DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Ippolitov, E V; Didenko, L V; Tzarev, V N
2015-12-01
The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).
Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing
2017-11-01
Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.
[Grape seed extract induces morphological changes of prostate cancer PC-3 cells].
Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng
2008-12-01
To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva; Czaplicka, Anna
2017-02-27
In this paper, a study of the morphology of the pupa and male imago of Glyptotendipes (G.) glaucus (Meigen 1818) was carried out, with the aid of a scanning electron microscope (SEM). The SEM provided additional valuable information on the morphology of the species. Adult male head, antenna, wing, leg, abdomen, hypopygium, pupal cephalothorax and abdomen were examined. It is emphasized that SEM was not often used in Chironomidae studies. The present results confirm SEM as a suitable approach in carrying out morphological and taxonomical descriptions of Chironomidae species.
Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)
NASA Astrophysics Data System (ADS)
Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June
2009-04-01
Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.
Majima, K
1998-01-01
To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes
USDA-ARS?s Scientific Manuscript database
Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...
[Microscopic investigation of vessel wall after endovascular catheter atherectomy].
Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M
2014-01-01
Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.
Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M
2010-07-01
Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the significant difference in shoot morphology.
Electron beam analysis of particulate cometary material
NASA Technical Reports Server (NTRS)
Bradley, John
1989-01-01
Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).
Zhuang, Kaiwen; Ran, Xin; Lei, Song; Zhang, Chaoliang; Lama, Jebina; Ran, Yuping
2014-01-01
Trichophyton violaceum is a pathogen of tinea capitis and usually cause infection of scalp and hair in children. To investigate the parasitic form of T. violaceum in the human hair tissue, the infected hair strands were collected from a 9-year-old boy with tinea capitis due to T. violaceum and observed under both the scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM and TEM findings revealed that T. violaceum parasitically lives in the hair shaft in various forms and the morphological transformation of the fungus from hyphae into arthrospores was noted. The involved hair shaft was damaged to the great extent and its ultrastructural changes were evident. Those morphological characteristics of T. violaceum and the three-dimensional ultastructure changes of infected hairs give a better knowledge about the host-fungus relationship in tinea capitis. © 2014 Wiley Periodicals, Inc.
COLONIAL GROWTH OF MYCOPLASMA GALLISEPTICUM OBSERVED WITH THE ELECTRON MICROSCOPE
Shifrine, Moshe; Pangborn, Jack; Adler, Henry E.
1962-01-01
Shifrine, Moshe (University of California, Davis), Jack Pangborn, and Henry E. Adler. Colonial growth of Mycoplasma gallisepticum observed with the electron microscope. J. Bacteriol. 83:187–192. 1962.—Mycoplasma gallisepticum strain S6 was grown on collodion film on solid medium. Samples were removed every few hours, fixed, washed, shadowed, and observed with the electron microscope. Three distinct forms of growth were observed: elementary cells (hexagonally shaped), platycytes, and exoblasts. A tentative mode of growth was postulated. The significance of the angular morphology to the relation between mycoplasmas and L-forms of bacteria is discussed. Images PMID:13911868
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva
2016-09-21
Larvae belonging to the family Chironomidae are difficult to identify. The aim of the present study was to describe the larval morphology of G. (G.) glaucus with the aid of a Scanning Electron Microscope (SEM), the karyotype and biology based on materials obtained from laboratory culture. Describing the morphology of larvae, special attention was paid to rarely or never described structures like the maxilla (lacinia and maxillary palp), the long plate situated below the ventromental plate, and plate X situated between lacinia and mentum. The use of SEM allowed also to obtain better images of labrum and ventromental plate. Morphological features of this species have been supplemented by karyotype and biology of larvae in laboratory conditions. Under controlled experimental conditions we found non-synchronous development of G. (G.) glaucus larvae hatched from one egg mass reflected in different lengths of larvae and emerged imagoes.
NASA Astrophysics Data System (ADS)
Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei
2017-02-01
Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10-2 S cm-1 at 60 °C.
Yoshikawa, Shinichi; Murata, Ryo; Shida, Shigenari; Uwai, Koji; Suzuki, Tsuneyoshi; Katsumata, Shunji; Takeshita, Mitsuhiro
2010-01-01
We observed the surface morphological structures of 60 mg tablets of Loxonin, Loxot, and Lobu using scanning electron microscope (SEM) and atomic force microscope (AFM) to evaluate the dissolution rates. We found a significant difference among the initial dissolution rates of the three kinds of loxoprofen sodium tablets. Petal forms of different sizes were commonly observed on the surface of the Loxonin and Loxot tablets in which loxoprofen sodium was confirmed by measuring the energy-dispersible X-ray (EDX) spectrum of NaKalpha using SEM. However, a petal form was not observed on the surface of the Lobu tablet, indicating differences among the drug production processes. Surface area and particle size of the principal ingredient in tablets are important factors for dissolution rate. The mean size of the smallest fine particles constituting each tablet was also determined with AFM. There was a correlation between the initial dissolution rate and the mean size of the smallest particles in each tablet. Visualizing tablet surface morphology using SEM and AFM provides information on the drug production processes and initial dissolution rate, and is associated with the time course of pharmacological activities after tablet administration.
Cardiac morphology after conditions of microgravity during Cosmos 2044
NASA Technical Reports Server (NTRS)
Goldstein, Margaret A.; Edwards, Robert J.; Schroeter, John P.
1992-01-01
Light- and electron-microscopic studies were performed on cardiac muscle from rats flown on Cosmos 2044 and from four control groups. Average cross-sectional area of myofibers was measured by video analysis of the light-microscopic images of papillary and ventricular muscle samples from all animals. This cross-sectional area was significantly decreased in flight rats (P = 0.03) compared with synchronous controls. Additional findings at the electron microscopic level consistent with this atrophy were obtained by stereological analysis and optical diffraction analysis of papillary muscle samples. Slightly higher mitochondrial volume density values and mitochondria-to-myofibril ratios as well as normal A-band spacings (d1,0) and Z-band spacings of myofibrils were observed in the tail-suspension and flight groups. General morphological features similar to those in ventricular samples from the previous Cosmos 1887 flight were observed.
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...
Jones, B J; Murphy, C R
1994-01-01
The field emission gun scanning electron microscope has been used to investigate morphological changes at the macromolecular level in the glycocalyx of rat uterine luminal epithelial cells during early pregnancy. This very high resolution microscope has allowed visualisation at a level previously unobtainable and has enabled us to establish that dramatic alterations occur in this glycocalyx at the time of blastocyst attachment. On d 1 of pregnancy a prominent, filamentous glycocalyx radiates from the microvilli. However, by d 6 of pregnancy when the microvilli have been replaced by irregular cell surface protrusions, the glycocalyceal filaments are completely lost and the plasma membrane appears smooth and covered with a felt-like coating. These morphological observations suggest a major reorganisation in surface carbohydrates during early pregnancy and extend histochemical observations on the uterine epithelial glycocalyx. Images Fig. 1 Fig. 2 Figs. 3 and 4 PMID:7961152
Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,
The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...
Preparation of polymeric Janus particles by directional UV-induced reactions.
Liu, Lianying; Ren, Mingwei; Yang, Wantai
2009-09-15
Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.
Peng, Qiuxian; Zhang, Qin; Xiao, Wei; Shao, Meng; Fan, Qin; Zhang, Hongwei; Zou, Yukai; Li, Xin; Xu, Wenxue; Mo, Zhixian; Cai, Hongbing
2014-07-18
Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which demonstrates the effects of down-regulating fat level and protecting liver. Copyright © 2014. Published by Elsevier Inc.
High throughput secondary electron imaging of organic residues on a graphene surface
NASA Astrophysics Data System (ADS)
Zhou, Yangbo; O'Connell, Robert; Maguire, Pierce; Zhang, Hongzhou
2014-11-01
Surface organic residues inhibit the extraordinary electronic properties of graphene, hindering the development of graphene electronics. However, fundamental understanding of the residue morphology is still absent due to a lack of high-throughput and high-resolution surface characterization methods. Here, we demonstrate that secondary electron (SE) imaging in the scanning electron microscope (SEM) and helium ion microscope (HIM) can provide sub-nanometer information of a graphene surface and reveal the morphology of surface contaminants. Nanoscale polymethyl methacrylate (PMMA) residues are visible in the SE imaging, but their contrast, i.e. the apparent lateral dimension, varies with the imaging conditions. We have demonstrated a quantitative approach to readily obtain the physical size of the surface features regardless of the contrast variation. The fidelity of SE imaging is ultimately determined by the probe size of the primary beam. HIM is thus evaluated to be a superior SE imaging technique in terms of surface sensitivity and image fidelity. A highly efficient method to reveal the residues on a graphene surface has therefore been established.
Kim, Jin Hee; Chung, Jae Seung; Lee, Ki-Young
2013-06-01
Ultrastructural characteristics of the germ cells and accessory cells in testis during spermatogenesis and taxonomic values of mature sperm morphology of Ruditapes philippinarum were investigated by the transmission electron microscope and scanning electron microscope observations. The testis is the diffuse organ that consists of branching acini containing developing germ cells and accessory cells associated with spermatogenesis. The morphology of the spermatozoon is of the primitive type and is somewhat different to those of other bivalves. The morphologies of the sperm nucleus type and the acrosome shape of this species have a cylinderical type and a modified cone shape, respectively. As some ultrastructural characteristics of the acrosomal vesicle, the peripheral parts of two basal rings show electron opaque part, while the apex part of the acrosome shows electron lucent part. These characteristics of sperm belong to the family Veneridae in the subclass Heterodonta, unlike a characteristic of the subclass Pteriomorphia showing all part of the acrosome being composed of electron opaque part. In particular, a cylinder-like nucleus of the sperm is curved. The spermatozoon is approximately 48-51 μm in length, including a long acrosome (about 2.40 μm in length), a curved sperm nucleus (about 3.40 μm in length), and a tail flagellum. The axoneme of the sperm tail shows a 9+2 structure.
A new route for the synthesis of submicron-sized LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lihong, Bao; Wurentuya,; Wei, Wei
Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less
Kozinets, G I; Korol'kov, V I; Britvan, I I; Bykova, I A; Spitsyna, N E
1983-01-01
Morphofunctional properties of peripheral blood cells of Cosmos-936 rats were examined, using morphological, interferometric and electron microscopic techniques. As follows from the morphological data, immediately after recovery the weightless rats showed symptoms of a stress reaction which disappeared by R+3. The centrifuged rats exhibited less expressed symptoms of this sort. The percentage of bone marrow cell distribution was shifted towards enhanced myelopoiesis and diminished erythropoiesis. By the end of the readaptation period the ratio of bone marrow cell composition returned to normal. Interferometric and electron microscopic examinations did not reveal any irreversible changes in the structure and function of cells that may be caused by zero-g.
Morphological changes of the hair roots in alopecia areata: a scanning electron microscopic study.
Karashima, Tadashi; Tsuruta, Daisuke; Hamada, Takahiro; Ishii, Norito; Ono, Fumitake; Ueda, Akihiro; Abe, Toshifumi; Nakama, Takekuni; Dainichi, Teruki; Hashimoto, Takashi
2013-12-01
Alopecia areata is a chronic inflammatory condition causing non-scarring patchy hair loss. Diagnosis of alopecia areata is made by clinical observations, hair pluck test and dermoscopic signs. However, because differentiation from other alopecia diseases is occasionally difficult, an invasive diagnostic method using a punch biopsy is performed. In this study, to develop a reliable, less invasive diagnostic method for alopecia areata, we performed scanning electron microscopy of the hair roots of alopecia areata patients. This study identified four patterns of hair morphology specific to alopecia areata: (I) long tapering structure with no accumulation of scales; (II) club-shaped hair root with fine scales; (III) proximal accumulation of scales; and (IV) sharp tapering of the proximal end of hair. On the basis of these results, we can distinguish alopecia areata by scanning electron microscopic observation of the proximal end of the hair shafts. © 2013 Japanese Dermatological Association.
Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik
2014-05-20
Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.
Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate
NASA Astrophysics Data System (ADS)
Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng
2018-03-01
High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.
A simple method to synthesize polyhedral hexagonal boron nitride nanofibers
NASA Astrophysics Data System (ADS)
Lin, Liang-xu; Zheng, Ying; Li, Zhao-hui; shen, Xiao-nv; Wei, Ke-mei
2007-12-01
Hexagonal boron nitride (h-BN) fibers with polyhedral morphology were synthesized with a simple-operational, large-scale and low-cost method. The sample obtained was studied by X-ray photoelectron spectrometer (XPS), electron energy lose spectroscopy (EELS), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), etc., which matched with h-BN. Environment scanning electron microscopy (ESEM) and transmission electron microscope (TEM) indicated that the BN fibers possess polyhedral morphology. The diameter of the BN fibers is mainly in the range of 100-500 nm.
Biaxial Fatigue Cracking from Notch
2013-03-04
2 Fractography ........................................................................................................................... 3...8 Fractography for Fatigue Crack Growth... FRACTOGRAPHY The fatigue crack surface morphology was examined with a JEOL JSM-6460LV scanning electron microscope, operated at an accelerating
NASA Astrophysics Data System (ADS)
Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong
2015-09-01
Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c
Zhang, Ren-Yi; Li, Guo-Gang; Zhang, Cun-Fang; Tang, Yong-Tao; Zhao, Kai
2013-08-01
Gill morphologies of two subspecies of Gymnocypris przewalskii (Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis) in different habitats were analyzed under scanning electron microscope. Results indicated that G. p. przewalskii had numerous long and dense-lined gill rakers while G. p. ganzihonensis had few short and scatter-lined gill rakers. There were no significant differences in distance between gill filaments (DBF) and distance gill lamella (DBL) between the two subspecies, but gill filaments of G. p. przewalskii were longer than in G. p. ganzihonensis. The electron microscopic study indicated that the pavement epithelium cells of G. p. przewalskii were well defined as irregular ovals, but were hexagonal in G. p. ganzihonensis. Moreover, G. p. przewalskii had more chloride cells than G. p. ganzihonensis, and mucous cells were only found on the surface of gill filaments of G. p. przewalskii. The morphological differences between the two subspecies of G. przewalskii are adaptations to their corresponding diets and habitats.
Growth of ultrananocrystalline diamond film by DC Arcjet plasma enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Chen, G. C.; Li, B.; Yan, Z. Q.; Liu, J.; Lu, F. X.; Ye, H.
2012-06-01
Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H2/CH4, in which the flow ratio of CH4 to H2 (F/F) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the "pineapple-like" morphology and the "cauliflower-like" morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH4 to H2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the "pineapple-like" films whilst there were ultrananocrystalline grains within "cauliflower-like" films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the "cauliflower-like" films whilst (100) crystalline plane was the dominant surface in the "pineapple-like" films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions.
Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis
NASA Technical Reports Server (NTRS)
Nozawa, Y.; Kitajima, Y.
1984-01-01
A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.
Environmental scanning electron microscopy of personal and household products.
Hoyberg, K
1997-03-01
The ability to forego sample preparation and to make observation directly in the environmental scanning electron microscope has benefited both household and personal product research at Unilever Research. Product efficacy on biological materials such as microcomedones was easily ascertained. Skin biopsies were examined in a moist state with no sample preparation. Effects of relative humidity on detergents were visually determined by recreating the necessary conditions in the microscope. Effects of cooling rates on the morphology of softener sheet actives that remained on polyester fabric were characterized via dynamic experimentation.
2014-01-01
Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275
Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze
2017-01-01
Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wan; Liang, Na; Peng, Pai
2017-02-15
Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based onmore » quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.« less
NASA Astrophysics Data System (ADS)
Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.
2014-08-01
This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.
Kubota, Y; Leung, E; Vincent, S R
1992-01-01
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.
Alsafy, M A M; El-Gendy, S A A
2012-03-01
The aim of this study was to cast a spotlight on the topography and to point out the clinical importance of the gastroesophageal junction (GEJ) in Anatolian Shepherd dogs. Nine Anatolian Shepherd dogs were used to study the morphology of the GEJ. The esophagus was appeared has a portion within the thoracic cavity while no portion of the esophagus presented within the abdominal cavity that documented the absence of the intra-abdominal portion in all studied dogs. The topographic anatomy, scanning electron and light microscopic examinations revealed that the gastroesophageal junction was located at the level of the phrenico-esophageal ligament (PEL) inside the esophageal hiatus. Our results were distinguished the morphology of the esophageal and gastric cardiac mucosa at the level of the gastroesophageal junction by the scanning electron micrographs. The light microscopical examination was explained the PEL attached to the esophageal side in one dog and to the gastric cardiac side in three dogs.
Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets
NASA Technical Reports Server (NTRS)
Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich
2006-01-01
Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Growth of ZnO nanorods on glass substrate deposited using dip coating method
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Ghafar, Safiah Ab; Zoolfakar, Ahmad Sabirin; Rusop, M.
2018-05-01
ZnO unique properties make it attractive for electronics and optoelectronics application. There are varieties synthesis of ZnO nanostructure but one of the best ways is by using dip coating method due to its simplicity, low cost and reliability. This research investigated the effect of precursor concentration on the morphology of ZnO nanorods using dip coating technique. ZnO nanorods is synthesized by using zinc nitrate as precursor and glass slide as substrate. The morphology of ZnO is characterized using Field Emission Scanning Electron Microscope (FESEM). By using different concentration of precursor, each outcome demonstrated diverse morphologies.
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
Structural morphology of zinc oxide structures with antibacterial application of calamine lotion
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2015-04-01
In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. The energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.
Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng
2015-05-01
Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.
Metallurgical characterization of the fracture of several high strength aluminum alloys
NASA Technical Reports Server (NTRS)
Bhandarkar, M. D.; Lisagor, W. B.
1977-01-01
The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Yubin; Li, Qiuying, E-mail: liqy@ecust.edu.cn; Shanghai Key Laboratory Polymeric Materials
In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzedmore » by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.« less
NASA Astrophysics Data System (ADS)
Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo
2018-03-01
Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.
Masaphy, Segula; Levanon, D.; Tchelet, R.; Henis, Y.
1987-01-01
Relationships between the hyphae of Agaricus bisporus (Lang) Sing and bacteria from the mushroom bed casing layer were examined with a scanning electron microscope. Hyphae growing in the casing layer differed morphologically from compost-grown hyphae. Whereas the compost contained thin single hyphae surrounded by calcium oxalate crystals, the casing layer contained mainly wide hyphae or mycelial strands without crystals. The bacterial population in the hyphal environment consisted of several types, some attached to the hyphae with filamentlike structures. This attachment may be important in stimulation of pinhead initiation. Images PMID:16347340
Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser
NASA Astrophysics Data System (ADS)
Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin
2018-07-01
This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.
Morphological manifestations of freezing and thawing injury in bacteriophage T4Bo.
Steele, P. R.
1976-01-01
Electron microscopic observation of negatively stained preparations of frozen and thawed suspensions of T4Bo phage clearly separated the morphological changes produced produced by low-temperature salt denaturation from those produced by eutectic phase changes. Salt denaturation caused contraction of tail sheaths. Eutectic phase changes appeared to cause two separate lesions. Firstly the tail sheath was disjointed 18-22 nm. below the collar and the tail core was disjointed at 40-60 nm. below the collar, giving rise to separated heads with a small tail remnant, and separated tails in which the sheath remarkably remained in its extended form. Secondly, tears were seen in the head membranes of particles with collapsed empty heads. In all the experiments the percentage of normal phage particles counted electron-microscopically was close to the percentage of viable phage as determined by plaque assay. Images Plate 1 PMID:1068189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Reddy, G. B., E-mail: rkrksharma6@gmail.com
In this report, we synthesize vertically aligned molybdenum trioxide (α−MoO{sub 3}) nanoflakes (NFs) with high aspect ratio (height/thickness >15) on the cobalt coated glass substrates by the plasma assisted sublimation process, employing Mo metal strip as a sublimation source. The effect of substrate temperature, nature of substrate as well as the geometry of the sublimation source (Mo-strip) have been investigated on the morphological, structural and optical properties of the grown NFs, keeping plasma parameters as fixed. The surface morphology, crystalline structure and optical properties of MoO{sub 3} NFs have been studied systematically by using scanning electron microscope (SEM), transmission electronmore » microscope (TEM) with selected area electron diffraction (SAED), X-ray diffractometer, and IR- spectroscopy. The experimental observations endorse that the characteristics of MoO{sub 3} NFs are strongly depend on substrate temperature, substrate nature as well as geometry of Mo-strip. All the observed results are well in consonance with each other.« less
Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix
NASA Astrophysics Data System (ADS)
Phan, Bich T. N.; Nguyen, Hanh T.; Đao, Huong Q.; Pham, Lam V.; Quan, Trang T. T.; Nguyen, Duong B.; Nguyen, Huong T. L.; Vu, Thuan T.
2017-02-01
In this study, we report the direct precipitation of nano-HA in the present of maltodextrins with the different dextrose equivalent (DE) values in the range of 10-30. Characterization of the obtained samples, using X-ray diffraction and Fourier transform infrared spectrophotometry, indicated that the presence of maltodextrins, with the different DE values, does not affect the phase composition and structure of the obtained composites. Morphology studies of the samples, using field emission scanning electron microscope and transmission electron microscope, revealed that maltodextrin has obvious effect on the size, shape, and morphology of hydroxyapatite nanoparticles. In particular, in studied DE range, maltodextrin DE 28-30 with dominant structure of debranched chain is the most preferable choice to obtain the composite with highly dispersed nanoparticles. In vitro assay on pre-osteoblast MC3T3-E1 cells demonstrated the ability of the composites to stimulate alkaline phosphatase activity and mineralization during differentiation of the cells.
Al-Sherbini, Al-Sayed; Bakr, Mona; Ghoneim, Iman; Saad, Mohamed
2017-05-01
Graphene sheets have been exfoliated from bulk graphite using high energy wet milling in two different solvents that were 2-ethylhexanol and kerosene. The milling process was performed for 60 h using a planetary ball mill. Morphological characteristics were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). On the other hand, the structural characterization was performed using X-ray diffraction technique (XRD) and Raman spectrometry. The exfoliated graphene sheets have represented good morphological and structural characteristics with a valuable amount of defects and a good graphitic structure. The graphene sheets exfoliated in the presence of 2-ethylhexanol have represented many layers, large crystal size and low level of defects, while the graphene sheets exfoliated in the presence of kerosene have represented fewer number of layers, smaller crystal size and higher level of defects.
NASA Astrophysics Data System (ADS)
Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.
2016-06-01
Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
The effects of ferrocene concentration on CNT growth on micron silica gel
NASA Astrophysics Data System (ADS)
Othman, Raja N.; Wilkinson, Arthur N.
2017-12-01
The growth of CNT on micron size spherical silica gel of high porosity was performed in this work. The CNT was grown via floating catalyst chemical vapor deposition method (FCCVD). The reaction temperature and time were kept at 760 °C and 3 hours, respectively. The concentration of the catalyst used, which was ferrocene, was varied from 1 wt. % to 9.6 wt. %, with respect to toluene. Striking difference in the morphology of the synthesized tubes was observed using Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM) images. The quality and quantity of the CNT were further characterized via Raman Spectroscopy and Thermogravimetric Analysis. Based on these characterizations, it was found that the ferrocene concentration greatly affects the morphology of the obtained CNT; with 1 wt.% and 9.6 wt.% ferrocene concentrations yield CNT of bigger outer diameters, compared to the CNT obtained from 5 wt.% ferrocene concentrations.
Effect of etching time on morphological, optical, and electronic properties of silicon nanowires.
Nafie, Nesma; Lachiheb, Manel Abouda; Bouaicha, Mongi
2012-07-16
Owing to their interesting electronic, mechanical, optical, and transport properties, silicon nanowires (SiNWs) have attracted much attention, giving opportunities to several potential applications in nanoscale electronic, optoelectronic devices, and silicon solar cells. For photovoltaic application, a superficial film of SiNWs could be used as an efficient antireflection coating. In this work we investigate the morphological, optical, and electronic properties of SiNWs fabricated at different etching times. Characterizations of the formed SiNWs films were performed using a scanning electron microscope, ultraviolet-visible-near-infrared spectroscopy, and light-beam-induced-current technique. The latter technique was used to determine the effective diffusion length in SiNWs films. From these investigations, we deduce that the homogeneity of the SiNWs film plays a key role on the electronic properties.
Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli
2015-01-01
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574
Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli
2015-01-01
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.
Huang, Jian-Ping; Zhu, Fang; Jiang, Xiang; Zhang, Shan-Gan; Ban, Li-Ping
2017-01-01
The morphology and distribution of the antennal sensilla of adult diving beetle Cybister japonicus Sharp (Dytiscidae, Coleoptera), have been examined. Five types of sensilla on the antennae were identified by scanning electron microscope (SEM) and transmission electron microscope (TEM). Sensilla placodea and elongated s. placodea are the most abundant types of sensilla, distributing only on the flagellum. Both these types of sensilla carry multiple pore systems with a typical function as chemoreceptors. Three types of s. coeloconica (Type I–III) were also identified, with the characterization of the pit-in-pit style, and carrying pegs externally different from each other. Our data indicated that both type I and type II of s. coleconica contain two bipolar neurons, while the type III of s. coleconica contains three dendrites in the peg. Two sensory dendrites in the former two sensilla are tightly embedded inside the dendrite sheath, with no space left for sensilla lymph. There are no specific morphological differences in the antennal sensilla observed between males and females, except that the males have longer antennae and more sensilla than the females. PMID:28358865
Brush Plating of Nickel-Tungsten Alloy for Engineering Application
2012-08-01
ASETS Defense ‘12 1 Brush Plating of Nickel-Tungsten Alloy for Engineering Application Zhimin Zhong & Sid Clouser Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Brush Plating of Nickel-Tungsten Alloy for Engineering Application 5a. CONTRACT NUMBER...6 Surface morphology Visual appearance, scanning electron and optical microscope images. Smooth, fine grained, micro- cracked surface morphology
Biology and External Morphology of Immature Stages of the Butterfly, Diaethria candrena candrena
Dias, Fernando M.S.; Carneiro, Eduardo; Casagrande, Mirna M.; Mielke, Olaf H.H.
2012-01-01
The biology and the external morphology of immature stages of Diaethria candrena candrena (Godart) (Lepidoptera: Nymphalidae: Biblidinae) are described. Immature D. c. candrena found on Allophylus spp. (Sapindaceae) were collected in Curitiba, Paraná, Brazil and reared in the laboratory. Morphological descriptions and illustrations are given, based on observations using electronic, stereoscopic, and optic microscopes, the latter two attached to camera lucida. Results are compared and discussed with immature stages of other species of Biblidinae described to date. PMID:22943597
Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.
Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing
2014-09-16
The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.
Wilkat, M; Herdoiza, E; Forsbach-Birk, V; Walther, P; Essig, A
2014-08-01
Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.
The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Qiuxian; Department of Biology, Hong Kong Baptist University, Kowloon Tong; Zhang, Qin
Highlights: • AESM is able to prevent the elevation of ALT and AST, and to decreased LDL-C level. • AESM demonstrates the effects of down-regulating blood fat level and protecting liver. • AESM consistent with the efficacy of simvastatin in NAFLD. - Abstract: Objectives: Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Methods: Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertnmore » group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. Results: High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Conclusions: Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which demonstrates the effects of down-regulating fat level and protecting liver.« less
Electron Microscopy to Correlate Cell Structure and Biochemical Activity
1993-03-10
prevent and/or cure cerebral malaria. d) Morphological effects of artemisinin in Plasmodium falciparum In collaboration with Dr. Milhous of WRAR...uitrastructural changes induced in jPlasmodium falciparum, by artemisinin were studied in vitro. Two hours after administration, changes were...Electron microscope autoradiography was performed after [5H]-dihydroartemisinin and [uC]- artemisinin were administered to infected erythrocytes in
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
Structural morphology of zinc oxide structures with antibacterial application of calamine lotion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd
In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. Themore » energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.« less
Effect of etching time on morphological, optical, and electronic properties of silicon nanowires
2012-01-01
Owing to their interesting electronic, mechanical, optical, and transport properties, silicon nanowires (SiNWs) have attracted much attention, giving opportunities to several potential applications in nanoscale electronic, optoelectronic devices, and silicon solar cells. For photovoltaic application, a superficial film of SiNWs could be used as an efficient antireflection coating. In this work we investigate the morphological, optical, and electronic properties of SiNWs fabricated at different etching times. Characterizations of the formed SiNWs films were performed using a scanning electron microscope, ultraviolet–visible-near-infrared spectroscopy, and light-beam-induced-current technique. The latter technique was used to determine the effective diffusion length in SiNWs films. From these investigations, we deduce that the homogeneity of the SiNWs film plays a key role on the electronic properties. PMID:22799265
Manipulation of nanoparticles of different shapes inside a scanning electron microscope
Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar
2014-01-01
Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279
a New Method to Prepare the Novel Anatase TiO2
NASA Astrophysics Data System (ADS)
Cui, Guanjun; Xu, Zhanxia; Wang, Yan; Zhang, Min; Yang, Jianjun
In this paper, a kind of novel anatase TiO2 nanoparticle with single-electron-trapped oxygen vacancies was prepared by hydrothermal treated nanotube titanic acid. The morphology, structure, and properties of the products were characterized by transmission electron microscope, X-ray diffraction, electron spin resonance, and photoluminescence. Photocatalytic decolorization of the Methylene Blue solution was carried out in the visible light region and showed a high photocatalytic activity.
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong
2017-07-20
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.
Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism
NASA Astrophysics Data System (ADS)
Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.
2016-01-01
Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).
Horne, R W; Wildy, P
1979-09-01
A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.
Duan, Hu; Jin, Songjun; Zhang, Yan; Li, Fuhua; Xiang, Jianhai
2014-10-01
The hemocytes of the red claw crayfish Cherax quadricarinatus are classified by morphologic observation into the following types: hyalinocytes (H), semi-granulocytes (SG) and granulocytes (G). Density gradient centrifugation with Percoll was developed to separate these three subpopulations of hemocytes. Beads, Escherichia coli, and FITC labeling WSSV were used to investigate the characteristics of granulocytes by using scanning electron microscope, transmission electron microscope, and laser scan confocal microscope. Results showed that granulocytes could phagocytose beads and E. coli by endocytic pathways. WSSV could rely on caveolae-mediated endocytosis to mainly enter into granulocytes. These results could elucidate the mechanism of the innate immunity function of granulocytes, and it also showed the mechanism by which WSSV invaded granulocytes in the red claw crayfish. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yuan, Weimin; Wu, Xiaoqin; Ye, Jianren; Tian, Xiaojing
2011-08-01
The pine wood nematode, Bursaphlenchus xylophilus, morphologically similar to B. mucronatus, is the pathogen of pine wilt disease. This study was focused on the endophytic bacteria present in these nematodes. Detailed observations were made on sections of all parts of the two types of nematodes by transmission electron microscope. The nematodes were surface-sterilized by soaking in 1% mercuric chloride and antibiotic mixture, and then ground and cultured on nutrient agar plate. The physiological and biochemical characteristics combined with molecular characterization of bacteria were analyzed and identified. Endophytic bacteria were found in intestines of the two nematodes by transmission electron microscope observations. On the basis of surface sterilization, total three bacteria strains were obtained from B. xylophilus and B. mucronatus. These bacteria belong to Stenotrophomonas and Ewingella. It confirms the presence of endophytic bacteria in Bursaphelenchus xylophilus and B. mucronatus and these bacteria may play a physical and ecological roles in nematodes.
Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G
2010-01-01
Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.
NASA Astrophysics Data System (ADS)
Zahoor, Ahmad; Teng, Qiu; Wang, Haiqiao; Choudhry, M. A.; Li, Xiaoyu
2011-06-01
Ag@polycarbazole coaxial nanocables (CNCs) have been successfully fabricated by the oxidative polymerization of carbazole over Ag nanowires (NWs) in acetonitrile. The morphology of Ag NWs and CNCs was studied by employing a transmission electron microscope (TEM) and a scanning electron microscope (SEM), which showed them to be a monodisperse material. The thickness of the polymer sheath was found to be 5 nm to 8 nm by observation under a high-resolution transmission electron microscope (HR-TEM). Energy dispersive X-ray spectroscopy (EDS), FT-IR and Raman measurements were used to characterize the polymer sheath, which demonstrated it to be a carbon material in polycarbazole form. X-ray photoelectron spectroscopy (XPS) was used for an interfacial study, which revealed that Ag surface atoms remained intact during polymer growth. In the end, zeta potential showed that the dispersion stability of Ag NWs increased due to polymer encapsulation, which is significant to obtain a particular alignment for anisotropic measurement of electrical conductivity.
Chemical analyses of fossil bone.
Zheng, Wenxia; Schweitzer, Mary Higby
2012-01-01
The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
Dopant concentration dependent growth of Fe:ZnO nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com
2016-05-23
Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less
CYTOPLASMIC DNA SYNTHESIS IN AMOEBA PROTEUS
Wolstenholme, D. R.; Plaut, W.
1964-01-01
The application of electron microscope autoradiography to Amoeba proteus cells labeled with tritiated thymidine has permitted the identification of morphologically distinct particles in the cytoplasm as the sites of incorporated DNA precursor. The particles correspond to those previously described from light microscope studies, with respect to both H3Tdr incorporation and distribution in centrifugally stratified amoebae. Ingested bacteria differ from the particles, in morphology as well as in the absence of associated label. Attempts to introduce a normal particle labeling pattern by incubating amoebae with labeled sediment derived from used amoeba medium failed. The resultant conclusion, that the particles are maintained in the amoeba by self-duplication, is supported by the presence of particles in configurations suggestive of division. PMID:14208356
Morphology and Elemental Composition of Recent and Fossil Cyanobacteria
NASA Technical Reports Server (NTRS)
SaintAmand, Ann; Hoover, Richard B.; Jerman, Gregory; Rozanov, Alexei Yu.
2005-01-01
Cyanobacteria (cyanophyta, cyanoprokaryota, and blue-green algae) are an ancient, diverse and abundant group of photosynthetic oxygenic microorganisms. Together with other bacteria and archaea, the cyanobacteria have been the dominant life forms on Earth for over 3.5 billion years. Cyanobacteria occur in some of our planets most extreme environments - hot springs and geysers, hypersaline and alkaline lakes, hot and cold deserts, and the polar ice caps. They occur in a wide variety of morphologies. Unlike archaea and other bacteria, which are typically classified in pure culture by their physiological, biochemical and phylogenetic properties, the cyanobacteria have historically been classified based upon their size and morphological characteristics. These include the presence or absence of heterocysts, sheath, uniseriate or multiseriate trichomes, true or false branching, arrangement of thylakoids, reproduction by akinetes, binary fission, hormogonia, fragmentation, presence/absence of motility etc. Their antiquity, distribution, structural and chemical differentiation, diversity, morphological complexity and large size compared to most other bacteria, makes the cyanobacteria ideal candidates for morphological biomarkers in returned Astromaterials. We have obtained optical (nomarski and phase contrast)/fluorescent (blue and green excitation) microscopy images using an Olympus BX60 compound microscope and Field Emission Scanning Electron Microscopy images and EDAX elemental compositions of living and fossil cyanobacteria. The S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM) has been used to investigate microfossils in freshly fractured interior surfaces of terrestrial rocks and the cells, hormogonia, sheaths and trichomes of recent filamentous cyanobacteria. We present Fluorescent and FESEM Secondary and Backscattered Electron images and associated EDAX elemental analyses of recent and fossil cyanobacteria, concentrating on representatives of the genera Calothnx, Leptolyngbya, Lyngbya, Planktolyngbya and Oscillatoria.
Morphology and elemental composition of recent and fossil cyanobacteria
NASA Astrophysics Data System (ADS)
St. Amand, Ann; Hoover, Richard B.; Jerman, Gregory A.; Coston, James; Rozanov, Alexei Y.
2005-09-01
Cyanobacteria (cyanophyta, cyanoprokaryota, and blue-green algae) are an ancient, diverse and abundant group of photosynthetic oxygenic microorganisms. Together with other bacteria and archaea, the cyanobacteria have been the dominant life forms on Earth for over 3.5 billion years. Cyanobacteria occur in some of our planets most extreme environments - hot springs and geysers, hypersaline and alkaline lakes, hot and cold deserts, and the polar ice caps. They occur in a wide variety of morphologies. Unlike archaea and other bacteria, which are typically classified in pure culture by their physiological, biochemical and phylogenetic properties, the cyanobacteria have historically been classified based upon their size and morphological characteristics. These include the presence or absence of heterocysts, sheath, uniseriate or multiseriate trichomes, true or false branching, arrangement of thylakoids, reproduction by akinetes, binary fission, hormogonia, fragmentation, presence/absence of motility etc. Their antiquity, distribution, structural and chemical differentiation, diversity, morphological complexity and large size compared to most other bacteria, makes the cyanobacteria ideal candidates for morphological biomarkers in returned Astromaterials. We have obtained optical (nomarski and phase contrast)/fluorescent (blue and green excitation) microscopy images using an Olympus BX60 compound microscope and Field Emission Scanning Electron Microscopy images and EDAX elemental compositions of living and fossil cyanobacteria. The S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM) has been used to investigate microfossils in freshly fractured interior surfaces of terrestrial rocks and the cells, hormogonia, sheaths and trichomes of recent filamentous cyanobacteria. We present Fluorescent and FESEM Secondary and Backscattered Electron images and associated EDAX elemental analyses of recent and fossil cyanobacteria, concentrating on representatives of the genera Calothrix, Leptolyngbya, Lyngbya, Planktolyngbya and Oscillatoria.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my
2015-07-22
Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less
Microstructures and properties of rapidly solidified alloys
NASA Technical Reports Server (NTRS)
Shechtman, D.; Horowitz, E.
1984-01-01
The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.
Transport Phenomena and Interfacial Kinetics in Multiphase Combustion Systems
1993-08-01
morphological analysis using electron microscope images. Aggregate data obtained from CH4 flames seeded with titanium tetra- isopropoxide (TTIP-) vapor are now... Titanium tetra- isopropoxide 6. APPENDICES (Complete Papers Published During 2/15/92-2/14/93 Period; including Form 298 for each) HIGH TEMPERATURE CHEMICAL
USDA-ARS?s Scientific Manuscript database
Sunshine trees (Senna surattensis Burm.) exhibiting unusual stem fasciation symptoms were observed in Yunnan, China. Morphological abnormalities of the affected plants included enlargement and flattening of stems and excessive proliferation of shoots. An electron microscopic investigation revealed...
Visonà, S D; Chen, Y; Bernardi, P; Andrello, L; Osculati, A
2018-03-01
Deaths from electricity, generally, do not have specific findings at the autopsy. The diagnosis is commonly based on the circumstances of the death and the morphologic findings, above all the current mark. Yet, the skin injury due to an electrocution and other kinds of thermal injuries often cannot be differentiated with certainty. Therefore, there is a great interest in finding specific markers of electrocution. The search for the metallization of the skin through Scanning Electron Microscope equipped with Energy Dispersive X-Ray Spectroscopy (EDS) probe is of special importance in order to achieve a definite diagnosis in case of suspected electrocution. We selected five cases in which the electrocution was extremely likely considering the circumstances of the death. In each case a forensic autopsy was performed. Then, the skin specimens were stained with Hematoxylin Eosin and Perls. On the other hand, the skin lesions were examined with a scanning electron microscope equipped with EDS probe in order to evaluate the morphological ultrastructural features and the presence of deposits on the surface of the skin. The typical skin injury of the electrocution (current mark) were macroscopically detected in all of the cases. The microscopic examination of the skin lesions revealed the typical spherical vacuoles in the horny layer and, in the epidermis, the elongation of the cell nuclei as well as necrosis. Perls staining was negative in 4 out 6 cases. Ultrastructural morphology revealed the evident vacuolization of the horny layer, elongation of epidermic cells, coagulation of the elastic fibers. In the specimens collected from the site of contact with the conductor of case 1 and 2, the presence of the Kα peaks of iron was detected. In the corresponding specimens taken from cases 2, 4, 5 the microanalysis showed the Kα peaks of titanium. In case 3, titanium and carbon were found. In the suspicion of electrocution, the integrated use of different tools is recommended, including macroscopic observation, H&E staining, iron-specific staining, scanning electron microscopy and EDS microanalysis. Only the careful interpretation of the results provided by all these methods can allow the pathologist to correctly identify the cause of the death. Particularly, the present study suggests that the microanalysis (SEM-EDS) represents a very useful tool for the diagnosis of electrocution, allowing the detection and the identification of the metals embedded in the skin and their evaluation in the context of the ultrastructural morphology. Copyright © 2018. Published by Elsevier B.V.
Csabai, Dávid; Seress, László; Varga, Zsófia; Ábrahám, Hajnalka; Miseta, Attila; Wiborg, Ove
2016-01-01
ABSTRACT Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin‐positive (PV+) neurons in response to stress, while the density of cholecystokinin‐immunoreactive (CCK+) neurons was unaffected. We did a detailed electron microscopic analysis to quantify the frequency and morphology of perisomatic inhibitory synapses in the hippocampal CA1 area. We analyzed 1100 CA1 pyramidal neurons and 4800 perisomatic terminals in five control and four chronically stressed rats. In the control animals we observed the following parameters: Number of terminals/soma = 57; Number of terminals/100 µm cell perimeter = 10; Synapse/terminal ratio = 32%; Synapse number/100 terminal = 120; Average terminal length = 920nm. None of these parameters were affected by the stress exposure. Overall, these data indicate that despite the depressive‐like behavior and the decrease in the number of perisomatic PV+ neurons in the light microscopic preparations, the number of perisomatic inhibitory synapses on CA1 pyramidal cells was not affected by stress. In the electron microscope, PV+ neurons and the axon terminals appeared to be normal and we did not find any apoptotic or necrotic cells. This data is in sharp contrast to the remarkable remodeling of the excitatory synapses on spines that has been reported in response to stress and depressive‐like behavior. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27571571
Quantification of texture match of the skin graft: function and morphology of the stratum corneum.
Inoue, K; Matsumoto, K
1986-01-01
In an attempt to analyze the "texture match" of grafted skin, functional and morphological aspects of the stratum corneum were studied using the Skin Surface Hydrometer (IBS Inc.) and the scanning electron microscope. The results showed that hygroscopicity and water holding capacity of the stratum corneum played a crucial role in making the skin surface soft and smooth. Morphologically there were regional differences in the surface pattern and the mean area of corneocytes, suggesting that these differences affect skin texture. It is suggested that the present functional and morphological studies of the stratum corneum can provide a quantitative measure of the "texture match".
Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.
2014-01-01
Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725
Manzoor, Umair; Kim, Do K; Islam, Mohammad; Bhatti, Arshad S
2014-01-01
Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures.
1986-01-01
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick- translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling. PMID:3084498
Skeletal muscle biopsy analysis in reducing body myopathy and other FHL1-related disorders.
Malfatti, Edoardo; Olivé, Montse; Taratuto, Ana Lía; Richard, Pascale; Brochier, Guy; Bitoun, Marc; Gueneau, Lucie; Laforêt, Pascal; Stojkovic, Tanya; Maisonobe, Thierry; Monges, Soledad; Lubieniecki, Fabiana; Vasquez, Gabriel; Streichenberger, Nathalie; Lacène, Emmanuelle; Saccoliti, Maria; Prudhon, Bernard; Alexianu, Marilena; Figarella-Branger, Dominique; Schessl, Joachim; Bonnemann, Carsten; Eymard, Bruno; Fardeau, Michel; Bonne, Gisèle; Romero, Norma Beatriz
2013-09-01
FHL1 mutations have been associated with various disorders that include reducing body myopathy (RBM), Emery-Dreifuss-like muscular dystrophy, isolated hypertrophic cardiomyopathy, and some overlapping conditions. We report a detailed histochemical, immunohistochemical, electron microscopic, and immunoelectron microscopic analyses of muscle biopsies from 18 patients carrying mutations in FHL1: 14 RBM patients (Group 1), 3 Emery-Dreifuss muscular dystrophy patients (Group 2), and 1 patient with hypertrophic cardiomyopathy and muscular hypertrophy (Group 2). Group 1 muscle biopsies consistently showed RBs associated with cytoplasmic bodies. The RBs showed prominent FHL1 immunoreactivity whereas desmin, αB-crystallin, and myotilin immunoreactivity surrounded RBs. By electron microscopy, RBs were composed of electron-dense tubulofilamentous material that seemed to spread progressively between the myofibrils and around myonuclei. By immunoelectron microscopy, FHL1 protein was found exclusively inside RBs. Group 2 biopsies showed mild dystrophic abnormalities without RBs; only minor nonspecific myofibrillar abnormalities were observed under electron microscopy. Molecular analysis revealed missense mutations in the second FHL1 LIM domain in Group 1 patients and ins/del or missense mutations within the fourth FHL1 LIM domain in Group 2 patients. Our findings expand the morphologic features of RBM, clearly demonstrate the localization of FHL1 in RBs, and further illustrate major morphologic differences among different FHL1-related myopathies.
Imaia, a new truffle genus to accommodate TerJezia gigantea
Gabor M. Kovacs; James M. Trappe; Abulmagid Alsheikh; Karoly Boka
2008-01-01
Originally described from Japan by Sanshi Imai in 1933, the hypogeous ascomycete Terjezia gigantea was subsequently discovered in the Appalachian Mountains of the USA. Morphological, electron microscopic, and phylogenetic studies of specimens collected in both regions revealed that, despite this huge geographic disjunction, (1) the Japanese and...
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...
2017-07-04
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less
WOLSTENHOLME, D R; PLAUT, W
1964-09-01
The application of electron microscope autoradiography to Amoeba proteus cells labeled with tritiated thymidine has permitted the identification of morphologically distinct particles in the cytoplasm as the sites of incorporated DNA precursor. The particles correspond to those previously described from light microscope studies, with respect to both H(3)Tdr incorporation and distribution in centrifugally stratified amoebae. Ingested bacteria differ from the particles, in morphology as well as in the absence of associated label. Attempts to introduce a normal particle labeling pattern by incubating amoebae with labeled sediment derived from used amoeba medium failed. The resultant conclusion, that the particles are maintained in the amoeba by self-duplication, is supported by the presence of particles in configurations suggestive of division.
Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens.
Kelavkar, U; Rao, K S; Ghhatpar, H S
1993-06-01
Halotolerant fungus, A. repens, showed a considerable difference in its growth rate, morphology, ultrastructural and molecular composition under NaCl stress as compared to control i.e. non-stressed condition. Light microscopic observations revealed significant differences in their mycelial thickness, their branching and septa. Transmission electron microscopic observations of both the conditions depicted significant differences in the qualitative and quantitative changes in mitochondria. Frequent pinocytotic vesiculation (vacuoles) of plasma membrane was observed in fungus under stress but no such vesiculation in control. The multivesiculate structures observed under stress with their origin from the cell membranes and subsequent release into vacuoles have not been reported in fungi under normal physiological conditions. The observations on pinocytosis are discussed in relation to ion compartmentation and salt tolerance in A. repens.
Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G
2017-10-01
A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
[Morphological fibroblastic changes in cytomegalovirus infection].
Parkhomenko, Iu V; Solnyshkova, T G; Tishkivich, O A; Shakhgil'dian, V I; Nikonova, E A
2006-01-01
Cytomegalovirus (CMV) infection is widely spread among population. While immunocompetent patients suffer rarely from this virus, it can lead to a lethal outcome in immunocompromised patients. An electron microscopic study has detected fibroblastic morphological changes of a definite cytodestructive character. The nuclei of some fibroblasts have chromatine condensation. A clear zone arising due to vacuolization near this inclusion may reflect nuclear rearrangement leading to further CMV metamorphosis of the cell. This metamorphosis is characteristic of the changes developing in the cells of different parenchymatous organs.
Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel.
Kwon, Y H; Huo, M S; Kim, K H; Kim, S K; Kim, Y J
2002-05-01
The purpose of this study was to examine the effects of a bleaching agent (30% hydrogen peroxide) on the surface of bovine enamel using a scanning electron microscope and a UV-VIS-NIR spectrophotometer. Five non-carious bovine incisors were bleached for 0, 1, 2 and 3 days using 30% hydrogen peroxide. The light reflectance spectrum was measured using a spectrophotometer with diffuse reflectance mode. Colour values and colour differences in the teeth were evaluated from the reflectance measurements with the CIE L*a*b* colour coordinate system. Surface alterations in the bleached and unbleached teeth were studied using a scanning electron microscope. The change of reflectance in the teeth was related to the change of colour. Most reflectance change occurred within a 1-day bleaching, and this result was confirmed by a CIE L*a*b* colour coordinate system. The colour differences in the bleached teeth were significant enough to be perceived by the observer's eye. The comparison of bleached to unbleached bovine enamel revealed that the bleached surface showed non-uniform slight morphological alterations, and it developed varying degrees of surface porosity. This study indicates that the bleached bovine teeth showed apparent colour differences as well as slight morphological alterations after bleaching.
NASA Astrophysics Data System (ADS)
Abdelraheem, A.; El-Shazly, A. H.; Elkady, M. F.
2018-05-01
Lately, supercritical CO2 (SCCO2) have been getting great interest. It can be used in numerous applications because it is environmentally friendly, safe, comparatively low cost, and nonflammable. One of its applications is being a solvent in the synthesis of polymeric-clay nanocomposite. In this paper, intercalated polyaniline-clay nanocomposite (PANC) was prepared using SCCO2. The intercalation structure of polyaniline chains between clay layers was verified by various characterization techniques. Scanning electron microscope and transmission electron microscope (SEM-TEM) were used to show the morphology of the synthesized nanocomposite. The molecular structure of PANC nanocomposite was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The BET surface area and the conductivity of the nanocomposite were determined.
[Study on thaspine in inducing apoptosis of A549 cell].
Zhang, Yan-min; He, Lang-chong
2007-04-01
To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.
Rheological Analysis of Live and Dead Microalgae Suspensions
NASA Astrophysics Data System (ADS)
Song, Young Seok; Kang, Chul; Jeong, Jiwon; Kim, Kyu-Oh; Lim, Eunju
2018-04-01
We investigate the rheological properties of microalgae suspensions that are currently being used in various applications. Two kinds of microalgae, chlorella and Synechococcus, were used for preparation of the suspensions, and their rheological characteristics were analyzed experimentally. In order to evaluate the viability of algae, we performed live and dead tests using trypan blue staining assays. Morphological analyses for the algae were conducted using a scanning electron microscope (SEM) and an optical microscope (OP). We examined the viscoelastic behavior of the live and the dead algae suspensions by performing dynamic oscillatory shear tests.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
NASA Astrophysics Data System (ADS)
Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.
2017-11-01
In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.
ATLAS of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia)
NASA Technical Reports Server (NTRS)
Zhengallo, Elena A.; Rozanov, Alexei Yu.; Ushatinskaya, Galina T.; Hoover, Richard B.; Gerasimenko, Ludmila M.; Ragozina, Alla L.
2000-01-01
A photographic atlas of scanning electron microscope (SEM) images of Cambrian (Tommotian) microfossils from the phosphorites of Khubsugul Mongolia is presented. SEM images of modern cyanobacteria and bacteria are provided for comparison. The importance of bacterial fossils and morphological biomarkers to astrobiology and the understanding of the origin of phosphorites is considered.
Zhou, Zhongnian; Ni, Haifang; Fan, Li-Zhen
2014-07-01
Graphene (GR)-based nanocomposites with different mass ratios of NiO and GR are prepared via hydrothermal method using Ni(NO3)2 as the origin of nickel and urea as the hydrolysis-controlling agent. The morphology and electrochemical performance of the GR/NiO nanocomposites are closely associated with the mass ratios of GR to NiO. The chemical composition and morphology of the composites together with the pure GR and NiO are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). It is found that the GR sheets and NiO particles form uniform nanocomposites with the NiO particles absorbed on the GR surface. A specific capacitance of 384 F g(-1) at a current density of 0.1 A g(-1) is achieved when the coating amount of NiO is up to 74 wt%. In addition, the attenuation of the specific capacitance is less than 6% after 500 cycles, indicating such nanocomposite has excellent cycling performance.
Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials.
Saif, M; Hafez, H; Nabeel, A I
2013-01-01
Highly active samarium doped zinc oxide self-cleaning and biocidal surfaces (x mol% Sm(3+)/ZnO where x=0, 1, 2 and 4 mol%) with crystalline porous structures were synthesized by hydrothermal method. Sm(3+)/ZnO thin films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopic (EDS), UV-visible diffuse reflectance and fluorescence (FL) spectroscopy. The combination between doping and hydrothermal treatments significantly altered the morphology of ZnO into rod and plate-like nanoshapes structure and enhanced its absorption and emission of ultraviolet radiation. The photo-activity in term of quantitative determination of the active oxidative species (()OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results showed that, the hydrothermally treated 2.0 mol% Sm(3+)/ZnO film (S2) is the highly active one. The optical, structural, morphology and photo-activity properties of the highly active thin film (S2) make it promising surface for self-cleaning and sterilizing applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun
2014-10-15
Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less
Perret, A; Foray, G; Masenelli-Varlot, K; Maire, E; Yrieix, B
2018-01-01
For insulation applications, boards thinner than 2 cm are under design with specific thermal conductivities lower than 15 mW m -1 K -1 . This requires binding slightly hydrophobic aerogels which are highly nanoporous granular materials. To reach this step and ensure insulation board durability at the building scale, it is compulsory to design, characterise and analyse the microstructure at the nanoscale. It is indeed necessary to understand how the solid material is formed from a liquid suspension. This issue is addressed in this paper through wet-STEM experiments carried out in an Environmental Scanning Electron Microscope (ESEM). Latex-surfactant binary blends and latex-surfactant-aerogel ternary systems are studied, with two different surfactants of very different chemical structures. Image analysis is used to distinguish the different components and get quantitative morphological parameters which describe the sample architecture. The evolution of such morphological parameters during water evaporation permits a good understanding of the role of the surfactant. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Morphology and Viability of Pleistocene Microbiota from the CRREL Permafrost Tunnel Near Fox, Alaska
NASA Technical Reports Server (NTRS)
Hoover, Richard B.
2000-01-01
The U. S. Army Cold Regions Research and Engineering Laboratory maintains the CRREL Permafrost Tunnel at Fox, Alaska (-10 miles north of Fairbanks.) The active microbial ecosystems and the cryopreserved anabiotic viable microorganisms and dead microbial remains and biomarkers frozen within the permafrost and ice of the CRREL Permafrost Tunnel are of direct relevance to Astrobiology. Microbial extremophiles from permafrost and ice provide information concerning where and how should we search for evidence of life elsewhere in the Cosmos. The permafrost and ice wedges of the Fox tunnel preserves a magnificent of record of Pliocene, Pleistocene and Holocene life on Earth spanning more than 2.5 million years. This record includes frozen fossil bacteria, archaea, algae, mosses, higher plants, insects and mammals. In this paper we present the preliminary results of studies of the morphology, ultramicrostructure and elemental distributions of Fox tunnel microbiota as determined in-situ by the Environmental Scanning Electron Microscope (ESEM) and the Field Emission Scanning Electron Microscope (FESEM) investigations. The long-term viability of cryopreserved microbiota and potential implications to Astrobiology will be discussed.
Contributed review: Review of integrated correlative light and electron microscopy.
Timmermans, F J; Otto, C
2015-01-01
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.
Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study
NASA Astrophysics Data System (ADS)
Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.
2017-11-01
The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.
Frith, C H; Ayres, P H; Shinohara, Y; West, R
1986-01-01
A total of 75 BALB/cStCrlfC3H/Nctr male weanling mice were administered either 0 or 250 ppm of 4 ethylsulfonylnaphthalene-1-sulfonamide (ENS) in the diet for periods up to 14 days to evaluate the early morphological changes of the transitional epithelium of the urinary bladder with scanning (SEM) and transmission (TEM) electron microscopy. Primary TEM changes included hyperplasia of the epithelium, loosening of the intercellular junctions, autophagic vacuoles and electron dense granules in the mitochondria. Primary SEM changes included sloughing of epithelial cells, irregularity in the size and shape of the transitional epithelial cells and the presence of microvilli. Although pleomorphic microvilli were present after only three days of treatment with ENS, it appears that they are a transient observation in a series of morphological changes. The reversibility or transient nature of the pleomorphic microvilli may indicate that they are an acute toxic response and may not necessarily indicate a preneoplastic change.
NASA Astrophysics Data System (ADS)
Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair
2016-05-01
The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.
Porto Ferreira, Cassio; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana
2015-01-01
Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. PMID:25653392
Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang
2011-09-01
The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.
Iwasaki, S; Asami, T; Wanichanon, C
1996-04-01
Various species of turtles are adapted to different environments, such as freshwater, seawater, and terrestrial habitats. Comparisons of histological and ultrastructural features of the tongue of the juvenile Hawksbill turtle, Eretmochelys imbricata bissa, with those of freshwater turtles should reveal some aspects of the relationship between the structure of the lingual epithelium and the environment. The light microscope, scanning electron microscope and transmission electron microscope were used. Light microscopy revealed that the mucosal epithelium of the tongue was of the keratinized, stratified squamous type. Under the scanning electron microscope, no lingual papillae were visible on the dorsal surface of the tongue. Micropits and the thickening of cell margins were clearly seen on the surface of cells located on the outermost side. The transmission electron microscope revealed that the cells in the intermediate layer were gradually flattened from the basal side to the surface side, as were their nuclei. In the shallow intermediate layer, the cells were significantly flattened, and their nuclei were condensed or had disappeared. The cytoplasm contained keratohyalin granules, tonofibrils, free ribosomes, mitochondria, and rough endoplasmic reticulum. Numerous free ribosomes were attached to the surface of small keratohyalin granules. The cells of the keratinized layer were significantly flattened, and their nuclei had completely disappeared. Most of cytoplasm was filled with keratin fibers of high electron density. Keratin fibers of the shedding cells, which were located on the outermost side of the keratinized layer, appeared looser, and each fiber, which was somewhat thicker than the tonofibrils and tonofilaments, was clearly distinguishable. The lingual epithelium of the juvenile Hawksbill turtle differs significantly from that of the adult freshwater turtle, in spite of the similarity in gross morphology of the tongues of these species.
Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio
2017-01-01
The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.
NASA Astrophysics Data System (ADS)
Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi
2018-05-01
We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.
NASA Astrophysics Data System (ADS)
Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu
2015-02-01
Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.
Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices
NASA Astrophysics Data System (ADS)
Ismail, Raid A.; Abdul-Hamed, Ryam S.
2017-12-01
Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.
Saba, N; Mohammad, F; Pervaiz, M; Jawaid, M; Alothman, O Y; Sain, M
2017-04-01
Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro
2010-07-08
A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.
NASA Astrophysics Data System (ADS)
Rajabifar, Bahram; Kim, Sanha; Slinker, Keith; Ehlert, Gregory J.; Hart, A. John; Maschmann, Matthew R.
2015-10-01
We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 μm3/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabifar, Bahram; Maschmann, Matthew R., E-mail: MaschmannM@missouri.edu; Kim, Sanha
2015-10-05
We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, andmore » CNT orientation. Milled cuts with depths between 0–100 microns are generated, corresponding to a material removal rate of up to 20.1 μm{sup 3}/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.« less
Thiry, M; Scheer, U; Goessens, G
1991-01-01
Nucleoli are the morphological expression of the activity of a defined set of chromosomal segments bearing rRNA genes. The topological distribution and composition of the intranucleolar chromatin as well as the definition of nucleolar structures in which enzymes of the rDNA transcription machinery reside have been investigated in mammalian cells by various immunogold labelling approaches at the ultrastructural level. The precise intranucleolar location of rRNA genes has been further specified by electron microscopic in situ hybridization with a non-autoradiographic procedure. Our results indicate that the fibrillar centers are the sole nucleolar structures where rDNA, core histones, RNA polymerase I and DNA topoisomerase I are located together. Taking into account the potential value and limitations of immunoelectron microscopic techniques, we propose that transcription of the rRNA genes takes place within the confines of the fibrillar centers, probably close to the boundary regions to the surrounding dense fibrillar component.
NASA Astrophysics Data System (ADS)
Dutta, Shibsankar; De, Sukanta
2016-05-01
It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.
Electroplasma coatings based on silicon-containing hydroxyapatite: Technology and properties
NASA Astrophysics Data System (ADS)
Lyasnikova, A. V.; Markelova, O. A.
2016-09-01
IR analysis and the plasma deposition of silicon-containing hydroxyapatite powder have been carried out. It has been shown that the coating exhibits developed morphology and consists of molten powder (including nanosize) particles uniformly distributed over the entire surface. The adhesion characteristics have been calculated and scanning electron microscope images of the resultant coating have been analyzed.
Hydrothermal synthesis and infrared emissivity property of flower-like SnO{sub 2} particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, J. X.; Beijing Institute of Environmental Features, Beijing, 100854; Zhang, Z. Y., E-mail: zhangzy@nwu.edu.cn
The flower-like SnO{sub 2} particles are synthesized through a simple hydrothermal process. The microstructure, morphology and the infrared emissivity property of the as-prepared products are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and infrared spectroradio meter (ISM) respectively. The results show that the as-prepared SnO{sub 2} products are all indexed to tetragonal cassiterite phase of SnO{sub 2}. The different molarity ratios of the OH{sup −} concentration to Sn{sup 4+} concentration ([OH{sup −}]:[Sn{sup 4+}]) and the polyacrylamide (PAM) lead to the different morphological structures of SnO{sub 2}, which indicates that both the [OH{sup −}]:[Sn{sup 4+}]more » and the PAM play an important role in the morphological evolution respectively. The infrared emissivities of the as-prepared SnO{sub 2} products are discussed.« less
2009-10-20
major vector of malaria in China ; however, its vectorial capacity is unknown in the ROK. The other remaining four Anopheles species are not considered to...morphometry and morphology of Anopheles aconitus Form B and C eggs under scanning electron microscope. Revista do Instituto de Medicina Tropical de Sao Paulo...and its genetic identity with An. (Ano.) anthropophagus from China (Diptera: Culicidae). Zootaxa, 378, 1–14. RUEDA ET AL.40 · Zootaxa 2268 © 2009
Uncertainty in the use of MAMA software to measure particle morphological parameters from SEM images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Daniel S.; Tandon, Lav
The MAMA software package developed at LANL is designed to make morphological measurements on a wide variety of digital images of objects. At LANL, we have focused on using MAMA to measure scanning electron microscope (SEM) images of particles, as this is a critical part of our forensic analysis of interdicted radiologic materials. In order to successfully use MAMA to make such measurements, we must understand the level of uncertainty involved in the process, so that we can rigorously support our quantitative conclusions.
NASA Astrophysics Data System (ADS)
Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi
2013-02-01
Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmermans, F. J.; Otto, C.
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, V.V.; Stearner, S.P.; Dimitrievich, G.S.
1977-04-01
Cell aggregates in increased numbers appear along blood vessel walls within a few days after local x irradiation of the tissue within rabbit ear chambers. At 7 days after irradiation with 400 or 700 rad of 250 kVp of x rays, electron microscopic studies of the microvasculature were carried out to determine the morphological characteristics of the cell types involved in the aggregates and the relation of these cells to vascular repair. The cell aggregates usually occur in the interstitial region subjacent to the endothelium. The cells that make up the aggregates show morphological characteristics of relatively undifferentiated mesenchymal cells;more » they have an irregularly rounded shape and contain large amounts of rough endoplasmic reticulum, Golgi vesicles, and mitochondria. In a few instances, cells of similar morphology also occur as part of the lining of the blood vessels. The perivascular cell aggregates may originate from the pericyte population or from undifferentiated mesenchymal cells that occur in the interstitial region surrounding blood vessels; it is improbable that they are dedifferentiated smooth muscle cells. It is suggested that the cells that make up these aggregates contribute to the repair of the microvasculation after radiation injury. The radiosensitivity of vascular endothelium reported by previous investigators seems to preclude endothelial proliferation as the principal repair mechanism at higher radiation doses.« less
Xu, Guiheng; Xu, Dongdong; Zhang, Jianan; Wang, Kaixi; Chen, Zhimin; Chen, Jiafu; Xu, Qun
2013-12-01
In this paper, a facile and efficient method is reported to prepare polyaniline/carbon nanofiber (PANI/CNF) hybrid films by in situ chemical polymerization of aniline. The various morphologies and microstructures of PANI/CNF hybrid films can be controlled by adjusting the concentration of aniline and different acids as the protonation reagent, and the formation mechanism is illustrated in this study. The surface morphologies and chemical structure of the PANI/CNF hybrid films are characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), water contact angle (CA), FT-IR, Raman, and UV-vis spectrophotometers. The different morphology of uniformly coated, twist-tangled, and needle-like PANI built on CNF films are obtained by using HCl, H2SO4, and HClO4 as protonation reagent and the obtained hybrid films are labeled as PANI/CNF-f1, PANI/CNF-f2, and PANI/CNF-f3, respectively. We demonstrated that the different protonation reagent has the determined effect on the surface properties of the obtained hybrid films that can transfer from hydrophilic to hydrophobic. Besides, the various morphologies of PANI play an important role in their electrochemical properties. PANI/CNF-f3 exhibits higher specific capacitance and better stability than that of the PANI/CNF-f1 and PANI/CNF-f2. Considering its unique needle-like structure, this work is a proof of concept that micro-structure and morphology can determine the macro-properties. And this study supplies a facile method to fabricate PANI/CNF hybrid films that can be used as electrode materials in supercapacitors. Copyright © 2013 Elsevier Inc. All rights reserved.
Sheng, Zhigao; Feng, Qiyuan; Zhou, Haibiao; Dong, Shuai; Xu, Xueli; Cheng, Long; Liu, Caixing; Hou, Yubin; Meng, Wenjie; Sun, Yuping; Nakamura, Masao; Tokura, Yoshinori; Kawasaki, Masashi; Lu, Qingyou
2018-06-13
Constituent atoms and electrons determine matter properties together, and they can form long-range ordering respectively. Distinguishing and isolating the electronic ordering out from the lattice crystal is a crucial issue in contemporary materials science. However, the intrinsic structure of a long-range electronic ordering is difficult to observe because it can be easily affected by many external factors. Here, we present the observation of electronic multiple ordering (EMO) and its dynamics at the micrometer scale in a manganite thin film. The strong internal couplings among multiple electronic degrees of freedom in the EMO make its morphology robust against external factors and visible via well-defined boundaries along specific axes and cleavage planes, which behave like a multiple-ordered electronic crystal. A strong magnetic field up to 17.6 T is needed to completely melt such EMO at 7 K, and the corresponding formation, motion, and annihilation dynamics are imaged utilizing a home-built high-field magnetic force microscope. The EMO is parasitic within the lattice crystal house, but its dynamics follows its own rules of electronic correlation, therefore becoming distinguishable and isolatable as the electronic ordering. Our work provides a microscopic foundation for the understanding and control of the electronic ordering and the designs of the corresponding devices.
Wear effects on microscopic morphology and hyaluronan uptake in siloxane-hydrogel contact lenses.
Tavazzi, Silvia; Tonveronachi, Martina; Fagnola, Matteo; Cozza, Federica; Ferraro, Lorenzo; Borghesi, Alessandro; Ascagni, Miriam; Farris, Stefano
2015-07-01
The purpose of this study was a comparison between new and worn siloxane-hydrogel contact lenses in terms of microscopic structure, surface morphology, and loading of hyaluronan. The analyses were performed by scanning electron microscopy, with the support of the freeze-drying technique, and by fluorescence confocal microscopy. Along the depth profile of new lenses, a thin porous top layer was observed, which corresponds to the region of hyaluronan penetration inside well-defined channels. The time evolution was followed from one day to two weeks of daily wear, when a completely different scenario was found. Clear experimental evidence of a buggy surface was observed with several crests and regions of swelling, which could be filled by the hyaluronan solution. The modifications are attributed to the progressive relaxation of the structure of the polymeric network. © 2014 Wiley Periodicals, Inc.
Morphology of Er:YAG-laser-treated root surfaces
NASA Astrophysics Data System (ADS)
Keller, Ulrich; Stock, Karl; Hibst, Raimund
1997-12-01
From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.
Magniez, Aurélie; Oudrhiri, Noufissa; Féraud, Olivier; Bacci, Josette; Gobbo, Emilie; Proust, Stéphanie; Turhan, Ali G.
2014-01-01
Abstract The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming. PMID:25371857
NASA Astrophysics Data System (ADS)
Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao
2018-02-01
Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.
Devi, Th Babita; Ahmaruzzaman, M
2016-09-01
In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.
Ferreira, Cassio Porto; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana
2015-02-01
Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. © The American Society of Tropical Medicine and Hygiene.
Xu, X X; Ding, M H; Zhang, J X; Zheng, W; Li, L; Zheng, Y F
2013-11-01
In this article, a novel composite of copper (Cu) nanoparticles and polydimethiylsiloxane (PDMS) has been prepared and investigated for the potential application in Cu-containing intrauterine device. The Cu/PDMS composite with various mass fraction of Cu nanoparticles was fabricated via the hot vulcanizing process. The chemical structures and surface morphologies of the Cu/PDMS composites were characterized confirming the physical interaction between Cu nanoparticles and PDMS. The surface morphology observation using scanning electron microscope and atomic force microscope showed the agglomeration of Cu nanoparticles in PDMS matrix and the distribution of the agglomerations was more uniform with increased amount of Cu nanoparticles. The cupric ion release behaviors of the Cu/PDMS composites with different amounts of Cu nanoparticles were investigated in simulated uterine fluid at 37°C for 150 days. The corrosion morphologies of the Cu/PDMS composites were also characterized. Both the burst release rate of the cupric ion in the first few days and the steady release rate after 30-day immersion were improved. The cytotoxicity test has been done for the Cu/PDMS composites. Copyright © 2013 Wiley Periodicals, Inc.
Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan
2016-01-01
The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic. © Wiley Periodicals, Inc.
Morphological study of the lingual papillae in the ferret (Mustela putorius furo).
Takemura, Akimichi; Uemura, Mamoru; Toda, Isumi; Fang, Gang; Hikida, Masaya; Suwa, Fumihiko
2009-05-01
We used four ferrets (Mustela putorius furo) and observed these animals dorsal tongue surface morphology via scanning electron microscope and light microscope. In this investigation, we focused on the food habits and discussed the morphology of the lingual papillae from the viewpoint of comparative anatomy. The ferret has conically-shaped filiform papillae in the posterior, middle and anterior region of the tongue body, and circular-distributed filiform papillae in the lingual apex region. The ferret has fungiform papillae with hemispheric shaped summits in the posterior and middle region with square-shaped summits in the anterior and the lingual apex region. The ferret has V-shaped vallate papillae with eight papillae in two lines or 12 papillae in three lines on the tongue root. No foliate papillae were observed on the dorsal tongue surface of the ferret. The ferret belongs to the carnivore family but has a highly developed vallate papillae which are taste bud papillae and many taste glands. Thus we conclude that the ferrets need a large amount of saliva to swallow food because it demonstrates a large number of taste glands.
JPRS Report - Science & Technology USSR: Life Sciences.
1988-06-17
No 6. Nov-Dec 87] 11 Electron Microscopic and Radioautographic Investigation of Bronchi in Chronic Inflammation Upon Exposure to Helium-Neon...87] 22 Functional and Morphological Characteristics of Stress-Protective Action of Piracetam [V. M. Vinogradov, A. A. Klishov et al; FARMAKOLOGIYA...I TOKSIKOLOGIYA No 6, Nov-Dec 87] 23 Comparative Neurophysiological Studies on Nootropic Agents Piracetam and Centrophenoxine [S. V Krapivin, T. A
Anaerobiospirillum succiniciproducens bacteraemia
Pienaar, C; Kruger, A J; Venter, E C; Pitout, J D D
2003-01-01
This report describes a case of bacteraemia caused by Anaerobiospirillum succiniciproducens. Anaerobiospirillum succiniciproducens is a rare cause of bacteraemia in humans, and when encountered usually occurs in immunocompromised patients. The organism is an anaerobic, spiral shaped, Gram negative bacillus with bipolar tufts of flagella. In this report, the morphology, with special reference to electron microscopic features, culture characteristics, and antimicrobial susceptibility are described. PMID:12663649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com
2014-12-15
Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less
Morphology of the leather defect light flecks and spots.
Nafstad, O; Wisløff, H; Grønstøl, H
2001-01-01
The skin histology and the scanning electron microscope morphology of the hide defect light flecks and spots after tanning were studied in 11 steers infested with biting lice (Damalinia bovis). Nine steers from herds free of lice were used as controls. Skin biopsies from 6 of the animals in the lice infested group showed mild to moderate hyperkeratosis and moderate perivascular to diffuse dermatitis with infiltration of mainly mononuclear cells and some eosinophilic granulocytes. The steers were slaughtered at an age of 18 to 23 months. Light flecks and spots occurred on all examined hides from the infested group after tanning. No examined hides from the control group demonstrated similar damage. Both light microscopic examination of sections of tanned hide with light flecks and spots and scanning electron microscopy of the same defects showed superficial grain loss and craters with a irregular fibre base encircled by smooth and intact grain. The association between louse infestation at an early age and damage of hides following slaughter 6 to 15 months later, suggested that louse infestations lead to a prolonged or lifelong weakening in the dermis. This weakening may cause superficial grain loss during the tanning process.
Morphology of the Leather Defect Light Flecks and Spots
Nafstad, O; Wisløff, H; Grønstøl, H
2001-01-01
The skin histology and the scanning electron microscope morphology of the hide defect light flecks and spots after tanning were studied in 11 steers infested with biting lice (Damalinia bovis). Nine steers from herds free of lice were used as controls. Skin biopsies from 6 of the animals in the lice infested group showed mild to moderate hyperkeratosis and moderate perivascular to diffuse dermatitis with infiltration of mainly mononuclear cells and some eosinophilic granulocytes. The steers were slaughtered at an age of 18 to 23 months. Light flecks and spots occurred on all examined hides from the infested group after tanning. No examined hides from the control group demonstrated similar damage. Both light microscopic examination of sections of tanned hide with light flecks and spots and scanning electron microscopy of the same defects showed superficial grain loss and craters with a irregular fibre base encircled by smooth and intact grain. The association between louse infestation at an early age and damage of hides following slaughter 6 to 15 months later, suggested that louse infestations lead to a prolonged or lifelong weakening in the dermis. This weakening may cause superficial grain loss during the tanning process. PMID:11455890
Mitrecić, D; Cunko, V F; Gajović, S
2008-12-01
Descriptive morphological studies are often combined with gene expression pattern analyses. Unembedded vibratome or cryotome sections are compatible with in situ RNA hybridization, but spatial resolution is rather low for precise microscopic studies necessary in embryology. Therefore, use of plastic embedding media, which allow semi-thin and ultra-thin sectioning for light and electron microscopy, could be an important advantage. This work suggested a new approach based on the whole mount hybridization of mouse embryos and subsequent epoxy resin embedding. Epoxy resin allowed serial sectioning of semi-thin sections with preserved in situ RNA hybridization signal, which was a necessary prerequisite for precise morphological analysis of embryo development.
Mengeloglu, Fatih; Kabakci, Ayse
2008-01-01
Thermal behaviors of eucalyptus wood residue (EWR) filled recycled high density polyethylene (HDPE) composites have been measured applying the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Morphology of the materials was also studied using scanning electron microscope (SEM). Addition of the EWR into the recycled HDPE matrix reduced the starting of degradation temperature. EWR filled recycled HDPE had two main decomposition peaks, one for EWR around 350 °C and one for recycled HDPE around 460 °C. Addition of EWR did not affect the melting temperature of the recycled HDPE. Morphological study showed that addition of coupling agent improved the compatibility between wood residue and recycled HDPE. PMID:19325736
Dias, Fernando Maia Silva; Casagrande, Mirna Martins; Mielke, Olaf Hermann Hendrik
2014-01-01
Abstract The biology and the external morphology of the immature stages of Callicore pygas eucale (Fruhstorfer, 1916) (Lepidoptera: Nymphalidae: Biblidinae) are described. Immatures were collected on Allophylus edulis (Radlkofer) (Sapindales: Sapindaceae) in Curitiba, Paraná, Brazil, and reared in the laboratory. Morphological descriptions and illustrations are given based on observations through electronic, stereoscopic, and optic microscopes, the latter two attached to a camera lucida. Results are compared and discussed with the immature stages of other species of the subtribe Callicorina. Immature stages data provide further evidence that Callicore is paraphyletic and that generic limits within the Callicorina need revision. PMID:25368047
Surface phenomenon in Electrochemical Systems
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Interfaces play a critical role in the performance of electrochemical systems. This thesis focusses on interfaces in batteries and covers aspects of interfacial morphologies of metal anodes, including Silicon, Lithium and Zinc. Growth and cycling of electrochemically grown Lithium and Zinc metal structures is investigated. A new morphology of Zinc, called Hyper Dendritic Zinc is introduced. It is cycled against Prussian Blue Analogues and is shown to improve the performance of this couple significantly. Characterization of materials is done using various electron microscopy techniques ranging from Low Energy Electron Microscope (LEEM), to high energy Transmission Electron Microscope (TEM). LEEM is used for capturing subtle surface phenomenon occurring during epitaxial process of electrolyte on anode. The system studied is Silicon (100) during Chemical Vapor Deposition of Ethylene Carbonate. A strain driven relaxation theory is modeled to explain the unusual restructuring of Si substrate. The other extreme, TEM, is often used to study electrochemical processes, without clear understanding of how the high-energy electron beam can influence the sample under investigation. Here, we study the radiolysis in liquid cell TEM and emphasize on the enhancement of radiation dose at interfaces of the liquid due to generation of secondary and backscattered electrons from adjoining materials. It is shown that this effect is localized in a 10 nm region around the interface and can play a dominating role if there is an interface of liquid with heavy metals like Gold and Platinum which are frequently used as electrode materials. This analysis can be used to establish guidelines for experimentalists to follow, for accurate interpretation of their results.
NASA Astrophysics Data System (ADS)
Gonzalez, Carmen; Tagle, Luis Hernan; Terraza, Claudio A.; Barriga, Andres; Cabrera, A. L.; Volkmann, Ulrich G.
2011-03-01
Electro-optic properties of σ -conjugated polymers, as polysilylene; are associated with electron conjugation in the silicon atom, which allows a significant delocalization of electrons along of the chain. Thus, the conductivity is intimately connected to the mobility of charge carriers, which in turn depends on the structure and morphology of the system. We report the characterization of polyesters (PEFs) and polyamides (PAFs). Film thicknesses were obtained by ellipsometry. The vibration frequencies of the groups were determined by FT-IR and corroborated by Raman spectroscopy. Structural information was obtained from X-Ray diffraction (XRD). The structural and surface morphology were studied by scanning electron microscope (SEM). Electrical conductivity of the polymers was measured before and after exposure to iodine vapor, for films of different thicknesses. Morphological differentiation was studied by energy dispersive microscopy (EDX), showing a regular distribution of iodine within the polymer. Preliminary conductivity measurements showed adverse effects when oxidation of the polymer films is induced These effects are related to a certain grade of disorder within the system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in
It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236more » F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.« less
Gaĭvoronskiĭ, I V; Iordanishvili, A K; Kovalevskiĭ, A M
2013-01-01
The effect of chronic exposure to general vibration on the state of hemomicrocirculatory bed in the organs of rat masticatory apparatus and the efficacy of antihypoxants and adaptogens for its pharmacological prophylaxis was studied. The experiments were performed in 210 albino male rats aged 8 to 30 weeks. The intact rats served as control. Transcapillary injections with 1% collargol solution, histological, electron microscopic and morphometric methods were used. It was found that chronic exposure to general vibration induced a hemodynamic disturbances at the level of hemomicrocirculatory bed vessels in the organs of masticatory apparatus with subsequent hypoxia. Electron microscopic study revealed the damage of the cellular ultrastructure in the endotheliocytes of blood vessels of the hemomicrocirculatory bed. Antihypoxants, adaptogens and their combinations demonstrated a pronounced protective effect
Generation of dense statistical connectomes from sparse morphological data
Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel
2014-01-01
Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033
Jebri, Sihem; Hmaied, Fatma; Yahya, Mariem; Ben Ammar, Aouatef; Hamdi, Moktar
This study was conducted to isolate phages in treated sewage collected from wastewater treatment plant, and explore their morphological diversity by transmission electron microscopy (TEM). Fates of total bacteriophages and their reduction by biological treatment were also assayed. Phages were isolated using the plaque assay then negatively stained and observed by electron microscope. Electron micrographs showed different types of phages with different shapes and sizes. The majority of viruses found in treated sewage ranged from 30 to 100 nm in capsid diameter. Many of them were tailed, belonging to Siphoviridae, Myoviridae and Podoviridae families. Non-tailed phage particles were also found at a low rate, presumably belonging to Leviviridae or Microviridae families. This study shows the diversity and the abundance of bacteriophages in wastewater after biological treatment. Their persistence in wastewater reused in agriculture should raise concerns about their potential role in controlling bacterial populations in the environment. They should be also included in water treatment quality controlling guidelines as fecal and viral indicators.
NASA Astrophysics Data System (ADS)
Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao
2018-04-01
The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.
Novel morphology of calcium carbonate controlled by poly(L-lysine).
Yao, Yuan; Dong, Wenyong; Zhu, Shenmin; Yu, Xinhai; Yan, Deyue
2009-11-17
The novel calcium carbonate (CaCO(3)) morphology, twin-sphere with an equatorial girdle, has been obtained under the control of poly(L-lysine) (PLys) through gas-diffusion method. The effect of the concentration of calcium cation and PLys, the reaction time, and the initial pH value are investigated, and various interesting morphologies, including twin-sphere, discus-like, hexagonal plate, and hallow structure are observed by using scanning electronic microscopy. Laser microscopic Raman spectroscopy studies indicated that all these CaCO(3) are vaterite. A possible mechanism is suggested to explain the formation of the twin-sphere based morphologies according to the results. It is proven that alkaline polypeptides can control the mineralization of CaCO(3) precisely as the reported acidic polypeptides and double hydrophilic block copolymers.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.
2016-11-01
Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.
The tungsten powder study of the dispenser cathode
NASA Astrophysics Data System (ADS)
Bao, Ji-xiu; Wan, Bao-fei
2006-06-01
The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.
The core contribution of transmission electron microscopy to functional nanomaterials engineering
NASA Astrophysics Data System (ADS)
Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu
2016-01-01
Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05460e
Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.
Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F
2010-10-01
Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.
Tribological characterization of TiN coatings prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.
NASA Astrophysics Data System (ADS)
Garg, Preeti; Soni, R. K.; Raman, R.
2018-05-01
In this report, we describe a low-cost fabrication process for highly sensitive SERS substrate by using thermal evaporation technique. The SERS substrate structure consists of silver nanoparticles deposited on monolayer, bilayer and few layer graphene. The fabricated SERS substrates are investigated by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), and confocal Raman spectroscope. From the surface morphology we have verified that the fabricated SERS substrate consist of high-density of silver nanoparticles with their size distribution varies from 10 to 150 nm. The surface-enhanced Raman scattering activities of these nanostructures is highest for monolayer graphene.
NASA Technical Reports Server (NTRS)
Campbell, J. E.
1974-01-01
The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.
Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases
NASA Astrophysics Data System (ADS)
Mansour, S. F.; El-dek, S. I.; Ahmed, M. A.; Abd-Elwahab, S. M.; Ahmed, M. K.
2016-10-01
Hydroxyapatite (HAP) and dicalcium phosphate dihydrate (brushite) nanoparticles were prepared by co-precipitation method. The obtained products were characterized by X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FTIR) and thermo-gravimetric analysis (TGA). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to investigate the morphology of the powdered samples as well as their microstructure, respectively. Brushite samples were obtained in a spherical shape, while hydroxyapatite was formed in a needle and rice shape depending on the pH value.
Hess, Martin; Melzer, Roland R; Eser, Roland; Smola, Ulrich
2006-11-01
The outer retinal architecture of Engraulididae is uncommon among vertebrates. In some anchovies, e.g., Anchoa, two cone types are arranged alternating in long photoreceptor chains, i.e., polycones. The cones have radially oriented outer segment lamellae in close contact with a complex guanine tapetum, most probably subserving polarization contrast vision. To clarify the distribution of the aberrant polycone architecture within the Engraulididae and to provide indications about polycone evolution, the outer retina morphology of 16 clupeoid species was investigated by light and electron microscopy, predominantly using museum-stored material. The outgroup representatives of four clupeid subfamilies (Clupeonella cultriventris, Dorosoma cepedianum, Ethmalosa fimbriata, Pellonula leonensis) show a row pattern of double cones, partially with single cones at defined positions and a pigment epithelium with lobopodial protrusions containing melanin. The pristigasterid Ilisha africana has double rows of single cones lying between linear curtains of pigment epithelium processes filled with minute crystallites and melanin concentrated near their vitreal tips. Within the Engraulididae, two main architectures are found: Coilia nasus and Thryssa setirostris have linear multiple cones or polycones separated by long pigment epithelium barriers containing tapetal crystallites and melanin in the tips (also found in Setipinna taty), whereas Anchoviella alleni, Encrasicholina heteroloba, Engraulis encrasicolus, Engraulis mordax, Lycengraulis batesii, and Stolephorus indicus exhibit the typical polycone architecture. Cetengraulis mysticetus and Lycothrissa crocodilus show cone patterns and pigment epithelium morphology differing from the other anchovy species. The sets of characters are compared, corroborated with the previous knowledge on clupeoid retinae and discussed in terms of functional morphology and visual ecology. A scenario on polycone evolution is developed that may serve as an aid for the reconstruction of engraulidid phylogeny. Furthermore, this study demonstrates the suitability of museum material for morphological studies, even at the electron microscopic level. Copyright 2006 Wiley-Liss, Inc.
Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath
2017-01-01
Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope PMID:28250658
Electron microscopic examination of uncultured soil-dwelling bacteria.
Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi
2008-05-01
Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.
Oil refinery dusts: morphological and size analysis by TEM.
Sielicki, Przemysław; Janik, Helena; Guzman, Agnieszka; Broniszewski, Mieczysław; Namieśnik, Jacek
2011-03-01
The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 μm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 μm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 μm made up the most numerous group in all the samples collected in the refinery.
Examination of oxide scales in the SEM using backscattered electron images
NASA Technical Reports Server (NTRS)
Price, C. W.; Wright, I. G.; Wallwork, G. R.
1973-01-01
The complementary use of the scanning electron microscope in the backscattered electron mode with the more usual secondary electron mode results in a significant increase in the versatility of the instrument, since regions of different chemical composition can be readily detected, and their morphology examined. The use of this technique to examine complex oxide scales formed on heat-resistant alloys is described, and in particular the location of thoria particles in the scale formed on a Ni-20 wt pct Cr-2.3 wt pct ThO2 alloy, and the examination of the behavior of yttrium during the high-temperature oxidation of a Co-Cr-Al-Y alloy are discussed.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong
2017-12-01
The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.
Investigation of phase transition properties of ZrO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder
2018-05-01
This paper presents the synthesis of transparent thin films of zirconium oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Synthesized films were characterized for different annealing time and withdrawal speed. Change in crystallographic properties of thin films was investigated by using X-ray diffraction. Surface morphology of transparent thin films was estimated by using scanning electron microscope.
Sutáková, G
1988-01-01
Rickettsiella phytoseiuli was found in great amounts in all tissues except of the nervous system of adult Phytoseiulus persimilis mites. Six morphologically different stages (dense, intermediate, bacterial, giant, crystal-forming and small dark particles) of R. phytoseiuli were detected. No rickettsiae were seen in the larvae and in phase 1 and 2 nymphae of these mites.
Intraocular Gnathostoma spinigerum. Clinicopathologic study of two cases with review of literature.
Biswas, J; Gopal, L; Sharma, T; Badrinath, S S
1994-01-01
Live intraocular nematode is a rare occurrence that is mostly reported in Southeast Asian countries. Common nematodes that are seen live in the eye are microfilaria, Gnathostoma, and Angiostrongylus. Approximately 12 cases of intraocular gnathostomiasis have been reported in the literature. Two cases of intraocular gnathostoma, removed by vitrectomy in the first case and by paracentesis in the second case, are reported. Morphologic study of the parasites in wet preparation was performed under dissecting microscope and fixed in Karnovosky's fixative. Light microscopic and scanning electron microscopic studies were also performed. The first patient had anterior uveitis, multiple iris holes, and dense vitreous haze with fibrous proliferation over the optic disc. On resolution of the vitreous haze, a live worm was seen in the vitreous cavity. The second patient had anterior uveitis with secondary glaucoma, multiple iris holes, mild vitritis, and focal subretinal haemorrhage with subretinal tracts. Four days later a live worm was seen in the anterior chamber and removed. Microscopic study of the parasites from both patients revealed typical head bulb with four circumferential rows of hooklets, and fine cuticular spines were seen on the surface of the body. Iris holes, uveitis, and subretinal haemorrhage with subretinal tract can be characteristic features of intraocular gnathostomiasis. Identification of this parasite can be made by typical features, which can be identified on light and scanning electron microscopic study.
The BCC/B2 morphologies in Al xNiCoFeCr high-entropy alloys
Ma, Yue; Jiang, Beibei; Li, Chunling; ...
2017-02-15
Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in Al xNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties,more » including the compressive yielding strength and microhardness of the Al xNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less
Rajapakse, R P V J; Iwagami, M; Wickramasinghe, S; Walker, S M; Agatsuma, T
2013-09-01
Bivitellobilharzia nairi was first recorded from an Indian elephant (Elephas maximus) in Berlin. Infections with this parasite have become increasingly important in E. maximus maximus populations in Sri Lanka. The present work is the first morphological description of this schistosome from Sri Lanka. A number of adult worms were recovered from a dead Asian elephant near the elephant orphanage, Pinnawala, in Sri Lanka. The observed clinical features of the infected elephant included emaciation, subventral oedema and anaemia. Post-mortem results indicated that the liver was enlarged and adult schistosomes were found in the blood vessels of the liver parenchyma. The total number of worms recovered from a portion of the liver was 129,870, which is an average of 22 worms per 100 g of liver. The present study uses both light microscopic and scanning electron microscope (SEM) techniques for the morphological and topographical characterization of this parasite and to permit comparison with other species of schistosomes. Morphologically, these worms correspond very well to the description of B. nairi by Dutt & Srivastava (1955). Moreover, it is clear that B. nairi is a distinctive species easily differentiated from other schistosomes. The SEM study of the tegument of male worms shows that the surface of B. nairi is smoother than in other schistosomes.
Method for observation of deembedded sections of fish gonad by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Mao, Lian-Ju
2000-09-01
This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.
Dental Wear: A Scanning Electron Microscope Study
Levrini, Luca; Di Benedetto, Giulia
2014-01-01
Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction) studied by scanning electron microscopy (SEM). The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp), to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders). It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction. PMID:25548769
Ono, Sayaka; Morimoto, Norihito; Korenaga, Masataka; Kumazawa, Hideo; Komatsu, Yutaka; Kuge, Itsu; Higashidani, Yoshihumi; Ogura, Katsumi; Sugiura, Tetsuro
2010-11-01
Identification of Diphyllobothrium species has been carried out based on their morphology, especially sexual organs. In addition to these criteria, PCR-based identification methods have been developed recently. A 20 year-old Japanese living in Kochi Prefecture passed tapeworm. He was successfully treated with single dose of gastrografin. We examined the morphologic features of the proglottids and eggs using histology and scanning electron microscope. We also analyzed mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the proglottids. The causative tapeworm species was identified as D. nihonkaiense based on the results of morphologic features and genetic analysis. We discussed the advantage of PCR-based identification methods of Diphyllobothrium species using cox1 sequence in the clinical laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Rabia; Faisal, Qamer; Hussain, Sajjad
Grevillea robusta (Silver-oak tree) tree is a medicinal tree. Conventional UV-visible spectrophotometric and transmission electron microscopic technique were used to determine the morphology of silver nanoplates (AgNP) using Grevillea robusta (Silver-oak tree) aqueous leaves extract for the first time. The visible spectra showed the presence of three well defined surface plasmon absorption (SPR) bands at 500, 550 and 675 nm which was attributed to the anisotropic growth of Ag-nanoplates. Transmission electron microscopic (TEM) analysis of AgNP showed formation of truncated triangular, polyhedral with some irregular shapes nanoplates in the size range 8-20 nm. Cetyltrimethylammonium bromide (CTAB) has no significant effect on themore » shape of the spectra, position of SPR bands, size and size distribution of AgNP.« less
el-Shewy, K A; Eid, R A
2003-06-01
During routine transmission electron microscopic (TEM) examination of mice naturally infected with Giardia muris, an intense infection with Giardia trophozoites was demonstrated within intestinal and renal tissues. Examination of randomly taken sections from these heavily infected tissues revealed marked deep affection with mixed pathology. Duodenal sections were found loaded with Giardia trophozoites in intimate contact with necrotic gut cells. Some of these trophozoites were detected within central lacteal of damaged villi and nearby blood vessels. Interestingly, and for the first time to be demonstrated, morphologically identical G. muris trophozoite was detected in a renal blood vessel. An intense cellular immune reaction was obviously demonstrated with remarkable interaction between giant macrophages and the trophozoites particulates. Involvement of deep tissues by Giardia trophozoites and their presence within vascular channels could open up questions about the possible invasive and disseminative behavior of G. muris, particularly in heavily and naturally infected hosts.
Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923.
Santhana Raj, L; Hing, H L; Baharudin, Omar; Teh Hamidah, Z; Aida Suhana, R; Nor Asiha, C P; Vimala, B; Paramsarvaran, S; Sumarni, G; Hanjeet, K
2007-06-01
Mesosomes of Staphylococcus aureus ATCC 25923 treated with antibiotics were examined morphologically under the electron microscope. The Transmission Electron Microscope Rapid Method was used to eliminate the artifacts due to sample processing. Mesosomes were seen in all the antibiotic treated bacteria and not in the control group. The main factor that contributes to the formation of mesosomes in the bacteria was the mode of action of the antibiotics. The continuous cytoplasmic membrane with infolding (mesosomes) as in the S. aureus ATCC 25923 is therefore confirmed as a definite pattern of membrane organization in gram positive bacteria assaulted by amikacin, gentamicin, ciprofloxacin, vancomycin and oxacillin antibiotics. Our preliminary results show oxacillin and vancomycin treated bacteria seemed to have deeper and more mesosomes than those treated with amikacin, gentamicin and ciprofloxacin. Further research is needed to ascertain whether the deep invagination and the number of mesosomes formed is associated with the types of antibiotic used.
Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites
NASA Astrophysics Data System (ADS)
Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza
In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.
Preparation and characterization of CdS/Si coaxial nanowires
NASA Astrophysics Data System (ADS)
Fu, X. L.; Li, L. H.; Tang, W. H.
2006-04-01
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm -1, 2LO at 601 cm -1, A 1-TO at 212 cm -1, E 1-TO at 234 cm -1, and E 2 at 252 cm -1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.
Color-tunable properties of Eu3+- and Dy3+-codoped Y2O3 phosphor particles
2012-01-01
Rare-earth phosphors are commonly used in display panels, security printing, and fluorescent lamps, and have potential applications in lasers and bioimaging. In the present study, Eu3+- and Dy3+-codoped uniform-shaped Y2O3 submicron particles were prepared using the urea homogeneous precipitation method. The structure and morphology of the resulting particles were characterized by X-ray diffraction, field emission scanning electron microscope, and field emission transmission electron microscope, whereas their optical properties were monitored by photoluminescence spectroscopy. The room-temperature luminescence color emission of the synthesized particles can be tuned from red to yellow by switching the excitation wavelength from 254 to 350 nm. The luminescence intensities of red and yellow emissions could be altered by varying the dopant concentration. Strong quenching was observed at high Eu3+ and Dy3+ concentrations in the Y2O3 host lattice. PMID:23043645
Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material.
Myekhlai, Munkhshur; Lee, Taejin; Baatar, Battsengel; Chung, Hanshik; Jeong, Hyomin
2016-02-01
The composite material consisted of graphene (GN) and silver nanoparticles (AgNPs) has been essential topic in science and industry due to its unique thermal, electrical and antibacterial proper- ties. However, there are scarcity studies based on their thermal properties of nanofluids. Therefore, GN-AgNPs composite material was synthesized using facile and environment friendly method and further nanofluids were prepared by ultrasonication in this study. The morphological and structural investigations were carried out using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) as well as ultra violet (UV)-visible spectroscopy. Furthermore, thermal conductivity measurements were performed for as-prepared nanofluids. As a result of thermal conductivity study, GN-AgNPs composite material was considerably enhanced the thermal conductivity of base fluid (water) by to 6.59% for the nanofluid (0.2 wt% GN and 0.4 wt% AgNPs).
Gao, G Y; Feng, Y X
1995-01-01
This paper deals with studies on morphological and microscopical diagnostic characters of Chinese Hawthorn fruits. Their similarities and differences in morphological and microscopical characters among eight species of Crataegus (C. pinnatifida Bge., C. pinnatifida var. major NE Br., C. cuneata sieb. & Zuce., C. scabrifolia (Franch.) Rehd., C. hupehensis Sarg., C. kansuensis Wils, C. maximowiczii Schneid. and C. sanguinea Pall.) fruits are compared and illustrated with diagrams.
Qin, Shuang-Li; Deng, Jie; Lou, Di-Dong; Yu, Wen-Feng; Pei, Jinjing; Guan, Zhi-Zhong
2015-01-01
This study was designed to characterize changes in the expression of mitofusin-1 (Mfn1) and fission-1 (Fis1), as well as in mitochondrial morphology in the kidney of rats subjected to chronic fluorosis and to elucidate whether any mitochondrial injury observed is associated with increased oxidative stress. Sixty Sprague-Dawley (SD) rats were divided randomly into 3 groups of 20 each, i.e., the untreated control group (natural drinking water containing <0.5mg fluoride/L), the low-fluoride group (drinking water supplemented with 10mg fluoride/L, prepared with NaF) and the high-fluoride group (50mg fluoride/L), and treated for 6 months. Thereafter, renal expression of Mfn1 and Fis1 at both the protein and mRNA levels was determined by immunohistochemistry and real-time PCR, respectively. In addition, the malondiadehyde (MDA) was quantitated by the thiobarbituric acid procedure and the total antioxidative capability (T-AOC) by a colorimetric method. The morphology of renal mitochondria was observed under the transmission electron microscope. In the renal tissues of rats with chronic fluorosis, expression of both Mfn1 protein and mRNA was clearly reduced, whereas that of Fis1 was elevated. The level of MDA was increased and the T-AOC lowered. Swollen or fragmented mitochondria in renal cells were observed under the electronic microscope. These findings indicate that chronic fluorosis can lead to the abnormal mitochondrial dynamics and changed morphology in the rat kidney, which in mechanism might be induced by a high level of oxidative stress in the disease. Copyright © 2014 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083; Wu, Min
The semiconductor nanostructures decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. In this work, urchin-like monoclinic (m-) LaVO{sub 4} microspheres were prepared by a hydrothermal method and used as a template to fabricate Ag nanoparticle-decorated m-LaVO{sub 4} composites. The morphology and structure were characterized by transmission electron microscope, high-resolution transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray. It was found that Ag nanoparticles with narrow size distribution were uniformly loaded on urchin-like m-LaVO{sub 4} microspheres, and the resulted composite microspheres showed distinct surface plasmon absorption band compared to pure m-LaVO{sub 4}more » microspheres. Photocatalytic activities of as-prepared samples were examined by studying the degradation of methyl orange solutions under visible-light irradiation (> 400 nm). Results clearly showed that urchin-like m-LaVO{sub 4}/Ag microspheres possess much higher photocatalytic activity than pure m-LaVO{sub 4} microspheres and P25. - Highlights: • m-LaVO{sub 4}/Ag composites microspheres were fabricated by a hydrothermal method. • m-LaVO{sub 4} microspheres show higher photocatalytic activity than m-LaVO{sub 4} microspheres. • m-LaVO{sub 4}/Ag microspheres exhibit a good stability.« less
Sezen, Meltem; Bakan, Feray
2015-12-01
Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-03-01
Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the transition in the refractive index profile from air to the nanostructure layer that improved the anti-reflection characteristics.
Comparative study viruses with computer-aided phase microscope AIRYSCAN
NASA Astrophysics Data System (ADS)
Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.
1996-12-01
Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.
Wang, S Q; Feng, M; Yang, L
1994-12-01
EHF viral particles were found in the squamous epithelial cells and capillary endothelial cells of the petechial spots located at the mucous membrane of the soft palate in cases of early stage of severe type EHF by transmission electron microscopy. The viral particles are round or oval in shape, about 100 nm in diameter with a lipid bilayer envelope from which spikes are protruding. The virions matured by budding through the intracytoplasmic membranes into the smooth surfaced vesicles. The morphological characteristics of the virion coincided with the viral particles of Family Bunyaviridae. It was the first time to demonstrate that the squamous epithelial cells of the soft palate is one of the target cells in EHF virus infection and to describe the subcellular morphological evidence of the petechial spots at the soft palate by EM.
Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina
2017-01-01
Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921
NASA Astrophysics Data System (ADS)
Gea, S.; Tjandra, S.; Joshua, J.; Wirjosentono, B.
2018-02-01
Coffee ground waste utilization for fluorescent carbon nanoparticles (F-CNPs) through soot oxidation with diluted HNO3 has been conducted. Soot was obtained through three different treatments to coffee ground waste; which was burned in furnaceat 550°C and 650°C and directly burned in a heat-proofcontainer. Then they were analyzed morphologically with Scanning Electron Microscope (SEM) instrument. Soot from direct burning indicated the optimum result where it has denser pores compared to other two soots. Soot obtained from direct burning was refluxed in diluted HNO3 for 12 hours to perform the oxidation. Yellowish brown supernatant was later observed which lead to green fluorescent under the UV light. F-CNPs characterization was done in Transmission Electron Microscopy, which showed that 7.4-23.4 nm of particle size were distributed.
[Skin changes in albinism in persons of the Negroid race (light- and electron-microscopy studies].
Semkin, V I; Mikhaĭlov, I N
1984-01-01
The skin of the negroid race albinos is studied light- and electron-microscopically. Morphological alterations, as compared to control, consist of the horny layer thickening, increase of the cellularity in the epidermis, appearance of numerous pronounced tonofibrillar-keratohyaline complexes in the granular cells and a well developed network of dense bundles of tonofibrils in the spinous layer. Melanocytes and Langerhans cells are similar by their structure and number to those in the control. The protein skeletons of melanosomes in keratinocytes and melanocytes are practically unchanged but they are completely deprived of melanine biopolymer. The dermal macrophages do not contain a melanin pigment. The morphological features of the albinos epidermis, particularly the horny layer thickening, increase of the cellularity and the presence of pronounced tonofibrillar-keratohyaline complexes represent most likely a compensatory protective mechanism against ultraviolet radiation.
Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau
NASA Technical Reports Server (NTRS)
Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.
2003-01-01
The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.
Morphoscopic analysis of experimentally produced bony wounds from low-velocity ballistic impact.
Kieser, Jules A; Tahere, Joy; Agnew, Caitlin; Kieser, David C; Duncan, Warwick; Swain, Michael V; Reeves, Matthew T
2011-12-01
Understanding how bone behaves when subjected to ballistic impact is of critical importance for forensic questions, such as the reconstruction of shooting events. Yet the literature addressing microscopic anatomical features of gunshot wounds to different types of bone is sparse. Moreover, a biomechanical framework for describing how the complex architecture of bone affects its failure during such impact is lacking. The aim of this study was to examine the morphological features associated with experimental gunshot wounds in slaughtered pig ribs. We shot the 4th rib of 12 adult pigs with .22 mm subsonic bullets at close range (5 cm) and examined resultant wounds under the light microscope, scanning electron microscope SEM and micro tomograph μCT. In all cases there was a narrow shot channel followed by spall region, with evidence of plastic deformation with burnishing of the surface bone in the former, and brittle fracture around and through individual Haversian systems in the latter. In all but one case, the entrance wounds were characterized by superficially fractured cortical bone in the form of a well-defined collar, while the exit wounds showed delamination of the periosteum. Inorganic residue was evident in all cases, with electron energy dispersive spectroscopy EDS confirming the presence of carbon, phosphate, lead and calcium. This material appeared to be especially concentrated within the fractured bony collar at the entrance. We conclude that gunshot wounds in flat bones may be morphologically divided into a thin burnished zone at the entry site, and a fracture zone at the exit.
Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech
2018-04-01
Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analytical electron microscope study of the omega phase transformation in a zirconium-niobium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaluzec, N. J.
1979-01-01
The study of the as-quenched omega phase morphology shows that the domain size of Zr-15% Nb is on the order of 30 A. No alignment of omega domains along <222>..beta.. directions was observed and samples having undergone thermal cycling in thin foil form, did not develop a long-period structure of alternating ..beta.. and ..omega.. phases below the omega transformation temperature. (FS)
Aspects on dental hard tissues in primary teeth from patients with Ehlers-Danlos syndrome.
Klingberg, Gunilla; Hagberg, Catharina; Norén, Jörgen G; Nietzsche, Sandor
2009-07-01
Ehlers-Danlos syndrome (EDS) is a rare hereditary condition affecting connective tissues and dental hard tissues. Primary enamel and dentine from EDS patients were expected to differ from those of healthy subjects regarding morphology and chemical composition. Forty-seven exfoliated primary teeth from 25 patients with EDS were investigated. Morphology was studied using a polarized light microscope, scanning electron microscope, and X-ray microanalysis. Comparisons were made with 36 primary teeth from 36 healthy patients. Morphological analysis of enamel in EDS teeth showed a high frequency of postnatally hypomineralized enamel and postnatally located incremental lines, whereas dentine was normal in all patients. Chemical analysis could not reveal any differences between EDS and control patients except for lower content of C and a higher Ca/P ratio in the enamel in the EDS teeth, indicating porous enamel. Regarding dentine, EDS teeth had a lower content of C, and a higher content of Ca, P, and O. Ratios for Ca/C and Ca/O were also higher compared with controls. There are several aberrations of booth enamel and dentine in primary teeth from patients with EDS. These could explain the occurrence of both more dental caries and tooth fractures in patients with EDS.
Luca, Sorin; Yau, Wai-Ming; Leapman, Richard; Tycko, Robert
2008-01-01
The 37-residue amylin peptide, also known as islet amyloid polypeptide, forms fibrils that are the main peptide or protein component of amyloid that develops in the pancreas of type 2 diabetes patients. Amylin also readily forms amyloid fibrils in vitro that are highly polymorphic under typical experimental conditions. We describe a protocol for the preparation of synthetic amylin fibrils that exhibit a single predominant morphology, which we call a striated ribbon, in electron microscope and atomic force microscope images. Solid state nuclear magnetic resonance (NMR) measurements on a series of isotopically labeled samples indicate a single molecular structure within the striated ribbons. We use scanning transmission electron microscopy and several types of one-dimensional and two-dimensional solid state NMR techniques to obtain constraints on the peptide conformation and supramolecular structure in these amylin fibrils, and derive molecular structural models that are consistent with the experimental data. The basic structural unit in amylin striated ribbons, which we call the protofilament, contains four-layers of parallel β-sheets, formed by two symmetric layers of amylin molecules. The molecular structure of amylin protofilaments in striated ribbons closely resembles the protofilament in amyloid fibrils with similar morphology formed by the 40-residue β-amyloid peptide that is associated with Alzheimer's disease. PMID:17979302
Câmara, Felipe Venceslau; Lopes, Igor Renno Guimarães; de Oliveira, Gleidson Benevides; Bezerra, Ferdinando Vinicius Fernandes; de Oliveira, Radan Elvis Matias; Oliveira Júnior, Carlos Magno; Silva, Alexandre Rodrigues; de Oliveira, Moacir Franco
2015-08-01
The pineal gland is an endocrine gland found in all mammals. This article describes the morphology of this important gland in two species of Caviideae, namely the yellow-toothed cavy and the red-rumped agouti. Ten adult animals of the two species used in current analysis were retrieved from the Center for the Multiplication of Wild Animals (CEMAS/UFERSA) and euthanized. The glands were removed and photographed in situ and ex situ. They were fixed in a paraformaldehyde solution 4% or glutaraldehyde 2.5% solution and submitted to routine histological techniques respectively for light and scanning electron microscopy. Macroscopically, the pineal gland with its elongated structure may be found between the cerebral hemispheres facing the rostral colliculi. Microscopically, pinealocytes and some glia cells were predominant. Contrastingly, to the cavy's pineal gland, a capsule covered the organ in the agouti, with the emission of incomplete septa to the interior, which divided it into two lobules. Light and scanning electron microscopes failed to show calcareous concretions in the pineal gland. Based on the topography of the cavy's and agouti's pineal gland, it may be classified as supra-callosum and ABC type. © 2015 Wiley Periodicals, Inc.
Mice embryology: a microscopic overview.
Salvadori, Maria Letícia Baptista; Lessa, Thais Borges; Russo, Fabiele Baldino; Fernandes, Renata Avancini; Kfoury, José Roberto; Braga, Patricia Cristina Baleeiro Beltrão; Miglino, Maria Angélica
2012-10-01
In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C-shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well-developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Piña, A. Aragón; Villaseñor, G. Torres; Jacinto, P. Santiago; Fernández, M. Monroy
In the city of San Luis Potosi exists an important metallurgical plant and is known that in the adjacent urban zone, there is a high concentration of lead in the air, it is also supposed that most of the particles with lead have an anthropogenic origin because these particles show morphological characteristics and chemical composition very different in comparison with common lead minerals. In this work it was proved that most of the airborne particles with lead present in this urban zone, effectively came from the copper smelter. The airborne particles with lead were compared with particles with lead obtained starting from samples of slag and lead calcine of the copper smelter. To perform the comparative study, these particles were studied with energy dispersive X-ray microanalysis (EDS) in conjunction with scanning electron microscope to obtain chemical composition and associated morphological characteristics. Results suggest that these particles, composed of only one phase, are chemically distinct from any crustal lead mineral. Because of the complexity of the chemical composition of these particles (Pb, S, Cu, As, Fe, Zn, Cd, Sb, O), some of the airborne particles were analyzed by transmission microscopy in order to associate crystalline structure with any particular chemical phase.
Effect of honey on bacterial translocation and intestinal morphology in obstructive jaundice
Gencay, Cem; Kilicoglu, Sibel Serin; Kismet, Kemal; Kilicoglu, Bulent; Erel, Serap; Muratoglu, Sabahattin; Sunay, Asli Elif; Erdemli, Esra; Akkus, Mehmet Ali
2008-01-01
AIM: To evaluate the effects of honey on bacterial translocation and intestinal villus histopathology in experimental obstructive jaundice. METHODS: Thirty Wistar-Albino rats were randomly divided into three groups each including 10 animals: group I, sham-operated; group II, ligation and section of the common bile duct (BDL); group III, bile duct ligation followed by oral supplementation of honey (BDL + honey) 10 g/kg per day. Liver, blood, spleen, mesenteric lymph nodes, and ileal samples were taken for microbiological, light and transmission electrone microscopic examination. RESULTS: Although the number of villi per centimeter and the height of the mucosa were higher in sham group, there was no statistically significant difference between sham and BDL + honey groups (P > 0.05). On the other hand, there was a statistically significant difference between BDL group and other groups (P < 0.05). The electron microscopic changes were also different between these groups. Sham and honey groups had similar incidence of bacterial translocation (P > 0.05). BDL group had significantly higher rates of bacterial translocation as compared with sham and honey groups. Bacterial translocation was predominantly detected in mesenteric lymph nodes. CONCLUSION: Supplementation of honey in presence of obstructive jaundice ameliorates bacterial translocation and improves ileal morphology. PMID:18528939
Morphological classification of bioaerosols from composting using scanning electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.
2014-07-15
Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less
Structure and optical properties of TiO2 thin films deposited by ALD method
NASA Astrophysics Data System (ADS)
Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz
2017-12-01
This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.
Improvement of acoustical characteristics : wideband bamboo based polymer composite
NASA Astrophysics Data System (ADS)
Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.
2017-07-01
Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.
NASA Astrophysics Data System (ADS)
Srinivasa Reddy, M.; Basha, Shaik; Adimurthy, S.; Ramachandraiah, G.
2006-07-01
This study aimed to assess the accumulation of small plastic debris in the intertidal sediments of the world's largest ship-breaking yard at Alang-Sosiya, India. Small plastics fragments were collected by flotation and separated according to their basic polymer type under a microscope, and subsequently identified by FT-IR spectroscopy as polyurethane, nylon, polystyrene, polyester and glass wool. The morphology of these materials was also studied using a scanning electron microscope. Overall, there were on average 81 mg of small plastics fragments per kg of sediment. The described plastic fragments are believed to have resulted directly from the ship-breaking activities at the site.
Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav
2018-05-18
Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.
Konovalov, P V; Mitrofanova, L B; Gorshkov, A N; Ovsyannikov, F A
2015-01-01
to reveal the morphological features of the lower uterine segment myometrium in connective tissue dysplasia (CTD) in women with uterine inertia. Histological, immunohistochemical (with antibodies against collagen types I and III, matrix metalloproteinases 1 and 9 (MMR-1, MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), fibronectin; fibulin-5, connexin-43), electron microscopic, and electron immunocytochemical studies with morphometry of myometrial fragments from 15 parturient women with CTD and uterine inertia (a study group) and those from 10 women without CTD (a control group). The myometrium in CTD exhibited the decreased expression of connextin-43, fibulin-5, TIMP-1, collagens types I and III with collagen type III predominance and the unchanged levels of fibronectin and MMP-1 and MMP-9. Electron microscopy and immunocytochemistry showed fewer intercellular contacts and the dramatically lower expression of connexin-43 than in the control. A set of found myometrial changes in women with uterine inertia is a manifestation of CTD.
New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.
da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares
2016-08-01
A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, R., E-mail: ruziana12@gmail.com; NANO-SciTech Centre, Institue of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor; Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Razak Jengka, Pahang
In this work, Zinc Oxide (ZnO) with different aluminum (Al) doping percentage was synthesis by sol gel immersion method. Al doped ZnO at various doping percentage from 1, 2, 3, 4 and 5. It was found that with different Al percentage influence the morphological and optical properties of ZnO growth. Field Emission Scanning Electron Microscope (FESEM) image showed the use of different Al doping causes the difference in geometry and size of ZnO nanorods growth. Based on UV-Vis spectroscopy, the transmittance at 1% Al doping has the highest spectrum.
Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia
2015-04-24
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.
NASA Technical Reports Server (NTRS)
Malachowski, M. J.; Tobias, C. A.; Leith, J. T.
1977-01-01
A model system using Necturus maculosus, the common mudpuppy, was established for evaluating effects of radiation upon the light-sensing elements of the retina. Accelerated heavy ions of helium and neon from the Berkeley Bevalac were used. A number of criteria were chosen to characterize radiation damage by observing morphological changes with the scanning electron microscope. The studies indicated retina sensitivity to high-LET (neon) particles at radiation levels below 10 rads (7 particles per visual element) whereas no significant effects were seen from fast helium ions below 50 rads.
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F
1992-01-01
Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.
Alché, J D; Fernández, M C; Rodríguez-García, M I
1994-02-01
We used light and electron microscopic techniques to study the composition of cytoplasmic nucleoloids during meiotic division in Olea europaea. Nucleoloids were found in two clearly distinguishable morphological varieties: one similar in morphology to the nucleolus, and composed mainly of dense fibrillar component, and another surrounded by many ribosome-like particles. Cytochemical and immunocytochemical techniques showed similar reactivities in nucleoloids and the nucleolus: both are ribonucleoproteic in nature, and possess argyrophillic, argentaffinic and highly phosphorylated proteins. Immunohistochemical techniques failed to detect DNA in either structure. In situ hybridization to a 18 S rRNA probe demonstrated the presence of ribosomal transcripts in both the nucleolus and nucleoloids. These similarities in morphology and composition may reflect similar functionalities.
Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my
2015-07-22
The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated.more » It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.« less
Electron coherent diffraction tomography of a nanocrystal
NASA Astrophysics Data System (ADS)
Dronyak, Roman; Liang, Keng S.; Tsai, Jin-Sheng; Stetsko, Yuri P.; Lee, Ting-Kuo; Chen, Fu-Rong
2010-05-01
Coherent diffractive imaging (CDI) with electron or x-ray sources is a promising technique for investigating the structure of nanoparticles down to the atomic scale. In electron CDI, a two-dimensional reconstruction is demonstrated using highly coherent illumination from a field-emission gun as a source of electrons. In a three-dimensional (3D) electron CDI, we experimentally determine the morphology of a single MgO nanocrystal using the Bragg diffraction geometry. An iterative algorithm is applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8°. The results reveal a 3D image of the sample at ˜8 nm resolution, and agree with a simulation. Our work demonstrates an alternative approach to obtain the 3D structure of nanocrystals with an electron microscope.
NASA Astrophysics Data System (ADS)
Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.
2018-03-01
Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.
Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays
NASA Astrophysics Data System (ADS)
He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing
2018-02-01
ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.
Photovoltaic characteristics of natural light harvesting dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Hafez, H. S.; Shenouda, S. S.; Fadel, M.
2018-03-01
In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO2 nanoparticles with an average particle size (10-40 nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100 mW.cm- 2. The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R = 15.6-23.8 mA.W- 1 and η = 0.13-0.25) at AM = 1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology.
ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application
NASA Astrophysics Data System (ADS)
Ashok, CH.; Venkateswara Rao, K.
2014-12-01
The nanocomposite rods shows well known properties compared with nano structured materials for various applications like light-emitting diodes, electron field emitters, solar cells, optoelectronics, sensors, transparent conductors and fabrication of nano devices. Present paper investigates the properties of ZnO/TiO2 nanocomposite rods. The bi component of ZnO/TiO2 nanocomposite rods was synthesized by microwave-assisted method which is very simple, rapid and uniform in heating. The frequency of microwaves 2.45 GHz was used and temperature maintained 180 °C. Zinc acetate and titanium isopropoxide precursors were used in the preparation. The obtained ZnO/TiO2 nanocomposite rods were annealed at 500 °C and 600 °C. ZnO/TiO2 nanocomposite rods have been characterized by X-ray Diffraction (XRD) for average crystallite size and phase of the composite material, Particle Size Analyser (PSA) for average particle size, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) for morphology study, Energy Dispersive X-ray Spectrometry (EDX) for elemental analysis, and Thermal Gravimetric and Differential Thermal Analysis (TG-DTA) for thermal property.
Sivasankaran, T G; Udayakumar, R; Elanchezhiyan, C; Sabhanayakam, Selvi
2008-02-01
The effects of sildenafil citrate with ethanol on the rat testis was studied using scanning electron microscopy. Male Albino rats were divided into 8 groups, each being treated for a maximum of 45 days as follows. In the 4 short-term treatment groups, control rats were administered normal saline orally, whereas experimental animals were fed sildenafil citrate (Viagra) 1 microg/g with 18% ethanol (5 g/kg body weight), which was given orally as a single dose. After 1, 2.5, 4 and 24h the rats were killed. In the 4 long-term treatment groups, daily continuous doses of drug and ethanol with a single dosage were given for 15, 30 and 45 days and the animals killed 4h after the last dosage. Changes in the testis were compared with the normal healthy rat testis. The use of a scanning electron microscope for evaluation of the changes in the testis is more suitable for observation of the surface and morphological shapes of the tissue structures.
[Cytocompatibility of nanophase hydroxyapatite ceramics].
Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong
2004-12-01
To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.
NASA Astrophysics Data System (ADS)
Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan
2016-07-01
Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J.P., E-mail: chengjp@zju.edu.cn; Chen, X.; Ma, R.
Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. The first step involves the synthesis of flower-like Co(OH){sub 2} microspheres by a solution route at low temperatures. The second step includes the calcination of the as-prepared Co(OH){sub 2} microspheres at 200 deg. C for 1 h, causing their decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology. The samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffractormeter and Fourier transform infrared spectroscope. Some experimental factors including solution temperature and surfactantmore » on the morphologies of the final products have been investigated. The magnetic properties of Co{sub 3}O{sub 4} microspheres were also investigated. - Graphical Abstract: Flower-like Co{sub 3}O{sub 4} microspheres are composed of self-assembled nanoplates and these nanoplates appear to be closely packed in the microspheres. These nanoplates consist of a large number of nanocrystallites less than 5 nm in size with a porous structure, in which the connection between nanocrystallites is random. Research Highlights: {yields} Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. {yields} Layered Co(OH){sub 2} microspheres were prepared with an appropriate approach under low temperatures for 1 h reaction. {yields} Calcination caused Co(OH){sub 2} decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology.« less
Wu, Yueting; Deng, Wentao; Klinke, David J.
2016-01-01
As a type of secreted membrane vesicle, exosomes are an emerging mode of cell-to-cell communication. Yet as exosome samples are commonly contaminated with other extracellular vesicles, the biological roles of exosomes in regulating immunity and promoting oncogenesis remain controversial. Wondering whether existing methods could distort our view of exosome biology, we compared two direct methods for imaging extracellular vesicles and quantified the impact of different production and storage conditions on the quality of exosome samples. Scanning electron microscope (SEM) was compared to transmission electron microscope (TEM) as alternatives to examine the morphology of exosomes. Using SEM, we were able to distinguish exosomes from other contaminating extracellular vesicles based on the size distribution. More importantly, freezing of samples prior to SEM imaging made it more difficult to distinguish exosomes from extracellular vesicles secreted during cell death. In addition to morphology, the quality of RNA contained within the exosomes was characterized under different storage conditions, where freezing of samples also degraded RNA. Finally, we developed a new flow cytometry approach to assay transmembrane proteins on exosomes. While high-copy-number proteins could be readily detected, detecting low-copy-number proteins was improved using a lipophilic tracer that clustered exosomes. To illustrate this, we observed that exosomes derived from SKBR3 cells, a cell model for human HER2+ breast cancer, contained both HER1 and HER2 but at different levels of abundance. Collectively, these new methods will help to ensure a consistent framework to identify specific roles that exosomes play in regulating cell-to-cell communication. PMID:26332016
Veress, B; Löfberg, R; Bergman, L
1995-01-01
The colorectal biopsy specimens from 30 patients with chronic watery diarrhoea but normal endoscopic and radiographic findings were studied by light microscopy, morphometry, immunohistochemistry, and two patients with electron microscopy. The histological changes in the colorectum were originally diagnosed in six patients as lymphocytic colitis and in 24 patients as collagenous colitis. The analysis of the specimens for this study could delineate three distinct groups of microscopic colitis: lymphocytic colitis (six patients), collagenous colitis without lymphocytic attack on the surface epithelium (seven patients), and a mixed form presenting with both thickening of the collagen plate and increased number of intraepithelial lymphocytes (17 patients). No transformation was seen from one type to another during follow up of six patients for four to seven years. Increased numbers of active pericryptal myofibroblasts were found with the electron microscope in one patient with mixed microscopic colitis showing also myofibroblasts entrapped within the collagen layer. Hitherto undescribed flat mucosa of the ileum was found in one patient with lymphocytic colitis and both flat mucosa and thickening of the collagen plate in the ileum were seen in one patient with the mixed form of the disease. In another patient with mixed microscopic colitis, normalisation of the colorectal morphology occurred after temporary loop ileostomy, followed by the reappearance of both diarrhoea, inflammation, and thickening of the collagen plate after the ileostomy was reversed. No association was found between non-steroid anti-inflammatory drug (NSAID) consumption and collagenous or mixed microscopic colitis. The primary cause of microscopic colitis is probably an immunological reaction to luminal antigen/s, perhaps of ileal origin. The engagement of the pericryptal myofibroblasts in the disease process might result in the development of the various forms of microscopic colitis. An inverse relation between intraepithelial lymphocyte count and collagen thickness may indicate that microscopic colitis is a spectral disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7615277
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Hakimi, S. Anisa; Maideen, Haja; Latiff, A.
Pollen morphology of five genera of the family Acanthaceae, namely Ruellia, Blepharis, Asystasia, Ecbolium and Dicliptera (Acanthaceae) of Yemen has been examined using light and scanning electron microscope. Pollen descriptions were provided with two shapes distinguished, spheroidal and prolate. Most of the pollen grains were tricolporate amd psuedocolpi except those of Blepharis which are colpate. The surface is coarsely reticulate, in addition to the lumina that varies in size.
An assessment of athrombogenic properties of electret polyethylene film.
Lowkis, B; Szymonowicz, M
1998-01-01
This paper shows the results of an investigation into the effect of an electric charge on blood platelet adhesion. All of the experiments were made on a polyethylene film. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed microscopically. It was found out that an electric charge plays a major role in the process of adhesion of blood morphological elements.
Salakij, Chaleow; Salakij, Jarernsak; Apibal, Suntaree; Narkkong, Nual-Anong; Chanhome, Lawan; Rochanapat, Nirachara
2002-01-01
King cobras (Ophiophagus hannah) have been captive-bred at Queen Saovabha Memorial Institute since 1996 to supply venom for antivenom production. Hematologic tests would be useful for evaluating the health of the snakes, however, basic hematologic data and morphology have not been described for this species. The purpose of this study was to determine basic hematologic values and evaluate light microscopic, cytochemical, and electron microscopic characteristics of king cobra blood cells. Blood samples from 13 wild-caught and 15 captive-bred king cobras were collected into EDTA from the ventral caudal vein. A CBC was done using standard methods. Significant differences between groups were determined using t-tests. Cytochemical stains (periodic acid-Schiff [PAS], Sudan black B [SBB], alpha-naphthyl acetate esterase [ANAE], acid phosphatase [AcP], and beta-glucuronidase [beta-glu]), and scanning and transmission electron microscopy were done using standard techniques. Eighteen snakes (64.3%) were positive for Hepatozoon infection. Hepatozoon organisms were detected nearly twice as frequently in wild-caught (11/13) as in captive-bred (7/15) snakes. Total WBC, azurophil, and lymphocyte counts were higher and fibrinogen concentration was lower in Hepatozoon-positive snakes. Captive-bred snakes had higher RBC values, lower azurophil, heterophil, and punctate reticulocyte percentages, and higher lymphocyte numbers compared with wild-caught snakes. Lymphocytes were the most commonly observed WBCs, and stained positive with PAS, ANAE, AcP, and beta-glu. Azurophil granules stained positive with SBB, PAS, and ANAE. Heterophils were the largest WBCs; their granules stained with SBB, ANAE, and beta-glu. Basophil granules stained with PAS, SBB, ANAE, and beta-glu. Thrombocytes were strongly positive with PAS. Transmission electron microscopic examination revealed organelles within all WBCs except eosinophils and revealed the gamonts of Hepatozoon sp in RBCs and azurophils. These results provide comparative hematologic data and a guide for identification of blood cells in wild-caught and captive-bred king cobra snakes. Hepatozoon infection was relatively common, but was not associated with severe hematologic abnormalities.
Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho
2012-12-21
Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.
Waller, D.L.; Holland Bartels, L. E.; Mitchell, L.G.
1988-01-01
Glochidia of the endangered unionid mussel Lampsilis higginsi (Lea) are morphologically similar to those of several other species in the upper Mississippi River. Life history details, such as the timing of reproduction and identity of host fish, can be readily studied if the glochidia of L. higginsi can be distinguished from those of related species. Authors used light and scanning electron microscopy and statistical analyses of three shell measurements, shell length, shell height, and hinge length, to compare the glochidia of L. higginsi with those of L. radiata siliquoidea (Barnes), L. ventricosa (Barnes), and Ligumia recta (Lamarck). Glochidia of L. higginsi were differentiated by scanning electron microscopy on the basis of a combined examination of the position of the hinge ligament and the width of dorsal ridges, but were indistinguishable by light microscope examination or by statistical analyses of measurements.
Differentiation between Prototheca and morphologically similar green algae in tissue.
Chandler, F W; Kaplan, W; Callaway, C S
1978-07-01
Evidence that algae are pathogens was provided by the results of electron microscopic studies of tissues from five cattle and sheep suspected of having green algal infections. Chloroplasts were demonstrated in the algae in each case. Prototheca organisms, considered by some to be achloric mutants of green algae, are causative agents of disease in man and animals and may appear morphologically similar to green algae in tissue. However, electron microscopy showed that chloroplasts were absent in these organisms. Light microscopy revealed not only similarities in size, shape, and mode of reproduction, but also a striking difference between the Prototheca organisms and green algae. Unlike Prototheca, the green algae contained abundant cytoplasmic starch granules that were strongly positive by several staining procedures; these granules, which were PAS-negative following diastase digestion, provide a means of differentiating green algae from Prototheca cells in tissue.
NASA Astrophysics Data System (ADS)
Dorin, Thomas; Deschamps, Alexis; De Geuser, Frédéric; Weyland, Matthew
In the Al-Cu-Li system, the main strengthening precipitate is the T1 phase (Al2CuLi). In order to understand the strengthening related to the formation of this phase, we first present an investigation of the morphology of the T1 phase in an AA2198 alloy using Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) in relation with the evolution of micro-hardness. In parallel, we present an investigation of the interaction between T1 precipitates and dislocations using High Angle Annular Dark Field (HAADF) imaging in an atomic resolution Scanning Transmission Electron Microscope (STEM). The atomic scale imaging of precipitates makes it possible to quantify the density of shearing events, which turns out to be insufficient to account for the imposed plastic strain. We discuss the implications of this result in terms of precipitate-dislocation interactions.
Gaylord, William H.; Melnick, Joseph L.
1953-01-01
The intracellular development of three pox viruses has been studied with the electron microscope using thin sections of infected tissue. Cells infected with vaccinia, ectromelia, and molluscum contagiosum viruses all form developmental bodies preliminary to the production of mature virus. Developmental bodies, believed to be virus precursors, are round to oval, slightly larger than mature virus particles, less dense to electrons, and have a more varied morphology. It is suggested as a working hypothesis that the process of maturation of a virus particle takes place as follows. In the earliest form the developmental bodies appear as hollow spheres, imbedded in a very dense cytoplasmic mass constituting an inclusion body, or in a less dense matrix near the nucleus in cells without typical inclusion bodies. The spheres become filled with a homogeneous material of low electron density. A small, dense granule appears in each developmental body and grows in size at the expense of the low density material. Following growth of the granule, particles are found with the dimensions of mature virus and having complex internal structure resembling bars or dumbells. Mature virus is ovoid and very dense to electrons. An "empty" interior may be found within its thick walls. PMID:13069658
He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C
2014-01-01
Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.
Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus
2016-06-01
The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.
Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation
NASA Astrophysics Data System (ADS)
Bagmut, Aleksandr
2018-06-01
An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.
Correlative SEM SERS for quantitative analysis of dimer nanoparticles.
Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C
2016-11-14
A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.
Felsemburgh, F A; Carvalho-e-Silva, S P; de Brito-Gitirana, L
2007-01-01
The morphological characteristics of the leptodactylid integument of Proceratophrys and Odontophrynus genera were investigated by means of stereoscopic, low vacuum scanning electron and light microscopy. The integument surface of Proceratophrys boiei, Proceratophrys laticeps and Proceratophrys appendiculata exhibited several projections, while the integument of Odontophrynus americanus had rounded elevations with smooth profile. Light microscopic observations showed the basic integument morphology for all anurans, i.e., an epidermis and a dermis, which is subdivided into a spongious layer and a compact layer. The epidermis is formed by basal, intermediary and cornified layers. However, in Proceratophrys genus the cornified layer had an irregular outline, while in O. americanus the external surface was smooth. In the spongious dermis, mucous and venom exocrine glands were observed, but in O. americanus an exclusive glandular type with apocrine secretory pattern was identified. The integument morphology showed peculiar characteristics that may be helpful for genus distinction. Thus, morphological methods may be considered as an efficient means to characterize and to differentiate anuran genera.
NASA Astrophysics Data System (ADS)
Dalili, N.; Clark, M. P.; Davari, E.; Ivey, D. G.
2016-10-01
Manganese oxide has been investigated extensively as an electrochemical capacitor or supercapacitor electrode material. Manganese oxide is inexpensive to fabricate and exhibits relatively high capacitance values, i.e., in excess of 200 F g-1 in many cases; the actual value depends very much on the fabrication method and test conditions. The cycling behavior of Mn oxide, fabricated using anodic electrodeposition, is investigated using slice and view techniques, via a dual scanning electron microscope (SEM) and focused ion beam (FIB) instrument to generate three-dimensional (3D) images, coupled with electrochemical characterization. The initial as-fabricated electrode has a rod-like appearance, with a fine-scale, sheet-like morphology within the rods. The rod-like structure remains after cycling, but there are significant morphological changes. These include partial dissolution of Mn oxide followed by redeposition of Mn oxide in regions close to the substrate. The redeposited material has a finer morphology than the original as-fabricated Mn oxide. The Mn oxide coverage is also better near the substrate. These effects result in an increase in the specific capacitance.
NASA Technical Reports Server (NTRS)
Cloud, P.; Moorman, M.; Pierce, D.
1975-01-01
Electron microscopical studies of a morphologically diverse, coccoid, presumably late Proterozoic blue-green alga are here reported. They show, together with light microscopy, that the form studied is widespread in the Cordilleran geosyncline, extend the record of well-defined endosporangia perhaps 700 million years into the past, and reveal previously unrecorded ultrastructural details. Coming from northeastern Utah, southwestern Alberta, and east central Alaska, these minute fossils belong to the recently described, morphologically diverse taxon Sphaerocongregus variabilis Moorman, are related to living entophysalidaceans, and have affinities with both the chroococcalean and chamaesiphonalean cyanophytes. Included in the morphological modes displayed by this alga are individual unicells, coenobial clusters of unicells, and a range of endosporangia comparable to those described for living entophysalidaceans. Scanning and transmission electron microscopy reveal that the endospores are commonly embedded in a vesicular matrix, that some of them show what appears to be a bilaminate or perhaps locally multilaminate wall structure, and that some remain together to mature as coenobial clones or 'colonies'. Taxonomic classification and phylogeny are discussed.
Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.
2012-01-01
A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.
[Effect of nutritional stress on autophagy in free-living amoeba].
Wang, Nan-Ning; Tan, Yu-Zhen; Wang, Hai-Jie
2010-12-30
To investigate the change of autophagy and morphological characteristics of the autophagic structures in free-living amoeba under nutritional stress. Free-living amoebae were incubated on the agaric solid medium which had been covered with Escherichia cdi in control group. In the experiment group, amoebae incubated on the agaric solid medium with E. coli were collected and moved to another solid medium without E. coli and incubated for 12 h. The morphological changes of free-living amoeba in the medium without E. coli were viewed with scanning electron microscope. The changes of autophagy and the structural features of the autophagosome precursors, autophagosomes and autophagolysosomes in amoeba were examined with transmission electron microscope, and the cross-section areas of the autophagic structures and cytoplasm were measured with an image analyzer. The autophagosomes in the organism were labeled with monodansylcadaverine (MDC) staining and quantitated using laser scanning confocal microscope. In the control group, free-living amoebae were all in the form of trophozoite. In the experiment group, trophozoites were induced to transform to cysts gradually. In control group, amoeba was full of fragment of E. coli. There was merely little autophagy with fewer autophagic structures in amoeba. When compared with the control group, the autophagic abilities of amoeba were enhanced significantly, number of autophagic structures increased in the experiment group. In addition, the ratio of the cross-sectional areas of the autophagic structures to that of the cytoplasm of amoeba was greater (P < 0.05 or 0.01). There was fragment of E. coli that was not digested in some of the amoebae. In the circumstance of nutritional stress, amoebic trophozoites were induced to transform to cysts gradually. The autophagic ability of free-living amoeba significantly enhanced.
Mirrorlike pulsed laser deposited tungsten thin film.
Mostako, A T T; Rao, C V S; Khare, Alika
2011-01-01
Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.
Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia
2015-01-01
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip
2018-03-01
Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.
[Artificial blood. Experimental studies on fluorocarbons as chemical blood substitutes].
Motta, G; Grunert, A; Herrmann, M; Ratto, G B; Spinelli, E; Lunghi, C; Tomellini, M; Bisio, E; Hirlinger, W K; Mayer, M
1983-01-14
Fluorocarbonates are organic compounds capable of carrying oxygen and surrendering it to tissues by means of biological sound modalities. Experimentation of an emulsion consisting of perfluorotripropylamine and perfluorodecaline (Fluosol DA 20%) as a blood substitute is reported. Acute (Ht less than 1%) and chronic morphological (Ht = 15%) studies were performed on rats, and a semi-acute biochemical and morphological protocol (Ht = 21%) was experimented in pigs. The first signs of altered cerebral electrical activity occurred at Ht = 2% in the acute experiments, and death due to respiratory arrest took pace at Ht = 0.5%. In the semiacute and chronic experiments, widespread infiltration of fluorocarbonic micelles was noted on histological and electron microscope lung and liver preparations.
Variation in functional ascospore parts in the ascomycetous yeast Dipodascopsis uninucleata.
Bareetseng, A S; Kock, J L F; Pohl, C H; Pretorius, E E; Van Wyk, P W J
2004-04-01
A variation in functional ascospore morphology was detected using electron microscopy (EM) in two varieties of the yeast Dipodascopsis uninucleata, i.e., D. uninucleata var. uninucleata and D. uninucleata var. wickerhamii. It was found that the latter produces ascospores characterized by the absence of small surface hooks which have been implicated in the release and re-assembly of ascospores in D. uninucleata var. uninucleata. These varieties are closely related on the basis of their mode of sexual reproduction, ascospore morphology as observed under the light microscope, physiological characteristics as well as the extent of divergence in the variable D1/D2 domain of the large subunit 26S ribosomal DNA.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
Surface Modification Technique of Cathode Materials for
NASA Astrophysics Data System (ADS)
Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan
Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.
Effect of phase transformation on optical and dielectric properties of zirconium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Chintaparty, Rajababu; Palagiri, Bhavani; Reddy Nagireddy, Ramamanohar; subbha Reddy Imma Reddy, Venkata
2015-09-01
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV-Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6-4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.
Influence of graphene quantum dots on electrical properties of polymer composites
NASA Astrophysics Data System (ADS)
Arthisree, D.; Joshi, Girish M.
2017-07-01
We successfully prepared synthetic nanocomposite (SNC) by dispersing graphene quantum dots (GQD) in cellulose acetate (CA) polymer system. The dispersion and occupied network of GQD were foreseen by microscopic techniques. The variation of plane to crossed linked array network was observed by the polarizing optical microscopic (POM) technique. The scanning electron microscopy (SEM) revealed the leaves like impressions of GQD in host polymer system. The series network of GQD occupied in CA at higher resolution was confirmed by transmission electron microscopy (TEM). The two dimensional (2D) topographic images demonstrated an entangled polymer network to plane morphology. The variation in surface roughness was evaluated from the dimensional (3D) topography. The influence of temperature on AC conductivity with highest value (4 × 10-5 S cm-1), contributes to the decrease in activation energy. The DC conductivity obeys the percolation criteria co-related to the GQD loading by weight fraction. Furthermore, this synthetic nanocomposite is feasible for the development of sensing and electrical applications.
Barrier properties of nano silicon carbide designed chitosan nanocomposites.
Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K
2015-12-10
Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandi, P.; Gopinathan, C.
2018-04-01
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C-700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C-700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.
Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)
NASA Astrophysics Data System (ADS)
Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang
1994-09-01
Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.
A new approach to preparing Bi2Zr2O7 photocatalysts for dye degradation
NASA Astrophysics Data System (ADS)
Luo, Yijia; Cao, Liyun; Huang, Jianfeng; Feng, Liangliang; Yao, Chunyan
2018-01-01
A new synthetic route is presented to prepared pure Bi2Zr2O7 material, in which a NaNO3/KNO3 molten salt is used to obtain the resulting Bi2Zr2O7 at a relatively low temperature of 400 °C under atmospheric pressure. Powder x-ray diffraction confirmed the structure type and purity of the as-prepared sample, and further revealed that a single-source Bi(OH)3 · Zr(OH)4 · nH2O complex precursor plays a crucial role to synthesize Bi2Zr2O7 nanocrystals. Scanning electron microscope and transmission electron microscope show the morphologies and sizes of Bi2Zr2O7 crystal in detail, and UV-vis diffuse reflectance measurements evidenced the wide light absorption range. Furthermore, the as-synthesized Bi2Zr2O7 with smaller particle size and larger specific surface area exhibit superior photocatalytic activities compared with the sample obtained without adding molten salts.
NASA Astrophysics Data System (ADS)
Dhanalakshmi, J.; Pathinettam Padiyan, D.
2017-09-01
TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.
A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers.
Rong, Qian; Zhang, Yumin; Wang, Chao; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju
2017-09-21
Ag-LaFeO 3 molecularly imprinted polymers (ALMIPs) were fabricated, which provided special recognition sites to methanol. Then ALMIPs fiber 1, fiber 2 and fiber 3 were prepared using filter paper, silk and carbon fibers template, respectively. Based on the observation of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Nitrogen adsorption surface area analyzer (BET), the structure, morphology and surface area of the fibers were characterized. The ALMIPs fibers (fiber 1, fiber 2 and fiber 3) show excellent selectivity and good response to methanol. The responses to 5 ppm methanol and the optimal operating temperature of ALMIPs fibers are 23.5 and 175 °C (fiber 1), 19.67 and 125 °C (fiber 2), 17.59 and 125 °C (fiber 3), and a lower response (≤10, 3, 2) to other test gases including formaldehyde, acetone, ethanol, ammonia, gasoline and benzene was measured, respectively.
NASA Astrophysics Data System (ADS)
Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen
2010-11-01
To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista
2015-01-01
To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.
Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan
2014-01-01
In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236
AN ELECTRON MICROSCOPE STUDY OF NERVES INFECTED WITH HUMAN POLIOMYELITIS VIRUS
De Robertis, E.; Schmitt, F. O
1949-01-01
Sciatic nerves of rhesus monkeys infected with CAM and Wis. '45 strains of human poliomyelitis virus were fixed in formalin, sectioned, fragmented, and examined in the electron microscope. Most of the neurotubules of nerves infected with the CAM strain have normal appearance but a very small number show the presence of dense particles irregularly aligned within the edges of the neurotubules. The diameters of the particles range between 160 and 500 Å, the mean being 330 Å. The particles were found in regions along the nerve which varied with the time after infection, indicating a central movement of the morphological alteration of the order of 2 mm. per hour. Relatively abundant dense particulate material was found in nerves infected with Wis. '45 strain virus and the particles were chiefly attached to the edges of the neurotubules and in the adjacent areas of the field. The dense particles appear to be associated with the virus infection but no further characterization is possible at this time. PMID:18140661
Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes
NASA Astrophysics Data System (ADS)
Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.
2017-11-01
An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.
[Morphology, biology and life-cycle of Plasmodium parasites].
Hommel, Marcel
2007-10-01
Laveran first discovered that an infectious agent was responsible for malaria by using a simple microscope, without the assistance of specific stains. Our knowledge of the Plasmodium life cycle and cellular biology has progressed with each technological advance, from Romanovsky staining and histology to electron microscopy, immunocytochemistry, molecular methods and modern imaging techniques. The use of bird, primate and rodent models also made a major contribution, notably in the development of antimalarial drugs that are still in use today.
Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel
NASA Astrophysics Data System (ADS)
Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng
2018-06-01
The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.
Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng
2015-05-01
Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.
2017-01-01
A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.
Xiao, Lu-wei; Shen, Jin-wen; Wu, Cheng-liang
2006-07-01
To study the effect of Jingui Shenqi Pill (JSP) on morphology of spinal cell apoptosis in rats injured by 192Ir irradiation. One hundred and twenty rats were randomly divided into four groups: the model group, the JSP group, the prednisone group and the normal group. Corresponding pharmaceutics were given to rats once a day for 14 days respectively. Then except rats in the normal group, the others received 192Ir interstitial irradiation with the dosage of 22 Gy using back-fixing technology. The injured segments of spinal cord were taken out for HE staining, TUNEL examination and observation with electron microscope 8 hrs, 24 hrs and 4 weeks after irradiation. HE staining examination showed no obvious histological change in rats 8 and 24 hrs after irradiation, but pathological changes, as tissue rarefaction and hemorrhage did found in white matter of spinal cord shown by TUNEL 4 weeks later. Electron microscopic examination and TUNEL staining showed that as compared with the model group, the apoptotic index in the JSP and predinisone treated groups was significantly lower (P < 0.01) 8 hrs after radiation, but it showed insignificant difference between groups at the time points of 24 hrs and 4 weeks after radiation (P > 0.05). JSP could act against apoptosis of gliocyte in spinal cord of rats in early stage after brachytherapy, indicating that JSP possessing a prednisone-like action.
NASA Astrophysics Data System (ADS)
Jiang, X. H.; Ma, S. Y.; Sun, A. M.; Zhang, Z. M.; Jin, W. X.; Wang, T. T.; Li, W. Q.; Xu, X. L.; Luo, J.; Cheng, L.; Mao, Y. Z.; Zhang, M.
2015-11-01
Different morphologies of tin dioxide (SnO2) architectures were prepared by increasing reaction time (12, 18, 24 and 48 h) under a facile hydrothermal process and followed by calcination. The crystal structures and morphologies of the hierarchical architecture were characterized in detail by means of powder X-ray diffraction (XRD), energy dispersive X-ray detector (EDX), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the porous flower-like SnO2 architecture was obtained by 24 h hydrotherm treatment. Most importantly, the sensors based on porous flower-like SnO2 architecture exhibited perfect sensing performance toward ethanol with excellent selectivity, high response and fast response-recovery capability compared with other SnO2 nanoflowers for the same ethanol concentration at 300 °C. The response value was about 208 and the response-recovery time was around 8 and 7 s for 500 ppm ethanol, respectively. The enhancement in gas sensing properties was attributed to the unique structures, including the flower-like structure and porous feature, which provided more gas active center and diffusion pathways. The results indicated that porous flower-like SnO2 architecture was a potential candidate for fabricating effective ethanol sensor. Furthermore, the possible growth mechanism and the ethanol sensing mechanism of the architecture were discussed, too.
Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xuexuan
2016-09-15
High quality AA6101 aluminum cables are critical to electrical industry to meet the energy consumption requests. In the present work, the influence of Mg/Si ratios on the electrical conductivity and mechanical properties of AA6101 aluminum alloy was investigated. Wheatstone Bridge method and tensile test were employed to characterize the mechanical properties. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were used to understand the morphology of the precipitation and the mechanism of age hardening. It is found that excessive Si benefits high strength and high conductivity while excessive Mg plays a negative role in the strengthmore » and the conductivity of AA6101 cables. Excessive Si elements promote both the precipitating rate and quantity of β″ phase therefore increase the tensile strength. Excessive Si elements also help with decreasing the lattice distortion, which contributes to the enhancement of the conductivity. Excessive Mg elements lead to more dissolved Mg after aging treatment, therefore increase lattice distortion of the matrix and promote the deposit of coarse Mg-enriched secondary phase. - Highlights: •A new available method to improve the mechanical and electrical properties of Al-Mg-Si alloy •Investigation on the role of various Mg/Si ratios in the changes of comprehensive performances •Discussions on the morphology of the precipitation phases and the mechanism of hardening.« less
Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.
Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana
2010-10-01
The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.
Particle Morphology From Wood-Burning Cook Stoves Emissions
NASA Astrophysics Data System (ADS)
Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.
2013-12-01
Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.
Screen printed silver top electrode for efficient inverted organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min
2015-10-15
Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less
Microscopic origins of charge transport in triphenylene systems
NASA Astrophysics Data System (ADS)
Thompson, Ian R.; Coe, Mary K.; Walker, Alison B.; Ricci, Matteo; Roscioni, Otello M.; Zannoni, Claudio
2018-06-01
We study the effects of molecular ordering on charge transport at the mesoscale level in a layer of ≈9000 hexa-octyl-thio-triphenylene discotic mesogens with dimensions of ≈20 ×20 ×60 nm3 . Ordered (columnar) and disordered isotropic morphologies are obtained from a combination of atomistic and coarse-grained molecular-dynamics simulations. Electronic structure codes are used to find charge hopping rates at the microscopic level. Energetic disorder is included through the Thole model. Kinetic Monte Carlo simulations then predict charge mobilities. We reproduce the large increase in mobility in going from an isotropic to a columnar morphology. To understand how these mobilities depend on the morphology and hopping rates, we employ graph theory to analyze charge trajectories by representing the film as a charge-transport network. This approach allows us to identify spatial correlations of molecule pairs with high transfer rates. These pairs must be linked to ensure good transport characteristics or may otherwise act as traps. Our analysis is straightforward to implement and will be a useful tool in linking materials to device performance, for example, to investigate the influence of local inhomogeneities in the current density. Our mobility-field curves show an increasing mobility with field, as would be expected for an organic semiconductor.
NASA Astrophysics Data System (ADS)
Alizadeh, A.; Parsafar, S.; Khodaei, M. M.
2017-03-01
A biocompatible method for synthesizing of highly disperses gold nanoparticles using Ferulago Angulata leaf extract has been developed. It has been shown that leaf extract acts as reducing and coating agent. Various spectroscopic and electron microscopic techniques were employed for the structural characterization of the prepared nanoparticles. The biosynthesized particles were identified as elemental gold with spherical morphology, narrow size distribution (ranged 9.2-17.5 nm) with high stability. Also, the effect of initial ratio of precursors, temperature and time of reaction on the size and morphology of the nanoparticles was studied in more detail. It was observed that varying these parameters provides an accessible remote control on the size and morphology of nanoparticles. The uniqueness of this procedure lies in its cleanliness using no extra surfactant, reducing agent or any capping agent.
NASA Astrophysics Data System (ADS)
Porojan, Sorin; Bîrdeanu, Mihaela; Savencu, Cristina; Porojan, Liliana
2017-08-01
The integration of digitalized processing technologies in traditional dental restorations manufacturing is an emerging application. The objective of this study was to identify the different structural and morphological characteristics of Co-Cr dental alloys processed by alternative manufacturing techniques in order to understand the influence of microstructure on restorations properties and their clinical behavior. Metallic specimens made of Co-Cr dental alloys were prepared using traditional casting (CST), and computerized milling (MIL), selective laser sintering (SLS) and selective laser melting (SLM). The structural information of the samples was obtained by X-ray diffraction, the morphology and the topography of the samples were investigated by Scanning Electron Microscopy and Atomic Force Microscope. Given that the microstructure was significantly different, further differences in the clinical behavior of prosthetic restorations manufactured using additive techniques are anticipated.
NASA Astrophysics Data System (ADS)
Preetha, K. C.
2017-06-01
Incorporation of Chromium ions into Lead Sulphide thin films have been achieved by CBD technique. Effects of doping were investigated as a function of Pb/Cr ratio from o to 2 at %. X-ray diffraction patterns showed that films were polycrystalline in nature with increase in crystallite size up to an optimum doping concentration. Scanning electron microscopic study revealed excellent morphology with doping concentration. The low transmittance in the UV-VIS region offered the suitability of the samples as solar control coatings. The thin films were found to be P type and electrical conductivity enhanced on doping.
NASA Astrophysics Data System (ADS)
Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, M. M.; Singh, D.; Gangrade, M.; Venkatesh, R.; Deshpande, U. P.; Phase, D. M.; Ganesan, V.
2018-04-01
Structural, morphological and spectroscopic properties of Bi2Se3 nanoparticles synthesized by microwave assisted solvothermal method were investigated systematically. A controlled synthesis of different morphologies by a small variation in synthesis procedure is demonstrated. Powder X-ray diffraction (XRD) confirmed the formation of single phase. Crystallite and particle size reductions were studied with XRD and AFM (Atomic Force Microscopy). Different morphologies such as hexagonal nanoflakes with cross section of around˜6µm, nanoflower and octahedral agglomerated crystals of nearly ˜60 nm size have been observed in scanning electron microscope while varying the microwave assisted synthesis procedures. A significant blue shift observed in diffuse reflectance spectroscopy evidences the energy gap tuning as a result of morphological evolution. The difference in morphology observed in this three fast, facile and scalable synthesis is advantageous for tuning the thermoelectric figure of merit and for probing the surface states of these topological insulators. Low temperature resistivity remains similar for all three variants depicting a 2D character as evidenced by a -lnT term of localization.
Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal
NASA Astrophysics Data System (ADS)
Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun
2018-02-01
This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.
Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application
NASA Astrophysics Data System (ADS)
Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming
2017-11-01
Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.
Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam
NASA Astrophysics Data System (ADS)
Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun
2017-10-01
In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.
Liu, Xiaoling; Grant, David M; Parsons, Andrew J; Harper, Lee T; Rudd, Chris D; Ahmed, Ifty
2013-01-01
Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg(2+) in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.
Liu, Xiaoling; Grant, David M.; Parsons, Andrew J.; Harper, Lee T.; Rudd, Chris D.; Ahmed, Ifty
2013-01-01
Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness. PMID:24066297
Taxonomy and pollen morphology of Ankyropetalum Fenzl (Caryophyllaceae) species in Türkiye.
Muca, Belkis; Ozçelik, Hasan
2014-04-01
There are 4 species belong to Ankyropetalum Fenzl (Caryophyllaceae) genus and three of them (A. reuteri Boiss. and Hausskn, A. arsusianum Kotschy ex Boiss. and A. gypsophiloides Fenzl) are distributed in Turkey. There are doubts about taxonomical studies depending on only morphological characteristics. This study has been made to put forth that palinological studies also contribute taxonomical studies. Pollen morphology of the three species belong to Ankyropetalum Fenzl (Caryophyllaceae) genus distributed in Turkey examined with ray microscope and electron microscope in this study. Results evaluated according to Duncan's multiple range test using SPSS statistic program. Pollen's polar and ecvatoral seeming photographs were taken in preparates. Morphology of pollens examined with 50 repetition for each taxon and morphological assessments were made. The common trait of pollens can be summarized as they are circular, oblate and prolate spheroidal, periporate (pore numbers ranged between 20-33), operculum is granulated, annulus is distinct, the form of pollens are tectat. Definition of pollens are given for each taxon, diagnostic specifications recognized as important are used for making diagnosis key. The difference between species are as below: A. arsusianum's pollen shape is oblate-spheroidal, type of pollen is periporate, pore numbers are between 23-33, form of pollen is tectat, ornamentation is perforate. A. reuteri's pollen shape is prolate-spheroidal, type of pollen is periporate, pore numbers are between 20-33, form of pollen is tectat, ornamentation is from perforate to eureticulate A. gypsophiloides pollen shape is oblate-spheroidal, type of pollen is periporate, pore numbers are between 21-30, form of pollen is tectat, ornamentation is perforate.
Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods.
Ziegler, Andreas; Fabritius, Helge; Hagedorn, Monica
2005-01-01
Terrestrial isopods (Crustacea) are excellent model organisms to study epithelial calcium-transport and the regulation of biomineralization processes. They molt frequently and resorb cuticular CaCO(3) before the molt to prevent excessive loss of Ca(2+) ions when the old cuticle is shed. The resorbed mineral is stored in CaCO(3) deposits within the ecdysial gap of the first four anterior sternites. After the molt, the deposits are quickly resorbed to mineralise the posterior part of the new cuticle. The deposits contain numerous small spherules composed of an organic matrix and amorphous CaCO(3), which has a high solubility and, therefore, facilitates quick mobilization of Ca(2+) and HCO(3)(-) ions. During the formation and resorption of the deposits large amounts of Ca(2+), HCO(3)(-) and H(+) are transported across the anterior sternal epithelial cells. Within the last years, various light and electron microscopical techniques have been used to characterize the CaCO(3) deposits and the cellular mechanisms involved in biomineralization. The work on the CaCO(3) deposits includes studies on the ultrastructure of the deposits, the sequence of events during deposit formation and dissolution, and the mineral composition of the sternal deposits. The differentiation of the anterior sternal epithelial cells and the mechanisms of epithelial ion transport required for the mineralization and demineralisation of the deposits was studied using various analytical light and electron microscopical techniques including polarized light microscopy, immunocytochemistry, electron microprobe analysis, electron energy loss spectroscopy and electron spectroscopic imaging. Comparative analysis of deposit morphology and the differentiation of the sternal epithelia provide information on the evolution of CaCO(3) deposit formation in relation to the degree of adaptation to terrestrial environments.
Zhang, Guihang; Jiang, Xiaosong; Qiao, ChangJun; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao; Valcarcel, Victor
2018-06-11
Single-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques. The phase compositions, microstructures, and fracture morphologies of the composites were investigated using X-ray diffraction, a scanning electron microscope equipped with an X-ray energy-dispersive spectrometer (EDS), an electron probe microscopic analysis equipped with wavelength-dispersive spectrometer, and a transmission electron microscope equipped with EDS. The mechanical properties have been measured by a micro-hardness tester and electronic universal testing machine. The results show that the reinforcements were unevenly distributed in the matrix with the increase of their content and there were some micro-cracks located at the interface between the reinforcement and the matrix. With the increase of the Al₂O₃ whisker content, the compressive strength of the composites first increased and then decreased, while the hardness decreased. The fracture and strengthening mechanisms of the composite materials were explored on the basis of the structure and composition of the composites through the formation and function of the interface. The main strengthening mechanism in the composites was fine grain strengthening and solid solution strengthening. The fracture type of the composites was brittle fracture.
Electron microscopy of hydrocarbon production in parthenium argentatum (guayule)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Thomas E.
1977-11-01
The electron microscope was used to study the biological processes involved in hydrocarbon production. The little desert shrub Guayule (Parthenium argentatum) was selected for study. This shrub can produce hydrocarbons (rubber) in concentrations up to 1/4 of its dry weight. It grows on semi-arid land and has been extensively studied. The potential of Guayule is described in detail. Results of an investigation into the morphology of Guayule at the electron microscope level are given. Experiments, which would allow the biosynthesis of hydrocarbon in Guayule to be followed, were designed. In order to do this, knowledge of the biochemistry of rubbermore » formation was used to select a tracer, mevalonic acid. Mevalonic acid is the precursor of all the terpenoids, a large class of hydrocarbons which includes rubber. It was found that when high enough concentrations of mevalonic acid are administered to seedling Guayule plants, build-ups of metabolized products are found within the chloroplasts of the seedlings. Also, tritium labeled mevalonic acid was used as a precursor, and its metabolic progress was followed by using the technique of electron microscope autoradiography. The results of these experiments also implicated chloroplasts of the Guayule plant in hydrocarbon production. The final task was the development of a system to produce three-dimensional stereo reconstructions of organelles suspected of involvement in hydrocarbon biosynthesis in Guayule. The techniques are designed to reconstruct an object from serial sections of that object. The techniques use stereo imaging both to abstract information for computer processing, and also in the computer produced reconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn; Department of Chemistry, University of Science and Technology of China, Heifei, Anhui 230026; Du, Jin
Microspheres assembled from carbon nanotubes (MCNTs), with the diameters ranging from 5.5 to 7.5 {mu}m, were synthesized by means of pyrolysis of polypropylene and maleated polypropylene in an autoclave. The characterization of structure and morphology was carried out by X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), (high resolution) transmission electron microscope [(HR)TEM)], selected-area electron diffraction (SAED) and Raman spectrum. As a typical morphology, the possible growth process of MCNTs was also investigated and discussed. The results of nitrogen adsorption-desorption indicate that the Brunauer-Emett-Teller (BET) surface area (140.6 m{sup 2}/g) of the MCNTs obtained at 600 {sup o}C is aboutmore » twice as that (74.5 m{sup 2}/g) of carbon nanotubes obtained at 700 {sup o}C. The results of catalytic experiment show that MCNTs based catalyst has higher catalytic activity than the carbon nanotubes based catalyst for the preparation of methanol and dimethoxy-ethane by oxidation of dimethyl ether.« less
CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range
NASA Astrophysics Data System (ADS)
Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua
2012-01-01
Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.
Synthesis of Novel Sea-Urchin-Like CdS and Their Optical Properties.
Kamran, Muhammad Arshad; Liu, Ruibin; Shi, Li-Jie; Bukhtiar, Arfan; Li, Jing; Zou, Bingsuo
2015-06-01
A novel morphology of CdS sea-urchin-like microstructures is synthesized by simple thermal evaporation process. Microstructures with average size of 20-50 μm are composed of single crystalline CdS nanobelts. The structural, compositional, morphological characterization of the product were examined by X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy, scanning electron microscope, transmission electron microscopy and selected area electron diffraction while optical properties are investigated by Photoluminescence spectroscopy and time-resolved Photoluminescence measurements. The tentative growth mechanism for the growth of sea-urchin-like CdS is proposed and described briefly. A strong green emission with a maximum around 517 nm was observed from the individual CdS microstructure at room temperature, which was attributed to band-edge emission of CdS. These Novel structures exhibit excellent lasing (stimulated emission) with low threshold (9.07 μJ cm(-2)) at room temperature. We analyze the physical mechanism of stimulated emission. These results are important in the design of green luminescence, low-threshold laser and display devices in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Zhang, Yanwen; Ou, Xin
Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less
Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...
2016-12-13
Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less
Science 101: How Does an Electron Microscope Work?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…
Rubino, Corrado; Mazzarello, Vittorio; Faenza, Mario; Montella, Andrea; Santanelli, Fabio; Farace, Francesco
2015-06-01
The aim of this study was to evaluate the effects on adipocyte morphology of 2 techniques of fat harvesting and of fat purification in lipofilling, considering that the number of viable healthy adipocytes is important in fat survival in recipient areas of lipofilling. Fat harvesting was performed in 10 female patients from flanks, on one side with a 2-mm Coleman cannula and on the other side with a 3-mm Mercedes cannula. Thirty milliliter of fat tissue from each side was collected and divided into three 10 mL syringes: A, B, and C. The fat inside syringe A was left untreated, the fat in syringe B underwent simple sedimentation, and the fat inside syringe C underwent centrifugation at 3000 rpm for 3 minutes. Each fat graft specimen was processed for examination under low-vacuum scanning electron microscope. Diameter (μ) and number of adipocytes per square millimeter and number of altered adipocytes per square millimeter were evaluated. Untreated specimens harvested with the 2 different techniques were first compared, then sedimented versus centrifuged specimens harvested with the same technique were compared. Statistical analysis was performed using Wilcoxon signed rank test. The number of adipocytes per square millimeter was statistically higher in specimens harvested with the 3-mm Mercedes cannula (P = 0.0310). The number of altered cells was statistically higher in centrifuged specimens than in sedimented ones using both methods of fat harvesting (P = 0.0080) with a 2-mm Coleman cannula and (P = 0.0050) with a 3-mm Mercedes cannula. Alterations in adipocyte morphology consisted in wrinkling of the membrane, opening of pore with leakage of oily material, reduction of cellular diameter, and total collapse of the cellular membrane. Fat harvesting by a 3-mm cannula results in a higher number of adipocytes and centrifugation of the harvested fat results in a higher number of morphologic altered cells than sedimentation.
da Silva Filho, Manoel; Santos, Daniel Valle Vasconcelos; Costa, Kauê Machado
2013-01-01
Analyzing cell morphology is crucial in the fields of cell biology and neuroscience. One of the main methods for evaluating cell morphology is by using intracellular fluorescent markers, including various commercially available dyes and genetically encoded fluorescent proteins. These markers can be used as free radical sources in photooxidation reactions, which in the presence of diaminobenzidine (DAB) forms an opaque and electron-dense precipitate that remains localized within the cellular and organelle membranes. This method confers many methodological advantages for the investigator, including absence of photo-bleaching, high visual contrast and the possibility of correlating optical imaging with electron microscopy. However, current photooxidation techniques require the continuous use of fluorescent or confocal microscopes, which wastes valuable mercury lamp lifetime and limits the conversion process to a few cells at a time. We developed a low cost optical apparatus for performing photooxidation reactions and propose a new procedure that solves these methodological restrictions. Our “photooxidizer” consists of a high power light emitting diode (LED) associated with a custom aluminum and acrylic case and a microchip-controlled current source. We demonstrate the efficacy of our method by converting intracellular DiI in samples of developing rat neocortex and post-mortem human retina. DiI crystals were inserted in the tissue and allowed to diffuse for 20 days. The samples were then processed with the new photooxidation technique and analyzed under optical microscopy. The results show that our protocols can unveil the fine morphology of neurons in detail. Cellular structures such as axons, dendrites and spine-like appendages were well defined. In addition to its low cost, simplicity and reliability, our method precludes the use of microscope lamps for photooxidation and allows the processing of many labeled cells simultaneously in relatively large tissue samples with high efficacy. PMID:23441199
NASA Astrophysics Data System (ADS)
Anderson, L. M.; Halary, S.; Lechaire, J.; Frébourg, G.; Boudier, T.; Zbinden, M.; Laval, J.; Marco, S.; Gaill, F.
2007-12-01
The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid--Atlantic Ridge (MAR). Epibiotic bacteria and minerals found within the branchial chamber (BC) of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close, three-- dimensional (3D) relationship between bacteria (on the inner surface of the BC wall) and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Energy filtering Transmission Electron Microscopy (EFTEM, on a LEO--912 microscope) and X-ray Nano-analysis (EDXN, on a JEOL--2010 FEG microscope) respectively, and the 3D organization was determined by Transmission Electron Tomography (TET) and EFTET. Consecutive thin and semi--thin sections of 50--80nm (for EFTEM and EDXN) and 200--250nm (for TEM and EFTET) were cut through the BC cuticle and mounted on standard microscope grids. Sections were observed initially for morphology, to find broad relationships between bacteria and minerals. EFTET series acquisition was performed under cryo-conditions (-175°C) using a LEO-912 microscope. At each position of interest four tilt series were taken at two degree increments between -55° and +55° at various energy--losses: 1) zero--loss (ref); 2) 720 eV, 3) 690 eV and 4) 670 eV, to reconstruct the 3D location of iron. Tilted series were obtained using the ESIvision program (Soft--Imaging Software, Münster, Germany) with additional in--house scripts for automated acquisition. The 3D EFTET reconstruction volume was produced from the four tilted series using recently developed EFTET--J software (http://www.snv.jussieu.fr/~wboudier/softs.html). In many cases the observed minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane/cell wall and mineral boundary. Mineral layering and zoning are also present. Our findings highlight the potential importance of iron as an energy source for Rimicaris exoculata epibionts at Rainbow, from their close association. The results from this study are contributing to the formulation of a chemical model for the Rainbow hydrothermal vent site (MAR).
PVP capped CdS nanoparticles for UV-LED applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu
Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.
Structural and morphological study of ZrO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder
2018-05-01
In this paper we discuss the fabrication of transparent thin films of Zirconium Oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Further these fabricated films were characterized for different annealing temperatures and withdrawal speed. X-ray diffraction is used to study the structural properties of deposited thin films and it reveals the change in crystallographic properties with the change in annealing temperature. Thickness of thin films is estimated by using scanning electron microscope.
Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress
Mohamed, Eman H. F. A.; Abd Elzaher, E. H. F.
2007-01-01
Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However,the mycelial dry weight,total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall,plasmolysis,and vacuolation as indicated with electron microscopic examination of the fungal growth. PMID:24015082
Scanning electron microscope study of Apollo 15 green glass
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Clanton, U. S.; Ladle, G.
1973-01-01
Apollo 15 green glass droplets and related forms show a variety of low velocity impact features which occurred at the time of formation of the droplets. Composite forms, which consist of a crystallized core on which mounds of glass adhere, indicate a sequence of core formation and crystallization, followed by impact of molten droplets. The complicated and time dependent texture and morphology of the green glass forms are best explained by formation in a volcanic lava fountain rather than by meteorite impact.
Apoptosis: a basic pathological reaction of injured neonatal muscle.
Fidziańska, A; Kamińska, A
1991-01-01
A light and electron microscopic study of immature muscle cell degeneration induced by bupivacaine (BPVC) was performed. The pattern of muscle cell death is related to muscle maturity; in newborn rats, cell death has the morphology of apoptosis, whereas in the older animals muscle cell death resembles cell necrosis and the ultrastructural feature of these changes are essentially the same as those described in adult muscle. The ability to undergo apoptosis in response to a pathological stimulus is a common effector mechanism of immature muscle.
NASA Technical Reports Server (NTRS)
Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.
1985-01-01
Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.
Modes of Thermal Protection in Polar Bear Cubs - at Birth and upon Emergence from the Den,
1978-01-01
Morphological characteristics potentially relevant to temperature regulation were visually examined. Fat and skeletal muscle (m. psoas and m. latissimus dorsi ... latissimus dorsi ) were excised and processed for electron microscopical examination as described for the newborn cubs. In order to investigate the...circles o 0 ). The weight of the cub as 12.5 kg. 21 Fig. 6 Two micrographs of the latissimus dorsi muscle of a polar bear A and B. cub aged approximately
Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald
2015-01-01
Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471
Pan, Yang; Hou, Zhaohui; Yi, Wei; Zhu, Wei; Zeng, Fanyan; Liu, You-Nian
2015-08-15
Hierarchical hybrid films of MnO2 nanoparticles/multi-walled fullerene nanotubes-graphene (MNPs/MWFNTs-GS) have been prepared via a simple wet-chemical method. For this purpose, MWFNTs (~300nm in length) are fabricated from tailoring multi-walled carbon nanotubes (MWCNTs), and then inserted into GS to pile up into a hierarchical hybrid film with the in situ formative MNPs. Scanning electron microscope, transmission electron microscope and X-ray diffraction are used to confirm the morphology and structure of the as-obtained film. The electrochemical studies reveal that MNPs/MWFNTs-GS exhibit significantly enhanced electrocatalytic activity compared with MNPs/GS, and show a rapid response to H2O2 over a wide linear range of 2.0μM-8.44mM with a high sensitivity of 206.3μA mM(-1)cm(-2) and an excellent selectivity. These favorable electrochemical detection properties may be mainly attributed to the introduction of MWFNTs, which helps to promote the electron/ion transport between MNPs and GS and form the hierarchical film structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Photovoltaic characteristics of natural light harvesting dye sensitized solar cells.
Hafez, H S; Shenouda, S S; Fadel, M
2018-03-05
In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO 2 nanoparticles with an average particle size (10-40nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO 2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100mW.cm -2 . The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R=15.6-23.8mA.W -1 and η=0.13-0.25) at AM=1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka
2017-05-01
For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.
Micro-CT based modelling for characterising injection-moulded porous titanium implants.
Chen, Junning; Chen, Liangjian; Chang, Che-Cheng; Zhang, Zhongpu; Li, Wei; Swain, Michael V; Li, Qing
2017-01-01
Design of prosthetic implants to ensure rapid and stable osseointegration remains a significant challenge, and continuous efforts have been directed to new implant materials, structures and morphology. This paper aims to develop and characterise a porous titanium dental implant fabricated by metallic powder injection-moulding. The surface morphology of the specimens was first examined with a scanning electron microscope (SEM), followed by microscopic computerised tomography (μ-CT) scanning to capture its 3D microscopic features non-destructively. The nature of porosity and pore sizes were determined statistically. A homogenisation technique based on the Hills-energy theorem was adopted to evaluate its directional elastic moduli, and the conservation of mass theorem was employed to quantify the oxygen diffusivity for bio-transportation feature. This porous medium was found to have pore sizes varying from 50 to 400 µm and the average porosity of 46.90 ± 1.83%. The anisotropic principal elastic moduli were found fairly close to the upper range of cortical bone, and the directional diffusivities could potentially enable radial osseous tissue ingrowth and vascularisation. This porous titanium successfully reduces the elastic modulus mismatch between implant and bone for dental and orthopaedic applications, and provides improved capacity for transporting oxygen, nutrient and waste for pre-vascular network formation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cao, Mingjing; Li, Jiayang; Tang, Jinglong; Chen, Chunying; Zhao, Yuliang
2016-10-01
Establishment of analytical methods of engineered nanomaterials in consumer products for their human and environmental risk assessment becomes urgent for both academic and industrial needs. Owing to the difficulties and challenges around nanomaterials in complex media, proper chemical separation and biological assays of nanomaterials from nanoproducts needs to be firstly developed. Herein, a facile and rapid method to separate and analyze gold nanomaterials in cosmetics is reported. Gold nanomaterials are successfully separated from different facial or eye creams and their physiochemical properties are analyzed by quantitative and qualitative state-of-the art techniques with high sensitivity or high spatial resolution. In turn, a protocol including quantification of gold by inductively coupled plasma mass spectrometry and thorough characterization of morphology, size distribution, and surface property by electron microscopes, atomic force microscope, and X-ray photoelectron spectroscope is developed. Subsequently, the preliminary toxicity assessment indicates that gold nanomaterials in cosmetic creams have no observable toxicity to human keratinocytes even after 24 h exposure up to a concentration of 200 μg mL -1 . The environmental scanning electron microscope reveals that gold nanomaterials are mostly attached on the cell membrane. Thus, the present study provides a full analysis protocol for toxicity assessment of gold nanomaterials in consumer products (cosmetic creams). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong
2008-11-01
To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.
Colloidal Synthesis and Thermoelectric Properties of CuFeSe2 Nanocrystals
Zhang, Bing-Qian; Zuo, Yong; Chen, Jing-Shuai; Niu, He-Lin; Mao, Chang-Jie
2017-01-01
Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly elements, are excellent materials for numerous energy conversion applications, such as photocatalysis, photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily studied after ligand removal by means of hydrazine and hexane solution. The TE performances of the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated to show a promising TE materialand makes it a possible p-type candidate for medium-temperature TE applications. PMID:29278381
Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy
NASA Astrophysics Data System (ADS)
Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning
2018-06-01
GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.
Zerbinati, Nicola; D'Este, Edoardo; Parodi, Pier Camillo; Calligaro, Alberto
2017-07-01
This study uses light and electron microscopes to gain a better knowledge of the interactions of calcium hydroxylapatite filler with the connective tissue of the skin and the modifications of the human deep dermis, after 2 months of treatment. Some morphological evidences of this observational study of filler treated tissue support-specific mechanism involved in the structural modifications of both filler microspherules and cells of the connective tissue. They demonstrate the absence of any immunological reaction and show that the used filler is modified very slowly over time by the action of cells of the connective tissue closely related to the filler without any activity of phagocytosis. Furthermore, associated with the modifications of the filler, evidences of stimulatory effects on dermal fibroblasts are reported.
Simulation and Characterization of a Miniaturized Scanning Electron Microscope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.
2011-01-01
A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.
Li, Guangjian; Huang, Yunchao; Liu, Yongjun; Guo, Lv; Zhou, Yongchun; Yang, Kun; Chen, Ying; Zhao, Guangqiang; Lei, Yujie
2012-10-01
China's Xuan Wei County in Yunnan Province have the world's highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring), control group (silica; industrial produced and crystalline silica) was detected by assay used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the reactive oxygen species (ROS), lactate dehydrogenase (LDH) were determined after 24 h-72 h exposed to these particles. ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace; ②Naturally occurring silica nanoparticles have irregular morphology, surface area, and containing complex trace elements may has greater toxicity than the silica nanoparticle of industrial produced and crystalline silica.
Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong
2017-05-01
Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.
Hussain, Amara Noor; Zafar, Muhammad; Ahmad, Mushtaq; Khan, Raees; Yaseen, Ghulam; Khan, Muhammad Saleem; Nazir, Abdul; Khan, Amir Muhammad; Shaheen, Shabnum
2018-05-01
Palynological features as well as comparative foliar epidermal using light and scanning electron microscope (SEM) of 17 species (10genera) of Amaranthaceae have been studied for its taxonomic significance. Different foliar and palynological micro-morphological characters were examined to explain their value in resolving the difficulty in identification. All species were amphistomatic but stomata on abaxial surface were more abundant. Taxonomically significant epidermal character including stomata type, trichomes (unicellular, multicellular, and capitate) and epidermal cells shapes (polygonal and irregular) were also observed. Pollens of this family are Polypantoporate, pores large, spheroidal, mesoporous region is sparsely to scabrate, densely psilate, and spinulose. All these characters can be active at species level for identification purpose. This study indicates that at different taxonomic levels, LM and SEM pollen and epidermal morphology is explanatory and significant to identify species and genera. © 2018 Wiley Periodicals, Inc.
Ivanov, V P
2007-01-01
Sensory organs on the antennae of the horseflies Hybomitra bimaculata Macq. and Tabanus bovinus Loew are represented by the same morphological types of sensilla. Never differences in the topographical distribution of the sensilla on antennae have been also found, which can be explained by the similarity of ecological and behavioural adaptations of these insects. First and second antennal segments are found to be supplied with tactile hairs and proprioceptors. Other antennal segments bear sensory organs of several morphological types. Short thin olfactory hairs are most numerous among them. They are present on all segments of the antennal flagellum and belong to two morphological types different by the hair length. In the upper parts of the antennal segments from third to seventh several sensilla trichoidea are present, which probably serve as tactile and taste receptors.
Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits.
Chu, Wenjing; Gao, Haiyan; Cao, Shifeng; Fang, Xiangjun; Chen, Hangjun; Xiao, Shangyue
2017-03-15
The chemical composition and morphology of cuticular wax in mature fruit of nine blueberry cultivars were investigated using gas chromatography-mass spectrometry (GC-MS) and scanning electron microscope (SEM). Triterpenoids and β-diketones were the most prominent compounds, accounting for on average 64.2% and 16.4% of the total wax, respectively. Ursolic or oleanolic acid was identified as the most abundant triterpenoids differing in cultivars. Two β-diketones, hentriacontan-10,12-dione and tritriacontan-12,14-dione, were detected in cuticular wax of blueberry fruits for the first time. Notably, hentriacontan-10,12-dione and tritriacontan-12,14-dione were only detected in highbush (V. corymbosum) and rabbiteye (V. ashei) blueberries, respectively. The results of SEM showed that a large amount of tubular wax deposited on the surface of blueberry fruits. There was no apparent difference in wax morphology among the nine cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deposition of dual-layer coating on Ti6Al4V
NASA Astrophysics Data System (ADS)
Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.
2017-03-01
Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.
NASA Astrophysics Data System (ADS)
Dasan, Y. K.; Bhat, A. H.; Faiz, A.
2015-07-01
This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.
NASA Astrophysics Data System (ADS)
Faris, N. A.; Noriman, N. Z.; Haron, Adli; Sam, S. T.; Hamzah, R.; Shayfull, Z.; Ghazali, M. F.
2017-09-01
The potential of Cyperus Odoratus (CY) as a filler was studied. The CY, in a powder form, was mixed with Linear Low Density Polyethylene (LLDPE), prior to being fed into a twin screw extruder and subsequently into an injection moulding machine to produce LLDPY/CY biocomposites. The Scanning Electron Microscope (SEM) was utilized and tensile tests were performed on the test specimens to characterize the structure and properties of the composites. The integration of CY powder and LLDPE resulted in an increment of the modulus of elasticity, but a reduction in tensile strength and elongation at break. The morphology characterization of these composites, determined through the SEM, showed poor interfacial adhesion between the filler and the thermoplastic LLDPE matrix.
Utility of fluorescence microscopy in embryonic/fetal topographical analysis.
Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M
1995-06-01
For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.
Morphology studies of hydrophobic silica on filter surface prepared via spray technique
NASA Astrophysics Data System (ADS)
Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran
2017-08-01
This study investigated the effect of the hydrophobic surface treatment effect of air filter performance by using silica aerogel powder as an additive by using spray coating techniques. The membrane characterization tests were carried out on a filter prepared from different additive concentration. Studies on the cross-section and the distribution of particles on the membrane were carried out using a scanning electron microscope (SEM), and the surface morphology was investigated by x-ray spectroscopy (EDS). The results are shown by SEM and EDS that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder.
Advance in quality assessment of Chinese materia medica using microscopic and morphological methods.
Miao, Xiao-Su; Cui, Qing-Yu; Wang, Zhao-Yi; Liu, Xiao-Na; Zhao, An-Bang; Qiao, Yan-Jiang; Wu, Zhi-Sheng
2017-09-01
Quality evaluation plays a vital role in ensuring safety and effectiveness of Chinese materia medica (CMM). Microscopic and morphological technologies can be used to distinguish CMM's characteristics, such as shape, size, texture, section, and smell, for authenticity and quality control of CMM. The microscopic and morphological applications of novel micro-technology, colorimeter, and texture analyzer for CMM identification are summarized and the future prospect is discussed in this paper. Various styles and complex sources of CMM are systemically reviewed, including cormophyte medicinal materials, fruit and seeds, pollen grain, and spore materials. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials
NASA Astrophysics Data System (ADS)
Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong
2010-08-01
Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.
Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy
NASA Technical Reports Server (NTRS)
Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.
1964-01-01
'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.
Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics
NASA Astrophysics Data System (ADS)
Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.
2018-05-01
In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies
Leaf micro-morphology of Lepisanthes Blume (Sapindaceae) in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ghazalli, Mohd Norfaizal; Talib, Noraini; Mohammad, Abdul Latiff
2018-04-01
A detail comparative study on leaf micro-morphology was conducted on the genus Lepisanthes from Peninsular Malaysia, five chosen species namely as L. amoena (Hassk.) Leenh., L. fruticosa (Roxb.) Leenh., L. rubiginosa (Roxb.) Leenh., L. senegalensis (Juss. ex Poir.) Leenh. and L. tetraphylla (Vahl.) Radlk. The objective of this study is to identify the leaf micro-morphological characteristics that can give significance impact for species identification and classification. Lepisanthes is an important tropical rare fruit genus in Malaysia and it is important to characterize and documenting additional taxonomic evidences that can be useful in Sapindaceae taxonomy information which is still lacked. The methods involved dehydration process, critical point drying, gold coated and observation under scanning electron microscope. Leaf micro-morphology showed significance taxonomic value in the genus Lepisanthes and can be used as additional data for species identification. Diagnostic character was found in L. fruticosa via the presence of four different types of trichomes on the abaxial and adaxial epidermal surfaces. As a conclusion, variation in cuticular striation, stomata structure, type of waxes and trichome morphology can be used in Lepisanthes species identification.
Rosati, Giovanna; Modeo, Letizia; Melai, Michele; Petroni, Giulio; Verni, Franco
2004-01-01
This study represents the first extended report on a species of the ciliate genus Peritromus, widespread in marine biotopes, characterized by a dorso-ventral differentiation peculiar among Heterotrichea. Morphological observations (live, stained, scanning, and transmission electron microscope) were combined with behavioral and molecular data. On the basis of the whole body of observations, the species was recognized as Peritromus kahli. Scanning and transmission electron microscopy have revealed a number of features such as peculiar chalice-like structures external to the dorsal surface, two types of extrusomes, and differences between dorsal and ventral somatic ciliature. The almost complete SSrDNA gene sequence was also determined. A molecular phylogenetic analysis indicated that Peritromus diverged early from other members of the Class Heterotrichea. The dorso-ventral differentiation that certainly influences the behavior of P. kahli (e.g. preference for crawling and thigmotaxis) may have been selected as an adaptation to the constraints of the interstitial habitat.
NASA Astrophysics Data System (ADS)
Pan, Jun; Xi, Baojuan; Li, Jingfa; Yan, Yan; Li, Qianwen; Qian, Yitai
2011-08-01
We report a new morphology of wurzite cadmium sulfide with nanoparticles decorated on rod-bundle structures, which were synthesized via calcinations of an inorganic/organic composite at 400 °C in air. The composite was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The structure, composition, and morphology of the prepared material were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope, FT-IR spectrometry, photoluminescence spectrometry, and UV-visible spectrometry. Results indicated that the composite could be defined as CdS 0.65/Cd-TGA0.35. X-ray diffraction revealed that the annealed product is CdS with wurtizite phase. The diameter of the rod is about 150-400 nm and the length from the top to the bottom of the decorated nanoparticle is about 100 nm. The composite showed high intensity of photoluminescence with similar peak position, compared to that of wurtzite CdS, because of the structure defects.
Özyurt, Nurcan; Candan, Selami; Suludere, Zekiye
2013-01-01
The male reproductive system of Dolycoris baccarum (Linnaeus 1758) is studied morphologically and histologically using both light and scanning electron microscopes (SEM). The reproductive system of the male D. baccarum consists of a pair of testis, a pair of vas deferens, a pair of seminal vesicles, accessory glands (mesadenia, ectadenia), a bulbus ejaculatorius, a pair of ectodermal sacs, and a ductus ejaculatorius. The number of testicular follicles varies from four to six. The testicular follicles have three different development zones (growth zone, maturation zone, differentiation zone). The testes are connected to the seminal vesicles by the vas deferens. Vas deferens and seminal vesicles, which are fine-long and cylindrical. The seminal vesicle is connected with bulbus ejaculatorius which is balloon-shaped and surrounded with accessory glands. The bulbus ejaculatorius is continuous with ductus ejaculatorius which connected to the aedeagus. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan
2017-09-01
The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.
Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan
2017-09-02
The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu (F) /RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu (F) /RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.
NASA Astrophysics Data System (ADS)
Wulandari, A. P.; Septarini, D.; Zainuddin, A.
2017-05-01
Ramie is a natural fiber that is very potential to be developed in Indonesia. Decorticated-fiber which has been known as china grass produce different structures irregular part but shows a long straight section in the middle. This study aims to determine differences in chemical components, morphology and microstructure of two different parties after biodegumming process. China grass has been processed to remove gum using pectinolytic fungus. The microstructure of the treated was further tested by Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The FTIR study indicated that during the biodegumming process, chemical bonding of non-cellulose components most removed by the activity of pectinase from the fungus. XRD analysis reflects an increase in the crystallinity of the fiber after biodegumming. Scanning electron microscopy (SEM) was used to confirm a reduction in the size of the fiber after biodegumming either in the irregular and regular part of the fiber after biodegumming.
Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy
NASA Astrophysics Data System (ADS)
Johnson, Mark
2010-06-01
We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.
NASA Astrophysics Data System (ADS)
Winter, Shoshana; Zenou, Michael; Kotler, Zvi
2016-04-01
We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.
Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles
NASA Astrophysics Data System (ADS)
Arora, Ekta; Ritu, Kumar, Sacheen; Kumar, Dinesh
2016-05-01
Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.
Characterization of laser induced damage of HR coatings with picosecond pulses
NASA Astrophysics Data System (ADS)
Li, Cheng; Zhao, Yuan'an; Cui, Yun; Wang, Yueliang; Peng, Xiaocong; Shan, Chong; Zhu, Meiping; Wang, Jianguo; Shao, Jianda
2017-11-01
The effect of protective layer on the picosecond laser-induced damage behaviors of HfO2/SiO2 high-reflective (HR) coatings are explored. Two kinds of 1064nm HR coatings with and without protective layer are deposited by electron beam evaporation. Laser-induced damage tests are conducted with 1064nm, 30ps S-polarized and P-polarized pulses with different angle of incidence (AOI) to make the electric fields intensity in the HR coatings discrepantly. Damage morphology and cross section of damage sites were characterized by scanning electron microscope (SEM) and focused ion beam (FIB), respectively. It is found that SiO2 protective layer have a certain degree of improvement on laser induced damage threshold (LIDT) for every AOIs. The onset damage initiated very near to the Max peak of e-field, after which forms ripple-like pits. The damage morphology presents as layer delamination at high fluence. The Laser damage resistance is correspond with the maximum E-intensity in the coating stacks.
NASA Astrophysics Data System (ADS)
Yan, Jun-Feng; Zhang, Zhi-Yong; You, Tian-Gui; Zhao, Wu; Yun, Jiang-Ni; Zhang, Fu-Chun
2009-10-01
Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) used as main resources under the different concentrations of surfactant polyacrylamide (PAM). The microstructure, morphology and the electromagnetic properties of the as-prepared products are characterized by high-resolution transmissïon electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM) and microwave vector network analyzer, respectively. The experimental results indicate that the as-prepared products are ZnO single crystalline with hexagona wurtzite structure, that the values of slenderness ratio Ld are different in different PAM concentrations, and that the good magnetic loss property is found in the ZnO products, and the average magnetic loss tangent tan δu increases with PAM concentration increasing, while the dielectric loss tangent tan δe decreases.
Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Ekta; Ritu,; Kumar, Sacheen, E-mail: sacheen3@gmail.com
2016-05-06
Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM),more » UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.« less
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudheerkumar, K. H.; Dhananjaya, N.; Reddy Yadav, L. S.
2016-04-01
Silver nanoparticles (Ag NPs) synthesized from silver nitrate solutions using the esterase-containing latex of the E. Tirucalli plant widely found in a large region in Karnataka, India. Plant-mediated synthesis of nanoparticles is a green chemistry approach that intercom-nects nanotechnology and plant biotechnology. The effect of extract concentration, contact time, and temperature on the reaction rate and the shape of the Ag nanoparticles was investigated. The nanoparticles have been characterized by powder X-ray diffraction, UV-visible spectroscopy, photoluminescence spectroscopy and morphology by scanning electron microscope, transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. Powder X-ray diffraction patterns show that the crystal structure obtained is face-centered cubic (fcc). The morphology of the silver nanoparticle was uniform with well-distributed elliptical particles with a range from 15 to 25nm. Ag NPs exhibit significant antibacterial activity against Bacillus cereus using the agar well diffusion method.
Fabrication and characterization of morphology-tuned single-crystal monodisperse Fe3O4 nanocrystals
NASA Astrophysics Data System (ADS)
Yu, Xuegang; Shan, Yan; Chen, Kezheng
2018-05-01
Monodisperse Fe3O4 nanocrystals with different size and morphology have been successfully fabricated by a facile high temperature reflow method. The presented materials were characterized by X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), selection area electron diffraction (SAED) and magnetic property measurement system (MPMS). The results showed that the as-prepared materials have face-centered cubic structures. Oleic acid plays a key role in the dispersion of Fe3O4 nanocrystals. The cubic and octahedral nanocrystals are enclosed by {1 0 0} and {1 1 1} lattice planes. The MPMS measurements show that magnetic properties are closely related to the sizes of the materials, and there is a stronger dipolar interaction between Fe3O4 nanocrystals with larger sizes. The controllable magnetic property and good dispersion endow the as-synthesized materials with great potential applications in magnetic fluid fields including sealing, medical equipment, mineral processing and other aspects.
An overview of state-of-the-art image restoration in electron microscopy.
Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W
2018-06-08
In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Comparative study of image contrast in scanning electron microscope and helium ion microscope.
O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C
2017-12-01
Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr
We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.
HA/Bioglass composite films deposited by pulsed laser with different substrate temperature
NASA Astrophysics Data System (ADS)
Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.
2014-03-01
In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.
Cryoglobulinemic neuropathy: a pathological study.
Vallat, J M; Desproges-Gotteron, R; Leboutet, M J; Loubet, A; Gualde, N; Treves, R
1980-08-01
A 53-year-old woman developed symmetrical polyneuropathy of the lower limbs a few months after she was found to have myeloma with cryoglobulinemia. In musculocutaneous nerve biopsy material, electron microscopy showed both axonal degeneration and demyelination. The most striking finding was the presence, in the endoneurial space, of numerous masses of closely packed tubular structures. These masses also were found in the walls of all the vasa nervorum and within the lumen of some vessels. The morphological features and dimensions of the deposits within nerve were identical to those of cryoprecipitates extracted from serum and examined with the electron microscope. An example of myeloma neuropathy with cryoglobulin deposits within the endoneurial space has not been reported previously.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-02-01
Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.
3D geometric phase analysis and its application in 3D microscopic morphology measurement
NASA Astrophysics Data System (ADS)
Zhu, Ronghua; Shi, Wenxiong; Cao, Quankun; Liu, Zhanwei; Guo, Baoqiao; Xie, Huimin
2018-04-01
Although three-dimensional (3D) morphology measurement has been widely applied on the macro-scale, there is still a lack of 3D measurement technology on the microscopic scale. In this paper, a microscopic 3D measurement technique based on the 3D-geometric phase analysis (GPA) method is proposed. In this method, with machine vision and phase matching, the traditional GPA method is extended to three dimensions. Using this method, 3D deformation measurement on the micro-scale can be realized using a light microscope. Simulation experiments were conducted in this study, and the results demonstrate that the proposed method has a good anti-noise ability. In addition, the 3D morphology of the necking zone in a tensile specimen was measured, and the results demonstrate that this method is feasible.
Direct-write liquid phase transformations with a scanning transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Direct-write liquid phase transformations with a scanning transmission electron microscope
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...
2016-08-03
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
NASA Astrophysics Data System (ADS)
Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali
2017-12-01
Spatial confinement effects on plasma parameters and surface morphology of laser ablated Zr (Zirconium) are studied by introducing a metallic blocker. Nd:YAG laser at various fluencies ranging from 8 J cm-2 to 32 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6 mm, 8 mm and 10 mm from the target surface. It is revealed from LIBS analysis that both plasma parameters i.e. excitation temperature and electron number density increase with increasing laser fluence due to enhancement in energy deposition. It is also observed that spatial confinement offered by metallic blocker is responsible for the enhancement of both electron temperature and electron number density of Zr plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 12,600 K and 14 × 1017 cm-3 respectively whereas, these values are enhanced to 15,000 K and 21 × 1017 cm-3 in the presence of blocker. The physical mechanisms responsible for the enhancement of Zr plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning Electron Microscope (SEM) analysis was performed to explore the surface morphology of laser ablated Zr. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters for surface structuring.
Harrison, Katharine L.; Zavadil, Kevin R.; Hahn, Nathan T.; ...
2017-11-07
To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. In addition, we conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence ofmore » a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl 0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. In conclusion, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.« less
Harrison, Katharine L; Zavadil, Kevin R; Hahn, Nathan T; Meng, Xiangbo; Elam, Jeffrey W; Leenheer, Andrew; Zhang, Ji-Guang; Jungjohann, Katherine L
2017-11-28
To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl 0.3 S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Katharine L.; Zavadil, Kevin R.; Hahn, Nathan T.
To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. In addition, we conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence ofmore » a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl 0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. In conclusion, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.« less
Characterization of some biological specimens using TEM and SEM
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Smith, Don W.
2009-05-01
The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.
NASA Astrophysics Data System (ADS)
Osuntokun, Jejenija; Ajibade, Peter A.
2016-09-01
Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei
2018-04-01
Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.
Altman, Alison B.; Pemmaraju, C. Das; Alayoglu, Selim; ...
2017-05-04
Oxygen and aluminum K-edge X-ray absorption spectroscopy (XAS), imaging from a scanning transmission X-ray microscope (STXM), and first-principles calculations were used to probe the composition and morphology of bulk aluminum metal, α- and γ-Al 2 O 3 , and several types of aluminum nanoparticles. The imaging results agreed with earlier transmission electron microscopy studies that showed a 2 to 5 nm thick layer of Al 2 O 3 on all the Al surfaces. Spectral interpretations were guided by examination of the calculated transition energies, which agreed well with the spectroscopic measurements. The features we observed in the experimental O andmore » Al K-edge XAS were used to determine the chemical structure and phase of the Al 2 O 3 on the aluminum surfaces. For unprotected 18 and 100 nm Al nanoparticles, this analysis revealed an oxide layer that was similar to γ-Al 2 O 3 and comprised of both tetrahedral and octahedral Al coordination sites. For oleic acid-protected Al nanoparticles, only tetrahedral Al oxide coordination sites were observed. Our results were correlated to trends in the reactivity of the different materials, which suggests that the structures of different Al 2 O 3 layers have an important role in the accessibility of the underlying Al metal toward further oxidation. Combined, the Al K-edge XAS and STXM results provided detailed chemical information that was not obtained from powder X-ray diffraction or imaging from a transmission electron microscope.« less
NASA Astrophysics Data System (ADS)
Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-08-01
Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the casting solution.
Wan, Chao; Hao, Zhixiu; Wen, Shizhu
2013-12-01
Collagen fiber is one of the critical factors in determining mechanical properties of ligaments and both the morphological and histological characteristics of collagen have been widely studied. However, there was still no consensus about whether the morphological characteristics of collagen correlated with its histological characteristics in physiological ligaments. Rabbit medial collateral ligaments (MCLs) were measured under a transmission electron microscope and a polarized light microscope plus picrosirius red-staining to obtain the distributions of collagen fibril diameters and types at different anatomical sites of rabbit MCLs, respectively. The correlation between the fibril diameter and type was determined by a correlation analysis. The collagen fibril diameters at the different anatomical sites had different distributions (unimodal or bimodal) and mean fibril diameters were found to increase significantly from the anterior part to the posterior part (P=0.0482) as well as from the proximal to the distal sections (P=0.0208). Type I collagen in the core portion of MCLs was significantly less than at the other four peripheral areas (P<0.005) but no significant variation was found in each respective portion (P>0.05). The low coefficient in the correlation analysis (r=0.3759) demonstrated collagen fibril diameters had no correlation with collagen types. This may provide a new view of collagen types in studying the mechanical behavior of ligaments. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Xuewei; Xu, Qingyan; Liu, Baicheng
2017-12-01
Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.
Morphological and immunohistochemical features of Cryptosporidium andersoni in cattle.
Masuno, K; Yanai, T; Hirata, A; Yonemaru, K; Sakai, H; Satoh, M; Masegi, T; Nakai, Y
2006-03-01
Light and electron microscopic features and immunohistochemical features of Cryptosporidium andersoni (C. andersoni) and host reaction in the mucosa were studied. Although the affected cattle demonstrated no apparent clinical signs, a severe infection of C. andersoni was observed in the abomasum. C. andersoni were round in shape, measured 6-8 microm in size and were mainly observed to be freely located in the gastric pits, being attached in occasional cases to the surface of the abomasum epithelium. Frequent inflammatory cells had infiltrated the lamina propria of the affected mucosa, and frequent mitotic figures were observed in epithelial cells at the dilated isthmus. To access the cell kinetics, the number of epithelial cells infected with C. andersoni were counted and compared with noninfected cattle. The number of gastric pit cells in infected cattle was significantly higher than that in the controls. The number of proliferative cells determined by the Ki-67 antigen in C. andersoni infected cattle was also significantly higher than that in the controls. Transmission electron microscopy and scanning electron microscopy revealed that the morphology of the C. andersoni organism was common to those of other Cryptosporidium spp. Immunohistochemically, several commercial antibodies against Cryptosporidium spp. showed positive reactions at the wall of these oocysts or parasitophorous vacuoles. This report is possibly the first to discuss the prominent hyperplasia of the abomasum mucosa, as well as morphologic features of C. andersoni in cattle.
Polliack, A; Leizerowitz, R; Berrebi, A; Gamliel, H; Galili, N; Gurfel, D; Catovsky, D
1984-08-01
The surface architecture of leukaemic cells obtained from 21 cases of proven prolymphocytic leukaemia (PLL) and eight cases of chronic lymphocytic leukaemia (CLL) with 'prolymphocytoid' transformation (PL-CLL) was compared with the cell surface morphology of leukaemic cells obtained from 46 cases of B-type CLL, using the scanning electron microscope (SEM). All cases were defined by cytochemistry, immunological markers and transmission electron microscopy prior to SEM examination. B-CLL cells showed the well-recognized spectrum of surface architecture described in earlier studies. The majority of cells had moderate numbers of short microvilli, although in a minority, cells with relatively smooth surfaces predominated. In seven of the eight cases of PL-CLL, cells were villous in nature and in this respect similar to CLL cells; however, more cells with dense microvilli were seen. The prolymphocytic cells were recognized by their larger size and in 18 of the 19 cases of B-derived PLL, villous cells predominated. Two cases of T-derived PLL showed variable cell surface morphology ranging from smooth to moderately villous. It appears that B-PLL cells are most frequently villous and display more surface microvilli than B-CLL cells. B-prolymphocytes display the surface features regarded as characteristic for neoplastic B-cells as seen in patients with B-type lymphoma and leukaemia.
Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst
NASA Astrophysics Data System (ADS)
Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.; Umar, Ahmad; Maaza, M.
2018-02-01
Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.
NASA Astrophysics Data System (ADS)
Tunnicliffe, Verena; Fontaine, A. R.
1987-10-01
Examination of a small collection of macroinvertebrates from three vents of the southern Juan de Fuca vent field reveals differences between the vents with respect to species composition, species habits, and microbial and metallic deposits on their surfaces. TWo apparently new vestimentiferan species were found, and for the first time the Juan de Fuca palm worm was observed to dwell on smokers. High acidity values recorded in this system may interfere with the process of shell calcification in an archaeogastropod snail. The surfaces of vestimentifer an tubes at two vents are heavily encrusted with microbial and metallic accumulations. Scanning electron microscope, transmission electron microscope, and energy dispersive X ray microanalysis observations show that iron-based crusts on orange tubes are built from accumulations of an Fe-rich particle of distinctive size and shape. Morphological evidence is presented for the microbial origin of Fe-rich particles. Zn-rich particles found on black tubes are not of microbial origin. We suggest that iron deposition on surfaces in the vent environment is initially biocatalytic but subsequent deposits may build by simple inorganic reactions.
Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2
NASA Astrophysics Data System (ADS)
Zhang, Min; Sun, Qiong; Zhao, Mei; Li, Yang; Liu, Qiuhong; Dong, Lifeng
2015-08-01
In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.
NASA Astrophysics Data System (ADS)
Bao, Lixia; Yang, Simei; Luo, Xin; Lei, Jingxin; Cao, Qiue; Wang, Jiliang
2015-12-01
The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO3 was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the sbnd OH groups both in the PVC-OH chains and on the surface of pristine CaCO3 particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO3 particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO3 had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO3 particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO3 particles, respectively. The change of specific surface area implying surface modification was investigated as well.
NASA Technical Reports Server (NTRS)
Fraundorf, P.
1981-01-01
An analytical electron microscope study of dispersed interplanetary dust aggregates collected in the earth's stratosphere shows that, in spite of their similarities, the aggregates exhibit significant differences in composition, internal morphology, and mineralogy. Of 11 chondritic particles examined, two consist mostly of a noncrystalline chondritic material with an atomic S/Fe ratio equal to or greater than 2 in places, one consists of submicron metal and reduced silicate 'microchondrules' and sulfide grains embedded in a carbonaceous matrix, and another consists of submicron magnetic-decorated unequilibrated silicate and sulfide grains with thick low-Z coatings. Although the particles are unmetamorphosed by criteria commonly applied for chondritic meteorites, the presence of reduced chemistries and the ubiquity of mafic, instead of hydrated, silicates confirm that they are not simply C1 or C2 chondrite matrix material. The observations indicate that portions of some particles have not been significantly altered by thermal or radiation processes since their assembly, and that the particles probably contain fine debris from diverse processes in the early solar system.
Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.
Song, Bo; Zhou, Ningning; Ju, Dongying
2013-12-01
This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.
Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao
2017-04-01
At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.
Electromigration and morphological changes in Ag nanostructures
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Bai, T.; Edler, F.; Tegenkamp, C.; Weide-Zaage, K.; Pfnür, H.
2018-02-01
Electromigration (EM) as a structuring tool was investigated in Ag nanowires (width 300 nm, thickness 25 nm) and partly in notched and bow-tie Ag structures on a Si(1 0 0) substrate in ultra-high vacuum using a four-tip scanning tunneling microscope in combination with a scanning electron microscope. From simulations of Ag nanowires we got estimates of temperature profiles, current density profiles, EM and thermal migration (TM) mass flux distributions within the nanowire induced by critical current densities of 108 A cm-2. At room temperature, the electron wind force at these current densities by far dominates over thermal diffusion, and is responsible for formation of voids at the cathode and hillocks at the anode side. For current densities that exceed the critical current densities necessary for EM, a new type of wire-like structure formation was found both at room temperature and at 100 K for notched and bow-tie structures. This suggests that the simultaneous action of EM and TM is structure forming, but with a very small influence of TM at low temperature.
Aphale, Ashish; Chattopadhyay, Aheli; Mahakalakar, Kapil; Patra, Prabir
2015-08-01
A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Background Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Methodology/Principal Findings Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. Conclusions/Significance This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp. PMID:26011278
Zhang, Yanmin; He, Langchong; Zhou, Yali
2008-01-01
The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.
NASA Astrophysics Data System (ADS)
Taimur, Shaista; Yasin, Tariq
2017-11-01
Novel polyacrylonitrile (PAN) grafted sepiolite nanocomposites were synthesized via emulsion polymerization. The influence of synthesis parameters on the degree of grafting was studied by varying the concentrations of monomer, initiator and surfactant. The nitrile groups of PAN were chemically modified into amidoxime. Both the grafting and amidoxime percentages were determined gravimetrically and maximum grafting of 373% was achieved at 5% acrylonitrile, 1% surfactant and 0.1% initiator concentrations. The presence of vibration at 2242 cm-1 in Fourier transform infrared (FT-IR) spectrum and x-ray diffraction (XRD) reflection at 2θ = 16.9° (010) confirmed the grafting of PAN chains onto modified sepiolite. XRD patterns also indicated a decrease in crystallinity of sepiolite and appearance of new amorphous region in grafted nanocomposites. The morphological changes of sepiolite during silanization and grafting of PAN is also confirmed by field emission scanning electron microscope (FESEM). Transmission electron microscope (TEM) images clearly showed the shortening of fibers after silanization of sepiolite and the same were involved in heterogeneous nucleation in micelles. These developed amidoxime grafted sepiolite nanocomposites can be used as adsorbent for the metal recovery.
Electronic conductivity studies on oxyhalide glasses containing TMO
NASA Astrophysics Data System (ADS)
Vijayatha, D.; Viswanatha, R.; Sujatha, B.; Narayana Reddy, C.
2016-05-01
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl2 - 60 PbO - (40-x) V2O5 (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl2 containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V2O5 concentration. Analysis of the results is interpreted in view Austin-Mott's small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.
Insight in the 3D morphology of silica-based nanotubes using electron microscopy.
Dennenwaldt, Teresa; Wisnet, Andreas; Sedlmaier, Stefan J; Döblinger, Markus; Schnick, Wolfgang; Scheu, Christina
2016-11-01
Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH 2 ) 3 , thiophosphoryl triamide, SP(NH 2 ) 3 , and silicon tetrachloride, SiCl 4 , at different temperatures and with varying amount of the starting material SiCl 4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Morphology of the utricular otolith organ in the toadfish, Opsanus tau.
Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza; Popova, Yekaterina; Varelas, Joseph
2018-06-15
The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kong, Junhua; Wei, Yuefan; Zhao, Chenyang; Toh, Meng Yew; Yee, Wu Aik; Zhou, Dan; Phua, Si Lei; Dong, Yuliang; Lu, Xuehong
2014-03-01
In this work, bundles of rutile TiO2 nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO2-on-CNFs). Morphologies and structures of the TiO2-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO2 nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO2 bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO2 nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO2 nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO2-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO2-130-2 are also superior to those of other rutile TiO2-based LIB electrodes.In this work, bundles of rutile TiO2 nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO2-on-CNFs). Morphologies and structures of the TiO2-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO2 nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO2 bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO2 nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO2 nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO2-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO2-130-2 are also superior to those of other rutile TiO2-based LIB electrodes. Electronic supplementary information (ESI) available: FESEM image of carbonized electrospinning-derived carbon nanofibers. FESEM images of TiO2 nanostructures grown on carbon nanofibers using titanium(iv) isopropoxide and titanium(iv) butoxide as precursors. TGA curves of the samples from 24 h hydrothermal growth at 90 °C, 130 °C and 180 °C. The cycling capacity of pure carbon nanofibers at a current rate of 50 mA g-1 and a voltage range of 1.0-2.8 V. The cycling capacity of the samples from 24 h hydrothermal growth at 90 °C, 130 °C and 180 °C. See DOI: 10.1039/c3nr04308h
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-01-01
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
NASA Astrophysics Data System (ADS)
Rahman, Zia ur; Pompa, Luis; Haider, Waseem
2014-11-01
Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.
The Effect of Post-heat Treatment on the Microstructures of Single Crystal DD6 Superalloy
NASA Astrophysics Data System (ADS)
Li, Dongfan; Gao, Hangshan; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng
2016-09-01
Various thermal cycles at the end of solution heat treatment and their influences on microstructure of single crystal superalloy DD6 were studied by experiments. During various thermal cycles, the qualitative and quantitative microstructure of samples quenched of the transformations is microscopically characterized. This completely includes the large changes in volume fraction, size distribution and morphology of gamma prime precipitate experienced in the upper temperature transformation. Noticeable deviation from the equilibrium volume fraction of γ' phase is detected in both the dissolution and precipitation processes above 1,120°C for both moderate cooling and heating rate; differences were mainly attributed to the unsteady nature of the turbulent flow. The growth and alignment of the γ' precipitates are deeply influenced by several factors, e.g. ageing time, cooling rate and quenching temperature. In addition, interesting findings such as "labyrinth" and "cluster" morphologies were observed by scanning electron microscope. During precipitation processes, the complicated microstructure evolution is illustrated by considering the consecutive equilibrium shapes of a coherent precipitate, which grows under the interaction with its neighbors and the coherency of the precipitates improves their potential to resist dissolution.
Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy
NASA Astrophysics Data System (ADS)
Tay, S. E. R.; Goode, A. E.; Nelson Weker, J.; Cruickshank, A. A.; Heutz, S.; Porter, A. E.; Ryan, M. P.; Toney, M. F.
2016-01-01
The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation. Electronic supplementary information (ESI) available: Methods and videos of nanoparticle growth. See DOI: 10.1039/c5nr07019h
Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo
2015-04-01
To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.
Polat, Irmak; Suludere, Zekiye; Candan, Selami
2017-02-01
The morphology and ultrastructure of the rectum in Poecilimon cervus Karabağ, 1950 (Orthoptera, Tettigoniidae) were analyzed by light microscope, scanning (SEM) and transmission electron microscopes (TEM). The rectum is the final part of the digestive tract that plays an important role in water reabsorption in insects and so provides osmoregulation. In the transverse sections, six rectal pads and columnar epithelium can be distinguished. The cuticular intima lines the lumen at the apical side of the epithelium. In the cytoplasm, there are numerous mitochondria, some endocytic vesicles, secreting vesicles whose sizes differ according to the area in the cell, and a nucleus with globular in shape. With this study, we aimed to demonstrate the ultrastructure of the rectum of P. cervus and differences or similarities of with other species. © 2016 Wiley Periodicals, Inc.
Comparison of the structure of floral nectaries in two Euonymus L. species (Celastraceae).
Konarska, Agata
2015-05-01
The inconspicuous Euonymus L. flowers are equipped with open receptacular floral nectaries forming a quadrilateral green disc around the base of the superior ovary. The morphology and anatomy of the nectaries in Euonymus fortunei (Turcz.) Hand.-Mazz. and Euonymus europaeus L. flowers were analysed under a bright-field light microscope as well as stereoscopic and scanning electron microscopes. Photosynthetic nectaries devoid of the vascular tissue were found in both species. Nectar was exuded through typical nectarostomata (E. fortunei) or nectarostomata and secretory cell cuticle (E. europaeus). The nectaries of the examined species differed in their width and height, number of layers and thickness of secretory parenchyma, and the height of epidermal cells. Moreover, there were differences in the location and abundance of nectarostomata and the content of starch and phenolic compounds.
Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H.
2016-06-10
A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS maskmore » using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.« less
Ramos, Glenda Quaresma; Cotta, Eduardo Adriano; da Fonseca Filho, Henrique Duarte
2016-07-01
Leaves surfaces have various structures with specific functions and contribute to the relationship with the environment. On morphological studies are analyzed various parameters, ranging from macro scale through the micro scale to the nanometer scale, which contribute to the study of taxonomy, pharmacognosy, and ecology, among others. Functional structures found in leaves are responsible for the wide variety of surfaces and some behaviors are given in terms of cellular adaptation and the presence or absence of wax. This study reports the characterization of Anacardium occidentale L. leaf surface and the techniques used therein. A set of scanning electron microscope (SEM) and atomic force microscope (AFM) images performed on fresh leaf allowed observation of textured and heterogeneous profiles on both sides. SCANNING 38:329-335, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
76 FR 65696 - Battelle Energy Alliance, et al.;
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... of Texas at Austin, Austin, TX 78712. Instrument: Electron Microscope. Manufacturer: FEI Company, the... research or scientific educational uses requiring an electron microscope. We know of no electron microscope...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my; Faiz, A., E-mail: faizahmad@petronas.com.my
2015-07-22
This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s aremore » strongly dependent on the hydrolysis time and acid concentration.« less
Gold surface plasmon crystal structure based-on polystyrene template for biosensor application.
Cheng, Min-Zhuo; Zhang, Jing; Bao, Dequan; Huang, Xiwei
2018-05-21
In this communication, we assembled ordered polystyrene (PS) microsphere array as a template with the drop-coating method, and the oxygen plasma was used to etch the template to adjust the spacing between the PS microspheres. Nano-triangular gold array and silver nano-pyramid array were obtained by ion beam sputtering to deposit precious metal gold and silver. We observed the surface morphology of Au and Au/Ag composite films by scanning electron microscope and characterized the films by X-ray diffraction and ultraviolet/visible light spectrophotometer. The results show that the etching time of oxygen plasma has an obvious effect in adjusting the spacing between PSs and has a significant effect on the morphology of Au structure. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liao, Zhengda; Huang, Zuqiang; Hu, Huayu; Zhang, Yanjuan; Tan, Yunfang
2011-09-01
This study has focused on the pretreatment of cassava stillage residue (CSR) by mechanical activation (MA) using a self-designed stirring ball mill. The changes in surface morphology, functional groups and crystalline structure of pretreated CSR were examined by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) under reasonable conditions. The results showed that MA could significantly damage the crystal structure of CSR, resulting in the variation of surface morphology, the increase of amorphous region ratio and hydrogen bond energy, and the decrease in crystallinity and crystalline size. But no new functional groups generated during milling, and the crystal type of cellulose in CSR still belonged to cellulose I after MA. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.
2018-05-01
In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.
Molinari, A; Orefici, G; Donelli, G; Von Hunolstein, C; Paradisi, S; Arancia, G
1988-09-01
We describe the use of lectins as specific stabilizing agents for the polysaccharide capsular components of two Gram-positive bacteria, Streptococcus agalactiae and Streptococcus bovis. Treatment of bacterial suspensions with wheatgerm agglutinin and concanavalin A allowed better morphological preservation as well as immunoelectron microscopic localization of a capsular component (lipoteichoic acid) by employing specific antibodies and the protein A-gold technique. Data obtained indicate that lectins are useful agents in preserving highly water-soluble capsular components during the electron microscopy procedures for both unembedded and embedded samples.
Vancraeynest, D; Pasmans, F; Martel, A; Chiers, K; Meulemans, G; Mast, J; Zwart, P; Ducatelle, R
2006-06-03
Inclusion body disease, a fatal disorder in Boidae, is reviewed, and three cases in boa constrictors, the first reported cases in Belgium, are described. The snakes showed nervous signs, and numerous eosinophilic intracytoplasmic inclusions, which are considered to be characteristic of the disease, were found in the liver and pancreas. The disease is suspected to be caused by a retrovirus, but transmission electron microscopic examinations of several tissues from one of the snakes did not reveal particles with a typical retroviral morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites
NASA Astrophysics Data System (ADS)
Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.
2017-03-01
The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.
Self-assembly of chlorophenols in water
Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe
1999-01-01
In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753
A New Technique for Preserving the Form of Artificially Inflated Endophalli of Bees.
Dutra, A L; Oliveira, R
2017-04-01
We present a simple technique for keeping the form of artificially expanded endophalli in bees (Hymenoptera). Endophalli were inflated using the introduction of low melting-point agarose from a syringe inserted in the anterior opening of the metasoma. Under refrigeration, the endophalli kept their expanded shape for up to three days allowing the description of structure, morphometric analyses, and examination of the external sculpturing of the cuticle under scanning electron microscope. The technique provides new possibilities for the study of functional morphology, sexual selection, and reconstruction of bee phylogeny.
The first report of new species: Trichuris landak n. sp
Purwaningsih, Endang
2013-01-01
Objective To study nematode parasites morphology of Hystrix javanica (H. javanica), both through the feces and internal organs. Methods Feces were observed by direct smear method, internal organs were observed after dissecting the host. Specimens for light microscopy examination were fixed with 70% warm alcohol, cleared and mounted in lactophenol for wet mounting. Specimens for SEM examination were postfixed in cacodylate buffer and glutaraldehyde, dehydrated through a graded series of alcohol and freeze dried. The specimens were attached to stubs with double cello-tape, coated with gold and observed with a JSM5310 LV electron microscope. Figures were made with the aid of a drawing tube attached to Olympus compound microscope, other figures were photographs of scanning electron microscope images. Measurements were given in micrometers as the mean followed by the range in parentheses, unless otherwise stated. Results The nematode species found in the intestine of H. javanica are Gireterakis girardi and a new species, Trihuris landak. The new species differs with previously reported species from Hystrix because of having stylet and short cervical alae. The pattern of bacillary band is closed to Trichuris trichiurus, the species that infect human, but differs because the surface of its vulva is not covered with densely spine. Conclusions The species of nematodes found on H. javanica were Gireterakis girardi and a new species Trichuris landak n.sp. Those two species are newly recorded in Indonesia. PMID:23593584
NASA Astrophysics Data System (ADS)
Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu
2017-03-01
In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.
The first report of new species: Trichuris landak n. sp.
Purwaningsih, Endang
2013-02-01
To study nematode parasites morphology of Hystrix javanica (H. javanica), both through the feces and internal organs. Feces were observed by direct smear method, internal organs were observed after dissecting the host. Specimens for light microscopy examination were fixed with 70% warm alcohol, cleared and mounted in lactophenol for wet mounting. Specimens for SEM examination were postfixed in cacodylate buffer and glutaraldehyde, dehydrated through a graded series of alcohol and freeze dried. The specimens were attached to stubs with double cello-tape, coated with gold and observed with a JSM5310 LV electron microscope. Figures were made with the aid of a drawing tube attached to Olympus compound microscope, other figures were photographs of scanning electron microscope images. Measurements were given in micrometers as the mean followed by the range in parentheses, unless otherwise stated. The nematode species found in the intestine of H. javanica are Gireterakis girardi and a new species, Trihuris landak. The new species differs with previously reported species from Hystrix because of having stylet and short cervical alae. The pattern of bacillary band is closed to Trichuris trichiurus, the species that infect human, but differs because the surface of its vulva is not covered with densely spine. The species of nematodes found on H. javanica were Gireterakis girardi and a new species Trichuris landak n.sp. Those two species are newly recorded in Indonesia.
Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan
2017-07-01
Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lampi, Tiina; Dekker, Hannah; Ten Bruggenkate, Chris M; Schulten, Engelbert A J M; Mikkonen, Jopi J W; Koistinen, Arto; Kullaa, Arja M
2018-01-01
The aim of this study was to define the acid-etching technique for bone samples embedded in polymethyl metacrylate (PMMA) in order to visualize the osteocyte lacuno-canalicular network (LCN) for scanning electron microscopy (SEM). Human jaw bone tissue samples (N = 18) were collected from the study population consisting of patients having received dental implant surgery. After collection, the bone samples were fixed in 70% ethanol and non-decalcified samples embedded routinely into polymethyl metacrylate (PMMA). The PMMA embedded specimens were acid-etched in either 9 or 37% phosphoric acid (PA) and prepared for SEM for further analysis. PMMA embedded bone specimens acid-etched by 9% PA concentration accomplishes the most informative and favorable visualization of the LCN to be observed by SEM. Etching of PMMA embedded specimens is recommendable to start with 30 s or 40 s etching duration in order to find the proper etching duration for the samples examined. Visualizing osteocytes and LCN provides a tool to study bone structure that reflects changes in bone metabolism and diseases related to bone tissue. By proper etching protocol of non-decalcified and using scanning electron microscope it is possible to visualize the morphology of osteocytes and the network supporting vitality of bone tissue.
NASA Astrophysics Data System (ADS)
Alix, K.; David, M.-L.; Dérès, J.; Hébert, C.; Pizzagalli, L.
2018-03-01
The evolution of nanometric helium bubbles in silicon has been investigated using spatially resolved electron energy-loss spectroscopy during in situ annealing in the transmission electron microscope. This approach allows the simultaneous determination of both the morphology and the helium density in the bubbles at each step of the annealing. Structural modification and helium emission from bubbles of various diameters in the range 7.5 to 20 nm and various aspect ratios of 1.1 to 1.9 have been studied. We clearly show that helium emission takes place at temperatures where bubble migration had hardly started. At higher temperatures, the migration (and coalescence) of voids is clearly revealed. For helium density lower than 150 He nm-3 , the Cerofolini's model taking into account the thermodynamical properties of an ultradense fluid reproduces well the helium emission from the bubbles, leading to an activation energy of 1.8 eV. When bubbles exhibit a higher initial helium density, the Cerofolini's model fails to reproduce the helium emission kinetics. We ascribe this to the fact that helium may be in the solid phase and we propose a tentative model to take into account the properties of the solid.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-28
Synthesis of Zn(2)Ti(3)O(8) powders for attenuating UVA using TiCl(4), Zn(NO(3))(2)·6H(2)O and NH(4)OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO(2) and Zn(2)Ti(3)O(8) coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn(2)TiO(4), rutile TiO(2) and ZnTiO(3). Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO(3) crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-01
Synthesis of Zn2Ti3O8 powders for attenuating UVA using TiCl4, Zn(NO3)2·6H2O and NH4OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn2TiO4, rutile TiO2 and ZnTiO3. Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO3 crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent. PMID:21541035
Zeller, H G; Karabatsos, N; Calisher, C H; Digoutte, J P; Murphy, F A; Shope, R E
1989-01-01
During approximately 35 years, investigators in various laboratories studying arbovirus ecology and epidemiology accumulated many virus isolates, more than 60 of which were not characterized or placed in taxa. By a combination of electron microscopic and antigenic studies we collected information sufficient to provisionally classify 60 isolates. Electron microscopic observations suggest that 20 are members of the virus family Bunyaviridae, 20 Rhabdoviridae, 14 Reoviridae, one Togaviridae, one Paramyxoviridae (Mapuera virus, from a bat), and one Poxviridae (Yoka virus, from mosquitoes). Serologic studies provided evidence sufficient to place some of these viruses in recognized antigenic groups, within families and genera, and to establish new antigenic groups and taxa for others. Three viruses were found to have morphologic and morphogenetic characteristics consistent with those of members of the family Arenaviridae: Quaranfil virus, a human pathogen, Johnston Atoll virus, isolated from birds and ticks, and Araguari virus, isolated from an opossum. This, the first in a series of three papers, described methods used for these investigations and also presents descriptions of viruses provisionally placed in the families Arenaviridae, Paramyxoviridae, or Poxviridae. Descriptions of viruses provisionally placed in families Bunyaviridae and Reoviridae are published in the second and third papers, respectively. Viruses of the family Rhabdoviridae have been described separately.
NASA Astrophysics Data System (ADS)
He, Wangxiao; Huang, Hongen; Yan, Jin; Zhu, Jian
2013-11-01
The formation of the Au-TiO2 nanocomposite on monolayer Graphene (GTA) by sequentially depositing titanium dioxide particles and gold nanoparticles on graphene sheet was synthesized and analyzed in our work. The structural, morphological, and physicochemical properties of samples were thoroughly investigated by UV-Vis spectrophotometer, Raman spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscope, and transmission electron microscope. Photocatalytic performance of GTA, graphene (GR), TiO2, and TiO2 -graphene nanocomposite (GT) were comparatively studied for degradation of methyl orange, and it was found that GTA had highest performance among all samples. More importantly, antibacterial performance of this novel composite against Gram-positive bacteria, Gram-negative bacteria, and fungus was predominant compared to GR, TiO2, and GT. And the result of biomolecules oxidation tests suggested that antimicrobial actions were contributed by oxidation stress on both membrane and antioxidant systems. Besides, the rate of two decisive processes during photocatalytic reaction, the rate of the charge transfer (kCT) and the rate of the electron-hole recombination (kR) have been studied by Perturbation theory, Radiation theory, and Schottky barrier theory. Calculation and derivation results show that GTA possesses superior charge separation and transfer rate, which gives an explanation for the excellent oxidation properties of GTA.
USDA-ARS?s Scientific Manuscript database
1. Microscopic morphology of ovarian tissue in post-hatching turkey poults at various ages was investigated. 2. Hematoxylin and eosin staining were used and the diameter of the oocytes and follicles were measured using microphotography. 3. Immediately after hatching, oocytes in one-day turkey pou...
Effects of a common worldwide drink (Beer) on L-Phenylalanine and L-Tyrosine fibrillar assemblies
NASA Astrophysics Data System (ADS)
Banik, Debasis; Banerjee, Pavel; Sabeehuddin, Ghazi; Sarkar, Nilmoni
2017-11-01
In this letter, small amount of beer [0.42-2.08% (v/v)] is employed to investigate the fibril inhibition kinetics of 1 mM L-Phenylalanine and L-Tyrosine (relevant to disease condition) using Fluorescence Lifetime imaging Microscopy (FLIM), Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopic (HR-TEM) techniques. Our results indicate that 1.67 and 0.42% of beer is sufficient for effective breakdown of L-Phe and L-Tyr assemblies, respectively. Quantitative information about fibril inhibition is obtained from Fluorescence Correlation Spectroscopic (FCS) measurements. We have shown that the morphology of L-Phe changes to L-Tyr in presence of 2,2‧-Bipyridine-3,3‧-diol (BP(OH)2).
Effect of Y2O3 on polyindole for high frequency capacitor application
NASA Astrophysics Data System (ADS)
Maji, P.; Choudhary, R. B.; Majhi, M.
2017-05-01
Polyindole-Yittrium Oxide (PIn-Y2O3) composite was synthesized in the laboratory through chemical polymerization process. The structural and morphological studies of PIn-Y2O3 composite were investigated using X-ray diffraction (XRD) and scanning electron microscopic (SEM) techniques. These studies showed that PIn-Y2O3 composite was amorphous in nature and formed with spherical granule shape. The dielectric response was measured through LCR meter in the frequency range from 100 Hz to 1 MHz. The dielectric studies revealed that incorporation of Y2O3 into polymeric matrix improved the dielectric behavior of PIn polymer and markedly suitable for its application in high frequency capacitor and many other electronic devices.
Agarwal, Rahul; Zakharov, Dmitri N.; Krook, Nadia M.; ...
2015-05-01
It has been observed that wurtzite II–VI semiconducting nanobelts transform into single-crystal, periodically branched nanostructures upon heating. The mechanism of this novel transformation has been elucidated by heating II–VI nanobelts in an environmental transmission electron microscope (ETEM) in oxidizing, reducing and inert atmospheres while observing their structural changes with high spatial resolution. The interplay of surface reconstruction of high-energy surfaces of the wurtzite phase and environment-dependent anisotropic chemical etching of certain crystal surfaces in the branching mechanism of nanobelts has been observed. Understanding of structural and chemical transformations of materials via in situ microscopy techniques and their role in designingmore » new nanostructured materials is discussed.« less
Thermoelectric effects in disordered branched nanowires
NASA Astrophysics Data System (ADS)
Roslyak, Oleksiy; Piriatinskiy, Andrei
2013-03-01
We shall develop formalism of thermal and electrical transport in Si1 - x Gex and BiTe nanowires. The key feature of those nanowires is the possibility of dendrimer type branching. The branching tree can be of size comparable to the short wavelength of phonons and by far smaller than the long wavelength of conducting electrons. Hence it is expected that the branching may suppress thermal and let alone electrical conductance. We demonstrate that the morphology of branches strongly affects the electronic conductance. The effect is important to the class of materials known as thermoelectrics. The small size of the branching region makes large temperature and electrical gradients. On the other hand the smallness of the region would allow the electrical transport being ballistic. As usual for the mesoscopic systems we have to solve macroscopic (temperature) and microscopic ((electric potential, current)) equations self-consistently. Electronic conductance is studied via NEGF formalism on the irreducible electron transfer graph. We also investigate the figure of merit ZT as a measure of the suppressed electron conductance.
Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe
2014-01-01
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe
2014-01-01
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578
Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure
NASA Astrophysics Data System (ADS)
Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun
2013-07-01
TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603
Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin
2009-06-01
Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that transfected SK-Br-3 oncocytes by antisense probe had the lowest signal of all. The SPIO-labeled ASODN probe shows unique features including well-distributed spherical morphology, high conjugating rate and loading efficiency, and the signal intensity of SPIO-labeled ASODN-transfected SK-Br-3 oncocytes is reduced in MR imaging. These results indicate that the SPIO-labeled ASODN probe is potentially useful as a MR targeting contrast enhancing agent to specifically diagnose tumors which had over-expression of the c-erbB2 oncogene at an early stage.
External female genitalia of six species of the genus Meccus (Hemiptera: Reduviidae: Triatominae).
Rivas, Nancy; Sánchez-Cordero, Victor; Camacho, Alejandro D; Alejandre-Aguilar, Ricardo
2017-12-01
Triatomine classification is based on morphological characteristics. Studies have been conducted to improve their identification by observing many characteristics. However, there are problems of differentiating among highly interrelated species and new criteria are required. The purpose of this study was to determine the morphological differences in the external female genitalia of M. pallidipennis, M. longipennis, M. picturatus, M. bassolsae, M. mazzottii, and M. phyllosomus in order to distinguish among species using scanning electron microscopy. Observations were made of the dorsal, posterior, lateral, and ventral views of the female external genitalia for each species. In the six species we studied, relevant differences were observed in the dorsal view of the X segment, as well as the IX, VIII, and VII tergites. In the posterior and lateral view, the most visible differences were registered in the gonocoxite size of the segments VIII, IX, and X. Finally, in the ventral view of the VII sternite, differences among species were observed in the size of the inflection in the top and upper corner. Our results show that it was possible to differentiate among the triatominae species for each of the four views by using a scanning electron microscope to analyze morphological characteristics of the VII, VIII, IX, and X abdomen segments. © 2017 The Society for Vector Ecology.
The influence of synaptic size on AMPA receptor activation: a Monte Carlo model.
Montes, Jesus; Peña, Jose M; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.
Co-effects of amines molecules and chitosan films on in vitro calcium carbonate mineralization.
Cui, Jifei; Kennedy, John F; Nie, Jun; Ma, Guiping
2015-11-20
Amines monomers, N,N-dimethylaminoethyl methacrylate (DMAEMA), N,N-dimethylethanolamine (DMEA), 2-dimethylaminoethylamine (DMEDA) and N-methiyldiethanolamine (MDEA) were used to induce the formation of calcium carbonate (CaCO3) crystals on chitosan films, by using (NH4)2CO3 diffusion method at ambient temperature. The obtained CaCO3 particles were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDS). The influence of reaction variables, such as the additive concentration and their types were also investigated on the products. The morphologies of CaCO3 crystals, inter-grown in cube-shape, were controlled by DMAEMA and DMEA. It was observed that the morphologies of CaCO3 changed from the cube grown arms to massive calcite with a hole on the face by increasing the concentrations of DMEDA and MDEA. While the precipitation grew on chitosan film without any organic additive, only single cube-shaped crystals were obtained. By these results the possible mechanisms can be proposed that electronic movement of the groups on the monomer effected ions configuration and molecules absorbed on the exposed surface, resulted the change of the surface energy, which caused the change in the morphology of CaCO3. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Influence of Synaptic Size on AMPA Receptor Activation: A Monte Carlo Model
Montes, Jesus; Peña, Jose M.; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors. PMID:26107874
Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio
2007-01-01
Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.
Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S
2013-10-01
A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Šćepanović, M.; Grujić-Brojčin, M.; Abramović, B.; Golubović, A.
2017-01-01
Systematic investigation of the relationship between structural, morphological, optical and photocatalytic properties of the titania-based nanopowders is presented. A series of pure and doped titania catalysts with various (anatase and brookite) phase compositions have been prepared by sol-gel or hydrothermal route. The crystal structure and composition of the synthesized samples have been extensively characterised by XRD and Raman scattering measurements. The nanopowder morphology has been studied using microscopic methods (SEM, AFM, and STM), whereas the porous structure has been revealed by the analysis of nitrogen sorption data. The optical and electronic properties have been studied by spectroscopic ellipsometry. All investigated properties have been correlated to photocatalytic activity, tested in degradation of the pharmaceutically active substances (such as metoprolol and alprazolam) induced by UVA or visible radiation. Based on this correlation, the physical properties which contribute most to the increase in photocatalytic activity of synthesized nanopowders have been determined, in order to optimize the synthesis conditions which could lead to the maximal efficiency in degradation of particular pollutant.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Cui, Li; Miao, Jianjun
2006-03-01
A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.
Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota
2013-11-01
Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Surface study of irradiated sapphires from Phrae Province, Thailand using AFM
NASA Astrophysics Data System (ADS)
Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.
2017-09-01
The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.
NASA Astrophysics Data System (ADS)
Sportelli, M. C.; Picca, R. A.; Manoli, K.; Re, M.; Pesce, E.; Tapfer, L.; Di Franco, C.; Cioffi, N.; Torsi, L.
2017-10-01
The analytical performance of bioelectronic devices is highly influenced by their fabrication methods. In particular, the final architecture of field-effect transistor biosensors combining spin-cast poly(3-hexylthiophene) (P3HT) film and a biomolecule interlayer deposited on a SiO2/Si substrate can lead to the development of highly performing sensing systems, such as for the case of streptavidin (SA) used for biotin sensing. To gain a better understanding of the quality of the interfacial area, critical is the assessment of the morphological features characteristic of the adopted biolayer deposition protocol, namely: the layer-by-layer (LbL) approach and the spin coating technique. The present study relies on a combined surface spectroscopic and morphological characterization. Specifically, X-ray photoelectron spectroscopy operated in the parallel angle-resolved mode allowed the non-destructive investigation of the in-depth chemical composition of the SA film, alone or in the presence of the P3HT overlayer. Spectroscopic data were supported and corroborated by the results obtained with a Scanning Electron and a Helium Ion microscope investigation performed on the SA layer that provided relevant information on the protein structural arrangement or on its surface morphology. Clear differences emerged between the SA layers prepared by the two approaches, with the layer-by-layer deposition resulting in a smoother and better defined bio-electronic interface. Such findings support the superior analytical performance shown by bioelectronic devices based on LbL-deposited protein layers over spin coated ones.
Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.
Johari, Anima; Bhatnagar, M C; Rana, Vikas
2012-10-01
We report on controlling the morphology of tin oxide (SnO2) nanostructures and the study of the effect of surface morphology on structural and optical properties of SnO2 nanostuctures. In present work, Tin oxide (SnO2) nanostructures such as nanowires and nanorods have been grown by thermal evaporation of SnO2 powder. To demonstrate the effect of different substrates on the morphology of grown SnO2 nanostructures, the thermal evaporation of SnO2 powder was carried out on Si and gold catalyzed Si (Au/Si) substrates. The scanning-electron-microscopic analysis shows the growth of SnO2 nanowires on Au/Si substrate and growth of SnO2 nanorods on Si substrate. The scanning-and transmission-electron-microscopic analysis shows that the diameter of SnO2 nanowires and nanorods are about 70 nm and 95 nm respectively and their length is about 80 microm and 30 microm respectively. The vapor-liquid-solid (VLS) growth of SnO2 nanowires and vapor-solid (VS) growth of SnO2 nanorods is also confirmed with the help of TEM and EDX spectra. The synthesized SnO2 nanowires show tetragonal rutile structure of SnO2, whereas SnO2 nanorods show tetragonal rutile as well as cassiterite structure of SnO2. UV-Vis absorption spectra showed the optical band gaps of 4.1 eV and 3.8 eV for the SnO2 nanowires and the nanorods, respectively. The SnO2 nanowires and nanorods show photoluminescence with broad emission peaks centred at around 600 nm and 580 nm respectively. Raman spectra of SnO2 nanowires shows three Raman shifts (478, 632, 773 cm(-1)) corresponding to Eg, A1g and B2g vibration modes, whereas in Raman spectra of SnO2 nanorods, A1g peak is dramatically reduced and the B2g mode is totally quenched.
Lin, Huirong; Zhang, Shuting; Gong, Song; Zhang, Shenghua; Yu, Xin
2015-01-01
The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence. PMID:26273617
NASA Astrophysics Data System (ADS)
Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin
2012-07-01
TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.
Phutela, Urmila Gupta; Sahni, Nidhi
2013-06-01
The present study reports the pretreatment of paddy straw by Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 to observe the changes in chemical composition and its correlation with change of surface structure, morphology and porosity of paddy straw. Compared with untreated straw, cellulose decreased by 15.9 and 19.3 % in T. reesei MTCC 164 and C. versicolor MTCC 138 pretreated paddy straw respectively. Lignin content increased by 41.4 % in T. reesei pretreated paddy straw whereas decreased by 19.1 % in C. versicolor pretreated straw. The microscopic structural changes were examined by scanning electron microscopy under reasonable conditions. Results showed that digestibility of paddy straw are increased by treating paddy straw with both the cultures. Both surface area and pore size of treated straw were increased partially due to solubilization of silica components.
Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding
NASA Astrophysics Data System (ADS)
Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang
2016-05-01
There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.
Mechanical properties of the rust layer induced by impressed current method in reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Care, S.; Nguyen, Q.T.; L'Hostis, V.
This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurementsmore » were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer.« less
Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO
NASA Astrophysics Data System (ADS)
Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam
2016-05-01
The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02572b
Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.
Seifert, P; Spitznas, M
1999-06-01
This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.
NASA Astrophysics Data System (ADS)
Hridya, S.; Kavitha, V. S.; Chalana, S. R.; Reshmi Krishnan, R.; Sreeja Sreedharan, R.; Suresh, S.; Nampoori, V. P. N.; Sankararaman, S.; Prabhu, Radhakrishna; Mahadevan Pillai, V. P.
2017-11-01
Barium tungstate films with different Dy3+ doping concentrations, namely 0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%, are deposited on cleaned quartz substrate by radio frequency magnetron sputtering technique and the prepared films are annealed at a temperature of 700°C. The structural, morphological and optical properties of the annealed films are studied using techniques such as x-ray diffraction (XRD), micro-Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and photoluminescence spectroscopy. XRD analysis shows that all the films are well-crystallized in nature with a monoclinic barium tungstate phase. The presence of characteristic modes of the tungstate group in the Raman spectra supports the formation of the barium tungstate phase in the films. Scanning electron microscopic images of the films present a uniform dense distribution of well-defined grains with different sizes. All the doped films present a broad emission in the 390-500 nm region and its intensity increases up to 3 wt.% and thereafter decreases due to usual concentration quenching.
[Algicidal effect of (2-isobutoxyphenyl) amine on Alexandrium tamarense].
Zhang, Huajun; Peng, Yun; Zhang, Su; An, Xinli; Li, Yi; Zheng, Wei; Zheng, Tianling
2015-07-04
A strain named BS01 showed strong algicidal activity to Alexandrium tamarense and we got algicidal compound (2-isobutoxyphenyl) amine from BS01 to study its algicidal effect on A. tamarense. We studied the algicidal mechanism of (2-isobutoxyphenyl) amine on photosynthetic process, antioxidant enzyme activities and morphological change of A. tamarense. After 24 hours treatment with (2-isobutoxyphenyl) amine, algicidal activity was 84. 1% with the concentration of 20 µg/mL. The compound could induce a reactive oxygen species burst in P. globosa in 0. 5 hours which could cause serious oxidative damage to algal cells. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. To eliminate the excess ROS, the activities of the antioxidant systems (including superoxide dismutase and catalase) increased significantly during exposure. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. These results indicated that the lysis mechanism of algicidal compound on algae may primarily be the increasing level of ROS in the algal cells.
Schmidt, Thomas; Marchetto, Helder; Groh, Ullrich; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard
2018-05-15
We investigated the dynamics of the initial growth of the first epitaxial layers of perylenetetracarboxylic dianhydride (PTCDA) on the Au(111) surface with high lateral resolution using the aberration-corrected spectro-microscope SMART. With this instrument, we could simultaneously study the different adsorption behaviors and layer growth on various surface areas consisting of either a distribution of flat (111) terraces, separated by single atomic steps ("ideal surface"), or on areas with a high density of step bunches and defects ("realistic surface"). The combined use of photoemission electron microscopy, low-energy electron microscopy, and μ-spot X-ray absorption provided a wealth of new information, showing that the growth of the archetype molecule PTCDA not only has similarities but also has significant differences when comparing Au(111) and Ag(111) substrate surfaces. For instance, under otherwise identical preparation conditions, we observed different growth mechanisms on different surface regions, depending on the density of step bunches. In addition, we studied the spatially resolved desorption behavior which also depends on the substrate morphology.
[EFFECT OF PULSE-PERIODIC CORONA DISCHARGE ON VIABILITY OF ESCHERICHIA COLI M17 CELLS IN BIOFILMS].
Rybalchenko, O V; Stepanova, O M; Orlova, O G; Astafiev, A M; Kudryavtsev, A A; Kapustina, V V
2015-01-01
Detection of bactericidal effect of pulse-periodic corona discharge (PPCD) on cells and biofilms of Escherichia coli M17. A gas-discharge device was created based on PPCD in air with power supply parameters: amplitude values of voltage of 30 - 60 kV, pulse repetition rate of 250 - 400 kHz. Ultrastructure changes in cells and biofilms of E. coli M17, affected by PPCD, generated in air, were studied by typical methods of transmission electron microscopy. Disturbances of integrity of surface and abyssal structures of biofilms, as well as changes of morphological properties of E. coli M17 cells, characteristic for sub-lethal heat impact, were detected. Destructive changes of bacterial cells were developed by formation of focal disturbance of cytoplasmic membrane, extension of periplasmic space, formation of globular structures, characteristic for heat effect, and destruction of cytoplasm. Bactericidal effect of PPCD on E. coli M17 cells as part of biofilms was shown. Destructive morphological changes in cells and biofilms of E. coli M17 after the effect of PPCD were detected for the first time on electron-microscopic level.
Stofft, E; Biesalski, H K; Zschaebitz, A; Weiser, H
1992-01-01
The aim of the study was to find out the influence of marginal vitamin A deficiency on morphological structures in the tracheobronchial epithelium in guinea pigs. The tracheobronchial epithelium of animals with vitamin A deficiency (n = 15) and control animals (n = 7), kept under optimal laboratory conditions, was evaluated by light and electron microscopy. The cellular ultrastructure was morphometrically analyzed. The height of the respiratory epithelium was slightly increased. The basal cells were arranged in a loose cell band of three to four layers. The quantity of cytofilaments in their cytoplasm was enhanced. Goblet cells were significantly reduced in vitamin A deficiency. There was also a significant decrease in their secretory granules. The number of ciliated cells was almost unchanged. They showed a significant reduction in mitochondria. The kinocilia often contained an atypical structure of the microtubules. Our findings confirm multiple ultrastructural dysplasias in early vitamin A deficiency which may lead to a disturbance of mucociliary clearance.
Rate Dependency of Silver Vanadium Phosphorous Oxide Reduction
NASA Astrophysics Data System (ADS)
Cheng, Po-Jen
2011-12-01
The silver vanadium phosphorus oxide (Ag2VO2PO 4) is a high-capacity and good-compatibility material for the cathode in the battery. Due to their innovative properties, they are used as cathode in lithium batteries. Therefore, when the lithium batteries begin to discharge, the anodes of the cell perform an electrochemical oxidation and release electrons. In the mean time, the cathodes in the cells perform the electrochemical reduction and catch the electrons. For reduction of Ag2VO2PO 4, two silver ions (Ag+) catch two electrons to form silver particles, and the vanadium ions (V5+) catch two electrons to form V3+. It means that four electrons will be released by lithium anode. We call this four electrons discharge as 100% discharge. In my most of the projects, the Ag2VO2PO4 material is tested by differential scanning calorimetry (DSC) to check purity. My study is based on the discharge of batteries, and I focus on the morphology and the intensity of silver particles on the cathode after discharge. Depending on different adjustment of factors, such as discharge time, discharge rate, storage time, storage temperature, I try to investigate the silver intensity, conductivity as a function of DOD (Depth of Discharge). The silver particles could be examined by optical microscope, and scanning electron microscope (SEM). Moreover, I do some x-ray diffraction analysis to quantify the silver particles after discharge. Also, I perform magnetic susceptibility measurement to check the mechanism of the reduction of vanadium ions. Under the research on silver ions and vanadium ions, I will know a big frame of reduction process on silver vanadium phosphorous oxide and the time effect on this cathode material.
Ruíz-Gómez, M A; Figueroa-Torres, M Z; Alonso-Lemus, I L; Vega-Becerra, O E; González-López, J R; Zaldívar-Cadena, A A
2018-04-05
An electroless deposition process was used to synthesize with a controlled morphology, polycrystalline ZnO on glass substrates as antimicrobial coatings. The influence of deposition temperature (T dep ) on the physicochemical and antimicrobial properties of the ZnO films was analyzed. The results indicated that a change in deposition temperature greatly affected the morphology and the degree of crystallinity of the films. Scanning electron microscope images show that the film surface is porous at a deposition temperature of 40 and 50 °C, whereas hexagonal-plate shaped morphology predominated at 60 °C and finally at 70 and 80 °C the films consisted of rod-like particles. The films showed good transparency in the visible region. All ZnO films presented notable antimicrobial activity against the gram-negative bacteria Escherichia coli (E. coli) and the gram-positive Staphylococcus aureus (S. aureus). It was found that the antimicrobial efficiency is strongly dependent on morphology and structural properties. The best antimicrobial performance was recorded for the films consisting of rod-like morphology with a high degree of crystallinity. The procedure used in this investigation is strongly recommended for the development of functional surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Designs for a quantum electron microscope.
Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K
2016-05-01
One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Thiry, Marc; Ploton, Dominique
2008-01-01
Here we describe a new, rapid method for isolating nucleoli from Ehrlich tumor cells that preserves their morphological integrity and high transcriptional activity. Until now, methods for isolation of nucleoli were generally assumed to empty one of their three main compartments, the fibrillar center, of its contents. This new method consists of sonicating cells in an isotonic medium containing MgSO(4), spermidine, and spermine, followed by separation of nucleoli through a Percoll density gradient. Using the nonisotopic approach of labelling with BrUTP, we have further investigated the dynamics of nascent ribosomal RNAs (rRNAs) within morphologically intact isolated nucleoli at the electron microscope level. We show that ribosomal transcripts are elongated in the cortex of the fibrillar center and then enter the surrounding dense fibrillar component.
Characterization of Mo/Si multilayer growth on stepped topographies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.
2011-08-31
Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using amore » microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.« less
Characterization of submonolayer film composed of soft-landed copper nanoclusters on HOPG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Shyamal, E-mail: shyamal.mondal@saha.ac.in; Das, Pabitra; Chowdhury, Debasree
Preformed Copper nanoclusters are deposited on highly oriented pyrolytic graphite (HOPG) at very low energy. For the study of chemical composition X-ray Photoelectron Spectroscopy (XPS) is performed for a wide range of binding energy without exposing the sample in the ambient. Morphological aspects of the supported clusters are characterized employing high resolution scanning electron microscope (SEM). Different types of morphology are observed depending on the nature of the substrate surface. Big fractal islands are formed on terraces while at the step edges small islands are found to form. Ex-situ cathodoluminescence (CL) measurement shows peak at 558 nm wavelength which corresponds tomore » the band gap of 2.22 eV which is due to Cu{sub 2}O nanocrystals formed due to oxidation of the deposited film in ambient.« less
Facile synthesis of SiO{sub 2} nanoparticles for biomedical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scano, A., E-mail: alescano80@tiscali.it; Pilloni, M., E-mail: alescano80@tiscali.it; Cabras, V., E-mail: alescano80@tiscali.it
Silica nanoparticles (SiO{sub 2} NPs) for biomedical applications have been prepared by using a facile modified Stöber-synthesis. Potassium borohydride (KBH{sub 4}) has been introduced in the synthesis procedure in order to control NP size. Several samples have been prepared varying tetraethylorthosilicate (TEOS) concentration, and using different process conditions (temperature, reaction time and atmosphere). In order to study the influence of the process conditions on the NP size, morphology and properties, several characterization techniques were used. Size and morphology of the as-prepared SiO{sub 2} NPs have been studied by using Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS) techniques. Structuralmore » characterization was carried out by X-ray powder diffraction. To investigate the SiO{sub 2} NP fluorescence emission properties the fluorescence spectroscopy was also used.« less
Tendon cell outgrowth rates and morphology associated with kevlar-49.
Zimmerman, M; Gordon, K E
1988-12-01
A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.
NASA Astrophysics Data System (ADS)
Arifeen, W. U.; Dong, T.; Kurniawan, R.; Ko, T. J.
2018-03-01
In this paper, the manufacturing process and morphology of nano fibrous membranes are discussed. These membranes are explored as separators in rechargeable lithium ion batteries. The function of separator is to allow the flow of ions while protecting the physical contact between positive and negative electrode. Therefore, the porosity, mechanical strength and thermal stability of separators possess significant importance. The separators are manufactured by electrospinning process and later the morphology is studied with the help of scanning electron microscope (SEM) images. The separator is prepared by polyacrylonitrile (PAN) and then exposed to the hot plate. The uniform, continuous and dense nano fibrous membrane is prepared with the help of electrospinning process providing the prevention of physical contact between electrode and stable enough to work in high temperatures leading to high performance lithium ion batteries separators.
Pulsed plasma chemical synthesis of SixCyOz composite nanopowder
NASA Astrophysics Data System (ADS)
Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.
2017-05-01
SixCyOz composite nanopowder with an average size of particles about 10-50 nm was produced using the pulsed plasma chemical method. The experiments on the synthesis of nanosized composite were carried out using a TEA-500 pulsed electron accelerator. To produce a composite, SiCl4, O2, and CH4 were used. The major part of experiments was conducted using a plasma chemical reactor (quartz, 140 mm diameter, 6 l volume). The initial reagents were injected into the reactor, then a pulsed electron beam was injected which initiated the chemical reactions whose products were the SixCyOz composite nanopowder. To define the morphology of the particles, the JEOL-II-100 transmission electron microscope (TEM) with an accelerating voltage of 100 kV was used. The substances in the composition of the composite nanopowder were identified using the infrared absorption optical spectrum. To conduct this analysis, the Nicolet 5700 FT-IR spectrometer was used.
Quantitative three-dimensional ice roughness from scanning electron microscopy
NASA Astrophysics Data System (ADS)
Butterfield, Nicholas; Rowe, Penny M.; Stewart, Emily; Roesel, David; Neshyba, Steven
2017-03-01
We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three-dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range -39°C to -29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet-specific information than has previously been appreciated.
Dental microwear textures: reconstructing diets of fossil mammals
NASA Astrophysics Data System (ADS)
DeSantis, Larisa R. G.
2016-06-01
Dietary information of fossil mammals can be revealed via the analysis of tooth morphology, tooth wear, tooth geochemistry, and the microscopic wear patterns on tooth surfaces resulting from food processing. Although dental microwear has long been used by anthropologists and paleontologists to clarify diets in a diversity of mammals, until recently these methods focused on the counting of wear features (e.g., pits and scratches) from two-dimensional surfaces (typically via scanning electron microscopes or low-magnification light microscopes). The analysis of dental microwear textures can instead reveal dietary information in a broad range of herbivorous, omnivorous, and carnivorous mammals by characterizing microscopic tooth surfaces in three-dimensions, without the counting of individual surface features. To date, dental microwear textures in ungulates, xenarthrans, marsupials, carnivorans, and primates (including humans and their ancestors) are correlated with known dietary behavior in extant taxa and reconstruct ancient diets in a diversity of prehistoric mammals. For example, tough versus hard object feeding can be characterized across disparate phylogenetic groups and can distinguish grazers, folivorous, and flesh consumers (tougher food consumers) from woody browsers, frugivores, and bone consumers (harder object feeders). This paper reviews how dental microwear textures can be useful to reconstructing diets in a broad array of living and extinct mammals, with commentary on areas of future research.
Venâncio, Daniel P.; Andersen, Monica L.; Vilamaior, Patricia S. L.; Santos, Fernanda C.; Zager, Adriano; Tufik, Sérgio; Taboga, Sebastião R.; De Mello, Marco T.
2012-01-01
We investigated the effect of 96 h paradoxical sleep deprivation (PSD) and 21-day sleep restriction (SR) on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR. PMID:22927719
Hinova-Palova, Dimka; Edelstein, Lawrence; Paloff, Adrian; Hristov, Stanislav; Papantchev, Vassil; Ovtscharoff, Wladimir
2008-08-01
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless there are little data about the neuronal Nitric Oxide Synthase immunoreactive (nNOS-ir) neurons and fibers in the dorsal claustrum (DC) of a cat. In this respect the aims of this study were: (1) to demonstrate nNOS-ir in the neurons and fibers of the DC; (2) to describe their light microscopic morphology and distribution; (3) to investigate and analyze the ultrastructure of the nNOS-ir neurons, fibers and synaptic terminals; (4) to verify whether the nNOS-ir neurons consist a specific subpopulation of claustral neurons; (5) to verify whether the nNOS-ir neurons have a specific pattern of organization throughout the DC. For demonstration of the nNOS-ir the Avidin-Biotin-Peroxidase Complex method was applied. Immunopositive for nNOS neurons and fibers were present in all parts of DC. On the light microscope level nNOS-ir neurons were different in shape and size. According to the latter they were divided into three groups-small (with diameter under 15 microm), medium-sized (with diameter from 16 to 20 microm) and large (with diameter over 21 microm). Some of nNOS-ir neurons were lightly-stained while others were darkly-stained. On the electron microscope level the immunoproduct was observed in neurons, dendrites and terminal boutons. Different types of nNOS-ir neurons differ according to their ultrastructural features. Three types of nNOS-ir synaptic boutons were found. As a conclusion we hope that the present study will contribute to a better understanding of the functioning of the DC in cat and that some of the data presented could be extrapolated to other mammals, including human.
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Nunzi, Jean-Michel
2017-11-01
Zinc sulphide (ZnS) and transition metal-doped ZnS nanocrystals were synthesized by co-precipitation method. Further the synthesized nanocrystals were characterized by Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fluorescence, UV-Visible, X-ray diffraction (XRD) and Fourier Transformed Infra-red (FTIR) Spectrometer (FTIR). Scanning electron microscope supplemented with EDAX was employed to attain grain size and chemical composition of the nanomaterials. A considerable blue shift of absorption band was noted by the manganese concentration (0.5 M) in the doped sample in comparison with ZnS quantum dots because of the decrease in the size of nanoparticles which may be due to quantum confinement. The photoluminescence emission observed at 596 nm is due to the emission of divalent manganese and can be ascribed to a 4T1→6A1 transition within the 3d shell. Though, the broad blue emission band was observed at 424 nm which may originates from the radiative recombination comprising defect states in the un-doped zinc sulphide quantum dots. XRD analysis exhibited that the synthesized nanomaterial endured in cubic structure. The synthesized nanomaterial combined with organic polymer P3HT, poly (3-hexyl thiophene) and worked in the construction of inverted solar cells. The photovoltaic devices with un-doped zinc sulphide quantum dots showed power conversion efficiency of 0.48% without annealing and 0.52% with annealing. By doping with manganese, the efficiency was enhanced by a factor of 0.52 without annealing and 0.59 with annealing. The morphology and packing behavior of blend of nanocrystals with organic polymer were explored using Atomic Force Microscopy.
NASA Astrophysics Data System (ADS)
Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu
2011-03-01
Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.
[Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].
Li, Siriguleng; Hu, Xiaowen
2014-09-01
To prepare nHA/gelatin porous scaffold and to evaluate its physical and chemical properties and biocompatibility. We used nano-powders of HA and gelatin to prepare 3D porous composite scaffold by freeze-drying technique, and used scanning electron microscope, fourier transform infrared spectroscopy and universal testing machine to characterize the composite material. Osteoblasts were primarily cultured, and the third-passage osteoblasts were co-cultured with the composite material. The cell adhesion and morphology were examined under scanning electron microscope. The cell viability analysis was performed by MTT assay, and the alkaline phosphatase activity was measured with alkaline phosphatase kit. Scanning electron microscope showed that the scaffold possessed a 3-dimensional interconnected homogenous porous structure with pore sizes ranging from 150 to 400 μm. Fourier transform infrared spectroscopy showed that the composite material had a strong chemical bond between the inorganic phase and organic phase. The scaffold presented the compressive strength of (3.28 ± 0.51) MPa and porosities of (80.6 ± 4.1)%. Composite materials showed features of had good biocompatibility. Mouse osteoblasts were well adhered and spread on the materials. The grade of the cell toxicity ranged from I to II. On the 5th and 7th day the proliferative rate of osteoblasts on scaffolds in the composite materials was significantly higher than that in the control group. The activity of alkaline phosphatase was obviously higher than that in the control group on Day 1 and 3. Nano-hydroxyapatite and gelatin in certain proportions and under certain conditions can be prepared into a composite biomimetic porous scaffolds with high porosity and three-dimensional structure using freeze-drying method. The scaffold shows good biocompatibility with mouse osteoblasts and may be a novel scaffolds for bone tissue engineering.
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... University, One Waterfront Place, PO Box 6024, Morgantown, WV 26506. Instrument: Electron Microscope.... Justification for Duty-Free Entry: There are no domestic manufacturers of this type of electron microscope.... Lawrence University, 23 Romoda Drive, Canton, NY 13617. Instrument: Electron Microscope. Manufacturer: FEI...
Alonso, G; Tapia-Arancibia, L; Assenmacher, I
1985-10-01
The neurons containing somatostatin in the rat periventricular nucleus were studied by using a modified electron microscopic immunocytochemical technique that improves both the penetration of immunoreagents into unembedded immunostained tissues and the preservation of ultrastructural morphology. Inside perikarya and dendrites, immunostaining was not only associated with neurosecretory granules but also with ribosomes and saccules of the cis face of the Golgi apparatus. In the axonal profiles found in this region the labeling was observed both on neurosecretory granule cores and on the limiting membrane of small synaptic-like vesicles. Throughout the periventricular nucleus, both non-synaptic and synaptic relationships were shown between labeled neurons. Non-synaptic relationships mainly consisted of direct apposition of the membranes of neighboring neurons by dendrosomatic, somasomatic or dendrodendritic contacts. These labeled perikarya and dendrites were also synaptically contacted by labeled axonal endings containing numerous aggregated synaptic-like vesicles. The physiological significance of the synaptic and non-synaptic relationships between somatostatinergic neurons is discussed in terms of possible synchronization between homologous neurons of the somatostatin neuroendocrine system and control of these neurons by a central ultra-short loop feedback mechanism.
Scanning electron microscope studies of sea urchin fertilization. I. Eggs with vitelline layers.
Tegner, M J; Epel, D
1976-07-01
The surface coats of sea urchin eggs and the events of fertilization which take place on these surfaces were examined with the scanning electron microscope (SEM). Gametes of Stronglyocentrotus purpuratus and Lytechinus pictus were considered in detail; eggs of seven other echinoids were examined for comparative purposes. Jelly coats, preserved by varying the pH of fixation, were found to vary in morphology and solubility properties between species. The vitelline layers of the nine echinoids are characterized by arrays of projections which are impressions of cytoplasmic microvilli in the vitelline layer. After sperm bind to the egg surface via the acrosomal process, fine filaments, apparently an egg response to insemination, further connect some sperm heads and tails to the egg. The cortical reactions spread out as a wave from where the fertilizing sperm fused with the egg; separation of the vitelline layer proceeds as a smooth wave from S. purpuratus eggs and as a series of localized separations in L. pictus eggs. The fertilization membranes of S. purpuratus and Allocentrotus fragilis zygotes are expanded replicas of their respective vitelline layers, suggesting that fertilization membranes are formed by an unfolding of the vitelline layer.
Sastre, S; Suso, S; Segur, J M; Bori, G; Carbonell, J A; Agustí, E; Nuñez, M
2009-11-01
To obtain images of the articular surface of fresh osteochondral grafts using an environmental scanning electron microscope (ESEM). To evaluate and compare the main morphological aspects of the chondral surface of the fresh grafts. To develop a validated classification system on the basis of the images obtained via the ESEM. The study was based on osteochondral fragments from the internal condyle of the knee joint of New Zealand rabbits, corresponding to fresh chondral surface. One hundred images were obtained via the ESEM and these were classified by two observers according to a category system. The Kappa index and the corresponding confidence interval (CI) were calculated. Of the samples analysed, 62-72% had an even surface. Among the samples with an uneven surface 17-22% had a hillocky appearance and 12-16% a knobbly appearance. As regards splits, these were not observed in 92-95% of the surfaces; 4-7% showed superficial splits and only 1% deep splits. In 78-82% of cases no lacunae in the surface were observed, while 17-20% showed filled lacunae and only 1-2% presented empty lacunae. The study demonstrates that the ESEM is useful for obtaining and classifying images of osteochondral grafts.