes (CNTs) are promising materials since their unique one dimensional geometry leads to remarkable physical properties such as ballistic transport, long mean free path, large direct band gaps, high mechanical tensile strength and strong exciton binding energies, which make them attractive candidates for applications in high-performance nanoelectronics and nanophotonics. CNT-based field-effect transistors (CNT-FETs) are considered to be ideally suited for future nanoelectronics. Single CNT-FETs made by depositing metal electrodes on top of individual CNTs with E-beam lithography have achieved great performance but are limited for massive large area integrated circuit fabrication. Therefore, this thesis demonstrates characteristics of CNT-FETs made by registered in-plane growth utilizing tailored nanoscale catalyst patterns and chemical vapor deposition (CVD), resulting in CNT arrays directly bridging source and drain. The demonstrated access to individual CNTs with pronounced semiconducting behavior opens also the possibility to form more advanced nanoelectronic structures such as CNT quantum dots. CNT-based single electron transistors (CNT-SETS) are promising for quantum electronic devices operating with ultra-low power consumption and allow fundamental studies of electron transport. In addition to existing CNT-SETS based on individual CNTs, we have fabricated the first CNT-SETS based on in-plane grown CNTs using the CVD technique. The demonstrated utilization of registered in-plane growth opens possibilities to create novel SET device geometries which are more complex, i.e. laterally ordered and scalable, as required for advanced quantum electronic devices. Blinking and spectral diffusion are hallmarks of nanoscale light emitters and a challenge for creating stable fluorescent biomarkers or efficient nonclassical light sources. The studies of blinking of CNTs are still in the explorative stage. In this thesis, I show the first experimental

  7. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    SciTech Connect

    Weatherford, Brandon R. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Barnat, E. V. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Xiong, Zhongmin E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Kushner, Mark J. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu

    2014-09-14

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  8. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    SciTech Connect

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.

  9. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE PAGES

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian; ...

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less

  10. Multiple Paths to Encephalization and Technical Civilizations

    NASA Astrophysics Data System (ADS)

    Schwartzman, David; Middendorf, George

    2011-12-01

    We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.

  11. Path-Based Supports for Hypergraphs

    NASA Astrophysics Data System (ADS)

    Brandes, Ulrik; Cornelsen, Sabine; Pampel, Barbara; Sallaberry, Arnaud

    A path-based support of a hypergraph H is a graph with the same vertex set as H in which each hyperedge induces a Hamiltonian subgraph. While it is NP-complete to compute a path-based support with the minimum number of edges or to decide whether there is a planar path-based support, we show that a path-based tree support can be computed in polynomial time if it exists.

  12. Effect of secondary electron emission on nonlinear dust acoustic wave propagation in a complex plasma with negative equilibrium dust charge

    NASA Astrophysics Data System (ADS)

    Bhakta, Subrata; Ghosh, Uttam; Sarkar, Susmita

    2017-02-01

    In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma where equilibrium dust charge is negative. The primary electrons, secondary electrons, and ions are Boltzmann distributed, and only dust grains are inertial. Electron-neutral and ion-neutral collisions have been neglected with the assumption that electron and ion mean free paths are very large compared to the plasma Debye length. Both adiabatic and nonadiabatic dust charge variations have been separately taken into account. In the case of adiabatic dust charge variation, nonlinear propagation of dust acoustic waves is governed by the KdV (Korteweg-de Vries) equation, whereas for nonadiabatic dust charge variation, it is governed by the KdV-Burger equation. The solution of the KdV equation gives a dust acoustic soliton, whose amplitude and width depend on the secondary electron yield. Similarly, the KdV-Burger equation provides a dust acoustic shock wave. This dust acoustic shock wave may be monotonic or oscillatory in nature depending on the fact that whether it is dissipation dominated or dispersion dominated. Our analysis shows that secondary electron emission increases nonadiabaticity induced dissipation and consequently increases the monotonicity of the dust acoustic shock wave. Such a dust acoustic shock wave may accelerate charge particles and cause bremsstrahlung radiation in space plasmas whose physical process may be affected by secondary electron emission from dust grains. The effect of the secondary electron emission on the stability of the equilibrium points of the KdV-Burger equation has also been investigated. This equation has two equilibrium points. The trivial equilibrium point with zero potential is a saddle and hence unstable in nature. The nontrivial equilibrium point with constant nonzero potential is a stable node up to a critical value of the wave velocity and a stable focus above it. This critical

  13. Performance Analysis of Path Planning Modeling

    NASA Astrophysics Data System (ADS)

    Wang, Zhirui; Li, Shuanghong; Zhang, Ying; Du, Qiaoling

    Ant colony system (ACS) algorithm was applied to the path planning for the robot. In the same working environment, path planning based on MAKLINK graph theory and Voronoi diagram were simulated and compared. MAKLINK graph theory is appropriate to apply to precise searching in small-scale district, and Voronoi diagram is suitable for fast path planning in a large area.

  14. Evaluation of the Learning Path Specification

    ERIC Educational Resources Information Center

    Janssen, Jose; Berlanga, Adriana J.; Koper, Rob

    2011-01-01

    Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…

  15. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.

    PubMed

    Somorjai, Gabor A; Bratlie, Kaitlin M; Montano, Max O; Park, Jeong Y

    2006-10-12

    The mechanism that controls bond breaking at transition metal surfaces has been studied with sum frequency generation (SFG), scanning tunneling microscopy (STM), and catalytic nanodiodes operating under the high-pressure conditions. The combination of these techniques permits us to understand the role of surface defects, surface diffusion, and hot electrons in dynamics of surface catalyzed reactions. Sum frequency generation vibrational spectroscopy and kinetic measurements were performed under 1.5 Torr of cyclohexene hydrogenation/dehydrogenation in the presence and absence of H(2) and over the temperature range 300-500 K on the Pt(100) and Pt(111) surfaces. The structure specificity of the Pt(100) and Pt(111) surfaces is exhibited by the surface species present during reaction. On Pt(100), pi-allyl c-C6H9, cyclohexyl (C6H11), and 1,4-cyclohexadiene are identified adsorbates, while on the Pt(111) surface, pi-allyl c-C6H9, 1,4-cyclohexadiene, and 1,3-cyclohexadiene are present. A scanning tunneling microscope that can be operated at high pressures and temperatures was used to study the Pt(111) surface during the catalytic hydrogenation/dehydrogenation of cyclohexene and its poisoning with CO. It was found that catalytically active surfaces were always disordered, while ordered surface were always catalytically deactivated. Only in the case of the CO poisoning at 350 K was a surface with a mobile adsorbed monolayer not catalytically active. From these results, a CO-dominated mobile overlayer that prevents reactant adsorption was proposed. By using the catalytic nanodiode, we detected the continuous flow of hot electron currents that is induced by the exothermic catalytic reaction. During the platinum-catalyzed oxidation of carbon monoxide, we monitored the flow of hot electrons over several hours using a metal-semiconductor Schottky diode composed of Pt and TiO2. The thickness of the Pt film used as the catalyst was 5 nm, less than the electron mean free path

  16. Path Relaxation: Path Planning for a Mobile Robot.

    DTIC Science & Technology

    1984-04-01

    15213 April 1984 JUN 5 1984 Copyright © 1984 Mobile Robot Laboratory, Carnegie-Mellon University The CMU Rover has been supported at the Carnegie-Mellon...particular robot or mission. Path Relaxation is part of Fido, the vision and navigation system of the CM L Rover mol)ile robot. [29, 411 The Rover , under...their 31) positions relative to the Rover . The Rover will then move about half a meter, take a new pair of pictires, find the 40 tracked points in each of

  17. Optical path control in the MAM testbed

    NASA Technical Reports Server (NTRS)

    Regehr, M. W.; Hines, B.; Holmes, B.

    2003-01-01

    Future space-based optical interferometers will require control of the optical path delay to accomplish some or all of the three objectives: balancing the optical path in the two arms to within a tolerance corresponding to the coherence length of the star light being observed, modulating the optical path in order to observe the phase of the star light interference fringe, and modulating the path length in order to reduce the effect of cyclic errors in the laser metrology system used to measure the optical path length in the two arms of the interferometer.

  18. Characterizing the Evolutionary Path(s) to Early Homo

    PubMed Central

    Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780

  19. Vibrational Analysis of a Shipboard Free Electron Laser Beam Path

    DTIC Science & Technology

    2011-12-01

    springs. Reducing the sprung mass of the system allows for a lower spring rate and more easily produced real springs. The uneven distribution of mass due...the rate change of the deformation is small enough due to the long period of oscillation to allow operation. 35 Figure 21. Underwater...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VIBRATIONAL ANALYSIS

  20. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial

  1. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  2. Communication path for extreme environments

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  3. Path integration: effect of curved path complexity and sensory system on blindfolded walking.

    PubMed

    Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J; Stergiou, Nicholas

    2013-02-01

    Path integration refers to the ability to integrate continuous information of the direction and distance traveled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance traveled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration.

  4. Electron turbulence and transport in large magnetic islands

    NASA Astrophysics Data System (ADS)

    Morton, Lucas

    2016-10-01

    Magnetic islands, observed in both reversed-field pinches (RFPs) and tokamaks, often display unexpected turbulence and transport characteristics. For the first time in an RFP, the high repetition rate Thomson scattering diagnostic on MST has captured a 2D image of the rotating electron temperature structure of a magnetic island in a single discharge. MHD modeling using edge magnetic signals implies a 16 cm wide m,n =1,6 tearing mode island which completely overlaps a 5.5 cm n =7 island (12 cm between island centers). The 3D field is partially chaotic, but still reflective of the n =6 island structure. The measured temperature structure matches the shape and location of the n =6 partially chaotic (or `remnant') island. Contrary to the usual assumption that islands have flat internal temperature, the electron temperature is peaked inside the remnant magnetic island due to ohmic heating. The temperature peaking implies a local effective perpendicular conductivity 10-40 m2/s inside the remnant island. This agrees quantitatively with an effective perpendicular conductivity of 16 m2/s estimated using the magnetic diffusion coefficient (evaluated at the electron mean free path) calculated from the modeled chaotic field. Statistical analysis of measurement ensembles with lower time resolution implies that remnant island heating is common in MST discharges. To investigate the role of turbulence near a magnetic island, the 2D structure of long-wavelength density turbulence has been mapped around a large applied static m,n =2,1 L-mode island in the DIII-D tokamak. The turbulence exhibits intriguing spatial structure. Fluctuations are enhanced several-fold (compared to the no-island case) on the inboard side of the X-point, but not on the outboard side of the X-point and are also reduced near the O-point. This work is supported by the NSF and US DOE under DE-FC02-04ER54698, and DE-FG02-89ER53296.

  5. Transport through hybrid superconducting/ferromagnetic double-path junction

    NASA Astrophysics Data System (ADS)

    Facio, T. J. S.; Orellana, P. A.; Jurelo, A. R.; Figueira, M. S.; Cabrera, G. G.; Siqueira, E. C.

    2017-02-01

    In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov-Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures.

  6. Spatial and frequency coherence of oblique, one-hop, high-frequency paths

    SciTech Connect

    Fitzgerald, T.J.

    1995-10-01

    We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.

  7. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    NASA Astrophysics Data System (ADS)

    Tang, Jiali; Yu, Xinhai; Wang, Zhenyu; Tu, Shan-Tung; Wang, Zhengdong

    2016-04-01

    The effects of the gas pressure (pg), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter dh = 1000 μm) driven at constant voltage loading on the drive electrode (Vrf) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When pg increased, the maximum electron (ne) or ion density (nAr+) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λSEE-e). The peak ne and nAr+ were not a monotonic function of pg, resulting from the two conflicting effects of pg on ne and nAr+. The impact of ions on the electrode was enhanced when pg increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various pg. The effects of t on the peaks and distributions of ne and nAr+ were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for pg of 800 Pa and Vrf of 180 V. The Au vapor addition increased the peaks of ne and nAr+, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  8. Pathfinder: Visual Analysis of Paths in Graphs

    PubMed Central

    Partl, C.; Gratzl, S.; Streit, M.; Wassermann, A. M.; Pfister, H.; Schmalstieg, D.; Lex, A.

    2016-01-01

    The analysis of paths in graphs is highly relevant in many domains. Typically, path-related tasks are performed in node-link layouts. Unfortunately, graph layouts often do not scale to the size of many real world networks. Also, many networks are multivariate, i.e., contain rich attribute sets associated with the nodes and edges. These attributes are often critical in judging paths, but directly visualizing attributes in a graph layout exacerbates the scalability problem. In this paper, we present visual analysis solutions dedicated to path-related tasks in large and highly multivariate graphs. We show that by focusing on paths, we can address the scalability problem of multivariate graph visualization, equipping analysts with a powerful tool to explore large graphs. We introduce Pathfinder (Figure 1), a technique that provides visual methods to query paths, while considering various constraints. The resulting set of paths is visualized in both a ranked list and as a node-link diagram. For the paths in the list, we display rich attribute data associated with nodes and edges, and the node-link diagram provides topological context. The paths can be ranked based on topological properties, such as path length or average node degree, and scores derived from attribute data. Pathfinder is designed to scale to graphs with tens of thousands of nodes and edges by employing strategies such as incremental query results. We demonstrate Pathfinder's fitness for use in scenarios with data from a coauthor network and biological pathways. PMID:27942090

  9. Integrated assignment and path planning

    NASA Astrophysics Data System (ADS)

    Murphey, Robert A.

    2005-11-01

    A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact

  10. Extracting Critical Path Graphs from MPI Applications

    SciTech Connect

    Schulz, M

    2005-07-27

    The critical path is one of the fundamental runtime characteristics of a parallel program. It identifies the longest execution sequence without wait delays. In other words, the critical path is the global execution path that inflicts wait operations on other nodes without itself being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an application's runtime and message behavior and to target optimizations. We have developed a toolset that identifies the critical path of MPI applications, extracts it, and then produces a graphical representation of the corresponding program execution graph to visualize it. To implement this, we intercept all MPI library calls, use the information to build the relevant subset of the execution graph, and then extract the critical path from there. We have applied our technique to several scientific benchmarks and successfully produced critical path diagrams for applications running on up to 128 processors.

  11. Sequential Path Entanglement for Quantum Metrology

    PubMed Central

    Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.

    2013-01-01

    Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.

  12. Counting paths with Schur transitions

    NASA Astrophysics Data System (ADS)

    Díaz, Pablo; Kemp, Garreth; Véliz-Osorio, Alvaro

    2016-10-01

    In this work we explore the structure of the branching graph of the unitary group using Schur transitions. We find that these transitions suggest a new combinatorial expression for counting paths in the branching graph. This formula, which is valid for any rank of the unitary group, reproduces known asymptotic results. We proceed to establish the general validity of this expression by a formal proof. The form of this equation strongly hints towards a quantum generalization. Thus, we introduce a notion of quantum relative dimension and subject it to the appropriate consistency tests. This new quantity finds its natural environment in the context of RCFTs and fractional statistics; where the already established notion of quantum dimension has proven to be of great physical importance.

  13. Path-integral molecular dynamics simulation of diamond

    NASA Astrophysics Data System (ADS)

    Ramírez, Rafael; Herrero, Carlos P.; Hernández, Eduardo R.

    2006-06-01

    Diamond is studied by path-integral molecular dynamics simulations of the atomic nuclei in combination with a tight-binding Hamiltonian to describe its electronic structure and total energy. This approach allows us to quantify the influence of quantum zero-point vibrations and finite temperatures on both the electronic and vibrational properties of diamond. The electron-phonon coupling mediated by the zero-point vibration reduces the direct electronic gap of diamond by 10%. The calculated decrease of the direct gap with temperature shows good agreement with the experimental data available up to 700K . Anharmonic vibrational frequencies of the crystal have been obtained from a linear-response approach based on the path integral formalism. In particular, the temperature dependence of the zone-center optical phonon has been derived from the simulations. The anharmonicity of the interatomic potential produces a red shift of this phonon frequency. At temperatures above 500K , this shift is overestimated in comparison to available experimental data. The predicted temperature shift of the elastic constant c44 displays reasonable agreement with the available experimental results.

  14. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  15. Measurement of optical constants of Si and SiO2 from reflection electron energy loss spectra using factor analysis method

    NASA Astrophysics Data System (ADS)

    Jin, H.; Shinotsuka, H.; Yoshikawa, H.; Iwai, H.; Tanuma, S.; Tougaard, S.

    2010-04-01

    The energy loss functions (ELFs) and optical constants of Si and SiO2 were obtained from quantitative analysis of reflection electron energy loss spectroscopy (REELS) by a new approach. In order to obtain the ELF, which is directly related to the optical constants, we measured series of angular and energy dependent REELS spectra for Si and SiO2. The λ(E )K(ΔE) spectra, which are the product of the inelastic mean free path (IMFP) and the differential inverse IMFP, were obtained from the measured REELS spectra. We used the factor analysis (FA) method to analyze series of λ(E )K(ΔE) spectra for various emission angles at fixed primary beam energy to separate the surface-loss and bulk-loss components. The extracted bulk-loss components enable to obtain the ELFs of Si and SiO2, which are checked by oscillator strength-sum and perfect-screening-sum rules. The real part of the reciprocal of the complex dielectric function was determined by Kramers-Kronig analysis of the ELFs. Subsequently, the optical constants of Si and SiO2 were calculated. The resulting optical constants in terms of the refractive index and the extinction coefficient for Si and SiO2 are in good agreement with Palik's reference data. The results demonstrate the general applicability of FA as an efficient method to obtain the bulk ELF and to determine the optical properties from REELS measurements.

  16. Following the Path Blazed by Jan Hall

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo

    It was a great pleasure to gather with friends in August 2004 for the symposium honoring Jan Hall and celebrating his 70th birthday, and this book provides a unique opportunity to record some words commemorating Jan's incredible contributions to science and to our lives. At best, my recollections are a faded, myopic snapshot of some events that come to mind after many years of association with Jan. Reflecting on the years that have passed since I first entered Jan's lab, I see that many things have changed, technology has advanced (mostly for the better), the world has evolved in dramatic and significant ways (some good and some not), and I have grown older (but unfortunately not wiser as one might have hoped). Nonetheless, after many years, I find myself still following the path pointed out by Jan's visions and investing most of my productive time and energy working as a scientist trying to get atoms, lasers, electronics, (and the institutional bureaucracy that comes along with them) to work in some kind of harmony…

  17. Path-Integral Derivation of Lifshitz Tails

    NASA Astrophysics Data System (ADS)

    Sa-Yakanit, V.

    2008-11-01

    The behavior of the electron density of states (DOS) for the Lifshitz tail states is studied in the limit of low energy using the Feynman path-integral method. This method was used to study the heavily doped semiconductors for the case of a Gaussian random potential. The main results obtained are that the tail states behave as DOS exp (-B(E)), with B(E) = En, n = {1 / 2} for short-range interaction and n = 2 for long-range interaction. In this study it is shown that without the Gaussian approximation, the behavior of the Lifshitz tails for the Poisson distribution is obtained as DOS exp (-B(E)) with B(E) = En, n = {3 / 2} . As in the case of heavily doped semiconductor, the method can be easily generalized to long-range interactions. A comparison with the method developed by Friedberg and Luttinger based on the reformulation of the problem in terms of Brownian motion is given.

  18. Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS2

    NASA Astrophysics Data System (ADS)

    Li, Wu

    2015-08-01

    We demonstrate the ab initio electrical transport calculation limited by electron-phonon coupling by using the full solution of the Boltzmann transport equation (BTE), which applies equally to metals and semiconductors. Numerical issues are emphasized in this work. We show that the simple linear interpolation of the electron-phonon coupling matrix elements from a relatively coarse grid to an extremely fine grid can ease the calculational burden, which makes the calculation feasible in practice. For the Brillouin zone (BZ) integration of the transition probabilities involving one δ function, the Gaussian smearing method with a physical choice of locally adaptive broadening parameters is employed. We validate the calculation in the cases of n -type Si and Al. The calculated conductivity and mobility are in good agreement with experiments. In the metal case we also demonstrate that the Gaussian smearing method with locally adaptive broadening parameters works excellently for the BZ integration with double δ functions involved in the Eliashberg spectral function and its transport variant. The simpler implementation is the advantage of the Gaussian smearing method over the tetrahedron method. The accuracy of the relaxation time approximation and the approximation made by Allen [Phys. Rev. B 17, 3725 (1978), 10.1103/PhysRevB.17.3725] has been examined by comparing with the exact solution of BTE. We also apply our method to n -type monolayer MoS2, for which a mobility of 150 cm2 v-1 s-1 is obtained at room temperature. Moreover, the mean free paths are less than 9 nm, indicating that in the presence of grain boundaries the mobilities should not be effectively affected if the grain boundary size is tens of nanometers or larger. The ab initio approach demonstrated in this paper can be directly applied to other materials without the need for any a priori knowledge about the electron-phonon scattering processes, and can be straightforwardly extended to study cases with

  19. Path-integral simulations of zero-point effects for implanted muons in benzene

    NASA Astrophysics Data System (ADS)

    Valladares, R. M.; Fisher, A. J.; Hayes, W.

    1995-08-01

    We describe a simulation method which is capable of treating the quantum fluctuations of an implanted muon and the electronic structure of the system simultaneously. The partition function for the muon is evaluated using a discretized imaginary-time path-integral technique, using electronic energies and forces evaluated from a semi-empirical quantum chemical treatment of the electronic structure. An application to the cyclohexadienyl radical (C 6H 7) and its muonated analogue (C 6H 6Mu) is presented.

  20. Electronic Commerce on the Internet.

    DTIC Science & Technology

    1994-03-01

    electronic commerce , where companies transact business spontaneously over the Internet. In restructuring its procurement processes, The Federal Government has a unique opportunity to exploit this electronic marketplace, and to influence its development in ways that benefit us all. This report describes a vision of the electronic marketplace, the requirements it must satisfy, an architecture for addressing those requirements, and a graceful migration path to the marketplace from current EDI technology and practice. It identifies five key concepts for government

  1. The Feynman trajectories: determining the path of a protein using fixed-endpoint assays.

    PubMed

    Ketteler, Robin

    2010-03-01

    Richard Feynman postulated in 1948 that the path of an electron can be best described by the sum or functional integral of all possible trajectories rather than by the notion of a single, unique trajectory. As a consequence, the position of an electron does not harbor any information about the paths that contributed to this position. This observation constitutes a classical endpoint observation. The endpoint assay is the desired type of experiment for high-throughput screening applications, mainly because of limitations in data acquisition and handling. Quite contrary to electrons, it is possible to extract information about the path of a protein using endpoint assays, and these types of applications are reviewed in this article.

  2. Perturbative Methods in Path Integration

    NASA Astrophysics Data System (ADS)

    Johnson-Freyd, Theodore Paul

    This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the

  3. Leak Path Development in CO2 Wells

    NASA Astrophysics Data System (ADS)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.

    2014-12-01

    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  4. Attenuated retroreflectors for electronic distance measurement

    NASA Astrophysics Data System (ADS)

    Parker, David H.; Goldman, Michael A.; Radcliff, Bill; Shelton, John W.

    Methods are described for attenuating solid glass and hollow retroreflectors, without introducing optical path length modifications, for electronic distance measurement. Construction of a prototype novel-design hollow retroreflector is described.

  5. Using computerized tomography to determine ionospheric structures. Part 2, A method using curved paths to increase vertical resolution

    SciTech Connect

    Vittitoe, C.N.

    1993-08-01

    A method is presented to unfold the two-dimensional vertical structure in electron density by using data on the total electron content for a series of paths through the ionosphere. The method uses a set of orthonormal basis functions to represent the vertical structure and takes advantage of curved paths and the eikonical equation to reduce the number of iterations required for a solution. Curved paths allow a more thorough probing of the ionosphere with a given set of transmitter and receiver positions. The approach can be directly extended to more complex geometries.

  6. Career Paths in Sport Management

    ERIC Educational Resources Information Center

    Schwab, Keri A.; Legg, Eric; Tanner, Preston; Timmerman, Danielle; Dustin, Daniel; Arthur-Banning, Skye G.

    2015-01-01

    Sport management alumni (N = 268) from five universities that offer undergraduate programs with an emphasis in sport management within departments of parks, recreation, and tourism were sampled via an electronic survey. The survey sought to learn where alumni were working, and how they felt about their career choice and undergraduate professional…

  7. White Noise Path Integrals in Stochastic Neurodynamics

    NASA Astrophysics Data System (ADS)

    Carpio-Bernido, M. Victoria; Bernido, Christopher C.

    2008-06-01

    The white noise path integral approach is used in stochastic modeling of neural activity, where the primary dynamical variables are the relative membrane potentials, while information on transmembrane ionic currents is contained in the drift coefficient. The white noise path integral allows a natural framework and can be evaluated explicitly to yield a closed form for the conditional probability density.

  8. The Path of Carbon in Photosynthesis VI.

    DOE R&D Accomplishments Database

    Calvin, M.

    1949-06-30

    This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.

  9. The path dependence of deformation texture development

    SciTech Connect

    Takeshita, T.; Kocks, U.F.; Wenk, H.R.

    1987-01-01

    It is demonstrated for the case of three different strain paths, all of which end up with the same, elongated specimen shape, that the texture developed during straining is path dependent. This is true both for experiments on aluminum polycrystals and for simulations using the LApp code.

  10. Career Path Guide for Adult Career Choices.

    ERIC Educational Resources Information Center

    Case, Clydia

    Intended for adults who are considering career choices or changes, this booklet provides opportunities for self-study and reflection in six career paths. The booklet begins with tips for long-term career survival and myths and realities of career planning. After a brief career survey, readers are introduced to six career paths: arts and…

  11. A Random Walk on a Circular Path

    ERIC Educational Resources Information Center

    Ching, W.-K.; Lee, M. S.

    2005-01-01

    This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.

  12. Cooperative organic mine avoidance path planning

    NASA Astrophysics Data System (ADS)

    McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David

    2005-06-01

    The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.

  13. Adaptively Ubiquitous Learning in Campus Math Path

    ERIC Educational Resources Information Center

    Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung

    2012-01-01

    The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This…

  14. Connections on decorated path space bundles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Lahiri, Amitabha; Sengupta, Ambar N.

    2017-02-01

    For a principal bundle P → M equipped with a connection A ¯ , we study an infinite dimensional bundle PA¯ dec P over the space of paths on M, with the points of PA¯ dec P being horizontal paths on P decorated with elements of a second structure group. We construct parallel transport processes on such bundles and study holonomy bundles in this setting.

  15. Evaluation of Calcine Disposition - Path Forward

    SciTech Connect

    Steve Birrer

    2003-02-01

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

  16. Gerbertian paths for the Jubilee

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2015-04-01

    Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.

  17. Bergman Kernel from Path Integral

    NASA Astrophysics Data System (ADS)

    Douglas, Michael R.; Klevtsov, Semyon

    2010-01-01

    We rederive the expansion of the Bergman kernel on Kähler manifolds developed by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation theory, and generalize it to supersymmetric quantum mechanics. One physics interpretation of this result is as an expansion of the projector of wave functions on the lowest Landau level, in the special case that the magnetic field is proportional to the Kähler form. This is relevant for the quantum Hall effect in curved space, and for its higher dimensional generalizations. Other applications include the theory of coherent states, the study of balanced metrics, noncommutative field theory, and a conjecture on metrics in black hole backgrounds discussed in [24]. We give a short overview of these various topics. From a conceptual point of view, this expansion is noteworthy as it is a geometric expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time expansion for the heat kernel, but in this case describing the long time limit, without depending on supersymmetry.

  18. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  19. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  20. Formation of bound states in expanded metal studied via path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Oh, Ki-Dong

    2004-03-01

    The usefulness of the restricted path integral molecular dynamics method for the study of strongly correlated electrons is demonstrated by studying the formation of bound electronic states in a half-filled expanded three-dimensional hydrogenoid body-centred cubic lattice at finite temperature. Starting from a metallic state with one-component plasma character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their centre for the motion of gyration located at ionic positions. The number of bound electrons increases monotonically with decreasing density.

  1. Shortest path and Schramm-Loewner Evolution

    PubMed Central

    Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.

    2014-01-01

    We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019

  2. A clinical path for adult diabetes.

    PubMed

    Courtney, L; Gordon, M; Romer, L

    1997-01-01

    The use of clinical paths for patient care management was explored by this development team as a mechanism to provide consistent, high-quality care to hospitalized patients in high-volume, high-risk diagnostic categories. Reviewing the historical aspects and importance of clinical paths helped expand the team's perspective to incorporate pre- and posthospitalization phases of patient care into the clinical path being developed. A multidisciplinary team of physicians, nurses, health educators, and dietitians from both inpatient and outpatient departments of Kaiser-Santa Teresa Medical Center in San Jose, California, devised and implemented an Adult Diabetes Mellitus care path. Staff education preceded the implementation of the care paths. Measurements of quality indicators showed improvements in patient satisfaction, patient education, patient knowledge, and nutrition assessments.

  3. Topological Path Planning in GPS Trajectory Data

    PubMed Central

    Corcoran, Padraig

    2016-01-01

    This paper proposes a novel solution to the problem of computing a set of topologically inequivalent paths between two points in a space given a set of samples drawn from that space. Specifically, these paths are homotopy inequivalent where homotopy is a topological equivalence relation. This is achieved by computing a basis for the group of homology inequivalent loops in the space. An additional distinct element is then computed where this element corresponds to a loop which passes through the points in question. The set of paths is subsequently obtained by taking the orbit of this element acted on by the group of homology inequivalent loops. Using a number of spaces, including a street network where the samples are GPS trajectories, the proposed method is demonstrated to accurately compute a set of homotopy inequivalent paths. The applications of this method include path and coverage planning. PMID:28009817

  4. Nanoscale heat transport via electrons and phonons by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hua

    Nanoscale heat transport has become a crucial research topic due to the growing importance of nanotechnology for manufacturing, energy conversion, medicine and electronics. Thermal transport properties at the nanoscale are distinct from the macroscopic ones since the sizes of nanoscale features, such as free surfaces and interfaces, are comparable to the wavelengths and mean free paths of the heat carriers (electrons and phonons), and lead to changes in thermal transport properties. Therefore, understanding how the nanoscale features and energy exchange between the heat carriers affect thermal transport characteristics are the goals of this research. Molecular dynamics (MD) is applied in this research to understand the details of nanoscale heat transport. The advantage of MD is that the size effect, anharmonicity, atomistic structure, and non-equilibrium behavior of the system can all be captured since the dynamics of atoms are described explicitly in MD. However, MD neglects the thermal role of electrons and therefore it is unable to describe heat transport in metal or metal-semiconductor systems accurately. To address this limitation of MD, we develop a method to simulate electronic heat transport by implementing electronic degrees of freedom to MD. In this research, nanoscale heat transport in semiconductor, metal, and metal-semiconductor systems is studied. Size effects on phonon thermal transport in SiGe superlattice thin films and nanowires are studied by MD. We find that, opposite to the macroscopic trend, superlattice thin films can achieve lower thermal conductivity than nanowires at small scales due to the change of phonon nature caused by adjusting the superlattice periodic length and specimen length. Effects of size and electron-phonon coupling rate on thermal conductivity and thermal interface resistivity in Al and model metal-semiconductor systems are studied by MD with electronic degrees of freedom. The results show that increasing the specimen

  5. Path integral approach to the quantum fidelity amplitude

    PubMed Central

    2016-01-01

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called ‘dephasing representation,’ circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973

  6. Path integral approach to the quantum fidelity amplitude.

    PubMed

    Vaníček, Jiří; Cohen, Doron

    2016-06-13

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact.

  7. Nonholonomic catheter path reconstruction using electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor

    2015-03-01

    Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

  8. Robot path planning using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  9. Path planning strategies for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A

  10. The terminal area automated path generation problem

    NASA Technical Reports Server (NTRS)

    Hsin, C.-C.

    1977-01-01

    The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.

  11. Development Paths in Archaeological Surveying

    NASA Astrophysics Data System (ADS)

    Tabbagh, A.

    2005-05-01

    Geophysical surveys of archaeological sites began in 1938, when an electrical survey was performed at the historical site of Williamsburg (Virginia, USA). Its full development, however, has been achieved by several European teams, which have continuously worked on it since the fifties. Geophysical survey is one step of archaeological site reconnaissance, which comprises many other non-invasive techniques such as document studies, field walking, air photo interpretation...Nevertheless solely geophysical techniques allow a direct exploration of the underground itself over a significant depth of investigation. Several physical properties can be measured to detect and map archaeological features and/or remains but electrical resistivity and magnetisation has been commonly used for fifty years and dielectric permittivity more recently. The major path of the technical evolution was to increase both the speed of the survey and the size of the area by using short measurement duration (less than 0.1 s) and to incorporate mechanical systems that allow the continuous pulling of the sensors on the field. Magnetic measurements are thus achieved either by fluxgate or optically pumped sensors, while electrical measurements are achieved by mobile multi-pole systems simultaneously over two or three different depths. In such surveys the mesh grid is 1 x 1 m or 0.5 x 0.5 m. Another aim is to limit the size of the surveyed area but to increase the geometrical resolution by using ground penetrating radars (GPR) with a very fine mesh (0.2 x 0.2 m) and by processing the data by `time slices' which allow to follow precisely the extension in depth of the different features. In addition for magnetic features, the simultaneous inversion of magnetic field and susceptibility (and soon viscosity) measurements using linear filtering allows the differentiation among the types of magnetization and allows for an improved determination of the depths of magnetic property contrasts. By considering the

  12. Distributed multiple path routing in complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Wang, San-Xiu; Wu, Ling-Wei; Mei, Pan; Yang, Xu-Hua; Wen, Guang-Hui

    2016-12-01

    Routing in complex transmission networks is an important problem that has garnered extensive research interest in the recent years. In this paper, we propose a novel routing strategy called the distributed multiple path (DMP) routing strategy. For each of the O-D node pairs in a given network, the DMP routing strategy computes and stores multiple short-length paths that overlap less with each other in advance. And during the transmission stage, it rapidly selects an actual routing path which provides low transmission cost from the pre-computed paths for each transmission task, according to the real-time network transmission status information. Computer simulation results obtained for the lattice, ER random, and scale-free networks indicate that the strategy can significantly improve the anti-congestion ability of transmission networks, as well as provide favorable routing robustness against partial network failures.

  13. Animation: Path of 2010 Solar Eclipse

    NASA Video Gallery

    On Sunday, 2010 July 11, a total eclipse of the Sun is visible from within a narrow corridor that traverses Earth's southern hemisphere. The path of the Moon's umbral shadow crosses the South Pacif...

  14. IRIS Optical Instrument and Light Paths

    NASA Video Gallery

    The optical portion of the instrument and the light paths from the primary and secondary mirror of the telescope assembly into the spectrograph. The spectrograph then breaks the light into 2 Near U...

  15. Riemann Curvature Tensor and Closed Geodesic Paths

    ERIC Educational Resources Information Center

    Morganstern, Ralph E.

    1977-01-01

    Demonstrates erroneous results obtained if change in a vector under parallel transport about a closed path in Riemannian spacetime is made in a complete circuit rather than just half a circuit. (Author/SL)

  16. Orbital Path of the International Space Station

    NASA Video Gallery

    Astronauts Don Pettit, Andre Kuipers and Dan Burbank explain the orbital path of the International Space Station. Earth video credit: Image Science and Analysis Laboratory, NASA's Johnson Space Cen...

  17. Path Integral Approach to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Harris, Allison

    2016-09-01

    The Path Integral technique is an alternative formulation of quantum mechanics that is based on a Lagrangian approach. In its exact form, it is completely equivalent to the Hamiltonian-based Schrödinger equation approach. Developed by Feynman in the 1940's, following inspiration from Dirac, the path integral approach has been widely used in high energy physics, quantum field theory, and statistical mechanics. However, only in limited cases has the path integral approach been applied to quantum mechanical few-body scattering. We present a theoretical and computational development of the path integral method for use in the study of atomic collisions. Preliminary results are presented for some simple systems. Ultimately, this approach will be applied to few-body ion-atom collisions. Work supported by NSF grant PHY-1505217.

  18. Local-time representation of path integrals.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  19. A chemist building paths to cell biology.

    PubMed

    Weibel, Douglas B

    2013-11-01

    Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path.

  20. Identifying decohering paths in closed quantum systems

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1990-01-01

    A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.

  1. Current path in light emitting diodes based on nanowire ensembles.

    PubMed

    Limbach, F; Hauswald, C; Lähnemann, J; Wölz, M; Brandt, O; Trampert, A; Hanke, M; Jahn, U; Calarco, R; Geelhaar, L; Riechert, H

    2012-11-23

    Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect.

  2. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  3. Path Tracking Using Simple Planar curves

    DTIC Science & Technology

    1992-03-01

    identify by block number) FIELD IGROUP SUB-GROUP Path Planning, Obstacle Avoidance, Autonomous Vehicle Motion 19. ABSTRACT (Continue on reverse if...algorithm, the method shall be incorporated into a robot’s software system. This path tracking method will lay the groundwork for a dynamic obstacle ...dynamic obstacle avoidance system for a mobile robot. Accesion For NTIS CRA& L U,.a i.O,,-.ed l ju.-Affcation o........................ By D:;t ibutioa i

  4. The prediction of radio-path characteristics

    NASA Astrophysics Data System (ADS)

    Gitina, G. M.; Kalinin, Iu. K.

    The paper examines algorithms for the long-term prediction of radio-path characteristics in the ionosphere, the main characteristic being the MUF at a given distance. The proposed approach is based on long-term memories called DATA BANKS. Attention is given to the characteritics of the various banks, including the BANK OF CITIES, the BANK OF RADIO PATHS, the REFERENCE DATA BANK, and the OUTPUT DATA BANK.

  5. Competition for shortest paths on sparse graphs.

    PubMed

    Yeung, Chi Ho; Saad, David

    2012-05-18

    Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised.

  6. Path Selection in a Poisson field

    NASA Astrophysics Data System (ADS)

    Cohen, Yossi; Rothman, Daniel H.

    2016-11-01

    A criterion for path selection for channels growing in a Poisson field is presented. We invoke a generalization of the principle of local symmetry. We then use this criterion to grow channels in a confined geometry. The channel trajectories reveal a self-similar shape as they reach steady state. Analyzing their paths, we identify a cause for branching that may result in a ramified structure in which the golden ratio appears.

  7. Possibility of an electromechanical which-path interferometer

    NASA Astrophysics Data System (ADS)

    Armour, A. D.; Blencowe, M. P.

    2001-07-01

    We investigate the possibility of an electromechanical which-path interferometer, in which electrons traveling through an Aharonov-Bohm ring incorporating a quantum dot in one of the arms are dephased by an interaction with the fundamental flexural mode of a radio-frequency cantilever. The cantilever is positioned so that its tip lies just above the dot and a bias is applied so that an electric field exists between the dot and the tip. This electric field is modified when an additional electron hops onto the dot, coupling the flexural mode of the cantilever and the microscopic electronic degrees of freedom. We analyze the transmission properties of this system and the dependence of interference fringe visibility on the cantilever-dot coupling and on the mechanical properties of the cantilever. The fringes are progressively destroyed as the interaction with the cantilever is turned up, in part due to dephasing arising from the entanglement of the electron and cantilever states and also due to the thermal smearing that results from fluctuations in the state of the cantilever. When the dwell time of the electron on the dot is comparable to or longer than the cantilever period, we find coherent features in the transmission amplitude. These features are washed out when the cantilever is decohered by its coupling to the environment.

  8. A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2001-11-01

    We present a general approach for accurate calculation of chemical substances which treats both nuclei and electrons quantum mechanically, adopting ab initio molecular orbital theory for the electronic structure and path integral molecular dynamics for the nuclei. The present approach enables the evaluation of physical quantities dependent on the nuclear configuration as well as the electronic structure, within the framework of Born-Oppenheimer adiabatic approximation. As an application, we give the path integral formulation of electric response properties—dipole moment and polarizability, which characterize the changes both in electronic structure and nuclear configuration at a given temperature when uniform electrostatic field is present. We also demonstrate the calculation of a water molecule using the present approach and the result of temperature and isotope effects is discussed.

  9. Quantum cosmology based on discrete Feynman paths

    SciTech Connect

    Chew, Geoffrey F.

    2002-10-10

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''.

  10. Path optimization with limited sensing ability

    SciTech Connect

    Kang, Sung Ha Kim, Seong Jun Zhou, Haomin

    2015-10-15

    We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.

  11. Path Integral Molecular Dynamics for Hydrogen with Orbital-Free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Runge, Keith; Karasiev, Valentin; Deymier, Pierre

    2014-03-01

    The computational bottleneck for performing path-integral molecular dynamics (PIMD) for nuclei on a first principles electronic potential energy surface has been the speed with which forces from the electrons can be generated. Recent advances in orbital-free density functional theory (OF-DFT) not only allow for faster generation of first principles forces but also include the effects of temperature on the electron density. We will present results of calculations on hydrogen in warm dense matter conditions where the protons are described by PIMD and the electrons by OF-DFT. Work supported by U.S. Dept. of Energy, grant DE-SC0002139.

  12. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2000-12-01

    We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.

  13. Parallel path planning in unknown terrains

    NASA Astrophysics Data System (ADS)

    Prassler, Erwin A.; Milios, Evangelos E.

    1991-03-01

    We present a parallel processing approach to path planning in unknown terrains which combines map-based and sensor-based techniques into a real-time capable navigation system. The method is based on massively parallel computations in a grid of simple processing elements denoted as cells. In the course of a relaxation process a potential distribution is created in the grid which exhibits a monotonous slope from a start cell to the cell corresponding to the robot''s goal position. A shortest path is determined by means of a gradient descent criterion which settles on the steepest descent in the potential distribution. Like high-level path planning algorithms our approach is capable of planning shortest paths through an arbitrarily cluttered large-scale terrain on the basis of its current internal map. Sequentially implemented its complexity is in the order of efficient classical path planning algorithms. Unlike these algorithms however the method is also highly responsive to new obstacles encountered in the terrain. By continuing the planning process during the robot''s locomotion information about previously unknown obstacles immediately affects further path planning without a need to interrupt the ongoing planning process. New obstacles cause distortions of the potential distribution which let the robot find proper detours. By ensuring a monotonous slope in the overall distribution we avoid local minimum effects which may trap a robot in the proximity of an obstacle configuration before it has reached its goal. 1 Until the recent past research on path planning in the presence of obstacles can be assigned to two major categories: map-based high-level planning approaches and sensor-based low-level conLrol approaches. In work such as 12 path planning is treated as a high-level planning task. Assuming that an (accnrae) precompiled map of the terrain is available high-level path planners provide paths which guarantee a collision-free locomotion through an arbitrary

  14. Oceanic Path Effects of Microseismic Waves

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wen, L.

    2015-12-01

    Microseismic surface waves originating from sources in ocean would propagate along parts of oceanic path before being recorded by on-land seismic stations. Studying the path effects on waveform, travel-time, magnitude and other properties of these microseismic signals is important in accurately determining the location, strength and generating mechanism of the sources. Strong effects are observed in the microseismic signals generated by Hurricane Sandy in 2012, and verified by synthetic seismograms. We find that Sandy-related seismic signals are significantly affected by oceanic path: only seismic signals share a similar length of oceanic path are cross-correlated and a large portion of the correlated signals can be traced back to sources at the ocean-continent boundary within a narrow azimuthal range from the hurricane center. In this presentation, we report that these observations can be explained by strong path effect of wave propagation from a seismic source in the hurricane center. The strong directionality of waveform cross-correlation can be explained by the propagation effect that waveform characteristics of Rayleigh wave are mostly controlled by transitional propagating path from ocean to the continental region, resulting in seismic signals being correlated only among stations sharing similar length of oceanic path; the sources at the ocean-continent boundary can be attributed to strong seismic scattering in the ocean-continent boundary, generating apparent seismic "sources" there. We also compare the synthetic vertical/transverse magnitude ratio of Rayleigh waves in an anisotropic velocity model with observations. Our results indicate that these types of seismic observations would be particularly useful for studying seismic structure of crust and upper mantle in the ocean-continent area.

  15. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non

  16. The formal path integral and quantum mechanics

    SciTech Connect

    Johnson-Freyd, Theo

    2010-11-15

    Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  17. Unbiased sampling of lattice Hamilton path ensembles

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.

    2006-10-01

    Hamilton paths, or Hamiltonian paths, are walks on a lattice which visit each site exactly once. They have been proposed as models of globular proteins and of compact polymers. A previously published algorithm [Mansfield, Macromolecules 27, 5924 (1994)] for sampling Hamilton paths on simple square and simple cubic lattices is tested for bias and for efficiency. Because the algorithm is a Metropolis Monte Carlo technique obviously satisfying detailed balance, we need only demonstrate ergodicity to ensure unbiased sampling. Two different tests for ergodicity (exact enumeration on small lattices, nonexhaustive enumeration on larger lattices) demonstrate ergodicity unequivocally for small lattices and provide strong support for ergodicity on larger lattices. Two other sampling algorithms [Ramakrishnan et al., J. Chem. Phys. 103, 7592 (1995); Lua et al., Polymer 45, 717 (2004)] are both known to produce biases on both 2×2×2 and 3×3×3 lattices, but it is shown here that the current algorithm gives unbiased sampling on these same lattices. Successive Hamilton paths are strongly correlated, so that many iterations are required between statistically independent samples. Rules for estimating the number of iterations needed to dissipate these correlations are given. However, the iteration time is so fast that the efficiency is still very good except on extremely large lattices. For example, even on lattices of total size 10×10×10 we are able to generate tens of thousands of uncorrelated Hamilton paths per hour of CPU time.

  18. Multiple Manifold Clustering Using Curvature Constrained Path

    PubMed Central

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba

    2015-01-01

    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819

  19. Exploring Career Paths. A Guide for Students and Their Families.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This five-section guide is designed to help students and their parents explore career paths. The first part of the guide is an introduction to the concept of career paths and an explanation of the steps students follow in exploring career paths. The second section, which makes up most of the booklet, covers five steps for exploring career paths:…

  20. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  1. Paths to Licensure: Things Physicists Should Know

    NASA Astrophysics Data System (ADS)

    Stewart, Gay; Stewart, John

    2016-03-01

    The path to licensure can be quite complicated, and can thwart a physics department's efforts to produce more and better prepared high school physics teachers. Each state has different pathways to licensure. Acronyms like CAEP and SPA are not within the normal physicist's vocabulary. Some understanding of this topic can allow physics faculty advisers to help our students so that fewer are derailed on their path to the classroom, or take a path that will leave them less well prepared if they do find themselves there. Examples of different approaches that work within state licensure systems from two different states will be presented. Physics teacher preparation efforts in both Arkansas and West Virginia have been supported in part by the Physics Teacher Education Coalition (PhysTEC).

  2. The path integral for dendritic trees.

    PubMed

    Abbott, L F; Farhi, E; Gutmann, S

    1991-01-01

    We construct the path integral for determining the potential on any dendritic tree described by a linear cable equation. This is done by generalizing Brownian motion from a line to a tree. We also construct the path integral for dendritic structures with spatially-varying and/or time-dependent membrane conductivities due, for example, to synaptic inputs. The path integral allows novel computational techniques to be applied to cable problems. Our analysis leads ultimately to an exact expression for the Green's function on a dendritic tree of arbitrary geometry expressed in terms of a set of simple diagrammatic rules. These rules providing a fast and efficient method for solving complex cable problems.

  3. Least-cost paths in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Rees, W. G.

    2004-04-01

    Footpaths in a mountainous area of Wales are modelled as least-cost paths between the start and end points. The cost function is defined on the basis of topography alone, and is defined in such a way that the cost penalty for excessively steep slopes is an adjustable parameter of the model. Least-cost paths are calculated by applying Dijkstra's algorithm to a Digital Elevation Model. Comparison of these calculated least-cost paths with existing footpaths suggests that the latter do not usually follow the least-time route, but instead optimise the metabolic cost for human locomotion. The method developed here is proposed as a means of exploring possible routes for new footpaths in mountainous areas.

  4. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  5. A taxonomy of integral reaction path analysis

    SciTech Connect

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  6. The path exchange method for hybrid LCA.

    PubMed

    Lenzen, Manfred; Crawford, Robert

    2009-11-01

    Hybrid techniques for Life-Cycle Assessment (LCA) provide a way of combining the accuracy of process analysis and the completeness of input-output analysis. A number of methods have been suggested to implement a hybrid LCA in practice, with the main challenge being the integration of specific process data with an overarching input-output system. In this work we present a new hybrid LCA method which works at the finest input-output level of detail: structural paths. This new Path Exchange method avoids double-counting and system disturbance just as previous hybrid LCA methods, but instead of a large LCA database it requires only a minimum of external information on those structural paths that are to be represented by process data.

  7. Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Nakayama, Akira

    2008-01-01

    The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.

  8. On the spatial relationship between lightning discharges and propagation paths of perturbed subionospheric VLF/LF signals

    SciTech Connect

    Wai-Yeung Yip; Inan, U.S. ); Orville, R.E. )

    1991-01-01

    A study has been made of the spatial relationship between propagation paths of subionospheric VLF/LF signals exhibiting sudden amplitude perturbations (Trimpi events) and time correlated cloud-to-ground lightning flashes. On each of the 4 days examined the storm centers were located close to the signal path from the NAU transmitter (28.5-kHz) in Puerto Rico to Stanford (SU) and were at large distances from the propagation path of the 48.5-kHz transmitter signal from Nebraska to SU. Nevertheless, no Trimpi events were observed on the former path, while many were seen on the latter. Furthermore, the detected Trimpi perturbations of the 48.5-kHz signal received at Stanford were found to be associated with the lightning activity in the distant storm centers. Since the NAU-SU path lies entirely at L < 2 and the 48.5-SU path is located mostly at 2< L <3, the L dependent magnetospheric conditions which determine the level of lightning-induced electron precipitation are different along the two paths. Thus, the authors postulate that the observed difference in Trimpi occurence on the two paths was due to the different magnetospheric conditions. Hence the occurence of Trimpi events over the geographical region corresponding to L <3 may be more dominantly controlled by magnetospheric conditions than the source lightning distribution.

  9. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  10. Practical path planning among movable obstacles

    SciTech Connect

    Chen, Pang C.; Hwang, Yong K.

    1990-09-05

    Path planning among movable obstacles is a practical problem that is in need of a solution. In this paper an efficient heuristic algorithm that uses a generate-and-test paradigm: a good'' candidate path is hypothesized by a global planner and subsequently verified by a local planner. In the process of formalizing the problem, we also present a technique for modeling object interactions through contact. Our algorithm has been tested on a variety of examples, and was able to generate solutions within 10 seconds. 5 figs., 27 refs.

  11. Optical tomography with discretized path integral

    PubMed Central

    Yuan, Bingzhi; Tamaki, Toru; Kushida, Takahiro; Mukaigawa, Yasuhiro; Kubo, Hiroyuki; Raytchev, Bisser; Kaneda, Kazufumi

    2015-01-01

    Abstract. We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well. PMID:26839903

  12. Path planning for everday robotics with SANDROS

    SciTech Connect

    Watterberg, P.; Xavier, P.; Hwang, Y.

    1997-02-01

    We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.

  13. Gas Path Sealing in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1978-01-01

    A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.

  14. Optical tomography with discretized path integral.

    PubMed

    Yuan, Bingzhi; Tamaki, Toru; Kushida, Takahiro; Mukaigawa, Yasuhiro; Kubo, Hiroyuki; Raytchev, Bisser; Kaneda, Kazufumi

    2015-07-01

    We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well.

  15. Model of electron pairs in electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Singh, R. J.; Khan, Shakeel

    2016-07-01

    In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various CuO2 cells jumping from one O2- to the other under the influence of magnetic field offered by the Cu2+ ions in that CuO2 cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at Cu2+ sites from opposite ends and pass from one Cu2+ site to the diagonally opposite Cu2+ site. Following this type of path, they are subjected to high magnetic fields from various Cu2+ ions in that cell. They do not travel from one Cu2+ site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the Cu2+ ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of 3dx2-y2 + iS type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below Tc.

  16. Gender Differences in Career Paths in Banking.

    ERIC Educational Resources Information Center

    Morgan, Sandra; And Others

    1993-01-01

    Analyzed career paths of middle managers in bank. Study of matched pairs found that men (n=25) advanced faster and reached middle management through fewer promotions and positions than did women (n=25). Men had significantly more work experience outside of banking. In banking careers, men held more jobs in lending, whereas women occupied more…

  17. Bond paths as privileged exchange channels.

    PubMed

    Pendás, A Martín; Francisco, Evelio; Blanco, Miguel A; Gatti, Carlo

    2007-01-01

    Evidence that the bond paths of the quantum theory of atoms-in-molecules (QTAIM) signal preferred quantum-mechanical exchange channels is presented. We show how bond paths between an atom A and the atoms B in its environment appear to be determined by competition among the A-B exchange-correlation energies that always contribute to stabilize the A-B interactions. These pairwise additive stabilizations depend neither on the attractive or repulsive nature of the classical electrostatic interaction between the atoms' charge densities, nor on the change in the self energies of the atoms involved. These other terms may well cause an overall molecular-energy increase in spite of a possibly large A-B exchange-correlation stabilization. After our proposal, bond paths, both at and out of equilibrium geometries, are endowed with a specific energetic meaning that should contribute to reconcile the orthodox QTAIM interpretation with other widely accepted views, and to settle recent controversies questioning the meaning of hydrogen-hydrogen bonding and the nature of the so-called "steric interactions", the role of bond paths in endohedral complexes, and the generality of the results provided by the QTAIM. Implications for the nature of more general closed-shell interactions are also briefly discussed.

  18. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  19. Visualizing Transmedia Networks: Links, Paths and Peripheries

    ERIC Educational Resources Information Center

    Ruppel, Marc Nathaniel

    2012-01-01

    'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…

  20. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum... must be accelerated on the ground to VEF at which point the critical engine must be made inoperative... takeoff surface, the available gradient of climb must not be less than— (i) 1.2 percent for...

  1. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum... must be accelerated on the ground to VEF at which point the critical engine must be made inoperative... takeoff surface, the available gradient of climb must not be less than— (i) 1.2 percent for...

  2. Path integration in tactile perception of shapes.

    PubMed

    Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O

    2014-11-01

    Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect.

  3. Disabled nurses discover new career paths.

    PubMed

    Bemis, Patricia Ann

    2009-06-01

    When confronted with a disability, the steps learned from the nursing process help nurses maintain employability. The nursing process teaches nurses to gather information, evaluate the information, develop a plan, implement the plan, evaluate the outcome, modify the plan, implement again, etc. By following the process to modify their career paths and/or implement adaptive devices, nurses maintain their employability.

  4. A modified reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Ganesh, G.; Whitaker, S.; Maki, G.

    1991-01-01

    High throughput is an overriding factor dictating system performance. A configurable data processor is presented which can be modified to optimize performance for a wide class of problems. The new processor is specifically designed for arbitrary data path operations and can be dynamically reconfigured.

  5. Ambivalent Journey: Teacher Career Paths in Oman

    ERIC Educational Resources Information Center

    Chapman, David W.; Al-Barwani, Thuwayba; Al Mawali, Fathiya; Green, Elizabeth

    2012-01-01

    This study investigated the career paths of 625 university graduates who prepared to be secondary school teachers in Oman, their assessment of their current work situation, and the extent to which their initial commitment to teaching was related to their subsequent career satisfaction and intention to remain in teaching. While nearly all graduates…

  6. Service-Learning Partnerships: Paths of Engagement

    ERIC Educational Resources Information Center

    Dorado, Silvia; Giles, Dwight E., Jr.

    2004-01-01

    This article furthers research and theory on the initiation and development of service-learning partnerships. It identifies three paths of engagement between university and community agencies: tentative engagement, aligned engagement, and committed engagement. This conceptualization helps to understand how service-learning partnerships evolve over…

  7. Current SPE Hydrodynamic Modeling and Path Forward

    SciTech Connect

    Knight, Earl E.; Rougier, Esteban

    2012-08-14

    Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.

  8. Explore the Many Paths to Leadership

    ERIC Educational Resources Information Center

    Crow, Tracy

    2015-01-01

    The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and…

  9. Stochastic Evolutionary Algorithms for Planning Robot Paths

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard

    2006-01-01

    A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.

  10. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  11. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, Robert M.; Wright, David D.

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  12. The Erratic Path of Hungarian Higher Education

    ERIC Educational Resources Information Center

    Marcus, Jon

    2014-01-01

    This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier…

  13. Star-Paths, Stones and Horizon Astronomy

    NASA Astrophysics Data System (ADS)

    Brady, Bernadette

    2015-05-01

    Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.

  14. Global Cloud Liquid Water Path Simulations(.

    NASA Astrophysics Data System (ADS)

    Lemus, Lilia; Rikus, Lawrie; Martin, C.; Platt, R.

    1997-01-01

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model's simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model's diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system.

  15. Quad-rotor flight path energy optimization

    NASA Astrophysics Data System (ADS)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  16. Motion on Cycloid Paths: A Project

    ERIC Educational Resources Information Center

    Gluck, P.

    2010-01-01

    This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…

  17. Unified classical path theories of pressure broadening.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.

    1971-01-01

    Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.

  18. Damage detection using frequency shift path

    NASA Astrophysics Data System (ADS)

    Wang, Longqi; Lie, Seng Tjhen; Zhang, Yao

    2016-01-01

    This paper introduces a novel concept called FREquency Shift (FRESH) path to describe the dynamic behavior of structures with auxiliary mass. FRESH path combines the effects of frequency shifting and amplitude changing into one space curve, providing a tool for analyzing structure health status and properties. A damage index called FRESH curvature is then proposed to detect local stiffness reduction. FRESH curvature can be easily adapted for a particular problem since the sensitivity of the index can be adjusted by changing auxiliary mass or excitation power. An algorithm is proposed to adjust automatically the contribution from frequency and amplitude in the method. Because the extraction of FRESH path requires highly accurate frequency and amplitude estimators; therefore, a procedure based on discrete time Fourier transform is introduced to extract accurate frequency and amplitude with the time complexity of O (n log n), which is verified by simulation signals. Moreover, numerical examples with different damage sizes, severities and damping are presented to demonstrate the validity of the proposed damage index. In addition, applications of FRESH path on two steel beams with different damages are presented and the results show that the proposed method is valid and computational efficient.

  19. Bead-Fourier path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto

    2003-06-01

    Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.

  20. Electronic Cigarettes

    MedlinePlus

    ... New FDA Regulations Text Size: A A A Electronic Cigarettes Electronic cigarettes (e-cigarettes) are battery operated products designed ... more about: The latest news and events about electronic cigarettes on this FDA page Electronic cigarette basics ...

  1. A surface hopping algorithm for nonadiabatic minimum energy path calculations.

    PubMed

    Schapiro, Igor; Roca-Sanjuán, Daniel; Lindh, Roland; Olivucci, Massimo

    2015-02-15

    The article introduces a robust algorithm for the computation of minimum energy paths transiting along regions of near-to or degeneracy of adiabatic states. The method facilitates studies of excited state reactivity involving weakly avoided crossings and conical intersections. Based on the analysis of the change in the multiconfigurational wave function the algorithm takes the decision whether the optimization should continue following the same electronic state or switch to a different state. This algorithm helps to overcome convergence difficulties near degeneracies. The implementation in the MOLCAS quantum chemistry package is discussed. To demonstrate the utility of the proposed procedure four examples of application are provided: thymine, asulam, 1,2-dioxetane, and a three-double-bond model of the 11-cis-retinal protonated Schiff base.

  2. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  3. Path-consistency: When space misses time

    SciTech Connect

    Chmeiss, A.; Jegou, P.

    1996-12-31

    Within the framework of constraint programming, particulary concerning the Constraint Satisfaction Problems (CSPs), the techniques of preprocessing based on filtering algorithms were shown to be very important for the search phase. In particular, two filtering methods have been studied, these methods exploit two properties of local consistency: arc- and path-consistency. Concerning the arc-consistency methods, there is a linear time algorithm (in the size of the problem) which is efficient in practice. But the limitations of the arc-consistency algorithms requires often filtering methods with higher order like path-consistency filterings. The best path-consistency algorithm proposed is PC-6, a natural generalization of AC-6 to path-consistency. Its time complexity is O(n{sup 3}d{sup 4}) and its space complexity is O(n{sup 3}d{sup 4}), where n is the number of variables and d is the size of domains. We have remarked that PC-6, though it is widely better than PC-4, was not very efficient in practice, specially for those classes of problems that require an important space to be run. Therefore, we propose here a new path-consistency algorithm called PC-7, its space complexity is O(n{sup 3}d{sup 4}) but its time complexity is O(n{sup 3}d{sup 4}) i.e. worse than that of PC-6. However, the simplicity of PC-7 as well as the data structures used for its implementation offer really a higher performance than PC-6. Furthermore, it turns out that when the size of domains is a constant of the problems, the time complexity of PC-7 becomes. like PC-6, optimal i.e. O(n{sup 3}).

  4. Photon path length retrieval from GOSAT observations

    NASA Astrophysics Data System (ADS)

    Kremmling, Beke; Penning de Vries, Marloes; Deutschmann, Tim; Wagner, Thomas

    2013-04-01

    The influence of clouds on the atmospheric radiation budget is investigated, focussing on the photon path length distributions of the scattered sunlight. Apart from the reflection of incoming solar radiation at the cloud top, clouds can also introduce a large number of additional scattering events causing an enhancement of the photon paths. In certain cloud formations, these scattering events also result in a ``ping-pong`` behaviour between different cloud patches and cloud layers. It has been shown from ground based measurements that it is possible to retrieve photon path lengths by analysis of high resolution oxygen A-band spectra (O. Funk et al.). This study uses similar space based measurements of the oxygen A-band for the path length retrieval. The oxygen A-band spectra are retrieved from the Japanese Greenhouse Gases Observing Satellite (GOSAT) which was successfully launched in 2009. The high spectral resolution of the GOSAT TANSO-FTS instrument allows to almost completely resolve the individual absorption lines. The considered spectral range is particularly suitable for this study because it shows clear absorption structures of different strength. From the analysis of the spectral signatures, cloud properties and the underlying path length distributions can be derived. The retrieval is done by analysis and comparison of the extracted TANSO-FTS spectra with simulations from the Monte Carlo radiative transfer Model McArtim. The model permits modelling of altitude dependent oxygen absorption cross sections and three-dimensional cloud patterns. Case studies of clear and cloudy sky scenarios will be presented. Future studies will focus on more complicated cloud structures, especially considering three-dimensional geometries and heterogeneities.

  5. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  6. Transition path time distribution and the transition path free energy barrier.

    PubMed

    Pollak, Eli

    2016-10-19

    The recent experimental measurement of the transition path time distributions of proteins presents several challenges to theory. Firstly, why do the fits of the experimental data to a theoretical expression lead to barrier heights which are much lower than the free energies of activation of the observed transitions? Secondly, there is the theoretical question of determining the transition path time distribution, without invoking the Smoluchowski limit. In this paper, we derive an exact expression for a transition path time distribution which is valid for arbitrary memory friction using the normal mode transformation which underlies Kramers' rate theory. We then recall that for low barriers, there is a noticeable difference between the transition path time distribution obtained with absorbing boundary conditions and free boundary conditions. For the former, the transition times are shorter, since recrossings of the boundaries are disallowed. As a result, if one uses the distribution based on absorbing boundary conditions to fit the experimental data, one will find that the transition path barrier will be larger than the values found based on a theory with free boundary conditions. We then introduce the paradigm of a transition path barrier height, and show that one should always expect it to be much smaller than the activation energy.

  7. Arena geometry and path shape: when rats travel in straight or in circuitous paths?

    PubMed

    Yaski, Osnat; Portugali, Juval; Eilam, David

    2011-12-01

    We show here that the global geometry of the environment affects the shape of the paths of travel in rats. To examine this, individual rats were introduced into an unfamiliar arena. One group of rats (n=8) was tested in a square arena (2 m × 2 m), and the other group (n=8) in a round arena (2 m diameter). Testing was in a total darkness, since in the absence of visual information the geometry is not perceived immediately and the extraction of environment shape is slower. We found that while the level of the rats' activity did not seem to differ between both arenas, path shape differed significantly. When traveling along the perimeter, path shape basically followed the arena walls, with perimeter paths curving along the walls of the round arena, while being straight along the walls of the square arena. A similar impact of arena geometry was observed for travel away from the arena walls. Indeed, when the rats abandoned the arena walls to crosscut through the center of the arena, their center paths were circuitous in the round arena and relatively straight in the square arena. We suggest that the shapes of these paths are exploited for the same spatial task: returning back to a familiar location in the unsighted environment.

  8. Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths.

    PubMed

    Foroutan-Nejad, Cina; Shahbazian, Shant; Marek, Radek

    2014-08-04

    Currently, bonding analysis of molecules based on the Quantum Theory of Atoms in Molecules (QTAIM) is popular; however, "misinterpretations" of the QTAIM analysis are also very frequent. In this contribution the chemical relevance of the bond path as one of the key topological entities emerging from the QTAIM's topological analysis of the one-electron density is reconsidered. The role of nuclear vibrations on the topological analysis is investigated demonstrating that the bond paths are not indicators of chemical bonds. Also, it is argued that the detection of the bond paths is not necessary for the "interaction" to be present between two atoms in a molecule. The conceptual disentanglement of chemical bonds/interactions from the bonds paths, which are alternatively termed "line paths" in this contribution, dismisses many superficial inconsistencies. Such inconsistencies emerge from the presence/absence of the line paths in places of a molecule in which chemical intuition or alternative bonding analysis does not support the presence/absence of a chemical bond. Moreover, computational QTAIM studies have been performed on some "problematic" molecules, which were considered previously by other authors, and the role of nuclear vibrations on presence/absence of the line paths is studied demonstrating that a bonding pattern consistent with other theoretical schemes appears after a careful QTAIM analysis and a new "interpretation" of data is performed.

  9. A path model of aircraft noise annoyance

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.

    1984-09-01

    This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.

  10. Adaptive path planning for flexible manufacturing

    SciTech Connect

    Chen, Pang C.

    1994-08-01

    Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for automating flexible manufacturing in incrementally-changing environments. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.

  11. Broadband Phase Spectroscopy over Turbulent Air Paths.

    PubMed

    Giorgetta, Fabrizio R; Rieker, Gregory B; Baumann, Esther; Swann, William C; Sinclair, Laura C; Kofler, Jon; Coddington, Ian; Newbury, Nathan R

    2015-09-04

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70,000 comb teeth spanning 233  cm(-1) across hundreds of near-infrared rovibrational resonances of CO(2), CH(4), and H(2)O with submilliradian uncertainty, corresponding to a 10(-13) refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO(2). While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  12. Mining Preferred Traversal Paths with HITS

    NASA Astrophysics Data System (ADS)

    Yeh, Jieh-Shan; Lin, Ying-Lin; Chen, Yu-Cheng

    Web usage mining can discover useful information hidden in web logs data. However, many previous algorithms do not consider the structure of web pages, but regard all web pages with the same importance. This paper utilizes HITS values and PNT preferences as measures to mine users' preferred traversal paths. Wë structure mining uses HITS (hypertext induced topic selection) to rank web pages. PNT (preferred navigation tree) is an algorithm that finds users' preferred navigation paths. This paper introduces the Preferred Navigation Tree with HITS (PNTH) algorithm, which is an extension of PNT. This algorithm uses the concept of PNT and takes into account the relationships among web pages using HITS algorithm. This algorithm is suitable for E-commerce applications such as improving web site design and web server performance.

  13. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  14. Hamiltonian formalism and path entropy maximization

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; González, Diego

    2015-10-01

    Maximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the second law of thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the second law is a fundamental property of plausible inference.

  15. An alternative path integral for quantum gravity

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan; Raju, Avinash

    2016-10-01

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This "Neumann ensemble" perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  16. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    PubMed Central

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the

  17. Practical and conceptual path sampling issues

    NASA Astrophysics Data System (ADS)

    Bolhuis, P. G.; Dellago, C.

    2015-09-01

    In the past 15 years transition path sampling (TPS) has evolved from its basic algorithm to an entire collection of methods and a framework for investigating rare events in complex systems. The methodology is applicable to a wide variety of systems and processes, ranging from transitions in small clusters or molecules to chemical reactions, phase transitions, and conformational changes in biomolecules. The basic idea of TPS is to harvest dynamical unbiased trajectories that connect a reactant with a product, by a Markov Chain Monte Carlo procedure called shooting. This simple importance sampling yields the rate constants, the free energy surface, insight in the mechanism of the rare event of interest, and by using the concept of the committor, also access to the reaction coordinate. In the last decade extensions to TPS have been developed, notably the transition interface sampling (TIS) methods, and its generalization multiple state TIS. Combination with advanced sampling methods such as replica exchange and the Wang-Landau algorithm, among others, improves sampling efficiency. Notwithstanding the success of TPS, there are issues left to discuss, and, despite the method's apparent simplicity, many pitfalls to avoid. This paper discusses several of these issues and pitfalls: the choice of stable states and interface order parameters, the problem of positioning the TPS windows and TIS interfaces, the matter of convergence of the path ensemble, the matter of kinetic traps, and the question whether TPS is able to investigate and sample Markov state models. We also review the reweighting technique used to join path ensembles. Finally we discuss the use of the sampled path ensemble to obtain reaction coordinates.

  18. Quantitative molecular thermochemistry based on path integrals.

    PubMed

    Glaesemann, Kurt R; Fried, Laurence E

    2005-07-15

    The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal-mode analysis to calculate the vibrational and rotational contributions. We utilize path-integral Monte Carlo for going beyond the harmonic analysis and to calculate the vibrational and rotational contributions to ab initio energies. This is an application and an extension of a method previously developed in our group [J. Chem. Phys. 118, 1596 (2003)].

  19. Do-It-Yourself Critical Path Method.

    ERIC Educational Resources Information Center

    Morris, Edward P., Jr.

    This report describes the critical path method (CPM), a system for planning and scheduling work to get the best time-cost combination for any particular job. With the use of diagrams, the report describes how CPM works on a step-by-step basis. CPM uses a network to show which parts of a job must be done and how they would eventually fit together…

  20. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  1. Converging Towards the Optimal Path to Extinction

    DTIC Science & Technology

    2011-01-01

    to extinction is the path that minimizes the action in either the Hamiltonian or Lagrangian representation. We compute the trajectory satisfying the...probability distribution, which falls steeply away from the steady state. This approximation leads to a conserved quan- tity that is called the Hamiltonian ...35]. From the Hamiltonian , one can find a set of conservative ordinary differential equations (ODEs) that are known as Hamilton’s equations. These

  2. Evolutionary software for autonomous path planning

    SciTech Connect

    Couture, S; Hage, M

    1999-02-10

    This research project demonstrated the effectiveness of using evolutionary software techniques in the development of path-planning algorithms and control programs for mobile vehicles in radioactive environments. The goal was to take maximum advantage of the programmer's intelligence by tasking the programmer with encoding the measures of success for a path-planning algorithm, rather than developing the path-planning algorithms themselves. Evolutionary software development techniques could then be used to develop algorithms most suitable to the particular environments of interest. The measures of path-planning success were encoded in the form of a fitness function for an evolutionary software development engine. The task for the evolutionary software development engine was to evaluate the performance of individual algorithms, select the best performers for the population based on the fitness function, and breed them to evolve the next generation of algorithms. The process continued for a set number of generations or until the algorithm converged to an optimal solution. The task environment was the navigation of a rover from an initial location to a goal, then to a processing point, in an environment containing physical and radioactive obstacles. Genetic algorithms were developed for a variety of environmental configurations. Algorithms were simple and non-robust strings of behaviors, but they could be evolved to be nearly optimal for a given environment. In addition, a genetic program was evolved in the form of a control algorithm that operates at every motion of the robot. Programs were more complex than algorithms and less optimal in a given environment. However, after training in a variety of different environments, they were more robust and could perform acceptably in environments they were not trained in. This paper describes the evolutionary software development engine and the performance of algorithms and programs evolved by it for the chosen task.

  3. Flux Control in Networks of Diffusion Paths

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.

  4. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  5. Path Models of Vocal Emotion Communication.

    PubMed

    Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R

    2015-01-01

    We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars).

  6. All new custom path photo book creation

    NASA Astrophysics Data System (ADS)

    Wang, Wiley; Muzzolini, Russ

    2012-03-01

    In this paper, we present an all new custom path to allow consumers to have full control to their photos and the format of their books, while providing them with guidance to make their creation fast and easy. The users can choose to fully automate the initial creation, and then customize every page. The system manage many design themes along with numerous design elements, such as layouts, backgrounds, embellishments and pattern bands. The users can also utilize photos from multiple sources including their computers, Shutterfly accounts, Shutterfly Share sites and Facebook. The users can also use a photo as background, add, move and resize photos and text - putting what they want where they want instead of being confined to templates. The new path allows users to add embellishments anywhere in the book, and the high-performance platform can support up to 1,000 photos per book and up to 25 pictures per page. The path offers either Smart Autofill or Storyboard features allowing customers to populate their books with photos so they can add captions and customize the pages.

  7. Toroidal path filter for orbital conjunction screening

    NASA Astrophysics Data System (ADS)

    Alfano, Salvatore

    2012-07-01

    For satellite conjunction prediction containing many objects, timely processing can be a concern. Various filters are used to identify orbiting pairs that cannot come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to quicken the overall processing time. One such filter is the orbit path filter (also known as the geometric pre-filter), designed to eliminate pairs of objects based on characteristics of orbital motion. The goal of this filter is to eliminate pairings where the distance (geometry) between their orbits remains above some user-defined threshold, irrespective of the actual locations of the satellites along their paths. Rather than using a single distance bound, this work presents a toroid approach, providing a measure of versatility by allowing the user to specify different in-plane and out-of-plane bounds for the path filter. The primary orbit is used to define a focus-centered elliptical ring torus with user-defined thresholds. An assessment is then made to determine if the secondary orbit can touch or penetrate this torus. The method detailed here can be used on coplanar, as well as non-coplanar, orbits.

  8. Path Models of Vocal Emotion Communication

    PubMed Central

    Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R.

    2015-01-01

    We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076

  9. 75 FR 51750 - Accessibility Guidelines for Shared Use Paths

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... opportunity for individuals with disabilities, designers of shared use paths, and those with expertise in this... opportunity for individuals with disabilities, designers of shared use paths, and those with expertise in...

  10. 1. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE, LOOKING NORTHEAST. THE CONRAIL BRIDGE (HAER No. NJ-43) AND THE NEWARK TURNPIKE ARE VISIBLE IN THE BACKGROUND - Path Transit System Bridge, Spanning Hackensack River, Kearny, Hudson County, NJ

  11. A Note on the Stochastic Nature of Feynman Quantum Paths

    NASA Astrophysics Data System (ADS)

    Botelho, Luiz C. L.

    2016-11-01

    We propose a Fresnel stochastic white noise framework to analyze the stochastic nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under a time-independent potential.

  12. Optimal and Efficient Path Planning for Unknown and Dynamic Environments

    DTIC Science & Technology

    1993-08-01

    Figure 1 : Backpointers Based on Initial Propagation from Goal State 10 Figure 2 : Robot Discovers First Unknown Obstacle Cell I 1 Figure 3 : Robot...Moves Up in Search of Path around Obstacle 11 Figure 4 : Robot Moves Down in Search of Path around Obstacle 12 Figure 5 : RAISE States Propagate out of...Dynamic Obstacle 25 Figure 14 : Discovering that the Obstacle has Moved 25 Figure 15 : Path Planning with Potential Fields 26 Figure 16 : Path Planning

  13. Path probability of stochastic motion: A functional approach

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Abe, Sumiyoshi

    2016-06-01

    The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.

  14. Path Dependence of Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Herrington, Tyler; Zickfeld, Kirsten

    2013-04-01

    Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path

  15. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  16. Path integral formalism for the spectral line shape in plasmas: Lyman-{alpha} with fine structure

    SciTech Connect

    Bedida, N.; Meftah, M. T.; Boland, D.; Stamm, R.

    2008-10-22

    We examine in this work the expression of the dipolar autocorrelation function for an emitter in the plasma using the path integrals formalism. The results for Lyman alpha lines with fine structure are retrieved in a compact formula. The expression of the dipolar autocorrelation function takes into account the ions dynamics and the fine structure effects. The electron's effect is represented by the impact operator {phi}{sub e} in the final formula.

  17. Perspectives on an alternative career path in regulatory science

    PubMed Central

    Fields, F. Owen

    2013-01-01

    Perspectives are provided on an alternative career path in regulatory science for those currently involved in basic biology research. This path is compared and contrasted with basic research, and factors to be examined if one is considering such a path are discussed. PMID:23846346

  18. Perspectives on an alternative career path in regulatory science.

    PubMed

    Fields, F Owen

    2013-07-01

    Perspectives are provided on an alternative career path in regulatory science for those currently involved in basic biology research. This path is compared and contrasted with basic research, and factors to be examined if one is considering such a path are discussed.

  19. 28 CFR 36.403 - Alterations: Path of travel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Alterations: Path of travel. 36.403... Alterations: Path of travel. (a) General. (1) An alteration that affects or could affect the usability of or... the maximum extent feasible, the path of travel to the altered area and the restrooms, telephones,...

  20. 28 CFR 36.403 - Alterations: Path of travel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Alterations: Path of travel. 36.403... Alterations: Path of travel. (a) General. (1) An alteration that affects or could affect the usability of or... the maximum extent feasible, the path of travel to the altered area and the restrooms, telephones,...

  1. 28 CFR 36.403 - Alterations: Path of travel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Alterations: Path of travel. 36.403... Alterations: Path of travel. (a) General. (1) An alteration that affects or could affect the usability of or... the maximum extent feasible, the path of travel to the altered area and the restrooms, telephones,...

  2. 28 CFR 36.403 - Alterations: Path of travel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Alterations: Path of travel. 36.403... Alterations: Path of travel. (a) General. (1) An alteration that affects or could affect the usability of or... the maximum extent feasible, the path of travel to the altered area and the restrooms, telephones,...

  3. Module for Business, Management, and Technology Career Path.

    ERIC Educational Resources Information Center

    Broeker, Arlene M.

    Designed for use with secondary students who have explored career paths and wish to pursue a career in business, management, and technology (BM&T), this module focuses on providing work-based learning experiences. Introductory materials include the following: career paths rationale and philosophy, benefits of using career paths, information on…

  4. Time optimal paths for a constant speed unicycle

    SciTech Connect

    Reister, D.B.

    1991-01-01

    This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.

  5. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to

  6. Light transport on path-space manifolds

    NASA Astrophysics Data System (ADS)

    Jakob, Wenzel Alban

    The pervasive use of computer-generated graphics in our society has led to strict demands on their visual realism. Generally, users of rendering software want their images to look, in various ways, "real", which has been a key driving force towards methods that are based on the physics of light transport. Until recently, industrial practice has relied on a different set of methods that had comparatively little rigorous grounding in physics---but within the last decade, advances in rendering methods and computing power have come together to create a sudden and dramatic shift, in which physics-based methods that were formerly thought impractical have become the standard tool. As a consequence, considerable attention is now devoted towards making these methods as robust as possible. In this context, robustness refers to an algorithm's ability to process arbitrary input without large increases of the rendering time or degradation of the output image. One particularly challenging aspect of robustness entails simulating the precise interaction of light with all the materials that comprise the input scene. This dissertation focuses on one specific group of materials that has fundamentally been the most important source of difficulties in this process. Specular materials, such as glass windows, mirrors or smooth coatings (e.g. on finished wood), account for a significant percentage of the objects that surround us every day. It is perhaps surprising, then, that it is not well-understood how they can be accommodated within the theoretical framework that underlies some of the most sophisticated rendering methods available today. Many of these methods operate using a theoretical framework known as path space integration. But this framework makes no provisions for specular materials: to date, it is not clear how to write down a path space integral involving something as simple as a piece of glass. Although implementations can in practice still render these materials by side

  7. Generic Equations for Constructing Smooth Paths Along Circles and Tangent Lines With Application to Airport Ground Paths

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith

    1998-01-01

    The primary purpose of this publication is to develop a mathematical model to describe smooth paths along any combination of circles and tangent lines. Two consecutive circles in a path are either tangent (externally or internally) or they appear on the same (lateral) or opposite (transverse) sides of a connecting tangent line. A path may start or end on either a segment or circle. The approach is to use mathematics common to robotics to design the path as a multilink manipulator. This approach allows a hierarchical view of the problem and keeps the notation manageable. A user simply specifies a few parameters to configure a path. Necessary and sufficient conditions automatically ensure the consistency of the inputs for a smooth path. Two example runway exit paths are given, and an angle to go assists in knowing when to switch from one path element to the next.

  8. A main path domain map as digital library interface

    NASA Astrophysics Data System (ADS)

    Demaine, Jeffrey

    2009-01-01

    The shift to electronic publishing of scientific journals is an opportunity for the digital library to provide non-traditional ways of accessing the literature. One method is to use citation metadata drawn from a collection of electronic journals to generate maps of science. These maps visualize the communication patterns in the collection, giving the user an easy-tograsp view of the semantic structure underlying the scientific literature. For this visualization to be understandable the complexity of the citation network must be reduced through an algorithm. This paper describes the Citation Pathfinder application and its integration into a prototype digital library. This application generates small-scale citation networks that expand upon the search results of the digital library. These domain maps are linked to the collection, creating an interface that is based on the communication patterns in science. The Main Path Analysis technique is employed to simplify these networks into linear, sequential structures. By identifying patterns that characterize the evolution of the research field, Citation Pathfinder uses citations to give users a deeper understanding of the scientific literature.

  9. Materials science. Electronics without lead.

    PubMed

    Li, Yi; Moon, Kyoung-sik; Wong, C P

    2005-06-03

    In conventional consumer electronics such as cell phones, lead-containing interconnects provide the conductive path between different circuit elements. Environmental concerns have led to a search for lead-free alternatives. In their Perspective, Li et al. review these efforts, which have focused on lead-free alloys and electrically conductive adhesives. Both of these approaches are showing promise, but no one lead-free interconnect material can serve as a substitute for the conventional tin-lead solder in all devices.

  10. Multidimensional Deterministic Electron Transport Calculations

    DTIC Science & Technology

    1992-05-01

    inlllnlnilinlmmm nMI MII n~lA - Is - -The SMART scattering matrix is not tied to a particular angular flux distribution . -There is considerable numerical...Both expressions are derived by performing an uncollided electron balance over the i’th path length cell. The uncollided flux is then distributed to the...OIS1UTInOIAVALAIT Y STAIEMENT LDIOSTRIUTION CODE Approved for public release; distribution unlimited. 13. A8STRACTO"d noww Fast and accurate techniques for

  11. Phase space path-integral formulation of the above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2013-04-01

    Atoms and molecules submitted to a strong laser field can emit electrons of high energies in the above-threshold ionization (ATI) process. This process finds a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits [P. Salières et al., Science 292, 902 (2001)], 10.1126/science.108836. However, the connection with the Feynman path-integral formalism is explained only by intuition and analogy and within the so-called strong-field approximation (SFA). Using the phase space path-integral formalism we have obtained an exact result for the momentum-space matrix element of the total time-evolution operator. Applying this result to the ATI we show that the SFA and the so-called improved SFA are, respectively, the zeroth- and the first-order terms of the expansion in powers of the laser-free effective interaction of the electron with the rest of the atom (molecule). We have also presented the second-order term of this expansion which is responsible for the ATI with double scattering of the ionized electron.

  12. Electrons, Electronic Publishing, and Electronic Display.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; Lynch, Clifford A.

    1985-01-01

    Provides a perspective on electronic publishing by distinguishing between "Newtonian" publishing and "quantum-mechanical" publishing. Highlights include media and publishing, works delivered through electronic media, electronic publishing and the printed word, management of intellectual property, and recent copyright-law issues…

  13. Auditory Perception of Motor Vehicle Travel Paths

    PubMed Central

    Ashmead, Daniel H.; Grantham, D. Wesley; Maloff, Erin S.; Hornsby, Benjamin; Nakamura, Takabun; Davis, Timothy J.; Pampel, Faith; Rushing, Erin G.

    2012-01-01

    Objective These experiments address concerns that motor vehicles in electric engine mode are so quiet that they pose a risk to pedestrians, especially those with visual impairments. Background The “quiet car” issue has focused on hybrid and electric vehicles, although it also applies to internal combustion engine vehicles. Previous research has focused on detectability of vehicles, mostly in quiet settings. Instead, we focused on the functional ability to perceive vehicle motion paths. Method Participants judged whether simulated vehicles were traveling straight or turning, with emphasis on the impact of background traffic sound. Results In quiet, listeners made the straight-or-turn judgment soon enough in the vehicle’s path to be useful for deciding whether to start crossing the street. This judgment is based largely on sound level cues rather than the spatial direction of the vehicle. With even moderate background traffic sound, the ability to tell straight from turn paths is severely compromised. The signal-to-noise ratio needed for the straight-or-turn judgment is much higher than that needed to detect a vehicle. Conclusion Although a requirement for a minimum vehicle sound level might enhance detection of vehicles in quiet settings, it is unlikely that this requirement would contribute to pedestrian awareness of vehicle movements in typical traffic settings with many vehicles present. Application The findings are relevant to deliberations by government agencies and automobile manufacturers about standards for minimum automobile sounds and, more generally, for solutions to pedestrians’ needs for information about traffic, especially for pedestrians with sensory impairments. PMID:22768645

  14. Automated generation of weld path trajectories.

    SciTech Connect

    Sizemore, John M.; Hinman-Sweeney, Elaine Marie; Ames, Arlo Leroy

    2003-06-01

    AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most ship structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.

  15. Technical Development Path for Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2016-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  16. Control strategies. [of robotic manipulators path

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Mcinnis, B. C.; Shieh, L. S.

    1988-01-01

    Techniques for improving the performance of robotic-manipulator path-control systems comprising independent SISO feedback controllers for each joint are discussed and illustrated with block diagrams, reviewing the results of recent analytical investigations. Topics examined include the servo design for a single link, the equations of motion for manipulators, SISO servo design for multiple links, inverse methods, pole placement with compensation of the gravity terms, linear state-feedback control based on the perturbation equations, and adaptive control methods. Consideration is given to variable-structure systems, suboptimal controllers, and the optimal-design-strategy approach.

  17. An expert path through a thermo maze

    NASA Astrophysics Data System (ADS)

    Kustusch, Mary Bridget; Roundy, David; Dray, Tevian; Manogue, Corinne

    2013-01-01

    Several studies in recent years have demonstrated that upper-division students struggle with partial derivatives and the complicated chain rules ubiquitous in thermodynamics. We asked several experts (primarily faculty who teach thermodynamics) to solve a challenging and novel thermodynamics problem in order to understand how they navigate through this maze. What we found was a tremendous variety in solution strategies and sense-making tools, both within and between individuals. This case study focuses on one particular expert: his solution paths, use of sense-making tools, and comparison of different approaches.

  18. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  19. Predicting link directions using local directed path

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Zhang, Xue; Zhao, Chengli; Xie, Zheng; Zhang, Shengjun; Yi, Dongyun

    2015-02-01

    Link prediction in directed network is attracting growing interest among many network scientists. Compared with predicting the existence of a link, determining its direction is more complicated. In this paper, we propose an efficient solution named Local Directed Path to predict link direction. By adding an extra ground node to the network, we solve the information loss problem in sparse network, which makes our method effective and robust. As a quasi-local method, our method can deal with large-scale networks in a reasonable time. Empirical analysis on real networks shows that our method can correctly predict link directions, which outperforms some local and global methods.

  20. Estrada index of cycles and paths

    NASA Astrophysics Data System (ADS)

    Gutman, Ivan; Graovac, Ante

    2007-02-01

    Let G be a graph on n vertices, and let λ1, λ2, … , λn be its eigenvalues. The Estrada index of G is a recently introduced molecular structure descriptor, defined as EE(G)=∑i=1ne. We show that the Estrada indices of the n-vertex cycle Cn and the n-vertex path Pn can be approximated as EE( Cn) ≈ n I0 and EE( Pn) ≈ ( n + 1) I0 - cosh(2), where I0=∑1/(k!)2=2.27958530…. The precision of these approximations is remarkably good.