Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter
2010-01-01
Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
DOT National Transportation Integrated Search
2013-02-01
Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...
Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els
2016-05-15
There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.
Electron microscopy of antigen precipitates extracted from gel diffusion plates
Watson, D. H.; Le Bouvier, G. L.; Tomlinson, J. A.; Walkey, D. G. A.
1966-01-01
A method is described whereby material from virus precipitin lines from agar gel diffusion plates may be examined in the electron microscope by a negative staining technique. ImagesFIGS. 1-2FIGS. 3-4 PMID:4286708
Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer
NASA Astrophysics Data System (ADS)
Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.
2012-05-01
In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.
Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure.
Khorsand, A R; Sobierajski, R; Louis, E; Bruijn, S; van Hattum, E D; van de Kruijs, R W E; Jurek, M; Klinger, D; Pelka, J B; Juha, L; Burian, T; Chalupsky, J; Cihelka, J; Hajkova, V; Vysin, L; Jastrow, U; Stojanovic, N; Toleikis, S; Wabnitz, H; Tiedtke, K; Sokolowski-Tinten, K; Shymanovich, U; Krzywinski, J; Hau-Riege, S; London, R; Gleeson, A; Gullikson, E M; Bijkerk, F
2010-01-18
We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogues, Gilles, E-mail: gilles.nogues@neel.cnrs.fr; Den Hertog, Martien; Inst. NEEL, CNRS, F-38042 Grenoble
We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.
Investigation on Explosive Welding of Zr53Cu35Al12 Bulk Metallic Glass with Crystalline Copper
NASA Astrophysics Data System (ADS)
Feng, Jianrui; Chen, Pengwan; Zhou, Qiang
2018-05-01
A Zr53Cu35Al12 bulk metallic glass (BMG) was welded to a crystalline Cu using explosive welding technique. The morphology and the composition of the composite were characterized using optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy and transmission electron microscopy. The investigation indicated that the BMG and Cu were tightly joined together without visible defects, and a thin diffusion layer appeared at the interface. The captured jet at the end of the welding region mostly comes from the Cu side. Amorphous and partially crystallized structures have been observed within the diffusion layer, but the BMG in close proximity to the interface still retains its amorphous state. Nanoindentation tests reveal that the interface exhibits an increment in hardness compared with the matrix on both sides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
NASA Astrophysics Data System (ADS)
Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen
2015-10-01
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
BASIC STUDIES IN PERCUTANEOUS ABSORPTION.
FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER
Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames
NASA Technical Reports Server (NTRS)
Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.
1997-01-01
The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).
Fast diffusion of silver in TiO2 nanotube arrays
Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui
2016-01-01
Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630
Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2008-01-01
Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
NASA Astrophysics Data System (ADS)
Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.
2004-04-01
Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.
Mechanisms of decoherence in electron microscopy.
Howie, A
2011-06-01
The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.
In situ transmission electron microscopy of transistor operation and failure.
Wang, Baoming; Islam, Zahabul; Haque, Aman; Chabak, Kelson; Snure, Michael; Heller, Eric; Glavin, Nicholas
2018-08-03
Microscopy is typically used as a post-mortem analytical tool in performance and reliability studies on nanoscale materials and devices. In this study, we demonstrate real time microscopy of the operation and failure of AlGaN/GaN high electron mobility transistors inside the transmission electron microscope. Loading until failure was performed on the electron transparent transistors to visualize the failure mechanisms caused by self-heating. At lower drain voltages, thermo-mechanical stresses induce irreversible microstructural deformation, mostly along the AlGaN/GaN interface, to initiate the damage process. At higher biasing, the self-heating deteriorates the gate and catastrophic failure takes place through metal/semiconductor inter-diffusion and/or buffer layer breakdown. This study indicates that the current trend of recreating the events, from damage nucleation to catastrophic failure, can be replaced by in situ microscopy for a quick and accurate account of the failure mechanisms.
Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media.
Kim, Ginam; Sousa, Alioscka; Meyers, Deborah; Shope, Marilyn; Libera, Matthew
2006-05-24
Using valence electron energy loss spectroscopy (EELS) in the cryo-scanning transmission electron microscopy (STEM), we found that the polymer-polymer interface in two-phase nanocolloids of polydimethyl siloxane (PDMS) and copolymer (methyl acrylate (MA)-methyl methacrylate (MMA)-vinyl acetate (VA)) preserved in water was diffuse despite the fact that equilibrium thermodynamics indicates it should only be on the order of a few nanometers. The diffuse interface is a result of the kinetic trapping of the copolymer within the PDMS phase, and this finding suggests new nonequilibrium pathways to control interfaces during the synthesis of multicomponent polymeric nanostructures.
Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...
2015-11-23
The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less
NASA Astrophysics Data System (ADS)
Leenaers, A.; Detavernier, C.; Van den Berghe, S.
2008-11-01
The core of the BR1 research reactor at SCK•CEN, Mol (Belgium) has a graphite matrix loaded with fuel rods consisting of a natural uranium slug in aluminum cladding. The BR1 reactor has been in operation since 1956 and still contains its original fuel rods. After more than 50 years irradiation at low temperature, some of the fuel rods have been examined. Fabrication reports indicate that a so-called AlSi bonding layer and an U(Al,Si) 3 anti-diffusion layer on the natural uranium fuel slug were applied to limit the interaction between the uranium fuel and aluminum cladding. The microstructure of the fuel, bonding and anti-diffusion layer and cladding were analysed using optical microscopy, scanning electron microscopy and electron microprobe analysis. It was found that the AlSi bonding layer does provide a tight bond between fuel and cladding but that it is a thin USi layer that acts as effective anti-diffusion layer and not the intended U(Al,Si) 3 layer.
NASA Astrophysics Data System (ADS)
Pan, Ling
Motivated by the great potential applications of gamma titanium aluminide based alloys and the important effect of diffusion on the properties of gamma-TiAl/alpha2-Ti3Al two-phase lamellar structure, we conduct this thesis research to explore the microstructural evolution and interdiffusion behavior, and their correlations in multi-phase solid state diffusion couples made up of pure titanium and polysynthetically-twinned (PST) Ti-49.3 at.% Al "single" crystal, in the temperature range of 973--1173 K. The diffusion couples are prepared by high vacuum hot-pressing, with the diffusion direction parallel to the lamellar planes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) are employed to observe the microstructure at various interfaces/interphases. A reaction zone (RZ) of polycrystalline alpha 2-Ti3Al phase forms along the PST Ti-Al/Ti bonding interface having a wavy interface with the PST crystal and exhibits deeper penetration in alpha2 lamellae, consisting of many fine alpha2 and secondary gamma laths, than in primary gamma lamellae. Direct measurement of the RZ thickness on SEM back-scattered electron images reveals a parabolic growth of the RZ, indicating a macroscopically diffusion-controlled growth. Concentration profiles from Ti, through the RZ, into the alpha2 lamellae of the PST crystal are measured by quantitative energy-dispersive x-ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM). A plateau of composition adjacent to the RZ/(mixed alpha2 lath in PST) interface forms in the deeply penetrated RZ grains, implying a diffusion barrier crossing the interface and some extent of interface control in the RZ grain growth. The interdiffusion coefficient is evaluated both independent of composition and as a function of composition. No significant concentration dependence of the interdiffusion coefficients is observed using Boltzmann-Matano analysis. The temperature dependence of the interdiffusion coefficients obeys the Arrhenius relationship with a pre-exponential factor of D 0 = (7.56 +/- 7.14) x 10-5 m2/s and an activation enthalpy of Q = 255.6+8.9-8.3 kJ/mol = (2.65 +/- 0.09) eV/atom. The initial nucleation stage of the RZ grains plays an important role in the later microstructural evolution as does the local mass balance. The interfacial energy and the strain energy in the deeply penetrated RZ grains are possible reasons for the plateau.
Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity
NASA Astrophysics Data System (ADS)
Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc
2017-06-01
Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
Microstructure in Worn Surface of Hadfield Steel Crossing
NASA Astrophysics Data System (ADS)
Zhang, F. C.; Lv, B.; Wang, T. S.; Zheng, C. L.; Li, M.; Zhang, M.
In this paper a failed Hadfield (high manganese austenite) steel crossing used in railway system was studied. The microstructure in the worn surfaces of the crossing was investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy and Mössbauer spectroscopy. The results indicated that a nanocrystallization layer formed on the surface of the crossing served. The formation mechanism of the nanocrystalline is the discontinuous dynamic recrystallization. The energy for the recrystallization nucleus formation originates from the interactions between the twins, the dislocations, as well as twin and dislocation. High-density vacancies promoted the recrystallization process including the dislocation climb and the atom diffusion.
Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik
2014-01-01
This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueda-Fonseca, P.; Orrù, M.; CNRS, Institut NEEL, F-38000 Grenoble
With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressionsmore » describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.« less
Au particle formation on the electron beam induced membrane
NASA Astrophysics Data System (ADS)
Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Sae-Joong; Kim, Sung-In; Park, Nam Kyou; Park, Doo-Jae; Choi, Soo Bong; Kim, Yong-Sang
2017-02-01
Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized by using a portable solidstate nanopore (MinION) with an electrical detection technique. However, there have been several reports about the high error rates of the fabricated nanopore device, possibly due to an electrical double layer formed inside the pore channel. The current DNA sequencing technology utilized is based on the optical detection method. In order to utilize the current optical detection technique, we will present the formation of the Au nano-pore with Au particle under the various electron beam irradiations. In order to provide the diffusion of Au atoms, a 2 keV electron beam irradiation has been performed During electron beam irradiations by using field emission scanning electron microscopy (FESEM), Au and C atoms would diffuse together and form the binary mixture membrane. Initially, the Au atoms diffused in the membrane are smaller than 1 nm, below the detection limit of the transmission electron microscopy (TEM), so that we are unable to observe the Au atoms in the formed membrane. However, after several months later, the Au atoms became larger and larger with expense of the smaller particles: Ostwald ripening. Furthermore, we also observe the Au crystalline lattice structure on the binary Au-C membrane. The formed Au crystalline lattice structures were constantly changing during electron beam imaging process due to Spinodal decomposition; the unstable thermodynamic system of Au-C binary membrane. The fabricated Au nanopore with an Au nanoparticle can be utilized as a single molecule nanobio sensor.
Phase development in a U-7 wt.% Mo vs. Al-7 wt.% Ge diffusion couple
NASA Astrophysics Data System (ADS)
Perez, E.; Keiser, D. D.; Sohn, Y. H.
2013-10-01
Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)3 phase.
BiOBr microspheres for photocatalytic degradation of an anionic dye
NASA Astrophysics Data System (ADS)
Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.
2017-03-01
BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.
Joining of Silicon Carbide Through the Diffusion Bonding Approach
NASA Technical Reports Server (NTRS)
Halbig, Michael .; Singh, Mrityunjay
2009-01-01
In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy
Fu, Xuewen; Chen, Bin; Tang, Jau; Zewail, Ahmed H.
2017-01-01
Dynamics of active or propulsive Brownian particles in nonequilibrium status have recently attracted great interest in many fields including artificial micro/nanoscopic motors and biological entities. Understanding of their dynamics can provide insight into the statistical properties of physical and biological systems far from equilibrium. We report the translational dynamics of photon-activated gold nanoparticles (NPs) in water imaged by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. Under excitation of femtosecond laser pulses, we observed that those NPs exhibit superfast diffusive translation with a diffusion constant four to five orders of magnitude greater than that in the absence of laser excitation. The measured diffusion constant follows a power-law dependence on the laser fluence and a linear increase with the laser repetition rate, respectively. This superfast diffusion of the NPs is induced by a strong random driving force arising from the photoinduced steam nanobubbles (NBs) near the NP surface. In contrast, the NPs exhibit a superfast ballistic translation at a short time scale down to nanoseconds. Combining with a physical model simulation, this study reveals a photoinduced NB propulsion mechanism for propulsive motion, providing physical insights into better design of light-activated artificial micro/nanomotors. The liquid-cell 4D-EM also provides the potential of studying other numerical dynamical behaviors in their native environments. PMID:28875170
Kim, Kyong Nam; Kim, Tae Hyung; Seo, Jin Seok; Kim, Ki Seok; Bae, Jeong Woon; Yeom, Geun Young
2013-12-01
The properties of Pd/Ir/Au ohmic metallization on p-type GaN have been investigated. Contacts annealed at 400 degrees C in O2 atmosphere demonstrated excellent ohmic characteristics with a specific contact resistivity of 1.5 x 10(-5) Omega-cm2. This is attributed to the formation of Ga vacancies at the contact metal-semiconductor interfacial region due to the out-diffusion of Ga atoms. The out-diffusion of Ga atoms was confirmed by X-ray photoelectron spectroscopy depth profiles, high-resolution transmission electron microscopy, and electron energy loss spectroscopy using a scanning transmission electron microscope.
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Hasegawa, Y.; Tsuda, H.; Mori, S.; Halbig, M. C.; Asthana, R.; Singh, M.
2017-01-01
SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength.
Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures
NASA Astrophysics Data System (ADS)
Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.
2017-12-01
The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.
Super-diffusion of excited carriers in semiconductors
Najafi, Ebrahim; Ivanov, Vsevolod; Zewail, Ahmed; Bernardi, Marco
2017-01-01
The ultrafast spatial and temporal dynamics of excited carriers are important to understanding the response of materials to laser pulses. Here we use scanning ultrafast electron microscopy to image the dynamics of electrons and holes in silicon after excitation with a short laser pulse. We find that the carriers exhibit a diffusive dynamics at times shorter than 200 ps, with a transient diffusivity up to 1,000 times higher than the room temperature value, D0≈30 cm2s−1. The diffusivity then decreases rapidly, reaching a value of D0 roughly 500 ps after the excitation pulse. We attribute the transient super-diffusive behaviour to the rapid expansion of the excited carrier gas, which equilibrates with the environment in 100−150 ps. Numerical solution of the diffusion equation, as well as ab initio calculations, support our interpretation. Our findings provide new insight into the ultrafast spatial dynamics of excited carriers in materials. PMID:28492283
Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.
Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo
2015-02-01
The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.
Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...
2015-09-10
We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less
Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging
NASA Astrophysics Data System (ADS)
Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier
2016-01-01
The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.
Holographic diffuser by use of a silver halide sensitized gelatin process
NASA Astrophysics Data System (ADS)
Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man
2003-05-01
Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.
NASA Astrophysics Data System (ADS)
Khokhar, Fawad S.; van Gastel, Raoul; Schwarz, Daniel; Zandvliet, Harold J. W.; Poelsema, Bene
2011-09-01
The growth of 4,4'-biphenyldicarboxylic acid (BDA) on Cu(001) has been studied using low energy electron microscopy and selective area low energy electron diffraction. The emergence of large islands and hydrogen bonding to perpendicularly oriented, adjacent molecules is confirmed. The two benzene rings of adsorbed BDA are twisted along the molecular axis. Unconventional growth of the domains, followed by a second nucleation stage, is observed at room temperature. This unanticipated feature is attributed to the accumulation of stress in the islands. Ostwald ripening in the films and the decay of BDA domains at 448 K exhibits features that are consistent with diffusion limited behavior.
Diffusion and convection in collagen gels: implications for transport in the tumor interstitium.
Ramanujan, Saroja; Pluen, Alain; McKee, Trevor D; Brown, Edward B; Boucher, Yves; Jain, Rakesh K
2002-01-01
Diffusion coefficients of tracer molecules in collagen type I gels prepared from 0-4.5% w/v solutions were measured by fluorescence recovery after photobleaching. When adjusted to account for in vivo tortuosity, diffusion coefficients in gels matched previous measurements in four human tumor xenografts with equivalent collagen concentrations. In contrast, hyaluronan solutions hindered diffusion to a lesser extent when prepared at concentrations equivalent to those reported in these tumors. Collagen permeability, determined from flow through gels under hydrostatic pressure, was compared with predictions obtained from application of the Brinkman effective medium model to diffusion data. Permeability predictions matched experimental results at low concentrations, but underestimated measured values at high concentrations. Permeability measurements in gels did not match previous measurements in tumors. Visualization of gels by transmission electron microscopy and light microscopy revealed networks of long collagen fibers at lower concentrations along with shorter fibers at high concentrations. Negligible assembly was detected in collagen solutions pregelation. However, diffusion was similarly hindered in pre and postgelation samples. Comparison of diffusion and convection data in these gels and tumors suggests that collagen may obstruct diffusion more than convection in tumors. These findings have significant implications for drug delivery in tumors and for tissue engineering applications. PMID:12202388
NASA Astrophysics Data System (ADS)
Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.
2018-04-01
FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.
Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan
2014-10-28
In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.
Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy.
Seo, M A; Yoo, J; Dayeh, S A; Picraux, S T; Taylor, A J; Prasankumar, R P
2012-12-12
Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is hindered by the limited knowledge of carrier dynamics in these structures. In particular, the strong influence of interfaces between different layers in NWs on transport makes it especially important to understand carrier dynamics in these quasi-one-dimensional systems. Here, we use ultrafast optical microscopy (4) to directly examine carrier relaxation and diffusion in single silicon core-only and Si/SiO(2) core-shell NWs with high temporal and spatial resolution in a noncontact manner. This enables us to reveal strong coherent phonon oscillations and experimentally map electron and hole diffusion currents in individual semiconductor NWs for the first time.
NASA Technical Reports Server (NTRS)
Leon, R. P.
1987-01-01
Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E
2012-07-27
Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.
Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques
NASA Astrophysics Data System (ADS)
Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.
2015-06-01
Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.
Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology.
Sander, Howard W; Golden, Marianna; Danon, Moris J
2002-10-01
Areflexic quadriplegia that occurs in the intensive care unit (ICU) is commonly ascribed to critical illness polyneuropathy based upon electrophysiology or muscle light microscopy. However, electron microscopy often documents a selective thick filament loss myopathy. Eight ICU patients who developed areflexic quadriplegia underwent biopsy. Seven patients had received steroids, and 2 had also received paralytic agents. Electrodiagnostic studies revealed absent or low-amplitude motor responses in 7. Sensory responses were normal in 5 of 6 and absent in 1. Initial electromyography revealed absent (n = 3), small (n = 3), or polyphasic (n = 1) motor unit potentials, and diffuse fibrillation potentials (n = 5). In all 8, light microscopy of muscle revealed numerous atrophic-angulated fibers and corelike lesions, and electron microscopy revealed extensive thick filament loss. Morphology of sural and intramuscular nerves, and, in one autopsied case, of the obturator nerve and multiple nerve roots, was normal. Although clinical, electrodiagnostic, and light microscopic features mimicked denervating disease, muscle electron microscopy revealed thick filament loss, and nerve histology was normal. This suggests that areflexic ICU quadriplegia is a primary myopathy and not an axonal polyneuropathy. Copyright 2002 Wiley Periodicals, Inc. Muscle Nerve 26: 499-505, 2002
Kubilus, James K.; Zapater i Morales, Carolina; Linsenmayer, Thomas F.
2017-01-01
Purpose During development, the corneal epithelium (CE) and the conjunctiva are derived from the surface ectoderm. Here we have examined how, during development, the cells of these two issues become isolated from each other. Methods Epithelia from the anterior eyes of chicken embryos were labeled with the fluorescent, lipophilic dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). DiI was placed on the epithelial surface of the developing anterior eye and its diffusion was monitored by fluorescence microscopy. Concomitant morphologic changes in the surface cells of these epithelial were examined by scanning electron microscopy. Immunofluorescence was used to analyze the expression of cytokeratin K3, ZO-1, N-cadherin and Connexin-43 and the function of gap junctions was analyzed using a cut-loading with the fluorescent dye rhodamine-dextran. Results Prior to embryonic day 8 (E8), DiI placed on the surface of the CE spreads throughout all the epithelial cells of the anterior eye. When older eyes were similarly labeled, dye diffusion was restricted to the CE. Similarly, diffusion of DiI placed on the conjunctival surface after E8 was restricted to the conjunctiva. Scanning electron microscopy showed that developmentally (1) physical separations progressively form between the cells of the CE and those of the conjunctiva, and (2) by E8 these separations form a ring that completely encompasses the cornea. The functional restriction of gap junctions between these tissues did not occur until E14. Conclusions During ocular development, a barrier to the diffusion of DiI forms between the contiguous CE and conjunctiva prior to the differential expression of gap junctions within these tissues. PMID:28319640
Observations of Ag diffusion in ion implanted SiC
Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...
2015-03-17
The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less
2014-01-01
devices with indirect-bandgap materials such as silicon . KEYWORDS: Ultrafast imaging , strained nanomaterials, spectroscopy Lattice strain produced by...photogenerated charge cloud as a result of carrier diffusion . Normalized carrier profiles, generated by integrating the images along the direction normal to the...To test this idea, Figure 2. Charge carrier diffusion in a Si NW locally strained by a bending deformation (A) SEM image of a bent Si nanowire ∼100
Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhipeng, E-mail: LI.Zhipeng@nims.go.jp; Mori, Toshiyuki; Auchterlonie, Graeme John
2011-09-15
Analytical transmission electron microscopy, in particular with the combination of energy dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), has been performed to investigate the microstructure and microchemistry of the interfacial region between the cathode (La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, LSCF) and the electrolyte (Gd-doped ceria, GDC). Two types of diffusions, mutual diffusion between cathode and electrolyte as well as the diffusion along grain boundaries, have been clarified. These diffusions suggest that the chemical stability of LSCF and GDC are not as good as previously reported. The results are more noteworthy if we take into consideration the factmore » that such interdiffusions occur even during the sintering process of cell preparation. - Graphical Abstract: Two types of diffusions, the mutual diffusion and the diffusion along grain boundaries, occurred at the cathode/electrolyte interface of intermediate temperature solid state fuel cells, during cell preparation. The mutual diffusion is denoted by black arrows and the diffusion along grain boundaries assigned by pink arrows. Highlights: > All the cations in cathode (LSCF) and electrolyte (GDC) can mutually diffuse into each other. > Diffusing elements will segregate at grain boundaries or triple junctions around the cathode/electrolyte interface. > Two types of diffusions, the mutual diffusion and diffusion along grain boundaries, have been clarified thereafter.« less
Diffusion bonding of titanium to 304 stainless steel
NASA Astrophysics Data System (ADS)
Ghosh, M.; Bhanumurthy, K.; Kale, G. B.; Krishnan, J.; Chatterjee, S.
2003-11-01
Diffusion bonding between commercially pure titanium and an austenitic stainless steel (AISI 304) has been carried out in the temperature range of 850-950 °C for 2 h at uniaxial pressure of 3 MPa in vacuum. The microstructure of the diffusion zone has been analysed by optical and scanning electron microscopy (SEM). The interdiffusion of the diffusing species across the interface has been evaluated by electron probe microanalysis (EPMA). The reaction products formed at the interface have been identified by X-ray diffraction technique. It has been observed that the diffusion zone is dominated by the presence of the σ phase close to the stainless steel side and the solid solution of β-Ti (solutes are Fe, Cr and Ni) close to the titanium. The presence of Fe 2Ti and FeTi has been found in the reaction zone. It has been observed that the bond strength (˜222 MPa) is highest for the couple processed at 850 °C and this value decreases with rise in joining temperature. The variation of strength of the transition joints is co-related with the microstructural characteristics of the diffusion zone.
Self-assembled formation and transformation of In/CdZnTe(110) nano-rings into camel-humps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen-Taguri, G.; Ruzin, A.; Goldfarb, I.
2012-05-21
We used in situ scanning tunneling microscopy to monitor in real time the formation of nano-rings at the molecular beam epitaxially grown In/CdZnTe(110) surface, and Auger electron spectroscopy to explore the corresponding compositional changes. In-diffusion of In and segregation of Cd to the surface in course of annealing lead to a formation of elliptically distorted nano-rings, elongated along the fast [110] diffusion direction. Exacerbated diffusion anisotropy in the liquid state, at temperatures above the melting point of In, further distorts the nano-rings into a camel-hump shape.
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
Uranium migration in spark plasma sintered W/UO2 CERMETS
NASA Astrophysics Data System (ADS)
Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn
2018-03-01
W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.
Glancing angle deposition of sculptured thin metal films at room temperature
NASA Astrophysics Data System (ADS)
Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.
2017-09-01
Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Carrizosa, Sara B.
2016-12-01
Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated graphene, reinforcing the available electron density of states in the vicinity of the Fermi level contributing to higher electroactivity, faster interfacial diffusion, and shorter distances for electron transfer, facilitated through molecular and chemical bridges obtained by electrodeposition as compared with the physical deposition.
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
Wang, Zhongrui; Joshi, Saumil; Savel’ev, Sergey E.; ...
2016-09-26
The accumulation and extrusion of Ca 2+ in the pre- and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. In order to emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca 2+ dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy minimization, closely resembling synaptic influx and extrusion of Ca 2+, respectively. Furthermore, the diffusive memristormore » and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses, representing an advance in hardware implementation of neuromorphic functionalities.« less
NASA Astrophysics Data System (ADS)
Divya, K. S.; Chandran, Akash; Reethu, V. N.; Mathew, Suresh
2018-06-01
A series of RGO/Ag nanocomposites with different weight addition ratios of graphene oxide (GO) have been successfully prepared in situ through the simultaneous reduction of GO and AgNO3 via a facile microwave irradiation. X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, UV-vis diffuse reflectance spectra, Scanning electron microscopy, Photoluminescence spectra, Raman spectra, Atomic Force Microscopy, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy are employed to determine the properties of the samples. It is found that RGO/Ag nanocomposites with a proper weight addition ratios of GO exhibit higher photocatalytic activity toward liquid phase photodegradation of Rhodamine B under visible light irradiation. The improved photoactivity of RGO/Ag nanocomposites can be ascribed to the integrative synergestic effect of enhanced adsorption capacity, the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag nanoparticles. This study also shows that graphene sheets act as electronic conductive channels to efficiently separate charge carriers from Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong
2011-05-01
Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells
Li, C.; Poplawsky, J.; Paudel, N.; ...
2014-09-19
At the CdTe/CdS interface, a significant Te-S interdiffusion has been found a few nanometers into the grain interiors with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). S substitution at Te sites has been directly resolved in CdTe with STEM Z-contrast images. Moreover, when enough S substitutes for Te, a structural transformation from zinc-blende to wurtzite has been observed. Cl segregation has also been found at the interface. STEM electron-beam-induced current (EBIC) shows that the p-n junction occurs a few nm into the CdTe grains, which is consistent with the S diffusion range we observe. The shiftmore » of the p-n junction suggests a buried homo-junction which would help reduce non-radiative recombination at the junction. Meanwhile, long-range S diffusion in CdTe grain boundaries (GBs) has been detected, as well as Te and Cl diffusion in CdS GBs.« less
Structure and constitution of glass and steel compound in glass-metal composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A.
2014-11-14
The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.
Connected Au network in annealed Ni/Au thin films on p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. P.; Jang, H. W.; Noh, D. Y.
2007-11-12
We report the formation of a connected Au network in annealed Ni/Au thin films on p-GaN, which was studied by scanning electron microscopy, transmission electron microscopy, and synchrotron x-ray diffraction. As the Ni was oxidized into NiO upon annealing at 530 deg. C in air, the Au layer was transformed to an interconnected network with an increased thickness. During annealing, Ni atoms diffuse out onto the Au through defects to form NiO, while Au atoms replace the Ni positions. The Au network grows downward until it reaches the p-GaN substrate, and NiO columns fill the space between the Au network.
Aebig, J A; Jordan, R L; Lawson, R H; Hsu, H T
1987-01-01
A monoclonal antibody reacting with prunus necrotic ringspot ilarvirus was tested in immunochemical studies, neutralization of infectivity assays, and by immuno-electron microscopy. The antibody was able to detect the 27,000 Mr coat protein of prunus necrotic ringspot ilarvirus in western blots and also detected all polypeptide fragments generated after incubation of whole virus with proteolytic enzymes. In neutralization of infectivity studies, the antibody blocked virus infectivity, although it did not precipitate the antigen in agar gel Ouchterlony double diffusion tests. Immuno-electron microscopy confirmed that the antibody coats virions but does not cause clumping. The antibody may be a useful tool for investigating coat protein-dependent initiation of ilarvirus infection.
Pereira, Wyllamanney da Silva; Andrés, Juan; Gracia, Lourdes; San-Miguel, Miguel A; da Silva, Edison Z; Longo, Elson; Longo, Valeria M
2015-02-21
Why and how Ag is formed when electron beam irradiation takes place on α-Ag2WO4 in a vacuum transmission electron microscopy chamber? To find an answer, the atomic-scale mechanisms underlying the formation and growth of Ag on α-Ag2WO4 have been investigated by detailed in situ transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) studies, density functional theory based calculations and ab initio molecular dynamics simulations. The growth process at different times, chemical composition, size distribution and element distribution were analyzed in depth at the nanoscale level using FE-SEM, operated at different voltages (5, 10, 15, and 20 kV), and TEM with energy dispersive spectroscopy (EDS) characterization. The size of Ag nanoparticles covers a wide range of values. Most of the Ag particles are in the 20-40 nm range. The nucleation and formation of Ag on α-Ag2WO4 is a result of structural and electronic changes in the AgOx (x = 2,4, 6, and 7) clusters used as constituent building blocks of this material, consistent with metallic Ag formation. First principle calculations point out that Ag-3 and Ag-4-fold coordinated centers, located in the sub-surface of the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio molecular dynamics simulations and the nudged elastic band (NEB) method were used to investigate the minimum energy pathways of these Ag atoms from positions in the first slab layer to outward sites on the (100) surface of α-Ag2WO4. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process.
Local modification of the surface state properties at dilute coverages: CO/Cu(111)
NASA Astrophysics Data System (ADS)
Zaum, Ch.; Meyer-auf-der-Heide, K. M.; Morgenstern, K.
2018-04-01
We follow the diffusion of CO molecules on Cu(111) by time-lapsed low-temperature scanning tunneling microscopy. The diffusivity of individual CO molecules oscillates with the distance to its nearest neighbor due to the long-range interaction mediated by the surface state electrons. The markedly different wavelengths of the oscillation at a coverage of 0.6% ML as compared to the one at 6% ML coverage correspond to two different wavelengths of the surface state electrons, consistent with a shift of the surface state by 340 meV. This surprisingly large shift as compared to results of averaging methods suggests a local modification of the surface state properties.
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.
2015-01-01
Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652
Interdiffusion and reactions between U-Mo and Zr at 650 °C as a function of time
NASA Astrophysics Data System (ADS)
Park, Y.; Keiser, D. D.; Sohn, Y. H.
2015-01-01
Development of monolithic U-Mo alloy fuel (typically U-10 wt.%Mo) for the Reduced Enrichment for Research and Test Reactors (RERTR) program entails a use of Zr diffusion barrier to eliminate the interdiffusion-reactions between the fuel alloy and Al-alloy cladding. The application of Zr barrier to the U-Mo fuel system requires a co-rolling process that utilizes a soaking temperature of 650 °C, which represents the highest temperature the fuel system is exposed to during both fuel manufacturing and reactor application. Therefore, in this study, development of phase constituents, microstructure and diffusion kinetics of U-10 wt.%Mo and Zr was examined using solid-to-solid diffusion couples annealed at 650 °C for 240, 480 and 720 h. Phase constituents and microstructural development were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Concentration profiles were mapped as diffusion paths on the isothermal ternary phase diagram. Within the diffusion zone, single-phase layers of β-Zr and β-U were observed along with a discontinuous layer of Mo2Zr between the β-Zr and β-U layers. In the vicinity of Mo2Zr phase, islands of α-Zr phases were also found. In addition, acicular α-Zr and U6Zr3Mo phases were observed within the γ-U(Mo) terminal alloy. Growth rate of the interdiffusion-reaction zone was determined to be 7.75 (± 5.84) × 10-16 m2/s at 650 °C, however with an assumption of a certain incubation period.
Shi, Jiabo; Wang, Chunhua; Ngai, To; Lin, Wei
2018-06-13
Understanding accessibility and interactions of clay nanoparticles with collagen fibers is an important fundamental issue for the conversion of collagen to leather matrix. In this study, we have investigated the diffusion and binding of Laponite into the collagen fiber network. Our results indicate that the diffusion behaviors of Laponite into the collagen exhibit the Langmuir adsorption, verifying its affinity for collagen. The introduction of Laponite leads to a shift in the isoelectric point of collagen from ∼6.8 to ∼4.5, indicating the ionic bonding between the positively charged amino groups of the collagen and negatively charged Laponite under the tanning conditions. Fluorescence microscopy, atomic force microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and wide-angle X-ray diffraction analyses reveal that Laponite nanoparticles can penetrate into collagen microstructure and evenly distributed onto collagen fibrils, not altering native D-periodic banding patterns of collagen fibrils. Attenuated total reflectance-Fourier transform infrared and Raman spectroscopy detections further demonstrate the presence of noncovalent interactions, namely, ionic and hydrogen bonding, between Laponite and collagen. These findings provide a theoretical basis for the use of Laponite as an emerging tanning agent in leather manufacture.
Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.
Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi
2017-06-28
The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.
NASA Astrophysics Data System (ADS)
Motayed, A.; Davydov, A. V.; Boettinger, W. J.; Josell, D.; Shapiro, A. J.; Levin, I.; Zheleva, T.; Harris, G. L.
2005-05-01
Tungsten metal layer was used for the first time as an effective diffusion barrier for the standard Ti/Al/Ti/Au ohmic metallization scheme to obtain thermally stable ohmic contact suitable for high temperature applications. Comparative studies were performed on three distinct metallization schemes: 1) standard GaN/Ti/Al/Ti/Au, 2) GaN/Ti/Al/W/Au, and 3) GaN/Ti/Al/Ti/W/Au. For the GaN with doping level of 5 × 1017 cm-3, the lowest specific contact resistance for the Ti/Al/Ti/W/Au metallization scheme annealed in argon at 750 °C for 30 sec was 5 × 10-6 .cm2, which is comparable to the standard Ti/Al/Ti/Au scheme. X-ray diffractions (XRD), auger electron spectroscopy (AES) depth profiling, field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) revealed that the Ti/Al/Ti/W/Au metallization has superior morphology and microstructural properties compared to standard Ti/Al/Ti/Au metallizations. Remarkably, this metallization was able to withstand thermal aging at 500 °C for 50 hrs with only marginal morphological and electrical deterioration. These studies revealed that the utilization of a compound diffusion barrier stack, as in the Ti/Al/Ti/W/Au metallization, yields electrically, structurally, and morphologically superior metallizations with exceptional thermal stability.
Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids
MacGregor-Chatwin, Craig; Sener, Melih; Barnett, Samuel F. H.; ...
2017-03-31
Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from Thermosynechococcus elongatus, Synechococcus sp PCC 7002, and Synechocystis sp PCC 6803. Hyperspectral confocal fluorescence microscopy and three-dimensional structured illumination microscopy of Synechocystis sp PCC 6803 cells visualize PSI domains within the context of the complete thylakoid system. Crystallographic and AFM data were used tomore » build a structural model of a membrane landscape comprising 96 PSI trimers and 27,648 chlorophyll a molecules. Rather than facilitating intertrimer energy transfer, the close associations between PSI primarily maximize packing efficiency; short-range interactions with Complex I and cytochrome b6f are excluded from these regions of the membrane, so PSI turnover is sustained by long-distance diffusion of the electron donors at the membrane surface. Elsewhere, PSI-photosystem II contact zones provide sites for docking phycobilisomes and the formation of megacomplexes. Finally, PSI-enriched domains in cyanobacteria might foreshadow the partitioning of PSI into stromal lamellae in plants, similarly sustained by long-distance diffusion of electron carriers.« less
Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids[CC-BY
MacGregor-Chatwin, Craig; Sener, Melih; Hitchcock, Andrew; Barnhart-Dailey, Meghan C.; Barber, James; Schulten, Klaus
2017-01-01
Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from Thermosynechococcus elongatus, Synechococcus sp PCC 7002, and Synechocystis sp PCC 6803. Hyperspectral confocal fluorescence microscopy and three-dimensional structured illumination microscopy of Synechocystis sp PCC 6803 cells visualize PSI domains within the context of the complete thylakoid system. Crystallographic and AFM data were used to build a structural model of a membrane landscape comprising 96 PSI trimers and 27,648 chlorophyll a molecules. Rather than facilitating intertrimer energy transfer, the close associations between PSI primarily maximize packing efficiency; short-range interactions with Complex I and cytochrome b6f are excluded from these regions of the membrane, so PSI turnover is sustained by long-distance diffusion of the electron donors at the membrane surface. Elsewhere, PSI-photosystem II contact zones provide sites for docking phycobilisomes and the formation of megacomplexes. PSI-enriched domains in cyanobacteria might foreshadow the partitioning of PSI into stromal lamellae in plants, similarly sustained by long-distance diffusion of electron carriers. PMID:28364021
Raya, José G; Arnoldi, Andreas P; Weber, Daniel L; Filidoro, Lucianna; Dietrich, Olaf; Adam-Neumair, Silvia; Mützel, Elisabeth; Melkus, Gerd; Putz, Reinhard; Reiser, Maximilian F; Jakob, Peter M; Glaser, Christian
2011-08-01
To investigate the relationship of the different diffusion tensor imaging (DTI) parameters (ADC, FA, and first eigenvector (EV)) to the constituents (proteoglycans and collagen), the zonal arrangement of the collagen network, and mechanical loading of articular cartilage. DTI of eight cartilage-on-bone samples of healthy human patellar cartilage was performed at 17.6 T. Three samples were additionally imaged under indentation loading. After DTI, samples underwent biomechanical testing, safranin-O staining for semiquantitative proteoglycan estimation, and scanning electron microscopy (SEM) for depicting collagen architecture. From the articular surface to the bone-cartilage interface, ADC continuously decreased and FA increased. Cartilage zonal heights calculated from EVs strongly correlated with SEM-derived zonal heights (P < 0.01, r (2)=0.87). Compression reduced ADC in the superficial 30% of cartilage and increased FA in the superficial 5% of cartilage. Reorientation of the EVs indicative of collagen fiber reorientation under the indenter was observed. No significant correlation was found between ADC, FA, and compressive stiffness. Correlating ADC and FA with proteoglycan and collagen content suggests that diffusion is dominated by different depth-dependent mechanisms within cartilage. Knowledge of the spatial distribution of the DTI parameters and their variation contributes to form a database for future analysis of defective cartilage.
NASA Astrophysics Data System (ADS)
Li, Siyang; Yang, Donghua; Tan, Qing; Li, Liangliang
2015-06-01
The diffusion barrier property of Co-P film as a buffer layer between SiC-dispersed Bi2Te3 bulk material and In-48Sn solder was investigated. A Co-P film with thickness of ~6 µm was electroplated on SiC-dispersed Bi2Te3 substrate, joined with In-48Sn solder by a reflow process, and annealed at 100°C for up to 625 h. The formation and growth kinetics of intermetallic compounds (IMCs) at the interface between the In-48Sn and substrate were studied using transmission electron microscopy and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results showed that crystalline Co(In,Sn)3 formed as an irregular layer adjacent to the solder side at the solder/Co-P interface due to diffusion of Co towards the solder, and a small amount of amorphous Co45P13In12Sn30 appeared at the Co-P side because of diffusion of In and Sn into Co-P. The growth of Co(In,Sn)3 and Co45P13In12Sn30 during solid-state aging was slow, being controlled by interfacial reaction and diffusion, respectively. For comparison, In-48Sn/Bi2Te3-SiC joints were prepared and the IMCs in the joints analyzed. Without a diffusion barrier, In penetrated rapidly into the substrate, which led to the formation of amorphous In x Bi y phase in crystalline In4Te3 matrix. These IMCs grew quickly with prolongation of the annealing time, and their growth was governed by volume diffusion of elements. The experimental data demonstrate that electroplated Co-P film is an effective diffusion barrier for use in Bi2Te3-based thermoelectric modules.
Perforated cenosphere-supported pH-sensitive spin probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomenko, E.V.; Bobko, A.A.; Salanov, A.N.
2008-03-15
Porous supports with an accessible internal volume and a shell providing the diffusive migration of pH-sensitive spin probes were obtained for the first time from hollow aluminosilicate cenospheres isolated from the coal fly ash. Using the methods of scanning electron microscopy and electron spin resonance, the morphology of different porous cenosphere modifications and its influence on the diffusion of spin probes from the internal volume were studied. When supporting aqueous solutions of a radical, the characteristic diffusion time for the mesoporous structure of the support is longer by a factor of 3-5 than that for the macroporous structure. Ferrospinel inmore » a content of 6 wt.% do not virtually affect the diffusion rate of spin probes. A constant rate of radical migration of similar to 1 {mu} mol min{sup -1}, determined by radical solubility in water, is achieved when a radical in the solid aggregate state is supported on the magnetic cenospheres.« less
Saitoh, Sei; Ohno, Nobuhiko; Saitoh, Yurika; Terada, Nobuo; Shimo, Satoshi; Aida, Kaoru; Fujii, Hideki; Kobayashi, Tetsuro; Ohno, Shinichi
2018-01-01
Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets. PMID:29622846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.
2013-02-15
The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less
NASA Astrophysics Data System (ADS)
Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.
2017-01-01
Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.
In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.
Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin
2017-08-01
Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unusual inhomogeneous microstructures in charge glass state of PbCrO3
NASA Astrophysics Data System (ADS)
Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo
2018-05-01
We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.
Chachuli, Siti Haziyah Mohd; Nawaz, Asif; Shah, Kifayatullah; Naharudin, Idanawati; Wong, Tin Wui
2016-06-01
Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages. Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary. Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.
Nitriding of AISI 4140 steel by a low energy broad ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.
2006-11-15
A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by {epsilon}-Fe{sub 2-3}N and {gamma}-Fe{sub 4}N phases and the diffusion zone is formed by fine precipitates, around big grainsmore » of the original martensitic phase, constituted principally by {gamma}-Fe{sub 4}N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases.« less
Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties
NASA Astrophysics Data System (ADS)
Cai, Yujie; Li, Dongya; Sun, Jingyu; Chen, Mengdie; Li, Yirui; Zou, Zhongwei; Zhang, Hua; Xu, Haiming; Xia, Dongsheng
2018-05-01
The square-sharped BiOCl nanosheets with oxygen vacancies were successfully synthesized via a facile hydrothermal route using xylitol as surfactant. The as-prepared BiOCl samples were characterized by Powder X-ray Diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), UV-Vis diffuse reflectance spectra (DRS), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR). The as-prepared samples were phase-pure with the width and the thickness were about 50-400 nm and 20-50 nm respectively. Besides, the photodegradation performances showed the BiOCl nanosheets with 0.1 g concentration of xylitol (BOC-1) had the best photocatalytic activity under visible light due to its special polycrystalline structure, grain boundary and an optimum concentration of oxygen vacancies. The h+ and radO2- were the two main active species during the photocatalytic process and the possible photocatalytic mechanism was proposed.
NASA Astrophysics Data System (ADS)
Zhou, Baoyu; Feng, Wei; Gao, Guohua; Wu, Guangming; Chen, Yue; Li, Wen
2017-11-01
Porous WO3 nanospheres film was successfully synthesized by employing a low-cost and facile template-assisted sol-gel method. The effects of template agent (Pluronic F127) on structure, morphology and specific surface area were systematically studied by Fourier transform infrared (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption. It was found that F127 played a significant role in governing the morphology of WO3 sol clusters, and the optimal post-processing for ‘naked’ WO3 nanospheres film is acetone extraction and subsequent annealing treatment at 350 °C. As anticipated, the relative fast coloring/bleaching rates of WO3 nanospheres film are believed to be the results of porous microstructure and nanocrystalline, where provides much surface active position (166 m2 g-1) and shortens the proton diffusion distance. We believe that this unique approach to synthesize nanospheres structure may has beneficial effects on applications which also are based on insertion/extraction and diffusion abilities, such as supercapacitor, batteries and gas sensors.
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys
NASA Astrophysics Data System (ADS)
Venugopal, S.; Mahendran, G.
2018-05-01
Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.
NASA Astrophysics Data System (ADS)
dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro
2018-04-01
New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).
NASA Astrophysics Data System (ADS)
Ramanathan, Santheraleka; Gopinath, Subash C. B.; Anbu, Periasamy; Lakshmipriya, Thangavel; Kasim, Farizul Hafiz; Lee, Choul-Gyun
2018-05-01
This study focused on the evaluation of antimicrobial activity of silver nanoparticles (AgNPs) after their green synthesis by means of a Solanum trilobatum bark extract. The obtained product with an intense surface plasmon resonance band at ∼442 nm with UV-visible spectroscopic analysis indicated the formation of AgNPs. The morphology of AgNPs was observed under transmission electron microscopy and field emission scanning electron microscopy, displayed that the eco-friendly synthesized AgNPs have a spherical shape with an average size of ∼25 nm in diameter. X-ray powder diffraction and selected area electron diffraction analyses confirmed that the AgNPs are crystalline in nature. Fourier transform infrared spectroscopy indicated that the AgNPs capped with active ingredients of the bark extract. X-ray photoelectron spectroscopy revealed elemental composition of the AgNPs. The performance of S. trilobatum bark extract-capped AgNPs in terms of inhibition of microbial growth was studied by disc diffusion and well diffusion assays. Eco-friendly synthesized S. trilobatum extract-capped AgNPs were found to possess enhanced antimicrobial properties: growth inhibition of gram-negative and gram-positive bacteria and of fungal species. These results demonstrated the potential applications of the indigenous medicinal plants to the field of nanotechnology.
Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-12-29
Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.
Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke
Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.
Lead electrowinning in a fluoborate medium. Use of hydrogen diffusion anodes
NASA Astrophysics Data System (ADS)
Expósito, E.; González-García, J.; Bonete, P.; Montiel, V.; Aldaz, A.
The results of an investigation of the electrowinning of lead employing a fluoboric acid bath are reported. The electrodeposition lead reaction was studied by voltammetric methods and scanning electron microscopy (SEM) microphotographs of the electrodeposited lead were taken. The effects of current density, temperature, catholyte flow and H + concentration were investigated on a laboratory scale to optimise operating conditions. Finally, the substitution of the traditionally used Dimensionally Stable Anode (DSA) by a Hydrogen Diffusion Electrode (HDE) was made in order to decrease the energy consumption (EC) of the overall process.
NASA Astrophysics Data System (ADS)
Huang, Ke; Keiser, Dennis D.; Sohn, Yongho
2013-02-01
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.
Surface mass diffusion over an extended temperature range on Pt(111)
NASA Astrophysics Data System (ADS)
Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.
2007-06-01
Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.
Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.
Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M
2017-12-01
We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.
Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution.
Garbrecht, Magnus; Saha, Bivas; Schroeder, Jeremy L; Hultman, Lars; Sands, Timothy D
2017-04-06
Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 10 14 m -2 ; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice.
Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Harish, G. S.; Sreedhara Reddy, P.
2015-09-01
Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.Y.; Turner, B.R.; Schowalter, L.J.
1993-07-01
Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottkymore » barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Wu, Guan; Liu, Na; Gao, Xuguang; Tian, Xiaohui; Zhu, Yanbin; Zhou, Yingke; Zhu, Qingyou
2018-03-01
The LiFePO4/C composites have been successfully synthesized by a hydrothermal process, with the combined carbon sources of fructose and calcium lignosulfonate. The morphology and microstructure of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The electrochemical properties were evaluated by the constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The uniform carbon coating layer derived from calcium lignosulfonate can effectively improve the electronic conductivity, lithium-ion diffusivity and surface stability of the LiFePO4/C composites and prevent the side reactions between the LiFePO4 particles and electrolytes. The LiFePO4/C composites display excellent rate capability, superior cycle life and outstanding low temperature performance, which are promising for lithium-ion battery applications in electrical vehicles and electrical energy storage systems.
NASA Astrophysics Data System (ADS)
Tu, Xiaofeng; Zhou, Yingke; Song, Yijie
2017-04-01
The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.
Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment
NASA Astrophysics Data System (ADS)
Cerrato, Erik; Gionco, Chiara; Berruti, Ilaria; Sordello, Fabrizio; Calza, Paola; Paganini, Maria Cristina
2018-08-01
This work reports the effect of doping zinc oxide with lanthanide ions on structural, EPR and UV visible properties. Bare and doped samples were synthesized using the simple and green hydrothermal process. Different rare earth ions (RE = La, Ce, Pr, Er and Yb) with 1% molar ratio RE/Zn were used. The samples have been studied using X Ray Diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV visible diffuse reflectance spectroscopy. Finally, electron paramagnetic resonance (EPR) spectroscopy, was used to assess the materials photoactivity under UV irradiation, both in solid state, to see the charge carriers' generation and in solution, evaluating the OH• radical formation using the DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide) spin trapping technique. The results suggest that the synthesized materials could be interesting systems for the photocatalytic abatement of emerging organic persistent pollutants in wastewater treatment plants.
Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium
NASA Astrophysics Data System (ADS)
Höche, Daniel; Shinn, Michelle; Müller, Sven; Schaaf, Peter
2009-04-01
Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.
Kido, Takashi; Morimoto, Yasuo; Yatera, Kazuhiro; Ishimoto, Hiroshi; Ogoshi, Takaaki; Oda, Keishi; Yamasaki, Kei; Kawanami, Toshinori; Shimajiri, Shohei; Mukae, Hiroshi
2017-04-21
In patients with diffuse lung diseases, differentiating occupational lung diseases from other diseases is clinically important. However, the value of assessing asbestos and particles in bronchoalveolar lavage fluid (BALF) in diffuse lung diseases by electron microscopy (EM) remains unclear. We evaluated the utility of EM in detecting asbestos fibers and particles in patients with diffuse lung diseases. The BALF specimens of 107 patients with diffuse lung diseases were evaluated. First, detection of asbestos by EM and light microscopy (LM) were compared. Second, the detection of asbestos using surgically obtained lung tissues of 8 of 107 patients were compared with the results of EM and LM in BALF. Third, we compared the results of mineralogical components of particles in patients with (n = 48) and without (n = 59) a history of occupational exposure to inorganic dust. BALF asbestos were detected in 11 of 48 patients with a history of occupational exposure by EM; whereas asbestos as asbestos bodies (ABs) were detected in BALF in 4 of these 11 patients by LM. Eight of 107 patients in whom lung tissue samples were surgically obtained, EM detected BALF asbestos at a level of >1,000 fibers/ml in all three patients who had ABs in lung tissue samples by LM at a level of >1,000 fibers/g. The BALF asbestos concentration by EM and in lung tissue by LM were positively correlated. The particle fractions of iron and phosphorus were increased in patients with a history of occupational exposure and both correlated with a history of occupational exposure by a multiple regression analysis. EM using BALF seemed to be superior to LM using BALF and displayed a similar sensitivity to LM using surgically-obtained lung tissue samples in the detection of asbestos. Our results also suggest that detection of elements, such as iron and phosphorus in particles, is useful for evaluating occupational exposure. We conclude that the detection of asbestos and iron and phosphorus in particles in BALF by EM is very useful for the evaluation of occupational exposure.
Interdiffusion and reaction between pure magnesium and aluminum alloy 6061
Kammerer, C. C.; Fu, Mian; Zhou, Le; ...
2015-06-01
Using solid-to-solid couples investigation, this study characterized the reaction products evolved and quantified the diffusion kinetics when pure Mg bonded to AA6061 is subjected to thermal treatment at 300°C for 720 hours, 350°C for 360 hours, and 400°C for 240 hours. Characterization techniques include optical microscopy, scanning electron microscopy with X-ray energy dispersive spectroscopy, and transmission electron microscopy. Parabolic growth constants were determined for γ-Mg 17Al 12, β-Mg 2Al 3, and the elusive ε-phase. Similarly, the average effective interdiffusion coefficients of major constituents were calculated for Mg (ss), γ-Mg 17Al 12, β-Mg 2Al 3, and AA6061. The activation energies andmore » pre-exponential factors for both parabolic growth constant and average effective interdiffusion coefficients were computed using the Arrhenius relationship. The activation energy for growth of γ-Mg 17Al 12 was significantly higher than that for β-Mg 2Al 3 while the activation energy for interdiffusion of γ-Mg 17Al 12 was only slightly higher than that for β-Mg 2Al 3. As a result, comparisons are made between the results of this study and those of diffusion studies between pure Mg and pure Al to examine the influence of alloying additions in AA6061.« less
Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony
2008-11-03
Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.
Mecanismes d'ablation du silicium par laser ultrarapide amplifie par des nanostructures plasmoniques
NASA Astrophysics Data System (ADS)
Robitaille, Alexandre
Ultrafast laser interaction with gold nanostructures deposited onto a silicon surface produces considerable field amplification that can result in the ablation of features with dimensions smaller than the diffraction limit. This field amplification in the near field of the nanostructures has been thoroughly investigated in the literature. However, while this is the main phenomenon that permits this nanoablation, energy deposition and diffusion processes cannot be neglected to interpret experimental results. In this work, we study plasmon-enhanced femtosecond laser ablation of silicon using gold nanorods and gold nanospheres to produce sub-diffraction limit holes. Atomic force microscopy and scanning electron microscopy of such features are done and hole depth as a function of fluence is measured. Especially for gold nanorods, hole shape is inconsistent with calculated field distribution. Field distribution alone would let us believe that each nanorod would produce two holes at its both ends. We show that using a model based on a differential equations system describing carriers excitation and diffusion, both shape and depth of the nanoholes can be predicted. Importance of the diffusion process is shown to arise from the extreme localization of the deposited energy around the nanostructure, compared to what is usually the case for conventional ablation of a surface. The characteristic shape of holes is revealed as a striking signature of the energy distribution through the electron-phonon carrier density dependant interaction.
Lithium diffusion in sputter-deposited Li4Ti5O12 thin films
NASA Astrophysics Data System (ADS)
Wunde, F.; Berkemeier, F.; Schmitz, G.
2012-10-01
Li4Ti5O12 (LTO) thin films are deposited by dc-ion beam sputtering at different oxygen partial pressures and different substrate temperatures. In order to investigate, how these two parameters influence the atomic structure, the specimens are characterized by X-ray diffraction and transmission electron microscopy. Electrochemical characterization of the films is done by cyclic voltammetry and chrono-potentiometry. To determine an averaged chemical diffusion coefficient of lithium, a method is developed, evaluating c-rate tests. The results obtained by this method are compared to results obtained by the well established galvanostatic intermittent titration technique (GITT), which is used to determine a concentration dependent diffusion coefficient of lithium in LTO.
NASA Astrophysics Data System (ADS)
Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung
2015-01-01
Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Y., E-mail: y-sakaguchi@cross.or.jp; Asaoka, H.; Uozumi, Y.
2016-08-07
Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge{sub 33}S{sub 67}/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge{sub 33}S{sub 67} layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.
Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins
Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong
2016-01-01
The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544
Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity
NASA Astrophysics Data System (ADS)
Cui, Haojie; Zhou, Yawen; Mei, Jinfeng; Li, Zhongyu; Xu, Song; Yao, Chao
2018-01-01
The efficient charge separation action and visible-light responding could enhance the photocatalytic property of photocatalysts. In the present study, novel CdS/BiOBr nanosheets composites were synthesized by a three-step process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), diffuse reflection spectroscopy (DRS), Raman spectroscopy and photoluminescence (PL). Under visible-light irradiation, the as-prepared CdS nanoparticles decorated BiOBr nanosheets exhibited the excellent photocatalytic activity and high stability for malachite green (MG) degradation. The photodegradation achieved maximum degradation efficiency (99%) using CdS/BiOBr-3 composites as photocatalyst. Furthermore, the possible photocatalytic mechanism upon CdS/BiOBr composites was also discussed through radical and holes trapping experiments. The heterostructure between CdS and BiOBr improved photocatalytic activity dramatically, which greatly promoted migration rate of the photoinduced electrons besides limiting the recombination of photogenerated electron-hole pairs.
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum
NASA Astrophysics Data System (ADS)
Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.
2018-03-01
The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.
Three-dimensional nanoscale imaging by plasmonic Brownian microscopy
NASA Astrophysics Data System (ADS)
Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang
2017-12-01
Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.
Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun
2012-07-01
A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.
Synthesis and photocatalytic properties of TiO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X.H.; Liang, Y.; Wang, Z.
2008-08-04
TiO{sub 2} particles, rods, flowers and sheets were prepared by hydrothermal method via adjusting the temperature, the pressure and the concentration of TiCl{sub 4}. The as-prepared TiO{sub 2} powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra and N{sub 2} adsorption-desorption measurements. It was found that pressure is the most important factor influencing the morphology of TiO{sub 2}. The photocatalytic activity of the products was evaluated by the photodegradation of aqueous brilliant red X-3B solution under UV light. Among the as-prepared nanostructures, the flower-like TiO{sub 2}more » exhibited the highest photocatalytic activity.« less
Fractal growth of platinum electrodeposits revealed by in situ electron microscopy.
Wang, Lifen; Wen, Jianguo; Sheng, Huaping; Miller, Dean J
2016-10-06
Fractals are commonly observed in nature and elucidating the mechanisms of fractal-related growth is a compelling issue for both fundamental science and technology. Here we report an in situ electron microscopy study of dynamic fractal growth of platinum during electrodeposition in a miniaturized electrochemical cell at varying growth conditions. Highly dendritic growth - either dense branching or ramified islands - are formed at the solid-electrolyte interface. We show how the diffusion length of ions in the electrolyte influences morphology selection and how instability induced by initial surface roughness, combined with local enhancement of electric field, gives rise to non-uniform branched deposition as a result of nucleation/growth at preferred locations. Comparing the growth behavior under these different conditions provides new insight into the fundamental mechanisms of platinum nucleation.
Isolated molecular dopants in pentacene observed by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Kahn, Antoine
2009-11-01
Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.
Pepsin diffusion in dairy gels depends on casein concentration and microstructure.
Thévenot, J; Cauty, C; Legland, D; Dupont, D; Floury, J
2017-05-15
Fundamental knowledge of gastric digestion had only focused on acid diffusion from the gastric fluid, but no data are available for pepsin diffusion. Using fluorescence recovery after photobleaching technique, diffusion coefficients D of fluorescein isothiocyanate (FITC)-pepsin were measured in rennet gels across a range of casein concentrations allowing to form networks of protein aggregates with different structures. To investigate the microstructural parameters of native gels, electron microscopy image analysis were performed and qualitatively related to diffusion behavior of FITC-pepsin in these dairy gels. This study is the first report on quantification of pepsin diffusion in dairy product. Pepsin diffusion in rennet gels depends on casein concentration and microstructure. Models of polymer science can be used to assess D in dairy gel. Such data should be confronted with pepsin activity in acidic environment, and will be very useful as input parameters in mathematical models of food degradation in the human stomach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shape transition in nano-pits after solid-phase etching of SiO{sub 2} by Si islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F.; Curiotto, S.; Cheynis, F.
2015-05-11
We study the nano-pits formed during the etching of a SiO{sub 2} film by reactive Si islands at T≈1000 °C. Combining low energy electron microscopy, atomic force microscopy, kinetic Monte Carlo simulations, and an analytic model based on reaction and diffusion at the solid interface, we show that the shape of the nanopits depend on the ratio R/x{sub s} with R the Si island radius and x{sub s} the oxygen diffusion-length at the Si/SiO{sub 2} interface. For small R/x{sub s}, nanopits exhibit a single-well V-shape, while a double-well W-shape is found for larger R/x{sub s}. The analysis of the transition revealsmore » that x{sub s}∼60 nm at T≈1000 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Chang W.; Iddir, Hakim; Uzun, Alper
To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir 3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir 3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations providedmore » estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.« less
Miyata, Tomohiro; Uesugi, Fumihiko; Mizoguchi, Teruyasu
2017-12-01
Investigation of the local dynamic behavior of atoms and molecules in liquids is crucial for revealing the origin of macroscopic liquid properties. Therefore, direct imaging of single atoms to understand their motions in liquids is desirable. Ionic liquids have been studied for various applications, in which they are used as electrolytes or solvents. However, atomic-scale diffusion and relaxation processes in ionic liquids have never been observed experimentally. We directly observe the motion of individual monatomic ions in an ionic liquid using scanning transmission electron microscopy (STEM) and reveal that the ions diffuse by a cage-jump mechanism. Moreover, we estimate the diffusion coefficient and activation energy for the diffusive jumps from the STEM images, which connect the atomic-scale dynamics to macroscopic liquid properties. Our method is the only available means to observe the motion, reactions, and energy barriers of atoms/molecules in liquids.
Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas
2007-01-01
A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.
NASA Astrophysics Data System (ADS)
Vankar, Padma S.; Shukla, Dhara
2012-06-01
Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.
NASA Astrophysics Data System (ADS)
de Carvalho Nunes, Frederico; de Almeida, Luiz Henrique; Ribeiro, André Freitas
2006-12-01
HK steels are among the most used heat-resistant cast stainless steels, being corrosion-resistant and showing good mechanical properties at high service temperatures. These steels are widely used in reformer furnaces and as superheater tubes. During service, combustion gases leaving the burners come in contact with these tubes, resulting in corrosive attack and a large weight loss occurs due to the presence of vanadium, which forms low melting point salts, removing the protective oxide layer. In this work the external surface of a tube with dramatic wall thickness reduction was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. The identification of the phases was achieved by energy dispersive spectroscopy (EDS) analyses. The results showed oxides arising from the external surface. In this oxidized region vanadium compounds inside chromium carbide particles were also observed, due to inward vanadium diffusion during corrosion attack. A chemical reaction was proposed to explain the presence of vanadium in the metal microstructure.
Goode, Angela E.; Skepper, Jeremy N.; Thorley, Andrew J.; Seiffert, Joanna M.; Chung, K. Fan; Tetley, Teresa D.; Shaffer, Milo S. P.; Ryan, Mary P.
2015-01-01
Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinised. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data. PMID:25606708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaotang; He, Yang; Mao, Scott X.
Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to themore » nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.« less
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films.
Precner, M; Polaković, T; Qiao, Qiao; Trainer, D J; Putilov, A V; Di Giorgio, C; Cone, I; Zhu, Y; Xi, X X; Iavarone, M; Karapetrov, G
2018-04-30
We report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the work function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2 . Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2 -based integrated electronics and indicate the importance of defect control and layer passivation.
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films
Precner, Marian; Polakovic, T.; Qiao, Qiao; ...
2018-04-30
Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Precner, Marian; Polakovic, T.; Qiao, Qiao
Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less
NASA Astrophysics Data System (ADS)
Xie, Yigao; Yang, Yang; Zhang, Tongbo; Fu, Yanqing; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Diffusion process by Nd-Al and Pr-Al alloys was compared and investigated in Nd-Fe-B thin films. Enhanced coercivity 2.06T and good squareness was obtained by using Pr85Al15 and Nd85Al15 alloys as diffusion sources. But the coercivity of diffusion-processed thin films by Pr70Al30 and Pr55Al45 alloys decreased to 2.04T and 1.82T. High ambient coercivity of 2.26T was achieved in diffusion-processed thin film by Nd70Al30 leading to an improved coercivity thermal stability because Nd2Fe14B grains were enveloped by Nd-rich phase as seen by transmission electron microscopy Nd-loss image. Meanwhile, microstructure-dependent parameters α and Neff were improved. However, high content of Al in diffusion-processed thin film by Nd55Al45 lead to degraded texture and coercivity.
NASA Astrophysics Data System (ADS)
Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc
2017-06-01
This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.
Jiamboonsri, Pimsumon; Pithayanukul, Pimolpan; Bavovada, Rapepol; Chomnawang, Mullika T
2011-07-25
Plant extracts are a valuable source of novel antibacterial compounds to combat pathogenic isolates of methicillin-resistant Staphylococcus aureus (MRSA), a global nosocomial infection. In this study, the alcoholic extract from Thai mango (Mangifera indica L. cv. 'Fahlun') seed kernel extract (MSKE) and its phenolic principles (gallic acid, methyl gallate and pentagalloylglucopyranose) demonstrated potent in vitro antibacterial activity against Staphylococcus aureus and 19 clinical MRSA isolates in studies of disc diffusion, broth microdilution and time-kill assays. Electron microscopy studies using scanning electron microscopy and transmission electron microscopy revealed impaired cell division and ultra-structural changes in bacterial cell morphology, including the thickening of cell walls, of microorganisms treated with MSKE; these damaging effects were increased with increasing concentrations of MSKE. MSKE and its phenolic principles enhanced and intensified the antibacterial activity of penicillin G against 19 clinical MRSA isolates by lowering the minimum inhibitory concentration by at least 5-fold. The major phenolic principle, pentagalloylglucopyranose, was demonstrated to be the major contributor to the antibacterial activity of MSKE. These results suggest that MSKE may potentially be useful as an alternative therapeutic agent or an adjunctive therapy along with penicillin G in the treatment of MRSA infections.
Development of bacterial biofilms in dairy processing lines.
Austin, J W; Bergeron, G
1995-08-01
Adherence of bacteria to various milk contact sites was examined by scanning electron microscopy and transmission electron microscopy. New gaskets, endcaps, vacuum breaker plugs and pipeline inserts were installed in different areas in lines carrying either raw or pasteurized milk, and a routine schedule of cleaning-in-place and sanitizing was followed. Removed cleaned and sanitized gaskets were processed for scanning or transmission electron microscopy. Adherent bacteria were observed on the sides of gaskets removed from both pasteurized and raw milk lines. Some areas of Buna-n gaskets were colonized with a confluent layer of bacterial cells surrounded by an extensive amorphous matrix, while other areas of Buna-n gaskets showed a diffuse adherence over large areas of the surface. Most of the bacteria attached to polytetrafluoroethylene (PTFE or Teflon) gaskets were found in crevices created by insertion of the gasket into the pipeline. Examination of stainless steel endcaps, pipeline inserts, and PTFE vacuum breaker plugs did not reveal the presence of adherent bacteria. The results of this study indicate that biofilms developed on the sides of gaskets in spite of cleaning-in-place procedures. These biofilms may be a source of post-pasteurization contamination.
Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films
NASA Astrophysics Data System (ADS)
Aparimita, Adyasha; Sripan, C.; Ganesan, R.; Naik, Ramakanta
2018-03-01
In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As-Se-Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.
NASA Astrophysics Data System (ADS)
Jones, B. J.; Nelson, N.
2016-10-01
This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.
NASA Astrophysics Data System (ADS)
Sharma, Ravi Kant; Ghose, Ranjana
2015-04-01
Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.
Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isabella Van Rooyen
2014-10-01
The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particlesmore » It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.« less
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Intestinal plasmacytoma in an African hedgehog.
Ramos-Vara, J A; Miller, M A; Craft, D
1998-04-01
A 3-yr-old male African hedgehog (Atelerix albiventris) had anorexia and weight loss for 1 wk before its death. The colon and mesocolon were diffusely infiltrated by a neoplastic proliferation of round cells with plasmacytoid features. A diagnosis of intestinal plasmacytoma was made and confirmed by electron microscopy. No other organs appeared to be affected. This is the first description of intestinal plasmacytoma in a hedgehog.
Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S.; Kim, Sungheon Gene
2016-01-01
Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug delivery pathways that are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM measurements (4.7±1.8 μm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support that POMACE provides a way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. PMID:27448059
Blázquez, O; Martín, G; Camps, I; Mariscal, A; López-Vidrier, J; Ramírez, J M; Hernández, S; Estradé, S; Peiró, F; Serna, R; Garrido, B
2018-06-08
The resistive switching properties of silicon-aluminium oxynitride (SiAlON) based devices have been studied. Electrical transport mechanisms in both resistance states were determined, exhibiting an ohmic behaviour at low resistance and a defect-related Poole-Frenkel mechanism at high resistance. Nevertheless, some features of the Al top-electrode are generated during the initial electroforming, suggesting some material modifications. An in-depth microscopic study at the nanoscale has been performed after the electroforming process, by acquiring scanning electron microscopy and transmission electron microscopy images. The direct observation of the devices confirmed features on the top electrode with bubble-like appearance, as well as some precipitates within the SiAlON. Chemical analysis by electron energy loss spectroscopy has demonstrated that there is an out-diffusion of oxygen and nitrogen ions from the SiAlON layer towards the electrode, thus forming silicon-rich paths within the dielectric layer and indicating vacancy change to be the main mechanism in the resistive switching.
The Role of Phase Changes in TiO2/Pt/TiO2 Filaments
NASA Astrophysics Data System (ADS)
Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István
2018-04-01
This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.
NASA Astrophysics Data System (ADS)
Blázquez, O.; Martín, G.; Camps, I.; Mariscal, A.; López-Vidrier, J.; Ramírez, J. M.; Hernández, S.; Estradé, S.; Peiró, F.; Serna, R.; Garrido, B.
2018-06-01
The resistive switching properties of silicon-aluminium oxynitride (SiAlON) based devices have been studied. Electrical transport mechanisms in both resistance states were determined, exhibiting an ohmic behaviour at low resistance and a defect-related Poole‑Frenkel mechanism at high resistance. Nevertheless, some features of the Al top-electrode are generated during the initial electroforming, suggesting some material modifications. An in-depth microscopic study at the nanoscale has been performed after the electroforming process, by acquiring scanning electron microscopy and transmission electron microscopy images. The direct observation of the devices confirmed features on the top electrode with bubble-like appearance, as well as some precipitates within the SiAlON. Chemical analysis by electron energy loss spectroscopy has demonstrated that there is an out-diffusion of oxygen and nitrogen ions from the SiAlON layer towards the electrode, thus forming silicon-rich paths within the dielectric layer and indicating vacancy change to be the main mechanism in the resistive switching.
Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming
2014-05-27
Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.
Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming
2014-01-01
Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li+-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material. PMID:24860942
Reversible Cryopreservation of Living Cells Using an Electron Microscopy Cryo-Fixation Method.
Huebinger, Jan; Han, Hong-Mei; Grabenbauer, Markus
2016-01-01
Rapid cooling of aqueous solutions is a useful approach for two important biological applications: (I) cryopreservation of cells and tissues for long-term storage, and (II) cryofixation for ultrastructural investigations by electron and cryo-electron microscopy. Usually, both approaches are very different in methodology. Here we show that a novel, fast and easy to use cryofixation technique called self-pressurized rapid freezing (SPRF) is-after some adaptations-also a useful and versatile technique for cryopreservation. Sealed metal tubes with high thermal diffusivity containing the samples are plunged into liquid cryogen. Internal pressure builds up reducing ice crystal formation and therefore supporting reversible cryopreservation through vitrification of cells. After rapid rewarming of pressurized samples, viability rates of > 90% can be reached, comparable to best-performing of the established rapid cooling devices tested. In addition, the small SPRF tubes allow for space-saving sample storage and the sealed containers prevent contamination from or into the cryogen during freezing, storage, or thawing.
Chen, Chih-Yao; Sano, Teruki; Tsuda, Tetsuya; Ui, Koichi; Oshima, Yoshifumi; Yamagata, Masaki; Ishikawa, Masashi; Haruta, Masakazu; Doi, Takayuki; Inaba, Minoru; Kuwabata, Susumu
2016-01-01
A comprehensive understanding of the charge/discharge behaviour of high-capacity anode active materials, e.g., Si and Li, is essential for the design and development of next-generation high-performance Li-based batteries. Here, we demonstrate the in situ scanning electron microscopy (in situ SEM) of Si anodes in a configuration analogous to actual lithium-ion batteries (LIBs) with an ionic liquid (IL) that is expected to be a functional LIB electrolyte in the future. We discovered that variations in the morphology of Si active materials during charge/discharge processes is strongly dependent on their size and shape. Even the diffusion of atomic Li into Si materials can be visualized using a back-scattering electron imaging technique. The electrode reactions were successfully recorded as video clips. This in situ SEM technique can simultaneously provide useful data on, for example, morphological variations and elemental distributions, as well as electrochemical data. PMID:27782200
Blank, Holger; Schneider, Reinhard; Gerthsen, Dagmar; Gehrke, Helge; Jarolim, Katharina; Marko, Doris
2014-06-01
High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) in a scanning electron microscope facilitates the acquisition of images with high chemical sensitivity and high resolution. HAADF STEM at low electron energies is particularly suited to image nanoparticles (NPs) in thin cell sections which are not subjected to poststaining procedures as demonstrated by comparison with bright-field TEM. High membrane contrast is achieved and distinction of NPs with different chemical composition is possible at first sight. Low-energy HAADF STEM was applied to systematically study the uptake of Pt-NPs with a broad size distribution in HT29 colon carcinoma cells as a function of incubation time and incubation temperature. The cellular dose was quantified, that is, the amount and number density of NPs taken up by the cells, as well as the particle-size distribution. The results show a strong dependence of the amount of incubated NPs on the exposure time which can be understood by considering size-dependent diffusion and gravitational settling of the NPs in the cell culture medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuerbanjiang, Balati; Nedelkoski, Zlatko; Ghasemi, Arsham
2016-04-25
We show that Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitutional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the filmmore » leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} film into the Si substrate, besides the structural integrity of this junction.« less
X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning
Deng, Junjing; Vine, David J.; Chen, Si; ...
2017-03-27
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
Kim, Jinok; Yoo, Gwangwe; Park, Jin; Park, Jin-Hong
2018-09-01
We investigated the effect of an electric field-based post exposure bake (EF-PEB) process on photoacid diffusion and pattern formation. To investigate the control of photoacid diffusion experimentally, the EF-PEB processes was performed at various temperatures. Cross sectional images of various EF-PEB processed samples were obtained by scanning electron microscopy (SEM) after ion beam milling. In addition, we conducted a numerical analysis of photoacid distribution and diffusion with following Fick's second law and compared the experimental results with our theoretical model. The drift distance was theoretically predicted by multiplying drift velocity and EF-PEB time, and the experimental values were obtained by finding the difference in pattern depths of PEB/EFPEB samples. Finally, an EF-PEB temperature of 85 °C was confirmed as the optimum condition to maximize photoacid drift distance using the electric field.
Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry
2016-01-27
To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.
Defects in ZnO nanorods prepared by a hydrothermal method.
Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K
2006-10-26
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
Wang, Hui; Lan, Yucheng; Zhang, Jiaming; Crimp, Martin A; Ren, Zhifeng
2012-04-01
Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.
NASA Astrophysics Data System (ADS)
Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.
Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.
Murrieta-Pazos, I; Gaiani, C; Galet, L; Cuq, B; Desobry, S; Scher, J
2011-10-01
Surface composition of dairy powders influences significantly a quantity of functional properties such as rehydration, caking, agglomeration. Nevertheless, the kinetic of water uptake by the powders was never directly related to the structure and the composition of the surface. In this work, the effect of relative humidity on the structural reorganization of two types of dairy powder was studied. The water-powder interaction for industrial whole milk powder, and skim milk powder was studied using dynamic vapor sorption. The water sorption isotherms were fitted with a Brunner-Emmet-Teller model and each stage of the sorption curve was analyzed with a Fickian diffusion. The water content in the monolayer predicted for each powder and the moisture diffusivity calculated were discussed and compared. Concurrently, powders microstructure and powders surface under variable relative humidity were assessed by X-ray photoelectron spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray and atomic force microscopy. A correlation between the data obtained from the sorption isotherms and the modifications of structure allowed us to conclude that powder microstructure and chemical state of the components could play an important role in determining the water diffusivity. Copyright © 2011 Elsevier B.V. All rights reserved.
López-Muñoz, Gerardo A; Balderas-López, José Abraham; Ortega-Lopez, Jaime; Pescador-Rojas, José A; Salazar, Jaime Santoyo
2012-12-06
The thermal properties of nanofluids are an especially interesting research topic because of the variety of potential applications, which range from bio-utilities to next-generation heat-transfer fluids. In this study, photopyroelectric calorimetry for measuring the thermal diffusivity of urchin-like colloidal gold nanofluids as a function of particle size, concentration and shape in water, ethanol and ethylene glycol is reported. Urchin-like gold nanoparticles were synthesised in the presence of hydroquinone through seed-mediated growth with homogeneous shape and size ranging from 55 to 115 nm. The optical response, size and morphology of these nanoparticles were characterised using UV-visible spectroscopy and transmission electron microscopy. The thermal diffusivity of these nanofluids decreased as the size of the nanoparticles increased, and the enhancement depended on the thermal diffusivity of the solvent. The opposite effect (increase in thermal diffusivity) was observed when the nanoparticle concentration was increased. These effects were more evident for urchin-like gold nanofluids than for the corresponding spherical gold nanofluids.
Le Feunteun, Steven; Mariette, François
2007-12-26
The translational dynamics of poly(ethylene glycol) (PEG) polymers with molecular weights (Mw) varying from 6x10(2) to 5x10(5) were investigated by pulsed field gradient NMR in casein suspensions and in gels induced by acidification, enzyme action, and a combination of both. For molecules with Mw
Photochemical and photocatalytic evaluation of 1D titanate/TiO2 based nanomaterials
NASA Astrophysics Data System (ADS)
Conceição, D. S.; Ferreira, D. P.; Graça, C. A. L.; Júlio, M. F.; Ilharco, L. M.; Velosa, A. C.; Santos, P. F.; Vieira Ferreira, L. F.
2017-01-01
One-dimensional (1D) titanate based nanomaterials were synthesized following an alkaline hydrothermal approach of commercial TiO2 nanopowder. The morphological features of all materials were monitored by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and also Brunauer-Emmett-Teller (BET) technique. In addition the photochemical behaviour of these nanostructured materials were evaluated with the use of laser induced luminescence (LIL), ground-state diffuse reflectance (GSDR), and laser-flash photolysis in diffuse reflectance mode (DRLFP). The mixed titanate/TiO2 nanowires presented the least intense fluorescence spectra, suggesting the presence of surficial defects that can extend the lifetime of the excited charge carriers. A fluorescent 'rhodamine-like' dye was adsorbed onto different materials and examined via photoexcitation in the visible range to study the self-photosensitization mechanism. The presence of the radical cation of the dye and the degradation kinetics, when compared with a neutral substrate-cellulose, provided significant evidences regarding the photoactivity of the different materials. Regarding all the materials under study, the nanowires exhibited a strong photocatalytic efficiency, for the adsorbed fluorescent probe. The photocatalytic mechanism was also considered by studying the photodegradation capability of the titanate based materials in the presence of an herbicide, Amicarbazone, after ultraviolet (UVA) photoexcitation.
NASA Technical Reports Server (NTRS)
Balckburn, Linda B.
1987-01-01
A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.
Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.
Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano
2018-06-18
A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.
Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud
2017-01-01
Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420
Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome
2018-08-01
Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriyono,; Krisnandi, Yuni Krisyuningsih; Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id
2016-04-19
Electrodeposition of gold nanoparticles (Au NPs) on the mesoporous TiO{sub 2} photoelectrode to enchance visible region photocurrent have been investigated. Mesoporous TiO{sub 2} was prepared by a sol gel method and immobilized to the fluorine doped tin oxide (FTO) substrate by dip coating technique. Gold nanoparticles were electrodeposited on the TiO{sub 2} surface and the result FTO/TiO{sub 2}/Au was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The generated photocurrent was evaluated with an electrochemical workstation (e-DAQ/e-recorder 401) using 60 W wolfram lamp as visible lightmore » source. The photoelectrochemical evaluation indicated that the presence of gold nanoparticles on TiO{sub 2} photoelectrode shall enhance the photocurrent up to 50%.« less
NASA Astrophysics Data System (ADS)
Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran
2016-05-01
We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO4). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 1016 cm-2, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO4 crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantation produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO4 surface from blistering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Changdong; Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012; Lu, Fei, E-mail: lufei@sdu.edu.cn
We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO{sub 4}). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 10{sup 16 }cm{sup −2}, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO{sub 4} crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantationmore » produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO{sub 4} surface from blistering.« less
Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos
2016-09-09
We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is muchmore » slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).« less
Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect
NASA Astrophysics Data System (ADS)
Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik
2018-02-01
(BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
NASA Astrophysics Data System (ADS)
Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins
2017-12-01
A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.
Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites
NASA Astrophysics Data System (ADS)
Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.
2017-11-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.
A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.
Shen, Yi; Lua, Aik Chong
2016-01-15
A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.
2001-07-01
A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.
A Hydrothermal Route to the Synthesis of CaTiO3 Nanocuboids Using P25 as the Titanium Source
NASA Astrophysics Data System (ADS)
Yan, Yuxiang; Yang, Hua; Zhao, Xinxin; Zhang, Haimin; Jiang, Jinlong
2018-03-01
CaTiO3 nanocuboids (width 0.3-0.5 μm, length 0.8-1.1 μm) have been synthesized by a hydrothermal route using commercial P25 as the titanium source. The as-prepared sample was systematically characterized by means of x-ray powder diffraction, field-emission scanning electron microscopy, field-emission transmission electron microscopy, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, ultraviolet-visible diffuse reflectance spectroscopy and electrochemical impedance spectroscopy. The photocatalytic activity of the sample was evaluated by degrading rhodamine B under simulated sunlight irradiation. It is demonstrated that CaTiO3 nanocuboids exhibit superior photocatalytic activity when compared with CaTiO3 nanoparticles. By investigating the effect of scavengers on the dye degradation and the yield of hydroxyl (·OH) radicals, it is concluded that ·OH is the dominant reactive species.
Gold and iodine diffusion in large area perovskite solar cells under illumination.
Cacovich, S; Ciná, L; Matteocci, F; Divitini, G; Midgley, P A; Di Carlo, A; Ducati, C
2017-04-06
Operational stability is the main issue hindering the commercialisation of perovskite solar cells. Here, a long term light soaking test was performed on large area hybrid halide perovskite solar cells to investigate the morphological and chemical changes associated with the degradation of photovoltaic performance occurring within the devices. Using Scanning Transmission Electron Microscopy (STEM) in conjunction with EDX analysis on device cross sections, we observe the formation of gold clusters in the perovskite active layer as well as in the TiO 2 mesoporous layer, and a severe degradation of the perovskite due to iodine migration into the hole transporter. All these phenomena are associated with a drastic drop of all the photovoltaic parameters. The use of advanced electron microscopy techniques and data processing provides new insights on the degradation pathways, directly correlating the nanoscale structure and chemistry to the macroscopic properties of hybrid perovskite devices.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-09-01
Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.
Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.
Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John
2014-03-01
A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.
Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites
NASA Astrophysics Data System (ADS)
Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng
2015-03-01
This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.
Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei
2017-02-01
As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-04-14
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.
NASA Astrophysics Data System (ADS)
Hajian, Robabeh; Ehsanikhah, Amin
2018-01-01
This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-01-01
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030
NASA Astrophysics Data System (ADS)
Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng
2018-03-01
A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.
Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint
NASA Astrophysics Data System (ADS)
Mokhtari, Omid; Nishikawa, Hiroshi
2014-11-01
In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.
Gomez-Ramos, P; Mufson, E J; Moran, M A
1992-01-13
Acetylcholinesterase (AChE) histochemistry was used to evaluate the accumulation of this enzyme in senile plaques, neurofibrillary tangles and neuropil threads using light and electron microscopy in Alzheimer's disease as well as non-demented aged brains. Under the electron microscope, a crystalline-like AChE precipitate was localized over paired helical filaments and straight filaments in both neurofibrillary tangles and neuropil threads. AChE reaction product also decorated the amyloid fibrils in diffuse plaques as well as the halo and the heavy accumulation of amyloid which forms the core of classical plaques. In both diffuse plaques and the halo of classical plaques, we found AChE-positive structures resembling cell processes, which in some cases appeared to contain amyloid fibrils. The possible origin and significance of AChE localized over paired helical filaments, straight filaments and amyloid is discussed.
Fernandez-Delgado, N.; Herrera, M.; Chisholm, M. F.; ...
2016-04-22
The effect of the application of a thermal annealing on the structural properties of GaSb/GaAs quantum dots (QDs) is analyzed by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS). Our results show that the GaSb/GaAs QDs are more elongated after the annealing, and that the interfaces are less abrupt due to the Sb diffusion. We have also found a strong reduction in the misfit dislocation density with the annealing. The analysis by EELS of a threading dislocation has shown that the dislocation core is rich in Sb. In addition, the region ofmore » the GaAs substrate delimited by the threading dislocation is shown to be Sb-rich as well. An enhanced diffusion of Sb due to a mechanism assisted by the dislocation movement is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffino, F.; Canino, A.; Grimaldi, M. G.
Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less
Structural and optical properties of GaxIn1-xP layers grown by chemical beam epitaxy
NASA Astrophysics Data System (ADS)
Seong, Tae-Yeon; Yang, Jung-Ja; Ryu, Mee Yi; Song, Jong-In; Yu, Phil W.
1998-05-01
Chemical beam epitaxial (CBE) GaxIn1-xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{-1+δ,1-δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of 1/2\\{bar 110\\} , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (˜45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.
Oxidation of silicon nitride sintered with rare-earth oxide additions
NASA Technical Reports Server (NTRS)
Mieskowski, D. M.; Sanders, W. A.
1985-01-01
The effects of rare-earth oxide additions on the oxidation of sintered Si3N4 were examined. Insignificant oxidation occurred at 700 and 1000 C, with no evidence of phase instability. At 1370 C, the oxidation rate was lowest for Y2O3 and increased for additions of La2O3, Sm2O3, and CeO2, in that order. Data obtained from X-ray diffraction, electron microprobe analysis, and scanning electron microscopy indicate that oxidation occurs via diffusion of cationic species from Si3N4 grain boundaries.
EBIC/TEM investigations of process-induced defects in EFG silicon ribbon
NASA Technical Reports Server (NTRS)
Cunningham, B.; Ast, D. G.
1981-01-01
Electron bombardment induced conductivity and scanning transmission electron microscopy observations on unprocessed and processed edge-defined film-fed growth ribbon show that the phosphorus diffused junction depth is not uniform, and that a variety of chemical impurities precipitate out during processing. Two kinds of precipitates are found (1) 10 nm or less in size, located at the dislocation nodes in sub-boundary like dislocation arrangements formed during processing and (2) large precipitates, the chemical composition of which has been partially identified. These large precipitates emit dense dislocations tangles into the adjacent crystal volume.
Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen
2005-04-01
In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.
NASA Astrophysics Data System (ADS)
Wang, Q.; Li, B.
2017-09-01
A unique architecture of idiomorphic and highly crystalline BaTiO3 particle layers directly grown on a porous titanium sponge substrate was successfully achieved for the first time using a facile molten salt method at a relatively low temperature of 700 °C. Specifically, the low-melting KCl-NaCl eutectic salts and barium hydroxide octahydrate were employed as the reaction medium and barium source, respectively. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectrophotometry were used to characterize the structure, morphology and optical property of the obtained samples. The results revealed that the flux-grown tetragonal BaTiO3 products had well-defined and uniform morphology with an average size of 300 nm and a band gap of ∼3.16 eV. Based on XRD, EDS, SEM, and TEM, the possible formation mechanism responsible for the well-developed architecture of BaTiO3 particle layers was proposed and discussed. Furthermore, the photocatalytic activity of the flux-grown BaTiO3 products for organic pollutant degradation under simulated sunlight irradiation was also investigated.
Microwave synthesis of molybdenum doped LiFePO4/C and its electrochemical studies.
Naik, Amol; P, Sajan C
2016-05-10
A Mo-doped LiFePO4 composite was prepared successfully from an iron carbonyl complex by adopting a facile and rapid microwave assisted solid state method. The evolution of gases from the iron precursor produces a highly porous product. The formation and substitution of Mo in LiFePO4 were confirmed by X-ray diffraction; surface analysis was carried out by scanning electron microscopy, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the substituted LiFePO4 were examined by cyclic voltammetry, electrochemical impedance spectroscopy and by recording charge-discharge cycles. It was observed that the as prepared composites consisted of a single phase orthorhombic olivine-type structure, where Mo(6+) was successfully introduced into the M2(Fe) sites. Incorporation of supervalent Mo(6+) introduced Li(+) ion vacancies in LiFePO4. The synthesized material facilitated lithium ion diffusion during charging/discharging due to the charge compensation effect and porosity. The battery performance studies showed that LiMo0.05Fe0.095PO4 exhibited a maximum capacity of 169.7 mA h g(-1) at 0.1 C current density, with admirable stability retention. Even at higher current densities, the retention of the specific capacity was exceptional.
Initial stages of benzotriazole adsorption on the Cu(111) surface
NASA Astrophysics Data System (ADS)
Grillo, Federico; Tee, Daniel W.; Francis, Stephen M.; Früchtl, Herbert; Richardson, Neville V.
2013-05-01
Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion.Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion. Electronic supplementary information (ESI) available: Calculated IR spectra, RAIRS assignments, modeling details, statistics on diffusion, experimental details, additional STM images, movie low coverage diffusing species. See DOI: 10.1039/c3nr00724c
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young
A three-chamber ultra-high-vacuum (UHV) system with preparation, scanning tunneling microscopy (STM), and chemical vapor deposition (CVD) chambers was designed and built. Here, one can perform surface preparation, STM e-beam lithography, precursor gas dosing, ion sputtering, silicon epitaxy, and various measurements such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), and Auger electron spectroscopy (AES). Processes performed in the ultra-clean preparation and gas-filled CVD chambers can be monitored by transferring the samples back to the STM chamber to take topographical images. Si deposition on H-terminated Si(001)-2x1 surfaces at temperatures 300--530 K was studied by scanning tunneling microscopy. Hydrogen apparently hinders Si adatom diffusion and enhances surface roughening. Post-growth annealing transfers the top layer atoms downward to fill in vacancies in the lower layer, restoring the crystallinity of the thin film. Hydrogen is shown to remain on the growth front up to at least 10 ML. Si deposition onto the H/Si(001)-3x1 surface at 530 K suggests that dihydride units further suppress Si adatom diffusion and increase surface roughness. PH3 adsorption on Si(111)-7x7 was studied for various exposures between 0.3--60 L at room temperature by means of the scanning-tunneling-microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing STM images at different sample biases. Most of PH3 adsorbs dissociatively on the surface at initial exposure, generating H and PH2 adsorption sites, followed by molecular adsorption of PH3. Rest atoms are more reactive than the adatoms and PH 2-reacted rest atom sites are also observed in STM images. Statistical analysis shows that center adatoms are more reactive than corner adatoms and the saturation P coverage is ˜0.22 ML. Finally, 900 K annealing of a PH 3 dosed surface results in a disordered, partially P-covered surface and PH3 dosing at 900 K forms the same surface reconstruction as a P2-adsorbed surface at similar temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basak, Sushovan, E-mail: sushovanbasak@gmail.com; Das, Hrishikesh, E-mail: hrishichem@gmail.com; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com
In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effectmore » of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is worth considering or not. • HRTEM-EDS, SAD pattern identifies the morphologies and size of intermetallics. • A compromise concerning formation of IMC is necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles
NASA Astrophysics Data System (ADS)
Hauser, Andreas W.; Schnedlitz, Martin; Ernst, Wolfgang E.
2017-06-01
A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells.
The high temperature creep deformation of Si3N4-6Y2O3-2Al2O3
NASA Technical Reports Server (NTRS)
Todd, J. A.; Xu, Zhi-Yue
1988-01-01
The creep properties of silicon nitride containing 6 wt percent yttria and 2 wt percent alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation epsilon dot varies as sigma sup n, was determined to be 2.00 + or - 0.15 and the true activation energy was found to be 692 + or - 25 kJ/mol. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.
Dynamics of solid thin-film dewetting in the silicon-on-insulator system
NASA Astrophysics Data System (ADS)
Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.
2011-04-01
Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.
Network of Porosity Formed in Ultrafine-Grained Copper Produced by Equal Channel Angular Pressing
NASA Astrophysics Data System (ADS)
Ribbe, Jens; Baither, Dietmar; Schmitz, Guido; Divinski, Sergiy V.
2009-04-01
Radiotracer experiments on diffusion of Ni63 and Rb86 in severely deformed commercially pure copper (8 passes of equal channel angular pressing) reveal unambiguously the existence of ultrafast transport paths. A fraction of these paths remains in the material even after complete recrystallization. Scanning electron microscopy and focused ion beam techniques are applied. Deep grooves are found which are related to original high-energy interfaces. In-depth sectioning near corresponding triple junctions reveals clearly multiple microvoids or microcracks caused by the severe deformation. Long-range tracer penetration over tens of micrometers proves that these submicrometer-large defects are connected by highly diffusive paths and that they appear with significant frequency.
Dang, Zhiya; Shamsi, Javad; Palazon, Francisco; Imran, Muhammad; Akkerman, Quinten A; Park, Sungwook; Bertoni, Giovanni; Prato, Mirko; Brescia, Rosaria; Manna, Liberato
2017-02-28
An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr 3 ) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr 3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb 2+ ions to Pb 0 . Subsequently Pb 0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr 3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr 3 lattice. The comparison among CsPbBr 3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb 0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms.
Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve
Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.
NASA Astrophysics Data System (ADS)
Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying
2018-06-01
AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei
Here, the iron oxide magnetite, Fe 3O 4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe 3O 4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe 3O 4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during themore » electrochemical (de)lithiation reaction in Fe 3O 4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe 3O 4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe 3O 4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li + diffusion length in larger crystals results in conversion to Fe 0 metal while insertion of Li + into spinel-Fe 3O 4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.« less
Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei; ...
2017-07-17
Here, the iron oxide magnetite, Fe 3O 4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe 3O 4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe 3O 4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during themore » electrochemical (de)lithiation reaction in Fe 3O 4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe 3O 4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe 3O 4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li + diffusion length in larger crystals results in conversion to Fe 0 metal while insertion of Li + into spinel-Fe 3O 4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.« less
Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium.
Park, Heetaek; Jung, Keeyoung; Nezafati, Marjan; Kim, Chang-Soo; Kang, Byoungwoo
2016-10-04
The Na superionic conductor (aka Nasicon, Na 1+x Zr 2 Si x P 3-x O 12 , where 0 ≤ x ≤ 3) is one of the promising solid electrolyte materials used in advanced molten Na-based secondary batteries that typically operate at high temperature (over ∼270 °C). Nasicon provides a 3D diffusion network allowing the transport of the active Na-ion species (i.e., ionic conductor) while blocking the conduction of electrons (i.e., electronic insulator) between the anode and cathode compartments of cells. In this work, the standard Nasicon (Na 3 Zr 2 Si 2 PO 12 , bare sample) and 10 at% Na-excess Nasicon (Na 3.3 Zr 2 Si 2 PO 12 , Na-excess sample) solid electrolytes were synthesized using a solid-state sintering technique to elucidate the Na diffusion mechanism (i.e., grain diffusion or grain boundary diffusion) and the impacts of adding excess Na at relatively low and high temperatures. The structural, thermal, and ionic transport characterizations were conducted using various experimental tools including X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). In addition, an ab initio atomistic modeling study was carried out to computationally examine the detailed microstructures of Nasicon materials, as well as to support the experimental observations. Through this combination work comprising experimental and computational investigations, we show that the predominant mechanisms of Na-ion transport in the Nasicon structure are the grain boundary and the grain diffusion at low and high temperatures, respectively. Also, it was found that adding 10 at% excess Na could give rise to a substantial increase in the total conductivity (e.g., ∼1.2 × 10 -1 S/cm at 300 °C) of Nasicon electrolytes resulting from the enlargement of the bottleneck areas in the Na diffusion channels of polycrystalline grains.
Chemical and morphological characterization of III-V strained layered heterostructures
NASA Astrophysics Data System (ADS)
Gray, Allen Lindsay
This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.
McGeer, P L; Akiyama, H; Kawamata, T; Yamada, T; Walker, D G; Ishii, T
1992-03-01
Immunohistochemical staining with antibodies directed against four segments of the amyloid precursor protein (APP) was studied by light and electron microscopy in normal and Alzheimer (AD) brain tissue. The segments according to the Kang et al. sequence were: 18-38 (T97); 527-540 (R36); 597-620 (1-24 of beta-amyloid protein [BAP], R17); and 681-695 (R37) (Kang et al. [1987]: Nature 325:733-736). The antibodies recognized full length APP in Western blots of extracts of APP transfected cells. They stained cytoplasmic granules in some pyramidal neurons in normal appearing tissue from control and AD cases. In AD affected tissue, the antibodies to amino terminal sections of APP stained tangled neurons and neuropil threads, and intensely stained dystrophic neurites in senile plaques. By electron microscopy, this staining was localized to abnormal filaments. The antibody to the carboxy terminal segment failed to stain neurofibrillary tangles or neuropil threads; it did stain some neurites with globular swellings. It also stained globular and elongated deposits in senile plaque areas. The antibody against the BAP intensely stained extracellular material in senile plaques and diffuse deposits. By electron microscopy, the antibodies all stained intramicroglial deposits. Some of the extracellular and intracellular BAP-positive deposits were fibrillary. Communication between intramicroglial and extracellular fibrils was detected in plaque areas. These data suggest the following sequence of events. APP is normally concentrated in intraneuronal granules. In AD, it accumulates in damaged neuronal fibers. The amino terminal portion binds to abnormal neurofilaments. Major fragments of APP are phagocytosed and processed by microglia with the BAP portion being preserved. The preserved BAP is then extruded and accumulates in extracellular tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Paul, V.; Saroja, S.; Albert, S.K.
This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering processmore » has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.« less
Chernysh, Irina N.; Nagaswami, Chandrasekaran
2011-01-01
We determined the sequence of events and identified and quantitatively characterized the mobility of moving structures present during the early stages of fibrin-clot formation from the beginning of polymerization to the gel point. Three complementary techniques were used in parallel: spinning-disk confocal microscopy, transmission electron microscopy, and turbidity measurements. At the beginning of polymerization the major structures were monomers, whereas at the middle of the lag period there were monomers, oligomers, protofibrils (defined as structures that consisted of more than 8 monomers), and fibers. At the end of the lag period, there were primarily monomers and fibers, giving way to mainly fibers at the gel point. Diffusion rates were calculated from 2 different results, one based on sizes and another on the velocity of the observed structures, with similar results in the range of 3.8-0.1 μm2/s. At the gel point, the diffusion coefficients corresponded to very large, slow-moving structures and individual protofibrils. The smallest moving structures visible by confocal microscopy during fibrin polymerization were identified as protofibrils with a length of approximately 0.5 μm. The sequence of early events of clotting and the structures present are important for understanding hemostasis and thrombosis. PMID:21248064
Two-Dimensional Animal-Like Fractals in Thin Films
NASA Astrophysics Data System (ADS)
Gao, Hong-jun; Xue, Zeng-quan; Wu, Quan-de; Pang, Shi-jin
1996-02-01
We present a few unique animal-like fractal patterns in ionized-cluster-beam deposited fullerene-tetracyanoquinodimethane thin films. The fractal patterns consisting of animal-like aggregates such as "fishes" and "quasi-seahorses" have been characterized by transmission electron microscopy. The results indicate that the small aggregates of the animal-like body are composed of many single crystals whose crystalline directions are generally different. The formation of the fractal patterns can be attributed to the cluster-diffusion-limited aggregation.
WS2 nanobuds as a new hybrid nanomaterial.
Remskar, Maja; Virsek, Marko; Jesih, Adolf
2008-01-01
We report on the first inorganic nanobuds: WS2 nanotubes decorated with fullerene-like particles. They were synthesized by sulfurization of W5O14 nanowires. The fullerene-like particles nucleate in surface corrugations of the nanowires and grow by a diffusion process simultaneously with the transformation of nanowires into hollow multiwall nanotubes. Electron microscopy data are correlated with details of the transformation process revealing the possible mechanism of the formation of these new complex nanomaterials.
NASA Astrophysics Data System (ADS)
Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong
2018-04-01
The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.
Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.
Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli
2016-08-01
Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.
2017-01-01
Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.
Properties of new diffusion filters for treatment of amblyopia with accurate occlusive effects.
Sasaki, Makoto; Iwasaki, Tsuneto; Kondo, Hiroyuki; Tawara, Akihiko
2016-06-01
Our purpose is to present the characteristics of newly developed diffusion filters that can reduce the best-corrected visual acuity (BCVA) of the non-amblyopic eye to a specified value and that can be used to treat amblyopia. Silica sol is a colorless and transparent colloidal gel of different particle sizes. The silica was added to an emulsion adhesive, thoroughly mixed, and coated evenly on polyethylene terephthalate films. Twelve filters with 12 different concentrations of silica were constructed. The density of the silica particles on the films was determined by scanning electron microscopy, and the haze values and light transmittance were measured with a goniophotometer. The reduction of the BCVA by the filters was determined in 16 healthy young women (mean age, 22.0 ± 2.3 years) by attaching the filters to spectacles. Scanning electron microscopy showed a monolayer of evenly spaced silica particles. The haze values of the 12 filters were related to the concentration of silica. The total light transmittance of the 12 filters was not significantly correlated to the concentration of silica. The BCVAs measured with the 12 filters were significantly and inversely correlated with the concentration of silica for both eyes (right eye, y = 0.174x - 0.197, R(2) = 0.951; left eye, y = 0.173x - 0.212, R(2) = 0.983). These findings indicate that these diffusion filters can reduce the BCVA with no reduction of light transmittance. We conclude that they can be used to degrade the image of the dominant eye by known amounts in patients with amblyopia without affecting the overall light levels to the eye, i.e., form deprivation without light deprivation.
Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor
Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S
2018-01-01
Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161
Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2011-05-01
Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.
Trusel, Massimo; Baldrighi, Michele; Marotta, Roberto; Gatto, Francesca; Pesce, Mattia; Frasconi, Marco; Catelani, Tiziano; Papaleo, Francesco; Pompa, Pier Paolo; Tonini, Raffaella; Giordani, Silvia
2018-05-23
One area where nanomedicine may offer superior performances and efficacy compared to current strategies is in the diagnosis and treatment of central nervous system (CNS) diseases. However, the application of nanomaterials in such complex arenas is still in its infancy and an optimal vector for the therapy of CNS diseases has not been identified. Graphitic carbon nano-onions (CNOs) represent a class of carbon nanomaterials that shows promising potential for biomedical purposes. To probe the possible applications of graphitic CNOs as a platform for therapeutic and diagnostic interventions on CNS diseases, fluorescently labeled CNOs were stereotaxically injected in vivo in mice hippocampus. Their diffusion within brain tissues and their cellular localization were analyzed ex vivo by confocal microscopy, electron microscopy, and correlative light-electron microscopy techniques. The subsequent fluorescent staining of hippocampal cells populations indicates they efficiently internalize the nanomaterial. Furthermore, the inflammatory potential of the CNOs injection was found comparable to sterile vehicle infusion, and it did not result in manifest neurophysiological and behavioral alterations of hippocampal-mediated functions. These results clearly demonstrate that CNOs can interface effectively with several cell types, which encourages further their development as possible brain disease-targeted diagnostics or therapeutics nanocarriers.
High-temperature stability of Au/Pd/Cu and Au/Pd(P)/Cu surface finishes
NASA Astrophysics Data System (ADS)
Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang, Y. H.; Kuo, T. T.
2018-03-01
Thermal reliability of Au/Pd/Cu and Au/Pd(4-6 wt.% P)/Cu trilayers in the isothermal annealing at 180 °C were investigated by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and transmission electron microscopy (TEM). The pure Pd film possessed a nanocrystalline structure with numerous grain boundaries, thereby facilitating the interdiffusion between Au and Cu. Out-diffusion of Cu through Pd and Au grain boundaries yielded a significant amount of Cu oxides (CuO and Cu2O) over the Au surface and gave rise to void formation in the Cu film. By contrast, the Pd(P) film was amorphous and served as a good diffusion barrier against Cu diffusion. The results of this study indicated that amorphous Pd(P) possessed better oxidation resistance and thermal reliability than crystalline Pd.
Li diffusion in epitaxial (11 $bar 2$ 0) ZnO thin films
NASA Astrophysics Data System (ADS)
Wu, P.; Zhong, J.; Emanetoglu, N. W.; Chen, Y.; Muthukumar, S.; Lu, Y.
2004-06-01
Zinc oxide (ZnO) possesses many interesting properties, such as a wide energy bandgap, large photoconductivity, and high excitonic binding energy. Chemical-vapor-deposition-grown ZnO films generally show n-type conductivity. A compensation doping process is needed to achieve piezoelectric ZnO, which is needed for surface acoustic wave (SAW), bulk acoustic wave, and micro-electromechanical system devices. In this work, a gas-phase diffusion process is developed to achieve piezoelectric (11bar 20) ZnO films. Comparative x-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements confirmed that high crystal quality and good surface morphology were preserved after diffusion. Photoluminescence (PL) measurements show a broad band emission with a peak wavelength at ˜580 nm, which is associated with Li doping. The SAW, including both Rayleigh-wave and Love-wave modes, is achieved along different directions in piezoelectric (11bar 20) ZnO films grown on an r-plane sapphire substrate.
Kinetics of microbial reduction of Solid phase U(VI).
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K
2006-10-15
Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.
Solute redistribution and phase stability at FeCr/TiO 2–x interfaces under ion irradiation
Xu, Y.; Aguiar, J. A.; Yadav, S. K.; ...
2015-02-26
Cr diffusion in trilayer thin films of 100 nm Fe–18Cr/125 nm TiO 2–x/100 nm Fe–18Cr deposited on MgO substrates at 500 °C was studied by either annealing at 500 °C or Ni 3+ ion irradiation at 500 °C. Microchemistry and microstructure evolution at the metal/oxide interfaces were investigated using (high-resolution) transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Diffusion of Cr into the O-deficient TiO 2 layer, with negligible segregation to the FeCr/TiO 2–x interface itself, was observed under both annealing and irradiation. Cr diffusion into TiO 2–x was enhanced in ion-irradiated samples as compared to annealed.more » Irradiation-induced voids and amorphization of TiO 2–x was also observed. The experimental results are rationalized using first-principles calculations that suggest an energetic preference for substituting Ti with Cr in sub-stoichiometric TiO 2. Furthermore, the implications of these results on the irradiation stability of oxide-dispersed ferritic alloys are discussed.« less
NASA Astrophysics Data System (ADS)
Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong
2011-11-01
Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces.Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces. Electronic supplementary information (ESI) available: TEM and HRTEM images of hematite seeds and iron oxide/SnO2 (12 h and 36 h). See DOI: 10.1039/c1nr10728c
Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation
NASA Astrophysics Data System (ADS)
Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua
2018-04-01
In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yishuai; Chiu, Janet; Miao, Lin
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less
Kheradvar, Shadi Alsadat; Nourmohammadi, Jhamak; Tabesh, Hadi; Bagheri, Behnam
2018-06-01
Core-sheath nanofibrous mat as a new vitamin E (VE) delivery system based on silk fibroin (SF)/poly(vinyl alcohol) (PVA)/aloe vera (AV) was successfully prepared by the electrospinning method. Initially, VE-loaded starch nanoparticles were produced and then incorporated into the best beadless SF-PVA-AV nanofibers. The successful loading of VE in starch nanoparticles was proved by Fourier-transform infrared spectroscopy. The scanning electron microscopy and transmission electron microscopy indicated that spherical nanoparticles were successfully embedded within the nanofibers. In vitro release studies demonstrated that the release of VE was controlled by Fickian diffusion and was faster in samples containing more nanoparticles. Fibroblast attachment, proliferation, and collagen secretion were enhanced after adding AV and VE to the SF-PVA nanomatrix. Moreover, the incorporation of VE into the nanocomposite dressing enhanced antioxidant activity, which can have a positive effect on wound healing process by protecting the cells from toxic oxidation products. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Selvakumari, J. Celina; Ahila, M.; Malligavathy, M.; Padiyan, D. Pathinettam
2017-09-01
Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea ( Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.
Jin, Chun; Jin, Li-Na; Guo, Mei-Xia; Liu, Ping; Zhang, Jia-Nan; Bian, Shao-Wei
2017-12-15
A three-dimensional (3D) electrode material was successfully synthesized through a facile ZnO-assisted hydrothermal process in which vertical MnO 2 nanotube arrays were in situ grown on the conductive graphene/polyester composite fabric. The morphology and structure of MnO 2 nanotubes/graphene/polyester textile electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The 3D electrode structure facilitates to achieve the maximum number of active sites for the pesudocapacitance redox reaction, fast electrolyte ion transportation and short ion diffusion path. The electrochemical measurements showed that the electrode possesses good capacitance capacity which reached 498F/g at a scan rate of 2mV/s in Na 2 SO 4 electrolyte solution. The electrode also showed stable electrochemical performances under the conditions of long-term cycling, and mechanical bending and twisting. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Juxia
2018-02-01
CdS/(Cal-Ta2O5-SiO2) composite photocatalyst has been successfully fabricated via wet chemistry method. Ta2O5-SiO2 with multi-step Ta2O5 deposition on SiO2 has more Ta2O5 on SiO2 to ensure the active sites. Trough multi-step calcination, Ta2O5 can load on SiO2 with uniform and stable, which make it have high photocatalytic activity. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). Without any co-catalysts, the as-prepared CdS/(Cal-Ta2O5-SiO2) exhibited remarkable photocatalytic activity and recyclability both in the degradation of rhodamine B and in the hydrogen production from water splitting under visible light.
Stanton, Kenneth T; O'Flynn, Kevin P; Nakahara, Shohei; Vanhumbeeck, Jean-François; Delucca, John M; Hooghan, Bobby
2009-04-01
Glass of generic composition SiO(2) . Al(2)O(3) . P(2)O(5) . CaO . CaF(2) will crystallise predominantly to apatite and mullite upon heat-treatment. Such ceramics are bioactive, osseoconductive, and have a high resistance to fracture. As a result, they are under investigation for use as biomedical device coatings, and in particular for orthopaedic implants. Previous work has shown that the material can be successfully enamelled to titanium with an interfacial reaction zone produced during heat treatment. The present study uses high angle annular dark field transmission electron microscopy (HAADF-TEM) to conduct a detailed examination of this region. Results show evidence of complex interfacial reactions following the diffusion of titanium into an intermediate layer and the production of titanium silicides and titanium phosphides. These results confirm previously hypothesised mechanisms for the bonding of silicate bioceramics with titanium alloys.
Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts
NASA Astrophysics Data System (ADS)
Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong; Zhu, Hongmin; Jiao, Shuqiang
2015-08-01
The electrodeposition of carbon films with a Mo2C interlayer was investigated in LiCl-NaCl-Na2CO3 melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo2C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo2C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo2C) leads to the formation and growth of Mo2C interlayer.
Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.
Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan
2016-12-05
Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.
NASA Astrophysics Data System (ADS)
Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin
2017-08-01
The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.
Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn
2014-03-15
Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less
Nano-textured high sensitivity ion sensitive field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.
2016-02-07
Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less
Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin
2015-02-01
Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.
Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.
Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei
2015-02-07
Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.
NASA Astrophysics Data System (ADS)
Shi, Jingzhi; Meng, Xiangying; Hao, Mengjian; Cao, Zhenzhu; He, Weiyan; Gao, Yanfang; Liu, Jinrong
2018-02-01
In this study, BiPO4/highly (001) facet exposed square BiOBr flake heterojunction photocatalysts with different molar ratios were fabricated via a two-step method. The synergetic effect of the heterojunction and facet engineering was systematically investigated. The physicochemical properties of the BiPO4/square BiOBr flake composites were characterized based on X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectra, photoluminescence, electrochemical impedance spectroscopy, and the photocurrent response. The BiPO4/square BiOBr flake heterojunction photocatalyst exhibited much higher photocatalytic performance compared with the individual BiPO4 and BiOBr. In particular, the BiPO4/BiOBr composite where P/Br = 1/3 exhibited the highest photocatalytic activity. The intensified separation of photoinduced charges at the p-n heterojunction between the BiPO4 nanoparticle and (001) facet of BiOBr was mainly responsible for the enhanced photoactivity.
Samuel, Melvin S; Shah, Sk Sheriff; Bhattacharya, Jayanta; Subramaniam, Kalidass; Pradeep Singh, N D
2018-05-02
This study involves the adsorption of lead using magnetic chitosan/graphene oxide (MCGO) composite material in batch mode. The MCGO composite material was synthesized via modified Hummers method. The MCGO composite material was characterized by powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Tunnelling electron microscopy (TEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) and UV-vis diffusive reflectance spectra. The adsorption mechanism of MCGO composite material was well described by Langmuir isotherm and pseudo second order kinetic model, with a high regression coefficient (<0.99). The MCGO composite material was applied for the removal of lead metal from aqueous solution. We have also evaluated toxicity of synthesized MCGO composite material by examining on A549 cells. The results have shown that MCGO material showed viable cell percentage of 53.7% at 50 μg and 44.8% at 100 μg. Copyright © 2018 Elsevier B.V. All rights reserved.
Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation
NASA Astrophysics Data System (ADS)
Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.
2006-11-01
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
NASA Astrophysics Data System (ADS)
Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng
2017-12-01
The effect of heat treatment on the microstructure and mechanical properties of Al2O3-TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.
Suppressing the cellular breakdown in silicon supersaturated with titanium
NASA Astrophysics Data System (ADS)
Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang
2016-06-01
Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.
The Role of Surface Passivation in Controlling Ge Nanowire Faceting.
Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A
2015-12-09
In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.
High-temperature protection of steel goods from gas corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerasimov, V.V.; Porfir`eva, R.T.; Peskov, A.V.
The feasibility of using phosphorus-containing compounds to activate the thermal diffusion impregnation of steels with aluminum was explored and substantiated by experiment. Volatile phosphorus formed from the thermal destruction of the phosphorus-containing substances and the resulting Al/P-type complexes, which provide a gas-transportation medium to take the aluminum to the article surface, were instrumental in the mechanism. The resultant thermal diffusion coatings enabled steel to be safely protected from gas corrosion at a temperature of 950{degrees}C. As a result of research on the structure of the protective layer using electron microscopy and X-ray phase analysis, coatings formed using a mixture containingmore » 1 wt.% iron glycerophosphate exhibited the optimum operating characteristics.« less
NASA Astrophysics Data System (ADS)
Gao, Kuixiong; Cardell, Emma Lou; Morris, Randal E.; Giffin, Bruce F.; Cardell, Robert R.
1995-08-01
Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting gluconeogenic enzyme and in liver occurs in a lobular gradient from periportal to pericentral regions. The subcellular distribution of cytoplasmic PEPCK molecules within hepatocytes and its relationship to organelles have not been determined previously. In this study, we have used immunogold electron microscopy to evaluate the subcellar distribution of the enzyme, in addition to brightfield and epipolarized light microscopy. Cryosections (10 [mu]m) of perfusion-fixed rat liver were collected on silanated slides and immunostained using goat anti-rat PEPCK followed by 5-nm gold-labeled secondary and tertiary antibodies. Additionally, free-floating vibratome sections (25, 50, and 100 [mu]m) of perfusion-immersion-fixed rat liver were immunogold stained using goat anti-rat PEPCK and 5-nm gold-labeled secondary antibody, with and without silver enhancement. The immunogold labeled sections from both procedures were embedded in epoxy resin for the preparation of thin sections for electron microscopy. The results showed that the gold-labeled antibodies penetrated the entire thickness of cryosections, resulting in a high signal for PEPCK, but membranes in general, the smooth endoplasmic reticulum in particular, were not identifiable as electron dense unit membranes. On the other hand, the vibratome sections of well-fixed tissue allowed good visualization of the ultrastructure of cellular organelles, with the smooth endoplasmic reticulum appearing as vesicles and tubules with electron dense unit membranes; however, the penetration of the gold-labeled antibody was limited to cells at the surface of the vibratome sections. In both procedures, PEPCK, as indicated by gold particles, is predominantly in the glycogen areas of the cytosome and not in mitochondria, nuclei, Golgi apparatus, or other cell organelles. Hepatocytes in periportal regions have a compact subcellular distribution of PEPCK shown by gold particles; hepatocytes in pericentral regions have a diffuse subcellular distribution of PEPCK and thus more scattered gold particles. When normal serum replaced the first antibody in the immunogold staining procedures, the background was very low.
NASA Astrophysics Data System (ADS)
Ramteke, A. A.; Kurade, S. S.
2018-05-01
In the present paper, we have carried out a green synthesis of lead nano materials (PbNMs) using extract of Momordica charantia. We have characterized nano materials by using scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. It is found that PbNMs show antibacterial activity against pathogenic bacteria of gram positive (S. aureus,) and gram negative strains (E. coli, P. aeruginosa) using well diffusion technique and gives reasonably interesting results.
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1983-01-01
Surface profilometry and scanning electron microscopy were utilized to study changes in the surface of polymers when eroded. The X-ray photoelectron spectroscopy (XPS) and depth profile analysis indicate the corrosion of metal and ceramic surfaces and reveal the diffusion of certain species into the surface to produce a change in mechanical properties. Ion implantation, nitriding and plating and their effects on the surface are characterized. Auger spectroscopy analysis identified morphological properties of coatings applied to surfaces by sputter deposition.
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
Analysis of Structure Destroyed Metal after Diffusion Heat Treatment
NASA Astrophysics Data System (ADS)
Apasov, A. M.; Kozlov, E. V.; Fedoseev, S. N.
2016-08-01
It was accomplished research of the structure steel which carbonitriding and subsequent heat treatment was exposed for its cause's destruction to discover. For measure quality field of metal were used methods optical, appearing electronic microscopy and X-ray diffraction. Therefore one of the principal problems were research phase composition, grain and dislocation structure of a metal the gear teeth. Mechanism of rising hear cracks in the gear teeth on different stages her making and their trajectories of evolution were determined.
Vijayaraghavan, Rajani K; Gaman, Cezar; Jose, Bincy; McCoy, Anthony P; Cafolla, Tony; McNally, Patrick J; Daniels, Stephen
2016-02-01
We demonstrate the growth of multilayer and single-layer graphene on copper foil using bipolar pulsed direct current (DC) magnetron sputtering of a graphite target in pure argon atmosphere. Single-layer graphene (SG) and few-layer graphene (FLG) films are deposited at temperatures ranging from 700 °C to 920 °C within <30 min. We find that the deposition and post-deposition annealing temperatures influence the layer thickness and quality of the graphene films formed. The films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and optical transmission spectroscopy techniques. Based on the above studies, a diffusion-controlled mechanism was proposed for the graphene growth. A single-step whole blood assay was used to investigate the anticoagulant activity of graphene surfaces. Platelet adhesion, activation, and morphological changes on the graphene/glass surfaces, compared to bare glass, were analyzed using fluorescence microscopy and SEM techniques. We have found significant suppression of the platelet adhesion, activation, and aggregation on the graphene-covered surfaces, compared to the bare glass, indicating the anticoagulant activity of the deposited graphene films. Our production technique represents an industrially relevant method for the growth of SG and FLG for various applications including the biomedical field.
In vitro inhibitory activity of probiotic products against oral Candida species.
Zhao, C; Lv, X; Fu, J; He, C; Hua, H; Yan, Z
2016-07-01
To evaluate the inhibitory activity of probiotics against oral Candida species. Four commercial probiotic products were screened. Bacillus subtilis R0179 was found to have a significant antifungal effect. Bacillus subtilis-Candida interactions were evaluated using disc diffusion tests, confocal laser scanning microscopy, scanning electron microscopy and interaction with engineered human oral mucosa tissue. Bacillus subtilis exhibited clear zones of inhibition for Candida albicans and Candida parapsilosis but not for Candida krusei. A remarkable reduction in the number of Candida cells and abundant Candida cell death were visualized with confocal laser scanning microscopy. Shrinkage and deformation of Candida cells was observed using scanning electron microscopy. Culture of C. albicans on engineered human oral mucosa tissues resulted in the presence of a large number of yeast cells on the tissue surface and the development of large-scale tissue damage. However, comparatively fewer Candida cells were observed on B. subtilis-treated tissues. We also use ultra performance liquid chromatography/time of flight mass spectrometry (UPLC/TOF MS) to explore the preliminary antifungal mechanism of B. subtilis R0179 and to detect that whether it can secrete an antifungal agent, Iturin A. Bacillus subtilis R0179 exhibits a significant inhibitory effect on the growth of Candida species. Bacillus subtilis has the potential to be used in the prevention or treatment of oral candidiasis. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson
2016-06-01
Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes
Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less
Howe, Jane Y.; Allard, Jr., Lawrence Frederick; Demers, Hendrix; ...
2014-11-14
In situ heating study via a simultaneous secondary electron (SE) and transmitted electron (TE) microscopy is extremely insightful because information from the surface (SE) and bulk (TE) can be readily obtained. The leached Au/Fe 2O 3 catalyst has voids on the surface of Fe 2O 3. Upon heating to 500 °C, voids shrank and disappeared, while internal Au species diffused to the surface to form new nanoparticles. Heating in vacuum reduced Fe 2O 3 to Fe 3O 4. Heating at 700 °C caused coalescence and growth of Au particles and formation of faceted Fe 3O 4 surfaces. We achieved 1.1more » nm resolution in SE imaging during in situ heating.« less
In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
Le, M K; Zhu, X M
2001-04-01
Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.
Kubo, Yugo; Yonezawa, Kazuhiro
2017-09-05
SiO 2 -based optical fibers are indispensable components of modern information communication technologies. It has recently become increasingly important to establish a technique for visualizing the nanoscale phase-separated structure inside SiO 2 -GeO 2 glass nanoparticles during the manufacturing of SiO 2 -GeO 2 fibers. This is because the rapidly increasing price of Ge has made it necessary to improve the Ge yield by clarifying the detailed mechanism of Ge diffusion into SiO 2 . However, direct observation of the internal nanostructure of glass particles has been extremely difficult, mainly due to electrostatic charging and the damage induced by electron and X-ray irradiation. In the present study, we used state-of-the-art scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX) to examine cross-sectional samples of SiO 2 -GeO 2 particles embedded in an epoxy resin, which were fabricated using a broad Ar ion beam and a focused Ga ion beam. These advanced techniques enabled us to observe the internal phase-separated structure of the nanoparticles. We have for the first time clearly determined the SiO 2 -Si 1-x Ge x O 2 core-shell structure of such particles, the element distribution, the degree of crystallinity, and the quantitative chemical composition of microscopic regions, and we discuss the formation mechanism for the observed structure. The proposed imaging protocol is highly promising for studying the internal structure of various core-shell nanoparticles, which affects their catalytic, optical, and electronic properties.
Electron Microscope Studies of Cadmium Mercury Telluride
NASA Astrophysics Data System (ADS)
Lyster, Martin
Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.
Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue
NASA Astrophysics Data System (ADS)
Wentlent, Luke Arthur
Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the mechanistic behavior of Sn and Sn-based alloys.
HREM study of irradiation damage in human dental enamel crystals.
Brès, E F; Hutchison, J L; Senger, B; Voegel, J C; Frank, R M
1991-06-01
Several phenomena have been observed during the examination of human dental enamel crystals (mainly constituted by hydroxyapatite (OHAP] by high-resolution electron microscopy (HREM) at 300 and 400 keV: orientation-dependent damage in the form of mass loss from voids or uniform destruction of crystal structure, beam-induced diffusion creating outgrowths at the crystal surfaces, recrystallization of the bulk crystal and crystallization of the inorganic components of the matrix surrounding the crystals. These beam-induced crystals have the CaO structure. The phenomena observed are most likely due to various electron-crystal interaction mechanisms (ballistic knock-on damage, electronic excitations, temperature rise, etc.). In this paper, the contribution of the ballistic process to the phenomena observed is discussed. The quantitative description of the knock-on collisions rests on the McKinley-Feshbach cross-section formula. The minimum ion displacement energies which appear in this expression have been estimated on the basis of the electrostatic ion binding energies, and the covalent bond energies if required. It is shown that hydroxyl, calcium and oxygen ions can effectively be displaced by the incident 300 and 400 keV electrons. Thus, the formation of CaO crystals by the combination of calcium and oxygen ions diffusing from their initial sites inside the OHAP lattice can tentatively be explained.
Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction
NASA Astrophysics Data System (ADS)
Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin
2013-02-01
N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.
Cykowski, Matthew D.; Hicks, John; Sandberg, David I.; Olar, Adriana; Bridge, Julia A.; Greipp, Patricia T.; Navarro, Patricia; Kolodziej, Steven; Bhattacharjee, Meenakshi B.
2014-01-01
We report a case of alveolar soft part sarcoma (ASPS) presenting as an isolated frontal lobe metastasis. The tumor demonstrated little or no immunoreactivity for a broad panel of antibodies yet strong, diffuse immunoreactivity with CD68. On electron microscopy, characteristic rectangular to rhomboid crystalline inclusions were not present. Electron-dense granules resembling peroxisomes were present, sometimes in association with elongated granular structures having a periodic, lattice-like arrangement. Metastatic ASPS was confirmed by demonstration of an ASPSCR1-TFE3 fusion and imaging studies that excluded metastatic Xp11.2 translocation renal cell carcinoma. The primary site was subsequently identified in the lower extremity. PMID:25268941
Molecules for organic electronics studied one by one.
Meyer, Jörg; Wadewitz, Anja; Lokamani; Toher, Cormac; Gresser, Roland; Leo, Karl; Riede, Moritz; Moresco, Francesca; Cuniberti, Gianaurelio
2011-08-28
The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.
Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon
2014-07-23
This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook
2015-01-01
In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.
Electrical characterization of HgTe nanowires using conductive atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.
Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less
CoO doping effects on the ZnO films through EBPDV technique
NASA Astrophysics Data System (ADS)
Inês Basso Bernardi, Maria; Queiroz Maia, Lauro June; Antonelli, Eduardo; Mesquita, Alexandre; Li, Maximo Siu; Gama, Lucianna
2014-03-01
Nanometric Zn1-xCo xO (x = 0.020, 0.025 and 0.030 in mol.%) nanopowders were obtained from low temperature calcination of a resin prepared using the Pechini's method. Firing the Zn1-xCoxO resin at 400 °C/2 h a powder with hexagonal structure was obtained as measured by X-ray diffraction (XRD). The powder presented average particle size of 40 nm observed by field emission scanning electronic microscopy (FE-SEM) micrographs and average crystallite size of 10 nm calculated from the XRD using Scherrer's equation. Nanocrystalline Zn1-xCo xO films with good homogeneity and optical quality were obtained with 280-980 nm thicknesses by electron beam physical vapour deposition (EBPVD) under vacuum onto silica substrate at 25 °C. Scanning electron microscopy with field emission gun showed that the film microstructure is composed by spherical grains and some needles. In these conditions of deposition the films presented only hexagonal phase observed by XRD. The UV-visible-NIR and diffuse reflectance properties of the films were measured and the electric properties were calculated using the reflectance and transmittance spectra.
NASA Astrophysics Data System (ADS)
Ouyang, Qi; Li, Zhonghua; Liu, Jiawen
2018-05-01
Silver chromate‑silver vanadate (Ag2CrO4/β-AgVO3) heterojunction composites are synthesized through a facile precipitation process. The Ag2CrO4/β-AgVO3 hybrids obtained exhibit better photocatalytic activity in degradation of RhB than both pure Ag2CrO4 and β-AgVO3 under visible light irradiation. The 20 wt% Ag2CrO4/β-AgVO3 heterojunction possesses the best photocatalytic ability for degrading RhB: 24.4 times that of pristine β-AgVO3 nanowires and 3.2 times that of individual Ag2CrO4 particles. The phase of the nanocomposites was analyzed using x-ray diffraction as well as x-ray photoelectron spectroscopy. Their morphology was observed via scanning electron microscopy and transmission electron microscopy. The improvement in photocatalytic performance is chiefly ascribed to the synergies between Ag2CrO4/β-AgVO3 heterostructure, which can enhance the light absorbance ability and also accelerate the separation and transfer of photoinduced electrons and holes under visible light irradiation; this is also confirmed by UV–vis diffuse reflection spectrometry and fluorescence emission spectra.
Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst
NASA Astrophysics Data System (ADS)
Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun
2011-07-01
In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h
Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.
2015-04-15
Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less
Li, Haitao; Li, Na; Wang, Ming; Zhao, Beiping; Long, Fei
2018-03-01
Graphitic carbon nitride (g-C 3 N 4 ) nanosheets with a thickness of only a few nanometres were obtained by a facile deammoniation treatment of bulk g-C 3 N 4 and were further hybridized with Bi 2 WO 6 nanoparticles on the surface via a solvothermal method. The composite photocatalysts were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflection spectroscopy and X-ray photoelectron spectroscopy (XPS). The HR-TEM results show that the nano-sized Bi 2 WO 6 particles were finely distributed on g-C 3 N 4 sheet surface, which forms heterojunction structure. The UV-vis diffuse reflectance spectra (DRS) show that the absorption edge of composite photocatalysts shifts towards lower energy region in comparison with those of pure g-C 3 N 4 and Bi 2 WO 6 . The degradation of methyl orange (MO) tests reveals that the optimum activity of 8 : 2 g-C 3 N 4 -Bi 2 WO 6 photocatalyst is almost 2.7 and 8.5 times higher than those of individual g-C 3 N 4 and Bi 2 WO 6 . Moreover, the recycle experiments depict high stability of the composite photocatalysts. Through the study of the influencing factors, a possible photocatalytic mechanism is proposed. The enhancement in both photocatalytic performance and stability was caused by the synergistic effect, including the effective separation of the photogenerated electron-hole pairs at the interface of g-C 3 N 4 and Bi 2 WO 6 , the smaller the particle size and the relatively larger specific surface area of the composite photocatalyst.
NASA Astrophysics Data System (ADS)
Xu, Xiaolei; Yu, Zhiwei; Cui, Liying; Niu, Xinjun; Cai, Tao
2016-02-01
The hot-rolled 304 stainless steel with γ-austenite and approximately 5 pct α-ferrite elongated along the rolling direction was plasma-nitrided at a low temperature of 693 K (420 °C). X-ray diffraction results revealed that the nitrided layer was mainly composed of the supersaturated solid solution of nitrogen in austenite ( γ N). Transmission electron microscopy (TEM) observations showed that the microstructure of the γ N phase exhibited "fracture factor contrast" reflective of the occurrence of fine pre-precipitations in γ N by the continuous precipitation. The occurrence of a diffuse scattering effect on the electron diffraction spots of γ N indicated that the pre-precipitation took place in γ N in the form of strongly bonded Cr-N clusters or pairs due to a strong attractive interaction of nitrogen with chromium. Scanning electron microscopy and TEM observations indicated that the discontinuous precipitation initiated from the γ/ α interfaces and grew from the austenite boundaries into austenite grains to form a lamellar structure consisting of CrN and ferrite. The orientation relationship between CrN and ferrite corresponded to a Baker-Nutting relationship: (100)CrN//(100) α ; [011]CrN//[001] α . A zigzag boundary line following the banded structure of alternating γ-austenite and elongated α-ferrite was presented between the nitrided layer and the substrate to form a continuous varying layer thickness, which resulted from the difference in diffusivities of nitrogen in α-ferrite and γ-austenite, along the γ/ α interfaces and through the lattice. Microstructural features similar to the γ N were also revealed in the ferrite of the nitrided layer by TEM. It was not excluded that a supersaturated solid solution of nitrogen in ferrite ( α N) formed in the nitrided layer.
NASA Astrophysics Data System (ADS)
Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min
2016-01-01
In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d
NASA Astrophysics Data System (ADS)
Murata, H.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K.
2017-12-01
The Ni-induced layer-exchange growth of amorphous carbon is a unique method used to fabricate uniform multilayer graphene (MLG) directly on an insulator. To improve the crystal quality of MLG, we prepare AlOx or SiO2 interlayers between amorphous C and Ni layers, which control the extent of diffusion of C atoms into the Ni layer. The growth morphology and Raman spectra observed from MLG formed by layer exchange strongly depend on the material type and thickness of the interlayers; a 1-nm-thick AlOx interlayer is found to be ideal for use in experiments. Transmission electron microscopy and electron energy-loss spectra reveal that the crystal quality of the resulting MLG is much higher than that of a sample without an interlayer. The grain size reaches a few μm, leading to an electrical conductivity of 1290 S/cm. The grain size and the electrical conductivity are the highest among MLG synthesized using a solid-phase reaction including metal-induced crystallization. The direct synthesis of uniform, high-quality MLG on arbitrary substrates will pave the way for advanced electronic devices integrated with carbon materials.
NASA Astrophysics Data System (ADS)
Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.
2008-02-01
Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.
Disorder enabled band structure engineering of a topological insulator surface
Xu, Yishuai; Chiu, Janet; Miao, Lin; ...
2017-02-03
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
NASA Astrophysics Data System (ADS)
Guo, Rui; You, Junhua; Han, Fei; Li, Chaoyang; Zheng, Guiyuan; Xiao, Weicheng; Liu, Xuanwen
2017-02-01
Ho2Cu2O5 nanoplates with perovskite structures were synthesized via a simple solution method (SSM) and a coordination-complex method (CCM) using [HoCu(3,4-pdc)2(OAc)(H2O)3]·8H2O (L = 3,4-pyridinedicarboxylic acid) as a precursor. The CCM was also performed in an N2 environment (CCMN) under various calcination conditions. The crystallization processes were characterized using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Ho2Cu2O5 formed through the diffusion of CuO into Ho2O3 particles. Cu2+ diffused faster than Ho3+ during this process. The initial products of CCMN (along with the thermal decomposition products) were initially laminarized in the N2 atmosphere, which prevented the growth of CuO particles and decreased the size of the Ho2Cu2O5 particles. The final Ho2Cu2O5 particles from CCMN had a nanoplate morphology with an average thickness of 75 nm. The decomposition of organic molecules and protection from N2 played important roles in determining the morphology of the resulting Ho2Cu2O5. The catalytic oxidation activity of Ho2Cu2O5 samples for carbon was characterized using a specific surface area measurement and thermogravimetric analysis, which revealed that the samples produced by CCMN had the highest catalytic activity.
Maksin, Danijela D; Nastasović, Aleksandra B; Milutinović-Nikolić, Aleksandra D; Suručić, Ljiljana T; Sandić, Zvjezdana P; Hercigonja, Radmila V; Onjia, Antonije E
2012-03-30
Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta. Copyright © 2012 Elsevier B.V. All rights reserved.
CYTOCHEMICAL LOCALIZATION OF TWO GLYCOLYTIC DEHYDROGENASES IN WHITE SKELETAL MUSCLE
Fahimi, H. Dariush; Karnovsky, Morris J.
1966-01-01
The cytochemical localization, by conventional methods, of lactate and glyceraldehyde-3-phosphate dehydrogenases is limited, firstly, by the solubility of these enzymes in aqueous media and, secondly, by the dependence of the final electron flow from reduced nicotinamide-adenine dinucleotide (NADH) to the tetrazolium on tissue diaphorase activity: localization is therefore that of the diaphorase, which in rabbit adductor magnus is mitochondrial. NADH has been found to have great affinity to bind in the sarcoplasmic reticulum, and, therefore, if it is generated freely in the incubation media containing 2,2',5,5'-tetra-p-nitrophenyl-3,3'-(3,3'-dimethoxy-4,4'-phenylene)-ditetrazolium chloride (TNBT) and N-methyl phenazonium methyl sulfate (PMS), it can bind there and cause a false staining. Since such a production of NADH can readily occur in the incubation media for glycolytic dehydrogenases due to diffusion of these soluble enzymes from tissue sections, the prevention of enzyme solubilization is extremely important. Fixation in formaldehyde prevented such enzyme diffusion, while at the same time sufficient activity persisted to allow for adequate staining. The incubation media contained PMS, so that the staining system was largely independent of tissue diaphorase activity. Application of these methods to adductor magnus of rabbit revealed by light microscopy, for both enzymes, a fine network which was shown by electron microscopy to represent staining of the sarcoplasmic reticulum. Mitochondria also reacted. These findings add further support for the notion that the sarcoplasmic reticulum is probably involved in glycolytic activity. PMID:4288329
Image correlation microscopy for uniform illumination.
Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L
2010-01-01
Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.
Blocking germanium diffusion inside silicon dioxide using a co-implanted silicon barrier
NASA Astrophysics Data System (ADS)
Barba, D.; Wang, C.; Nélis, A.; Terwagne, G.; Rosei, F.
2018-04-01
We investigate the effect of co-implanting a silicon sublayer on the thermal diffusion of germanium ions implanted into SiO2 and the growth of Ge nanocrystals (Ge-ncs). High-resolution imaging obtained by transmission electron microscopy and energy dispersive spectroscopy measurements supported by Monte-Carlo calculations shows that the Si-enriched region acts as a diffusion barrier for Ge atoms. This barrier prevents Ge outgassing during thermal annealing at 1100 °C. Both the localization and the reduced size of Ge-ncs formed within the sample region co-implanted with Si are observed, as well as the nucleation of mixed Ge/Si nanocrystals containing structural point defects and stacking faults. Although it was found that the Si co-implantation affects the crystallinity of the formed Ge-ncs, this technique can be implemented to produce size-selective and depth-ordered nanostructured systems by controlling the spatial distribution of diffusing Ge. We illustrate this feature for Ge-ncs embedded within a single SiO2 monolayer, whose diameters were gradually increased from 1 nm to 5 nm over a depth of 100 nm.
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.
2016-01-01
Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.
Shuai, Yao; Ou, Xin; Luo, Wenbo; Mücklich, Arndt; Bürger, Danilo; Zhou, Shengqiang; Wu, Chuangui; Chen, Yuanfu; Zhang, Wanli; Helm, Manfred; Mikolajick, Thomas; Schmidt, Oliver G.; Schmidt, Heidemarie
2013-01-01
This work reports the effect of Ti diffusion on the bipolar resistive switching in Au/BiFeO3/Pt/Ti capacitor-like structures. Polycrystalline BiFeO3 thin films are deposited by pulsed laser deposition at different temperatures on Pt/Ti/SiO2/Si substrates. From the energy filtered transmission electron microscopy and Rutherford backscattering spectrometry it is observed that Ti diffusion occurs if the deposition temperature is above 600°C. The current-voltage (I–V) curves indicate that resistive switching can only be achieved in Au/BiFeO3/Pt/Ti capacitor-like structures where this Ti diffusion occurs. The effect of Ti diffusion is confirmed by the BiFeO3 thin films deposited on Pt/sapphire and Pt/Ti/sapphire substrates. The resistive switching needs no electroforming process, and is incorporated with rectifying properties which is potentially useful to suppress the sneak current in a crossbar architecture. Those specific features open a promising alternative concept for nonvolatile memory devices as well as for other memristive devices like synapses in neuromorphic circuits. PMID:23860408
The role of surface passivation in controlling Ge nanowire faceting
Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; ...
2015-11-05
In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. Furthermore, these results illustrate the essential roles of themore » precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, <111>-oriented nanowires.« less
Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon.
Behzad, Kasra; Mat Yunus, Wan Mahmood; Talib, Zainal Abidin; Zakaria, Azmi; Bahrami, Afarin
2012-01-16
Porous silicon (PSi) layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm² fixed current density for different etching times. The samples were coated with a 50-60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM). Photoacoustic spectroscopy (PAS) measurements were carried out to measure the thermal diffusivity (TD) of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.
Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.
Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen
2016-04-21
We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply
Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.
2014-01-01
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916
Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply.
Graydon, Cole W; Zhang, Jun; Oesch, Nicholas W; Sousa, Alioscka A; Leapman, Richard D; Diamond, Jeffrey S
2014-07-02
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, "analog" sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon-vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. Copyright © 2014 the authors 0270-6474/14/348948-15$15.00/0.
Ilka, Roya; Mohseni, Mojdeh; Kianirad, Mehran; Naseripour, Masood; Ashtari, Khadijeh; Mehravi, Bita
2018-04-01
Despite frequent scientific efforts, efficient ocular drug delivery is a major challenge for pharmaceutical scientists. Poor bioavailability of ophthalmic solutions can be overcome by using smart ophthalmic drug-delivery systems. In this research, loading and delivery of Timolol Maleate (TM) through the cornea by synthesized nanoparticles based on biopolymers (chitosan-alginate) were studied. The physico-chemical properties of these nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Loading and release were evaluated by a UV-vis spectrometer and the ex vivo permeation study was carried out using the Franz Diffusion Cell and fluorescent microscopy studies. The results indicated that morphology and size of nanoparticles were spherical and in the range of 80-100nm. The loading capacity and encapsulation efficiency were about 42% and 94% respectively. They illustrated a burst release in the first hour followed by a slower and more sustained drug release during the next 24h. Also, the results indicated that the cornea penetration of TM loaded in nanoparticles was twice than that of TM. Hence, this nanocarrier can be considered as a suitable candidate for controlled TM delivery and release through the cornea. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodríguez-León, Ericka; Íñiguez-Palomares, Ramón A; Navarro, Rosa Elena; Rodríguez-Beas, César; Larios-Rodríguez, Eduardo; Alvarez-Cirerol, Francisco J; Íñiguez-Palomares, Claudia; Ramírez-Saldaña, Maricela; Hernández Martínez, Javier; Martínez-Higuera, Aarón; Galván-Moroyoqui, José Manuel; Martínez-Soto, Juan Manuel
2017-08-21
We synthesized silver nanoparticles using Rumex hymenosepalus root extract (Rh). Nanoparticles were subjected to a purification process and final product is a composite of Rh and silver nanoparticles (AgNPsC). Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to perform a microstructure study. Additionally, two fractions (RhA and RhB) were obtained from the original extract by filtration with tetrahydrofuran (THF); both fractions were analyzed using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH); total polyphenol content was also determined. Separate inhibition tests for AgNPsC and RhA and RhB were applied to Gram-positive bacteria, Gram-negative bacteria, and yeast (Candida albicans) using the well diffusion method. Extract fractions were found to have inhibitory effects only over Gram-positive bacteria, and silver nanoparticles showed inhibitory effects over all the evaluated microorganisms. Cytotoxicity was evaluated using the tetrazolium dye (MTT) assay in mononuclear peripheral blood cells. In addition, we assessment AgNPsC in THP-1 monocyte cell line, using the cell viability estimation by trypan blue dye exclusion test (TB) and Live/Dead (LD) cell viability assays by confocal microscopy.
Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir
2012-03-14
Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. © 2012 American Chemical Society
Kinetics of Microbial Reduction of Solid Phase U(VI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.
2006-10-01
Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solidmore » phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).« less
Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M
2015-11-01
A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this reduction does not result in clinical signs and disease can progress unrecognized for an extended period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys
NASA Astrophysics Data System (ADS)
Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho
2015-12-01
NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux of Ni also has strong influences on the interdiffusion of Mn and Ga with large and negative cross interdiffusion coefficients, tilde{D}_{MnNi}^{Ga} and tilde{D}_{GaNi}^{Mn} . The tilde{D}_{NiNi}^{Ga} and tilde{D}_{MnMn}^{Ga} ternary interdiffusion coefficients exhibited minimum values near 52 at. pct Ni concentration.
A study of the conductive properties of nanostructured metal oxide films
NASA Astrophysics Data System (ADS)
D'Olembert, Andre A.
Fuel cells which were first employed in spacecraft, producing both electricity and water for astronaut consumption during the mid-1960's, are part of the ongoing pursuit for renewable energy sources, and environmentally compatible electric power generation. Recent enhancements in design and materials might establish fuel cells in a sustainable hydrogen energy economy (SHEE) as viable alternatives to the internal combustion engine. In tune with our principal objectives, this study investigates the conductive properties of metal-oxide thin films by developing a new deposition technique called dual channel ultrasonic spray pyrolysis (DC-USP). The DC-USP process has proved to be a reliable and cost-effective method to fabricate thin films. Extending the DC-USP technique, we have created a novel mixed ionic electronic conductor (MIEC) composed of two metal-oxides: lanthanum strontium ferrite and copper-doped bismuth vanadate (LSF.40:BiCuVOx.10). When the two materials are mixed, their grain boundary regions are heavily defected because of the dissimilarity of the two crystal structures, which maintain their integrity in the formed heterogenous composite. Oxygen ion diffusion occurs as it migrates through an ionic crystal, hopping from defect site to defect site. Furthermore, a nanostructured material - with crystallite grains less than 100 nm in diameter - will improve oxygen diffusion by increasing the density of defect sites. The rate of diffusion is increased as well as the quantity of diffusion pathways. Ultimately, as the ionic current density is increased, the total efficiency (nuSOFCtotal) of the solid oxide fuel cell (SOFC) can be improved. Therefore, the LSF-40:BiCuVOx.10 material can contribute to solve the major outstanding problem of the three-phase boundary (TPB) that limits the oxygen reduction reaction to within a microscopic region near the cathode-electrolyte interface in the SOFC device. Materials were tested and analyzed using atomic force microscopy (AFM), interference microscopy (IM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and impedance spectroscopy to elucidate their structural features and energetic properties. Results show that the total bulk electrical conductivity of LSF.40:BiCuVOx.10 increases from 0.81 to 3 S/cm at 650°C when the content of BiCuVOx.10 increases from 10 to 50 vol.%. At a lower temperature of 550°C, the average bulk resistivity value for LSF.40:BiCuVOx.10 (50:50) films was as low as 2.08 0 cm (i.e. conductivity of 0.48 S/cm).
Merrill, Frank E.; Morris, Christopher
2005-05-17
A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.
Chemical reactions and morphological stability at the Cu/Al2O3 interface.
Scheu, C; Klein, S; Tomsia, A P; Rühle, M
2002-10-01
The microstructures of diffusion-bonded Cu/(0001)Al2O3 bicrystals annealed at 1000 degrees C at oxygen partial pressures of 0.02 or 32 Pa have been studied with various microscopy techniques ranging from optical microscopy to high-resolution transmission electron microscopy. The studies revealed that for both oxygen partial pressures a 20-35 nm thick interfacial CuAlO2 layer formed, which crystallises in the rhombohedral structure. However, the CuAlO2 layer is not continuous, but interrupted by many pores. In the samples annealed in the higher oxygen partial pressure an additional reaction phase with a needle-like structure was observed. The needles are several millimetres long, approximately 10 microm wide and approximately 1 microm thick. They consist of CuAlO2 with alternating rhombohedral and hexagonal structures. Solid-state contact angle measurements were performed to derive values for the work of adhesion. The results show that the adhesion is twice as good for the annealed specimen compared to the as-bonded sample.
Ultra high temperature ceramics for hypersonic vehicle applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.
2006-01-01
HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2}more » ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.« less
NASA Astrophysics Data System (ADS)
Perez, E.; Keiser, D. D.; Sohn, Y. H.
2016-08-01
The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.
Phase transformations of 4,4'-biphenyldicarboxylic acid on Cu(001)
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene
2012-06-01
The growth and structure of 4,4'-biphenyldicarboxylic-acid (BDA) on Cu(001) at temperatures between 300 and 400 K was studied by low energy electron microscopy and μ-LEED. First, the adsorbed BDA molecules form a disordered dilute phase. Once this phase reaches a sufficiently high density, a crystalline phase nucleates, in which the molecules form a hydrogen-bonded two-dimensional (2D) supramolecular c(8×8) network. By a careful analysis of the bright-field image intensity, we can measure the density in the dilute phase, which is up to 30% of that in the crystalline phase. From the respective equilibrium densities at different temperatures, we determine the 2D phase diagram and extract a cohesive energy of 0.35 eV. We also analyze the island decay behavior and estimate the BDA molecule diffusion constants. Steps are found to be highly transparent for diffusing BDA molecules. In the temperature range of 362-400 K, we find chemical diffusion constants between 850-1700nm2s-1.
In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples
NASA Astrophysics Data System (ADS)
Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Stach, Eric A.; Zhou, Guangwen
2015-03-01
The Cu-Sn metallurgical soldering reaction in two-segmented Cu-Sn nanowires is studied by in situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction results in a Cu-Sn solid solution for small Sn/Cu length ratio while Cu-Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires to ~500 °C, two phase transformation pathways occur, η-Cu6Sn5 --> ε-Cu3Sn --> δ-Cu41Sn11 for nanowires with a long Cu segment and η-Cu6Sn5 --> ε-Cu3Sn --> γ-Cu3Sn with a short Cu segment. The evolution of Kirkendall voids in the nanowires demonstrates that Cu diffuses faster than Sn in IMCs. Void growth results in the nanowire breakage that shuts off the inter-diffusion of Cu and Sn and thus leads to changes in the phase transformation pathway in the IMCs.
Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrow, T.J.; Prangnell, P.; Aindow, M.
1996-08-01
Observations of internal hydrogen cleavage in Fe-3Si are reported. Hydrogen-assisted stable crack growth (H-SCG) is associated with cleavage striations of a 300 nm spacing, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). High resolution SEM revealed finer striations, previously undetected, with a spacing of approximately 30 nm. These were parallel to the coarser striations. Scanning tunneling microscopy (STM) also showed the fine striation spacing, and gave a striation height of approximately 15 nm. The crack front was not parallel to the striations. Transmission electron microscopy (TEM) of crack tip plastic zones showed {l_brace}112{r_brace} and {l_brace}110{r_brace} slip, withmore » a high dislocation density (around 10{sup 14}m{sup {minus}2}). The slip plane spacing was approximately 15--30 nm. Parallel arrays of high dislocation density were observed in the wake of the hydrogen cleavage crack. It is concluded that H-ScG in Fe-3Si occurs by periodic brittle cleavage on the {l_brace}001{r_brace} planes. This is preceded by dislocation emission. The coarse striations are produced by crack tip blunting and the fine striations by dislocations attracted by image forces to the fracture surface after cleavage. The effects of temperature, pressure and yield strength on the kinetics of H-SCG can be predicted using a model for diffusion of hydrogen through the plastic zone.« less
Posing for a picture: vesicle immobilization in agarose gel
NASA Astrophysics Data System (ADS)
Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.
2016-05-01
Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.
Origin of Quantum Ring Formation During Droplet Epitaxy
NASA Astrophysics Data System (ADS)
Zhou, Z. Y.; Zheng, C. X.; Tang, W. X.; Tersoff, J.; Jesson, D. E.
2013-07-01
Droplet epitaxy of GaAs is studied in real time using in situ surface electron microscopy. The resulting movies motivate a theoretical model for quantum ring formation which can explain the origin of nanoscale features such as double rings observed under a variety of experimental conditions. Inner rings correspond to GaAs deposition at the droplet edge, while outer rings result from the reaction of Ga and As atoms diffusing along the surface. The observed variety of morphologies primarily reflects relative changes in the outer rings with temperature and As flux.
NASA Astrophysics Data System (ADS)
You, C. Y.; Cerezo, A.; Clifton, P. H.; Folks, L.; Carey, M. J.; Petford-Long, A. K.
2007-07-01
The microstructure and chemistry of a current-perpendicular-to-plane giant magnetoresistance structure containing a nano-oxide layer (NOL) have been studied using a combination of high resolution transmission electron microscopy and three-dimensional atom probe analysis. It was found that the morphology of the NOL changes from a planar layer to discrete particles on annealing, indicating the dominance of surface energy on the morphology evolution. Direct evidence was obtained for significant Mn diffusion from the IrMn antiferromagnetic layer and partitioning to the oxide region during annealing.
Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals
NASA Astrophysics Data System (ADS)
Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing
2018-01-01
Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.
Serological comparison of selected isolates of Aeromonas salmonicida ssp. Salmonicida
Hahnel, G.B.; Gould, R.W.; Boatman, E.S.
1983-01-01
Eight isolates of Acronionus salmonicida ssp. salmonicida were collected during furunculosis epizootics in North American Pacific coast states and provinces. Both virulent and avirulent forms of each isolate, confirmed by challenge and electron microscopy, were examined. Serological comparisons by cross-absorption agglutination tests revealed no serological differences between isolates. Using the double diffusion precipitin test, a single band was observed when antigen from a sonicated virulent strain was reacted with antiserum against a sonicated, virulent strain absorbed with homologous, avirulent strain. The presence of the single band was eliminated by excess sonication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza Filho, N. E.; Universidade Federal de Santa Maria, Departamento de Eng. Acústica, Av. Roraima 1000, CEP 97105–900, Santa Maria-RS; Mariucci, V. V. G.
Intravaginal devices composed of polyhydroxybutyrate/polycaprolactone blends incorporating progesterone were used over eight days in crossbred cow ovariectomized, and then analyzed with photoacoustic methods, measuring the absorption spectra, thermal diffusivity, and inspecting its degradation by means of scanning electron microscopy. The characteristic time found for progesterone release was TR ∼ 53 h, and the typical time found for biodegradation was TB ∼ 30 h. Morphological analysis complements the study showing that release of progesterone and biodegradation of the blend occurs on sample surface.
Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity
NASA Astrophysics Data System (ADS)
You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.
2014-12-01
A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.
NASA Astrophysics Data System (ADS)
Souza Filho, N. E.; Mariucci, V. V. G.; Dias, G. S.; Szpak, W.; Miguez, P. H. P.; Madureira, E. H.; Medina, A. N.; Baesso, M. L.; Bento, A. C.
2013-09-01
Intravaginal devices composed of polyhydroxybutyrate/polycaprolactone blends incorporating progesterone were used over eight days in crossbred cow ovariectomized, and then analyzed with photoacoustic methods, measuring the absorption spectra, thermal diffusivity, and inspecting its degradation by means of scanning electron microscopy. The characteristic time found for progesterone release was TR ˜ 53 h, and the typical time found for biodegradation was TB ˜ 30 h. Morphological analysis complements the study showing that release of progesterone and biodegradation of the blend occurs on sample surface.
NASA Astrophysics Data System (ADS)
Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang
2017-12-01
The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.
Preparation of mesoporous carbon nitride structure by the dealloying of Ni/a-CN nanocomposite films
NASA Astrophysics Data System (ADS)
Zhou, Han; Shen, Yongqing; Huang, Jie; Liao, Bin; Wu, Xianying; Zhang, Xu
2018-05-01
The preparation of mesoporous carbon nitride (p-CN) structure by the selective dealloying process of Ni/a-CN nanocomposite films is investigated. The composition and structure of the Ni/a-CN nanocomposite films and porous carbon nitride (p-CN) films are determined by scan electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Phase separated structure including nickel carbide phase and the surrounding amorphous carbon nitride (a-CN) matrix are detected for the as-deposited films. Though the bulk diffusion is introduced in the film during the annealing process, the grain sizes for the post-annealed films are around 10 nm and change little comparing with the ones of the as-deposited films, which is associated with the thermostability of the CN surrounding in the film. The p-CN skeleton with its pore size around 12.5 nm is formed by etching the post-annealed films, indicative of the stability of the phase separated structure during the annealing process.
NASA Astrophysics Data System (ADS)
Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng
2012-10-01
A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.
NASA Astrophysics Data System (ADS)
Allafchian, Ali R.; Jalali, S. A. H.; Amiri, R.; Shahabadi, Sh.
2016-11-01
In this study, the NiFe2O4 was embedded in (3-mercaptopropyl) trimethoxysilane (TPS) and tetraethyl orthosilicate (TEOS) using the sol-gel method. These compounds were used as the support of Ag nanoparticles (Ag NPs). The NiFe2O4@TEOS-TPS@Ag nanocomposites were obtained with the development of bonding between the silver atoms of Ag NPs and the sulfur atoms of TPS molecule. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of the Ag nanocomposites. Also, the magnetic properties of these nanocomposites were studied by using a vibrating sample magnetometer (VSM) technique. The disk diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentrations (MBC) tests were used for the investigation of the antibacterial effect of this nanocomposite against bacterial strains. The synthesized nanocomposite presented high reusability and good antibacterial activity against gram-positive and gram-negative bacteria. Remarkably, this nanocomposite could be easily removed from the disinfected media by magnetic decantation.
NASA Astrophysics Data System (ADS)
Dhak, Prasanta; Adak, Mrinal Kanti; Dhak, Debasis
2016-02-01
Nanocrystalline Ba1-3xTi1-3xLa2xMn4xO3, [x = 0.006, 0.008, 0.01 and 0.05] (abbreviated hereafter as BTLM) by chemical route. The phase formation and purity were checked by X-ray diffraction (XRD) study and transmission electron microscopy (TEM). The grain morphology after sintering was studied by scanning electron microscopy (SEM). The crystallite sizes range from 21 nm to 30 nm, while the particle size ranges between 27 nm and 38 nm. The grain size 212 nm and grain density 96.8% were found to be maximum for BTLM x = 0.05 and x = 0.01, respectively. The temperature dependence of dielectric constants was found to be more diffused and the peak value of the dielectric constant was decreased and more flat with the increase of the substituent concentration. The tangent loss was found to be decreased and reached to the minimum value of 0.032 for BTLM x = 0.05. The remnant polarization Pr, was 10 μC/cm2 for BTLM x = 0.01.
NASA Astrophysics Data System (ADS)
Levchuk, Irina; Sillanpää, Mika; Guillard, Chantal; Gregori, Damia; Chateau, Denis; Parola, Stephane
2016-10-01
The aim of the work was to study photocatalytic activity of composite TiO2/Au/SiO2 thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV-vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO2/Au/SiO2 films with gold nanoparticle's load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO2.
Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.
Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng
2010-03-01
ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.
Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.
Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen
2008-07-15
TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.
Joseph, Amala Infant Joice; Thiripuranthagan, Sivakumar
2018-05-01
Recombination of e-/h+ pair, the major issue of any titania based photocatalytic material, is addressed here by doping non-metals such as C, N, B, F into the lattice of nano TiO2. The as-synthesised catalysts were characterized by using various instrumental techniques such as X-ray diffraction (XRD), UV-Diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Nanosize of titania was confirmed by both XRD and TEM studies. Visible light inactivity of TiO2 is overcome by C, N, B, F doped titania catalysts in the degradation of neonicotinoid type insecticides namely imidacloprid (IMI) and thiamethoxam (TMX). The degradation efficiencies of the catalysts under different irradiations namely UV, visible and solar were compared. Among the catalysts, CNBF/TiO2 degraded IMI completely at 150, 240 and 330 min whereas TMX has been degraded completely at 210, 270 and 420 min under UV, solar and visible irradiations respectively. The recyclability test of CNBF/TiO2 confirmed its stability towards photocatalytic reaction.
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
Selvam, N Clament Sagaya; Narayanan, S; Kennedy, L John; Vijaya, J Judith
2013-10-01
A novel self-assembled pure and Mg doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts showed high crystallinity with a uniform size distribution of the NPs. The degradation of cholorphenols is highly mandatory in today's scenario as they are affecting the environment adversely. Thus, the photocatalytic degradation of 4-chlorophenol (4-CP), a potent endocrine disrupting chemical in aqueous medium was investigated by both pure and Mg-doped ZnO NPs under UV-light irradiation in the present study. The influence of the Mg content on the structure, morphology, PL character and photocatalytic activity of ZnO NPs were investigated systematically. Furthermore,the effect of different parameters such as 4-CP concentration, photocatalyst amount, pH and UV-light wavelength on the resulting photocatalytic activity was investigated.
Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.
Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao
2014-08-01
Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirzazadeh, Hoda; Lashanizadegan, Maryam
2018-05-01
Magnetic Fe3O4/ZnO-CdO/reduced graphene oxide (MFZC/RGO) has been synthesized by simple hydrothermal method. The structure and morphology were investigated by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), Vibrating sample magnetometer (VSM), Raman and Fourier-transform infrared spectroscopy (FTIR). MFZC/RGO was applied as catalyst in degradation of methylene blue (MB), rhodamin B (RhB) and methylorange (MO) under ultrasonic irradiation. Based on the results, excellent degradation efficiencies of MB, RhB and MO (>99%) were achieved within 10, 20 and 20 min, respectively under oxygen flow. Moreover the catalytic property of MFZC/RGO was investigated in oxidation of styrene, α-methyl styrene, cyclohexene and cyclooctene under oxygen flow. In addition, MFZC/RGO can be easily collected and separated by an external magnet. The catalyst displayed negligible loss in activity and selectivity within several successive runs due to super paramagnetism.
Preparation of Ag/AgCl/BiMg{sub 2}VO{sub 6} composite and its visible-light photocatalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Rui; Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn; Liu, Jiu
2013-05-15
Graphical abstract: - Abstract: A novel composite photocatalyst Ag/AgCl/BiMg{sub 2}VO{sub 6} was synthesized by depositing Ag/AgCl nanoparticles on BiMg{sub 2}VO{sub 6} substrate via a precipitation–photoreduction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDXA), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectrophotometer (UV–vis DRS). The photocatalyst showed high and stable photocatalytic activity for photocatalytic degradation of acid red G under visible-light irradiation (λ > 420 nm). In addition, the active ·O{sub 2}{sup −} and h{sup +}, as main reactive species, played the major roles during the reaction process.more » The high photocatalytic activity of the composite may be related to the efficient electron–hole pairs separation at the photocatalyst interfaces, as well as the surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction.« less
In situ SEM Study of Lithium Intercalation in individual V 2O 5 Nanowires
Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; ...
2015-01-08
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen
2016-01-01
Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated. PMID:28787898
NASA Astrophysics Data System (ADS)
Terryn, C.; Michel, J.; Kilian, L.; Bonhomme, P.; Balossier, G.
2000-09-01
Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0-30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.
Methods to improve the PVD coatability of brass by using diffusion barriers
NASA Astrophysics Data System (ADS)
Langer, Bernd
Previous work involving PVD coatings on brass has used a combination of multilayers consisting of electroplated films like nickel or chromium and deposited decorative PVD coatings like TiN, TiAIN or ZrN systems. The disadvantages of these systems are the combination of wet electrochemistry and high tech vacuum processes. Furthermore the allergic reaction to nickel and the toxic nature of Cr(VI) must be considered.There is a need for intermediate layers to 'seal-off the brass in order to avoid the evaporation of zinc in vacuum using a diffusion barrier. Furthermore the intermediate layers are required to act as a corrosion barrier.This thesis reports on the development of PVD coatings on heat sensitive brass substrate materials utilising ABS technology with Al, CuAl8 and Nb targets as vapour sources.The brass pretreatment includes careful grinding, polishing and cleaning steps as well as steered arc metal ion etching using the above target materials. The coatings are produced at temperatures between 100 and 250°C in the unbalanced magnetron mode, including layers made from Al, Al-Nb, CuA18, CuAl8-Nb and Nb.Scratch adhesion and Rockwell indentation tests are found not to be directly applicable to the system of soft brass and ductile coating(s). Therefore a new classification for both scratch and indentation tests was defined. The best adhesion was shown by the CuA18 coatings on brass. Corrosion tests showed good results for the Al coatings and poor results for the pure Nb coatings directly applied on brass. The best corrosion result was obtained with a CuAl8-Nb layer system. This layer system also offers very good barrier behaviour concerning Zn diffusion.Other investigations like Glow Discharge Optical Emission Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) imaging, Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) were undertaken to characterise the new coating systems for brass.
Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon
Behzad, Kasra; Mat Yunus, Wan Mahmood; Talib, Zainal Abidin; Zakaria, Azmi; Bahrami, Afarin
2012-01-01
Porous silicon (PSi) layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM). Photoacoustic spectroscopy (PAS) measurements were carried out to measure the thermal diffusivity (TD) of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing. PMID:28817037
Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.
2017-12-01
Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.
Desquamative interstitial pneumonia associated with chrysotile asbestos fibres.
Freed, J A; Miller, A; Gordon, R E; Fischbein, A; Kleinerman, J; Langer, A M
1991-01-01
The drywall construction trade has in the past been associated with exposure to airborne asbestos fibres. This paper reports a drywall construction worker with 32 years of dust exposure who developed dyspnoea and diminished diffusing capacity, and showed diffuse irregular opacities on chest radiography. He did not respond to treatment with corticosteroids. Open lung biopsy examination showed desquamative interstitial pneumonia. Only a single ferruginous body was seen on frozen section, but tissue examination by electron microscopy showed an extraordinary pulmonary burden of mineral dust with especially high concentrations of chrysotile asbestos fibres. This report emphasises the need to consider asbestos fibre as an agent in the aetiology of desquamative interstitial pneumonia. The coexistent slight interstitial fibrosis present in this case is also considered to have resulted from exposure to mineral dust, particularly ultramicroscopic asbestos fibres. Images PMID:1645584
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Rai-Choudhury, P.
1986-01-01
Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.
NASA Astrophysics Data System (ADS)
Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah
2017-08-01
A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J. E.; Doundoulakis, G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion
2016-06-14
We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well asmore » numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.« less
Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie
2009-05-30
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.
NASA Astrophysics Data System (ADS)
Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk
2018-03-01
A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).
NASA Astrophysics Data System (ADS)
Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.
2009-02-01
Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.
NASA Astrophysics Data System (ADS)
Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul
2016-09-01
Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.
Verma, Vivek; Balasubramanian, K
2014-08-01
Porous composite membrane of polyacrylonitrile (PAN) and Lantana camara essential oil was synthesized by solvent casting method. Stability of oil in PAN solution was measured by XiGo nano tool indicating constant relaxation time of 1487 time/s. Pore size of few microns confirmed by electron microscopy was supported by atomic force microscopy indicating roughness factor of 0.9 nm. Contact angle of 2° inveterates superhydrophilicity of the composite membrane. Membrane showed excellent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 7-10mm zone of inhibition. In vitro release of Lantana oil from the composite membrane was carried out in isotonic phosphate buffer solution (pH=7.4). Lantana oil was released for 9h, lag time of 3h with constant 33% release confirmed PAN membranes as potential system for pulsatile drug delivery applications. Diffusion of E-caryophyllene (antibacterial component of oil) which was studied through molecular simulation using Material Studio software ensued diffusion coefficient value of 1.11∗10(-9) m(2)/s. Biocompatibility of the composite membrane was assessed by mouse embryonic fibroblast cell line (NIH 3T3) through MTT assay indicating more than 91% viable cell even at 200 μg/mL concentration. Such membranes can be efficiently used in biomedical applications as antibacterial and antifungal agent. Copyright © 2014 Elsevier B.V. All rights reserved.
Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells.
Wüstner, Daniel; Lund, Frederik W; Röhrl, Clemens; Stangl, Herbert
2016-01-01
Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences and collaborative efforts with Bob Bittman for studying diffusion in the plasma membrane (PM) and uptake of BChol in a quantitative manner. For that purpose, we used a variety of fluorescence approaches including fluorescence correlation spectroscopy and its imaging variants, fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we highlight the suitability of BChol for determining transport of lipoprotein-derived sterol using electron microscopy (EM) and show that this approach ideally complements fluorescence studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kundu, S.; Sam, S.; Mishra, B.; Chatterjee, S.
2014-01-01
The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 °C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise σ phase and the λ + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNi3 intermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + λ phase when bonding was processed for 2.7 ks; however, failure takes place through σ phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.
NASA Technical Reports Server (NTRS)
Rao, D. B.; Heinemann, K.; Douglass, D. L.
1976-01-01
Single-crystalline thin films of copper were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of .005 Torr in situ in a high-resolution electron microscope. The specimens were prepared by epitaxial vapor deposition onto polished 100 and 110 faces of rocksalt and mounted in a hot stage inside an ultra-high-vacuum specimen chamber of the microscope. Large amounts of sulfur, carbon, and oxygen were detected by Auger electron spectroscopy on the surface of the as-received films and were removed in situ by ion-sputter etching immediately prior to the oxidation. The nucleation and growth characteristics of Cu2O on Cu were studied. Results show that neither stacking faults nor dislocations are associated with the Cu2O nucleation sites. The growth of Cu2O nuclei is linear with time. The experimental findings, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving (a) the formation of a surface-charge layer, (b) oxygen saturation in the metal and (c) nucleation, followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Berah, Razieh; Ghorbani, Mohsen; Moghadamnia, Ali Akbar
2017-06-01
To create facile external controlled drug delivery system, a magnetic porous carrier based on Tin oxide nanoparticles was synthesized by an inexpensive and versatile hydrothermal strategy and used for in-vitro process. Magnetic nanocomposites were qualified by Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Vibrational Sample Magnetometer (VSM) and Transmission Electron Microscopy (TEM). Results showed that nanoparticles were synthesized successfully with good dispersion of magnetic nanoparticles in cavity, uniform particle size distribution with average size of 65nm and high magnetization of 33.75 emu/mg. Furthermore, the nano-porosity and magnetism allowed high efficiency and remote controlled drug release. In this study, anti-migraine Sumatriptan was used as drug sample and the effect of drug concentration, Fe/Sn ratio and loading time on drug absorption were investigated. The best result was checked for stability at body temperature and different body pH. The sample with drug concentration of 0.25(mg/ml), Fe/Sn=0.22 and loading time of 1.5h had the highest drug efficiency (70%). Finally, in order to simulate the in vivo process for in-vitro step, Amnion was used and drug diffusion rate was measured in different intervals and different pH values. The result illustrated that after 25h, diffusion reached 65% at pH=2 and 56% at pH=7, and then became constant. Based on the above mentioned results, the carrier has an acceptable in vitro yield and therefore could be chosen for future in vivo researches. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C)
NASA Astrophysics Data System (ADS)
Perez, Emmanuel; Sohn, Yong-Ho; Keiser, Dennis D.
2013-01-01
U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloy fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interaction products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and result in premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7 wt pct Mo, U-10 wt pct Mo and U-12 wt pct Mo in contact with pure Al, Al-2 wt pct Si, and Al-5 wt pct Si, annealed at 823 K (550 °C) for 1, 5 and 20 hours. Scanning electron microscopy and transmission electron microscopy were employed for the analysis. Diffusion couples consisting of U-Mo in contact with pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. Additions of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al- and Si-enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In these couples, the (U,Mo)(Al,Si)3 phase was observed throughout the interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.
Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.
Prakash, B Shri; Varma, K B R
2008-11-01
Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.
Sohrabnezhad, Sh; Zanjanchi, M A; Hosseingholizadeh, S; Rahnama, R
2014-04-05
The synthesis of CuS nanomaterial in MCM-41 matrix has been realized by chemical synthesis between MCM-41, copper sulfate pentahydrate and thiourea via a solvothermal method in ethylene glycol and water, separately. X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) were used to characterize the products. At synthesized CuS/MCM-41 sample in ethylene glycol, X-ray diffraction and diffuse reflectance spectroscopy showed pure covellite phase of copper sulfide with high crystality. But prepared CuS/MCM-41 sample in water shows the covellite, chalcocite and the djurleite phase of copper sulfide nanostructures. The formation of CuS nanostructures was confirmed by FT-IR. Photocatalytic activity of CuS/MCM-41 nanocomposites was studied for degradation of Methylene Blue (MB) under visible light. The CuS/MCM-41 nanocomposite is more effective nanocatalyst than synthesized CuS/MCM-41 sample in water for degradation of methylene blue. Several parameters were examined, catalyst amount (0.1-1gL(-1)), pH (1-13) and initial concentration of MB (0.96-10ppm). The extent of degradation was estimated from the residual concentration by spectrophotometrically. The support size was obtained in the range 60-145nm by TEM. In the same way, the average size of copper sulfide in CuSMCM-41E and CuS/MCM-41W nanostructures were obtained about 10nm and 16nm, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Epitaxial growth of Al9Ir2 intermetallic compound on Al(100): Mechanism and interface structure
NASA Astrophysics Data System (ADS)
Kadok, J.; Pussi, K.; Šturm, S.; Ambrožič, B.; Gaudry, É.; de Weerd, M.-C.; Fournée, V.; Ledieu, J.
2018-04-01
The adsorption of Ir adatoms on Al(100) has been investigated under various exposures and temperature conditions. The experimental and theoretical results reveal a diffusion of Ir adatoms within the Al(100) surface selvedge already at 300 K. Above 593 K, two domains of a (√{5 }×√{5 }) R 26 .6∘ phase are identified by low energy electron diffraction (LEED) and scanning tunneling microscopy measurements. This phase corresponds to the initial growth of an Al9Ir2 compound at the Al(100) surface. The Al9Ir2 intermetallic domains are terminated by bulklike pure Al layers. The structural stability of Al9Ir2 (001) grown on Al(100) has been analyzed by density functional theory based calculations. Dynamical LEED analysis is consistent with an Ir adsorption leading to the growth of an Al9Ir2 intermetallic compound. We propose that the epitaxial relationship Al9Ir2(001 ) ∥Al (100) and Al9Ir2[100 ] ∥Al [031 ]/[013 ] originates from a matching of Al atomic arrangements present both on Al(100) and on pure Al(001) layers present in the Al9Ir2 compound. Finally, the interface between Al9Ir2 precipitates and the Al matrix has been characterized by transmission electron microscopy measurements. The cross-sectional observations are consistent with the formation of Al9Ir2 (001) compounds. These measurements indicate an important Ir diffusion within Al(100) near the surface region. The coherent interface between Al9Ir2 and the Al matrix is sharp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Huang; C. Kammerer; D. D. Keiser, Jr.
2014-04-01
U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less
New developments in electron microscopy for serial image acquisition of neuronal profiles.
Kubota, Yoshiyuki
2015-02-01
Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.
The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems undermore » extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors.« less
In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An
2010-09-27
The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring formore » the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.« less
Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor.
Gonzalez-Gil, G; Lens, P N; Van Aelst, A; Van As, H; Versprille, A I; Lettinga, G
2001-08-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH(4)/g of volatile suspended solids [VSS].day or 1.1 g of CH(4) chemical oxygen demand/g of VSS.day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.
Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor
Gonzalez-Gil, G.; Lens, P. N. L.; Van Aelst, A.; Van As, H.; Versprille, A. I.; Lettinga, G.
2001-01-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates. PMID:11472948
Huang, Ziling; Yi, Xianghua; Luo, Benfang; Zhu, Jian; Wu, Yunjin; Jiang, Wenxia; Chu, Haiqing; Yang, Zhongmin; Li, Shuai; Zhu, Hailong; Zhang, Suxia; Zhang, Lanjing; Zeng, Yu
2016-01-01
Pulmonary alveolar proteinosis (PAP) is a rare diffuse lung disease characterized by the accumulation of intra-alveolar lipoprotein-like surfactants. Lung core biopsy and bronchoalveolar lavage (BAL) fluid are currently the two major sources of sampling for diagnosis. In the present study, we assessed the value of induced sputum in diagnosing PAP by transmission electron microscopy and examined the PAP 2-year death rate in Asians. Transmission electron microscopy was performed on the samples from 17 patients with PAP, 13 patients with inflammatory lung diseases, and 13 healthy adults. The PAP patients were followed up for 3-156 months, and inflammatory lung diseases patients or healthy adults for 12-36 months. The ultrastructural features including diagnostic lamellar bodies of induced sputum deposition (ISD) samples were similar to that of the BAL fluid sediment. However, the rates of lamellar bodies were 73.7% in the ISD group, significantly higher than the spontaneous sputum deposition (SSD) group (42.1%, P < .0487) and similar to the BAL sediment (76.2%) and the lung biopsy (54.5%) groups. The overall 2-year death rate of our PAP patients was 17.6% (3/17), not statistically different from the healthy adults and patients with inflammatory diseases (0/13, P = .237 for both). ISD may be the preferred non-invasive sampling method for diagnosing PAP by electronic microscopy because of the higher diagnostic yield than SSD. The diagnostic yields of this noninvasive method were similar to that of lung core biopsy and BAL.
Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations
NASA Astrophysics Data System (ADS)
López-Muñoz, Gerardo A.; Pescador-Rojas, José A.; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J. Abraham
2012-07-01
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samavatian, Majid, E-mail: m.samavatian@srbiau.ac.ir; Halvaee, Ayoub; Amadeh, Ahmad Ali
Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion processmore » led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.« less
Divacancy complexes induced by Cu diffusion in Zn-doped GaAs
NASA Astrophysics Data System (ADS)
Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.
2013-08-01
Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.
Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations.
López-Muñoz, Gerardo A; Pescador-Rojas, José A; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J Abraham
2012-07-30
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
X-ray analysis of temperature induced defect structures in boron implanted silicon
NASA Astrophysics Data System (ADS)
Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.
2002-10-01
We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.
Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc
2015-09-02
Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.
Adapalene microemulsion for transfollicular drug delivery.
Bhatia, Gaurav; Zhou, Yingcong; Banga, Ajay K
2013-08-01
The aim of this study was to develop a microemulsion formulation of adapalene for transfollicular delivery. A pseudoternary phase diagram was developed for microemulsion consisting of oleic acid as oil phase, tween 20 as surfactant, Transcutol® as cosurfactant, and deionized water. Differential tape stripping and confocal laser scanning microscopy were performed to determine the penetration of microemulsion through hair follicles. Transmission electron microscopy, dynamic light scattering, polarizing light microscopy, and differential scanning calorimetry were performed to characterize the microstructures of microemulsion. The pH and viscosity of the microemulsions were also determined. Permeation studies were carried out in vitro on porcine ear skin over a period of 24 h using Franz diffusion cells. The drug penetration in the hair follicles increased from 0.109 ± 0.03 to 0.292 ± 0.094 μg, as the microstructure of microemulsion shifted from oil-in-water to bi-continuous, with increase in water content of microemulsion. Confocal laser scanning microscopy images suggested that hair follicles provided the path for transfollicular permeation of adapalene microemulsion. These results suggest that microemulsion penetrated through hair follicles and are promising for transfollicular drug delivery. Copyright © 2013 Wiley Periodicals, Inc.
Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.
Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan
2015-01-01
Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.
Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale
NASA Astrophysics Data System (ADS)
Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.
2013-12-01
Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.
A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release
NASA Astrophysics Data System (ADS)
Wang, Chan; Lv, Piping; Wei, Wei; Tao, Shengyang; Hu, Tao; Yang, Jingbang; Meng, Changgong
2011-10-01
A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m2 g - 1, a pore size of 1.91 nm and a saturation magnetization of 32 emu g - 1. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.
Cruz, Maria C Pinto; Ravagnani, Sergio P; Brogna, Fabio M S; Campana, Sérgio P; Triviño, Galo Cardenas; Lisboa, Antonio C Luz; Mei, Lucia H Innocentini
2004-12-01
Diffusion studies of OTC (oxytetracycline) entrapped in microbeads of calcium alginate, calcium alginate coacervated with chitosan (of high, medium and low viscosity) and calcium alginate coacervated with chitosan of low viscosity, covered with PEG [poly(ethylene glycol) of molecular mass 2, 4.6 and 10 kDa, were carried out at 37+/-0.5 degrees C, in pH 7.4 and pH 1.2 buffer solutions - conditions similar to those found in the gastrointestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank [(1975) Mathematics in Diffusion, p. 85, Clarendon Press, Oxford] for diffusion, which follows Fick's [(1855) Ann. Physik (Leipzig) 170, 59] second law, considering the diffusion from the inner parts to the surface of the microbeads. The least-squares and the Newton-Raphson [Carnahan, Luther and Wilkes (1969) Applied Numerical Methods, p. 319, John Wiley & Sons, New York] methods were used to obtain the diffusion coefficients. The microbead swelling at pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, owing, probably, to the high solubility of the OTC in this environment. It was possible to modulate the release rate of OTC in several types of microbeads. The presence of cracks formed during the process of drying the microbeads was observed by scanning electron microscopy.
Ta-Pt Alloys as Gate Materials for Metal-Oxide-Semiconductor Field Effect Transistor Application
NASA Astrophysics Data System (ADS)
Huang, Chih-Feng; Tsui, Bing-Yue
2009-03-01
In this work we explore the thermal stability of sputter-deposited Ta-rich Ta-Pt alloys. The effects of group III and V impurities on their work function are also investigated. The Ta content ranges from 65 to 82 at. %. The main phase is σ Ta-Pt. The binding energies of core-level electrons of Ta and Pt are changed due to the intermixing of Ta and Pt, which is evidence that the work function of alloys is changed in metallic alloy systems. Binding energies are thermally stable up to 800 °C. Moreover, the incorporation of Pt in Ta film induces poor crystallization and a compound phase of Ta-Pt alloys. Transmission electron microscopy analysis confirmed the absence of a clear grain boundary in Ta-Pt alloys. The Ta and Pt depth profile shows uniformity in depth after 800 °C annealing for 30 min. The diffusion and distribution of impurities in the alloys were studied by secondary ion mass spectroscopy. Arsenic cannot diffuse in the alloys following annealing at 800 °C for 30 s. In contrast, boron can easily diffuse at 800 °C. The incorporation of impurities with a dosage of 5 ×1015 cm-2 in 60 nm Ta-Pt alloy by implantation did not significantly change the flat-band voltage following annealing at 800 °C.
Spin injection and transport in semiconductor and metal nanostructures
NASA Astrophysics Data System (ADS)
Zhu, Lei
In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.
Large-scale phase separation with nano-twin domains in manganite spinel (Co,Fe,Mn){sub 3}O{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Y., E-mail: horibe@post.matsc.kyutech.ac.jp; Takeyama, S.; Mori, S.
The effect of Mn concentration on the formation of nano-domain structures in the spinel oxide (Co,Fe,Mn){sub 3}O{sub 4} was investigated by electron diffraction, bright-, and dark-field imaging technique with transmission electron microscopy. Large scale phase separation with nano-twin domains was observed in Co{sub 0.6}Fe{sub 1.0}Mn{sub 1.4}O{sub 4}, in contrast to the highly aligned checkerboard nano-domains in Co{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4}. Diffusion of the Mn{sup 3+} ions with the Jahn-Teller distortions is suggested to play an important role in the formation of checkerboard nano-domain structure.
Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding.
Schuster, Erich; Hermansson, Anne-Marie; Ohgren, Camilla; Rudemo, Mats; Lorén, Niklas
2014-01-07
The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhul'Kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.
2009-05-01
Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.
Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking.
Mayor, S; Rothberg, K G; Maxfield, F R
1994-06-24
Glycosyl-phosphatidylinositol (GPI)-anchored proteins have been reported to reside in clusters collected over small membrane invaginations called caveolae. The detection of different GPI-anchored proteins with fluorescently labeled monoclonal antibodies showed that these proteins are not constitutively concentrated in caveolae; they enter these structures independently after cross-linking with polyclonal secondary antibodies. Analysis of the cell surface distribution of the GPI-anchored folate receptor by electron microscopy confirms these observations. Thus, multimerization of GPI-anchored proteins regulates their sequestration in caveolae, but in the absence of agents that promote clustering they are diffusely distributed over the plasma membrane.
Structural changes in the nano-oxide layer with annealing in specular spin valves
NASA Astrophysics Data System (ADS)
Jang, S. H.; Kim, Y. W.; Kang, T.; Kim, H. J.; Kim, K. Y.
2003-05-01
We investigated microstructural changes in a nano-oxide layer (NOL) with annealing in specular spin valves (SVs) by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy analysis. In the SV annealed at high temperature of 400 °C, an increase in thickness and a local breakdown of the NOL were observed. This local coarsening of the NOL is closely related to the formation of Mn oxides in the oxide-rich part of the NOL through Mn diffusion. Thus, the chemical structure of the NOL changes to the structure with Mn oxide-rich content after annealing.
NASA Astrophysics Data System (ADS)
Jha, Babita; Rao, Mugdha; Prasad, K.; Jha, Anal K.
2018-05-01
The present work encompasses the fabrication of biocompatible silver nanoparticles from the leaves of the medicinal plant Piper betle using green chemistry approach. The synthesized nanoparticles were characterized by different standard techniques like: UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and Fourier transformed infrared spectroscopy. The antimicrobial efficacy of the silver nanoparticles was assessed against human and plant pathogens namely Ralstonia solanacearum, Burkholderia gladioli, Escherichia coli and Sacchromyces cerevisiae by agar well diffusion method. The obtained results clearly indicate its possible use as an alternative to antibiotics and pesticides in near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.
2009-05-15
Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.
Yu, Xiuhong; Xue, Fanghong; Huang, Hao; Liu, Chunjing; Yu, Jieyi; Sun, Yuejun; Dong, Xinglong; Cao, Guozhong; Jung, Youngguan
2014-06-21
Two-dimensional (2D) ultrathin silicon nanosheets (Si NSs) were synthesized by DC arc discharge method and investigated as anode material for Li-ion batteries. The 2D ultrathin characteristics of Si NSs is confirmed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The average size of Si NSs is about 20 nm, with thickness less than 2.5 nm. The characteristic Raman peak of Si NSs is found to have an appreciable (20 nm) shift to low frequency, presumably due to the size effect. The synergistic effects of Ar(+) and H(+) lead to 2D growth of Si NSs under high temperature and energy. Electrochemical analyses reveal that Si NSs anode possesses stable cycling performance and fast diffusion of Li-ions with insertion/extraction processes. Such Si NSs might be a promising candidate for anode of Li-ion batteries.
Latha, M; Sumathi, M; Manikandan, R; Arumugam, A; Prabhu, N M
2015-05-01
In the present investigation, we described the green synthesis of silver nanoparticles using plant leaf extract of Hemidesmus indicus. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM images proved that the synthesized silver nanoparticles were spherical in shape with an average particle size of 25.24 nm. To evaluate antibacterial efficacy, bacteria was isolated from poultry gut and subjected to 16S rRNA characterization and confirmed as Shigella sonnei. The in vitro antibacterial efficacy of synthesized silver nanoparticles was studied by agar bioassay, well diffusion and confocal laser scanning microscopy (CLSM) assay. The H. indicus mediated synthesis of silver nanoparticles shows rapid synthesis and higher inhibitory activity (34 ± 0.2 mm) against isolated bacteria S. sonnei at 40 μg/ml. Copyright © 2015 Elsevier Ltd. All rights reserved.
The oxidation of Inconel-690 alloy at 600 K in air
NASA Astrophysics Data System (ADS)
Allen, G. C.; Dyke, J. M.; Harris, S. J.; Morris, A.
1988-03-01
The alloy Inconel-690 has been oxidised at 600 K in air for periods varying between 30 s and 120 h and the composition of the oxide layer formed examined by scanning Auger microscopy (SAM), scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDAX), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). Analysis of the spectra revealed the formation of a layer of essentially α-Cr 2O 3 at room temperature. Oxidation at 600 K resulted in the formation of a duplex oxide film with a thin outer layer of iron(III) oxide. Beneath this was a mixed chromium, iron, nickel oxide. Following 8 h of oxidation at 600 K the oxide was approximately 10 nm thick but this was found to vary with the physical surface of the underlying alloy which also appeared to affect the relative rates of diffusion of the ionic species during film growth.
Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.
Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H
2011-12-06
Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.
Alzahly, Shaykha; Yu, LePing; Shearer, Cameron J; Gibson, Christopher T; Shapter, Joseph G
2018-04-21
Molybdenum disulphide (MoS₂) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS₂ has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS₂ with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS₂ flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS₂ flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm². This insertion of MoS₂ improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2.
NASA Astrophysics Data System (ADS)
Walkowicz, J.; Zavaleyev, V.; Dobruchowska, E.; Murzynski, D.; Donkov, N.; Zykova, A.; Safonov, V.; Yakovin, S.
2016-03-01
Ceramic oxide ZrO2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates.
Effect of nitrogen-doped carbon dots on the anticorrosion properties of waterborne epoxy coatings
NASA Astrophysics Data System (ADS)
Ren, Siming; Cui, Mingjun; Zhao, Haichao; Wang, Liping
2018-06-01
In this work, nitrogen-doped carbon dots (NCDs) are prepared by solvothermal method and the effect of NCDs on the anticorrosion property of waterborne epoxy (EP) is investigated. Scanning probe microscopy results show that the size of the NCDs is about 4–6 nm. In addition, the anticorrosion property of NCD-incorporated waterborne epoxy coatings is investigated via electrochemical techniques and scanning electron microscopy. Electrochemical results demonstrate that the impedance modulus of 2.0% NCDs/EP is 364 times higher than that of blank EP after 800 h of immersion, indicating significant enhancement in the anticorrosion property of waterborne epoxy coating. The reason is that NCDs with lots of surface functional groups can connect with waterborne epoxy to suppress enlargement of the pores, and reduce the diffusion of oxygen in the coating, thus cutting off the connection between the substrate and oxygen, and delaying corrosion of the substrate.
Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min
2015-01-01
Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of VTH shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate VTH shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion. PMID:25601183
Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won
2015-12-11
One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.
Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min
2015-01-20
Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of V(TH) shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate V(TH) shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion.
Electron microscopy of AlN-SiC interfaces and solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.; Tanaka, S.; Davis, R.F.
In a 2H AlN-SiC solid solution grown by MBE on {alpha}(6H)-SiC (3{degrees} from [0001]), the epilayer contained a high density of basal faults related to {approximately}5 nm steps on the growth surface: no compositional inhomogeneity was detected by PEELS. In diffusion couples of polycrystalline, sintered AlN on SiC annealed at 1600 and 1700{degrees}C. 8H sialon [nominally (AlN){sub 2}Al{sub 2}O{sub 3}] formed at the interface of SiC and recrystallized epitactic AlN grains, and Si{sub 3}N{sub 4}-rich {beta}{prime} sialon particles formed in the SiC. No interdiffusion was detected by PEELS in diffusion couples of MBE-grown AlN on SiC annealed at 1700 andmore » 1850{degrees}C. Irregular epilayer thickness explains companion Auger depth profile results.« less
NASA Astrophysics Data System (ADS)
Yang, Weitao; Li, Yuxiang; Ying, Sanjiu
2015-04-01
A fabrication process to produce graded porous and skin-core structure propellants via supercritical CO2 concentration profile is reported in this article. It utilizes a partial gas saturation technique to obtain nonequilibrium gas concentration profiles in propellants. Once foamed, the propellant obtains a graded porous or skin-pore structure. This fabrication method was studied with RDX(Hexogen)-based propellant under an SC-CO2 saturation condition. The principle was analyzed and the one-dimensional diffusion model was employed to estimate the gas diffusion coefficient and to predict the gas concentration profiles inside the propellant. Scanning electron microscopy images were used to analyze the effects of partial saturation on the inner structure. The results also suggested that the sorption time and desorption time played an important role in gas profile generation and controlled the inner structure of propellants.
Structure of Soot-Containing Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Mortazavi, S.; Sunderland, P. B.; Jurng, J.; Koylu, U. O.; Faeth, G. M.
1993-01-01
The structure and soot properties of nonbuoyant and weakly-buoyant round jet diffusion flames were studied, considering ethylene, propane and acetylene burning in air at pressures of 0.125-2.0 atm. Measurements of flame structure included radiative heat loss fractions, flame shape and temperature distributions in the fuel-lean (overfire) region. These measurements were used to evaluate flame structure predictions based on the conserved-scalar formalism in conjunction with the laminar flamelet concept, finding good agreement betweem predictions and measurements. Soot property measurements included laminar smoke points, soot volume function distributions using laser extinction, and soot structure using thermophoretic sampling and analysis by transmission electron microscopy. Nonbuoyant flames were found to exhibit laminar smoke points like buoyant flames but their properties are very different; in particular, nonbuoyant flames have laminar smoke point flame lengths and residence times that are shorter and longer, respectively, than buoyant flames.
Chromatin organization regulates viral egress dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Vesa; Myllys, Markko; Ruokolainen, Visa
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less
Kinetics and Tribological Characterization of Pack-Borided AISI 1025 Steel
NASA Astrophysics Data System (ADS)
Gómez-Vargas, O. A.; Keddam, M.; Ortiz-Domínguez, M.
2017-03-01
In this present study, the AISI 1025 steel was pack-borided in the temperature range of 1,123-1,273 K for different treatment times ranging from 2 to 8 h. A diffusion model was suggested to estimate the boron diffusion coefficients in the Fe2B layers. As a result, the boron activation energy for the AISI 1025 steel was estimated as 174.36 kJ/mol. This value of energy was compared with the literature data. To extend the validity of the present model, other additional boriding conditions were considered. The boride layers formed on the AISI 1025 steel were characterized by the following experimental techniques: scanning electron microscopy, X-ray diffraction analysis and the Daimler-Benz Rockwell-C indentation technique. Finally, the scratch and pin-on-disc tests for wear resistance were achieved using an LG Motion Ltd and a CSM tribometer, respectively, under dry sliding conditions.
Reflectance of topologically disordered photonic-crystal films
NASA Astrophysics Data System (ADS)
Vigneron, Jean-Pol; Lousse, Virginie M.; Biro, Laszlo P.; Vertesy, Zofia; Balint, Zolt
2005-04-01
Periodicity implies the creation of discretely diffracted beams while various departures from periodicity lead to broadened scattering angles. This effect is investigated for disturbed lattices exhibiting randomly varying periods. In the Born approximation, the diffused reflection is shown to be related to a pair correlation function constructed from the distribution of the film scattering power. The technique is first applied to a natural photonic crystal found on the ventral side of the wings of the butterfly Cyanophrys remus, where scanning electron microscopy reveals the formation of polycrystalline photonic structures. Second, the disorder in the distribution of the cross-ribs on the scales another butterfly, Lycaena virgaureae, is investigated. The irregular arrangement of scatterers found in chitin structure of this insect produces light reflection in the long-wavelength part of the visible range, with a quite unusual broad directionality. The use of the pair correlation function allows to propose estimates of the diffusive spreading in these very different systems.
Persistent spin helix manipulation by optical doping of a CdTe quantum well
NASA Astrophysics Data System (ADS)
Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.
2018-05-01
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
Chromatin organization regulates viral egress dynamics
Aho, Vesa; Myllys, Markko; Ruokolainen, Visa; ...
2017-06-16
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less
Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Li; Sansoz, Frederic; He, Yang
2016-11-28
Atom diffusion assisted by surfaces or interfaces (e.g. Coble creep) has been known to be the origin of large creep rates and superplastic softening in nanosized crystals at low temperature. By contrast, source-limited crystal slip in defect-free nanostructures engenders important strengths, but also premature plastic instability and low ductility. Here, using in-situ transmission electron microscopy, we report a slip-activated surface creep mechanism that suppresses the tendency towards plastic instability without compromising the strength, resulting in ultra-large room-temperature plasticity in face-centered-cubic silver nanocrystals. This phenomenon is shown experimentally and theoretically to prevail over a material-dependent range of diameters where surface dislocationmore » nucleation becomes a stimulus to diffusional creep. This work provides new fundamental insight into coupled diffusive-displacive deformation mechanisms maximizing ductility and strength simultaneously in nanoscale materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.
2016-01-20
We report in situ atomic-scale visualization of the dynamical three-dimensional (3D) growth of NiO during initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy (ETEM). Despite the thermodynamic preference for Cr2O3 formation, cubic NiO oxides nucleated and grew epitaxially as the dominating oxide phase on the Ni-Cr (100) surface during initial oxidation. The growth of NiO islands proceeds through step-by-step adatom mechanism in 3D, which is sustained by surface diffusion of Ni and O atoms. Although the shapes of oxide islands are controlled by strain energy between oxide and alloy substrate, local surface kinetic variations can lead to the changemore » of surface planes of oxide islands. These results demonstrate that surface diffusion dominates initial oxidation of Ni-Cr in these test conditions.« less
The Kinetics of TiAl3 Formation in Explosively Welded Ti-Al Multilayers During Heat Treatment
NASA Astrophysics Data System (ADS)
Foadian, Farzad; Soltanieh, Mansour; Adeli, Mandana; Etminanbakhsh, Majid
2016-10-01
Metallic-intermetallic laminate (MIL) composites, including Ti/TiAl3 composite, are promising materials for many applications, namely, in the aerospace industry. One method to produce Ti/TiAl3 laminate composite is to provide close attachment between desired number of titanium and aluminum plates, so that by applying heat and/or pressure, the formation of intermetallic phases between the layers becomes possible. In this work, explosive welding was used to make a strong bond between six alternative Ti and Al layers. The welded samples were annealed at three different temperatures: 903 K, 873 K, and 843 K (630 °C, 600 °C, and 570 °C) in ambient atmosphere, and the variation of the intermetallic layer thickness was used to study the growth kinetics. Microstructural investigations were carried out on the welded and annealed samples using optical microscopy and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (EDS). X-ray diffraction (XRD) technique was used to identify the formed intermetallic phases. It was found that at each temperature, two different mechanisms govern the process: reaction controlled and diffusion controlled. The calculated values of activation energies for reaction-controlled and diffusion-controlled mechanisms are 232.1 and 17.4 kJ, respectively.
Growth Kinetics of Magnesio-Aluminate Spinel in Al/Mg Lamellar Composite Interface
NASA Astrophysics Data System (ADS)
Fouad, Yasser; Rabeeh, Bakr Mohamed
The synthesis of Mg-Al2O3 double layered interface is introduced via the application of hot isostatic pressing, HIPing, in Al-Mg foils. Polycrystalline spinel layers are grown experimentally at the interfacial contacts between Al-Mg foils. The growth behavior of the spinel layers along with the kinetic parameters characterizing interface motion and long-range diffusion is established. Low melting depressant (LMD), Zn, and alloying element segregation tends to form micro laminated and/or Nano structure interphase in a lamellar composite solid state processing. Nano composite ceramic interphase materials offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. Microstructural characterization, mechanical characterization is also established via optical microscopy scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. Chemical and mechanical bonding via inter diffusion processing with alloy segregation are dominant for interphase kinetics. Mechanical characterization with interfacial shear strength is also introduced. HIPing processing is successfully applied on 6082 Al-alloy and AZ31 magnesium alloy for either particulate or micro-laminated interfacial composite processing. The interphase kinetic established through localized micro plasticity, metal flow, alloy segregation and delocalized Al oxide and Mg oxide. The kinetic of interface/interphase induce new nontraditional crack mitigation a long with new bridging and toughening mechanisms.
Diclofenac salts, part 6: release from lipid microspheres.
Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez
2011-08-01
The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. Copyright © 2011 Wiley-Liss, Inc.
Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A
2016-08-01
The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.
Nano- and Macro-wear of Bio-carbo-nitrided AISI 8620 Steel Surfaces
NASA Astrophysics Data System (ADS)
Arthur, Emmanuel Kwesi; Ampaw, Edward; Zebaze Kana, M. G.; Adetunji, A. R.; Olusunle, S. O. O.; Adewoye, O. O.; Soboyejo, W. O.
2015-12-01
This paper presents the results of an experimental study of nano- and macro-scale wear in a carbo-nitrided AISI 8620 steel. Carbo-nitriding is carried out using a novel method that involves the use of dried, cyanide-containing cassava leaves, as sources of carbon and nitrogen. These are used in a pack cementation that is used to diffuse carbon and nitrogen into case layers at intermediate temperatures [673.15 K, 723.15 K, 773.15 K, and 823.15 K (400 °C, 450 °C, 500 °C, and 550 °C)]. Nano- and macro-scale wear properties are studied in the case-hardened surfaces, using a combination of nano-scratch and pin-on-disk experiments. The measured wear volumes (at both nano- and macro-length scales) are shown to increase with decreasing pack cyaniding temperature. The nano- and macro-wear resistances are also shown to be enhanced by the in situ diffusion of carbon and nitrogen from cyanide-containing bio-processed waste. The underlying wear mechanisms are also elucidated via atomic force microscopy and scanning electron microscopy observations of the wear tracks. The implications of the results are discussed for the design of hardened carbo-nitrided steel surfaces with improved wear resistance.
Development of new photon-counting detectors for single-molecule fluorescence microscopy.
Michalet, X; Colyer, R A; Scalia, G; Ingargiola, A; Lin, R; Millaud, J E; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Cheng, A; Levi, M; Aharoni, D; Arisaka, K; Villa, F; Guerrieri, F; Panzeri, F; Rech, I; Gulinatti, A; Zappa, F; Ghioni, M; Cova, S
2013-02-05
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.
Microstructure characteristics of Ni/WC composite cladding coatings
NASA Astrophysics Data System (ADS)
Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan
2016-02-01
A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.
Development of new photon-counting detectors for single-molecule fluorescence microscopy
Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.
2013-01-01
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185
Schowalter, Marco; Schmidt, Martin U.; Czank, Michael; Depmeier, Wulf; Rosenauer, Andreas
2017-01-01
Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, β = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nanolamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100). PMID:28512570
NASA Astrophysics Data System (ADS)
Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.
2016-06-01
The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.
Harvey, Steven P.; Moseley, John; Norman, Andrew; ...
2018-02-27
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Steven P.; Moseley, John; Norman, Andrew
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface
NASA Technical Reports Server (NTRS)
Smialek, James L.; Garg, Anita
2014-01-01
Corrosion resistant, strain tolerant MAX phase coatings are of interest for turbine applications. Thin Cr2AlC MAX phase wafers were vacuum diffusion bonded to an advanced turbine disk alloy, LSHR, at 1100 C. The interface, examined by optical and scanning electron microscopy, revealed a primary diffusion zone consisting of 10 micrometers of beta-Ni(Co)Al, decorated with various NiCoCrAl, MC and M3B2 precipitates. On the Cr2AlC side, an additional 40 micrometers Al-depletion zone of Cr7C3 formed in an interconnected network with the beta-Ni(Co)Al. Oxidation of an exposed edge at 800 C for 100 h produced a fine-grained lenticular alumina scale over Cr2AlC and beta-Ni(Co)Al, with coarser chromia granules over the Cr7C3 regions. Subsequent growth of the diffusion layers was only 5 micrometers in total. A residual stress of 500 MPa was estimated for the MAX phase layer, but no interfacial damage was observed. Subsequent tests for 1000 h reveal similar results.
Perez, E.; Keiser, D. D.; Sohn, Y. H.
2016-05-10
The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usingle bondMo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U–7 wt%Mo, U–10 wt%Mo, and U–12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanningmore » electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples U–Mo vs. high purity Al and binary Al–Si alloys. As a result, the diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.« less
Magnetic properties of Co/Ni grain boundaries after annealing
NASA Astrophysics Data System (ADS)
Coutts, Chris; Arora, Monika; Hübner, René; Heinrich, Bret; Girt, Erol
2018-05-01
Magnetic and microstructural properties of <111> textured Cu/N×[Co/Ni] films are studied as a function of the number of bilayer repeats N and annealing temperature. M(H) loop measurements show that coercivity, Hc, increases with annealing temperature and that the slope of the saturation curve at Hc has a larger reduction for smaller N. An increase of the magnetic anisotropy (Ku) to saturation magnetization (Ms) ratio after annealing N×[Co/Ni] with N < 15 only partially describes the increase to Hc. Energy-dispersive X-ray spectroscopy analyses performed in scanning transmission electron microscopy mode across cross-sections of as-deposited and annealed Cu/16×[Co/Ni] films show that Cu diffuses from the seed layer into grain boundaries of Co/Ni. Diffusion of Cu reduces exchange coupling (Hex) between the magnetic grains and explains the increase in Hc. Additionally, the difference in the slope of the M(H) curves at Hc between the thick (N = 16) and thin (N = 4) magnetic multilayers is due to Cu diffusion more effectively decoupling magnetic grains in the thinner multilayer.
Extracellular Sheets and Tunnels Modulate Glutamate Diffusion in Hippocampal Neuropil
Kinney, Justin P.; Spacek, Josef; Bartol, Thomas M.; Bajaj, Chandrajit L.; Harris, Kristen M.; Sejnowski, Terrence J.
2012-01-01
Although the extracellular space in the neuropil of the brain is an important channel for volume communication between cells and has other important functions, its morphology on the micron scale has not been analyzed quantitatively owing to experimental limitations. We used manual and computational techniques to reconstruct the 3D geometry of 180 μm3 of rat CA1 hippocampal neuropil from serial electron microscopy and corrected for tissue shrinkage to reflect the in vivo state. The reconstruction revealed an interconnected network of 40–80 nm diameter tunnels, formed at the junction of three or more cellular processes, spanned by sheets between pairs of cell surfaces with 10–40 nm width. The tunnels tended to occur around synapses and axons, and the sheets were enriched around astrocytes. Monte Carlo simulations of diffusion within the reconstructed neuropil demonstrate that the rate of diffusion of neurotransmitter and other small molecules was slower in sheets than in tunnels. Thus, the non-uniformity found in the extracellular space may have specialized functions for signaling (sheets) and volume transmission (tunnels). PMID:22740128
Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara
2018-01-17
In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.
Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws.
Titze, Tobias; Lauerer, Alexander; Heinke, Lars; Chmelik, Christian; Zimmermann, Nils E R; Keil, Frerich J; Ruthven, Douglas M; Kärger, Jörg
2015-11-23
Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex. The limitations of the diffusion model are also discussed with reference to the extensive literature on this subject. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal oxidative degradation of ethylene tetrafluoroethylene copolymer systems
NASA Astrophysics Data System (ADS)
Elders, Jonathan Patrick
Thermo-oxidative degradation of ethylene tetrafluoroethylene (ETFE) was investigated to determine how modifications for use in an electrical wire system affected its thermal stability. Modifications included electron irradiation and subsequent cross-linking during manufacture and contact with a metal surface. Samples with irradiation histories between 0 and 48 MRads were investigated. Degradation of ETFE was enhanced by contact with a metal "conductor" surface: silver - coated copper. Polymer degradation was analyzed by weight loss kinetics (thermogravimetric analysis (TGA)), changes in polymer morphology (differential scanning calorimetry (DSC)), optical microscopy, attenuated total reflectance (ATR) infrared spectroscopy, and gas chromatography - mass spectroscopy (GC/MS). Conductor aging (copper permeation through silver with subsequent oxidation) was investigated using scanning Auger Electron Spectroscopy (AES). Conductor aging is enhanced in the presence of the polymer surface. Interactions between conductor and polymer were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The rate of polymer degradation from 220°C to 280°C was independent of time and extent of degradation, and rate was proportional to irradiation dose. The activation energy for degradation of unirradiated ETFE was 227 kJ/mol and decreased from 150 to 138 kJ/mol for ETFE irradiated to doses between 6 and 48 MRads. Rates of degradation at 300°C to 320°C were dependent on the extent of degradation. Rates of degradation at temperatures between 230°C and 310°C were an order of magnitude larger in the presence of a conductor than in its absence, and activation energies for degradation in the presence of conductor were reduced to 120 kJ/mol. Degradation was modeled as the combination of bulk polymer degradation and catalytic degradation at the polymer-metal interface. ETFE aged at 250°C in the presence or absence of a conductor exhibited a double melting endotherm. ATR spectra of aged ETFE indicated polymer oxidation. Based on AES experiments, copper permeation during aging in the presence or absence of ETFE was consistent with Fickian diffusion. The coefficient for copper diffusion through silver was approximately 10 -15 cm2/second, and catalytic ETFE degradation was proportional to conductor aging. The copper oxidized on the surface to yield a material with a stoichiometric composition of Cu3O 2.
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.
Svitkina, Tatyana M
2017-05-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally
SVITKINA, Tatyana M.
2017-01-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208
Neethu, Sahadevan; Midhun, Sebastian Jose; Sunil, M A; Soumya, Soman; Radhakrishnan, E K; Jyothis, Mathew
2018-03-01
The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO 3 , fungal biomass, ratio of cell filtrate and AgNO 3 , pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall. Copyright © 2018 Elsevier B.V. All rights reserved.
Rummelt, V; Rummelt, C; Jahn, G; Wenkel, H; Sinzger, C; Mayer, U M; Naumann, G O
1994-02-01
This report describes the histopathologic and virologic findings of the retina from a 55-year-old bisexual patient with the acquired immune deficiency syndrome (AIDS), who had concurrent human immunodeficiency virus type 1 (HIV-1), cytomegalovirus (CMV), and herpes simplex virus type 1 (HSV-1) retinitis, and was treated with ganciclovir. The eyes were obtained at autopsy and processed for light microscopy and transmission electron microscopy. Immunohistochemical stains for HSV-1, CMV, HIV-1, varicella zoster virus, and glial fibrillary acidic protein were carried out using the peroxidase-antiperoxidase and streptavidin-biotin-alkaline phosphatase techniques. For in situ hybridization, a radiolabeled CMV DNA probe (Eco-RI-Y fragment of strain AD 169) was used. Results of histopathologic examination showed a full-thickness necrotizing retinitis with cytomegalic and herpes viral intranuclear inclusions in cells of the neurosensory retina, retinal vascular endothelium, and the retinal pigment epithelium. Some areas of the retina were replaced by glial tissue. The choroid contained only a few chronic inflammatory cells. Immunoperoxidase studies disclosed CMV antigens diffusely distributed throughout all layers of the retina and the retinal pigment epithelium. Herpes simplex virus type 1 antigens were present in retinal cells and the retinal vascular endothelium. Human immunodeficiency virus type 1 antigens were found in mononuclear cells in all layers of the sensory retina. Dual infections with HIV-1 and CMV of individual multinucleated giant cells of glial origin were demonstrated immunohistochemically. Transmission electron microscopy showed herpes viral particles in the vascular endothelium of the retinal vessels and the choriocapillaris. Human immunodeficiency virus particles were identified in the endothelium of the choriocapillaris. The possibility of multiple viral infections of the retina, mimicking classic CMV retinitis, should be considered in the clinical and histologic differential diagnosis of necrotizing retinitis in patients with AIDS.
NASA Astrophysics Data System (ADS)
Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi
2018-02-01
In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus
2016-08-01
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.
Microstructure studies of interdiffusion behavior of U 3Si 2/Zircaloy-4 at 800 and 1000 °C
He, Lingfeng; Harp, Jason M.; Hoggan, Rita E.; ...
2017-01-22
Fuel swelling during normal reactor operations could lead to unfavorable chemical interactions when in contact with its cladding. As new fuel types are developed, it is crucial to understand the interaction behavior between fuel and its cladding. Diffusion experiments between U 3Si 2 and Zricaloy-4 (Zry-4) were conducted at 800 and 1000°C up to 100 hours. The microstructure of pristine U 3Si 2 and U 3Si 2/Zry-4 interdiffusion products were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS) system. The primary interdiffusion product observed at 800°C is ZrSi 2,more » with secondary phases of U-Zr in the Zry-4, and Fe-Cr-W-Zr-Si phases at Zry-4/ZrSi 2 interface and Fe-Cr-U-Si phases at ZrSi 2/U-Si interface. As a result, the primary interdiffusion products at 1000°C were Zr 2Si, U-Zr-Fe-Ni, U, U-Zr, and a low melting point phase U 6Fe.« less
NASA Astrophysics Data System (ADS)
Zhang, Yunlong; Zhang, Yuzhi
2017-12-01
A kind of hexagonal ZnO (HZO) was synthesized in N-methyl-2-pyrrolidone (NMP)/H2O mixed solvent for a high exposure of polar ±(0001) facets to get a high-efficiency photocatalyst. The amine-functionalized HZO particles were coated with graphene oxide (GO) by electrostatic force-induced self-assemby and thermal reduction to form HZO@Gr core/shell structure. The as-prepared HZO and HZO@Gr were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-visible diffuse reflectance spectroscopy (UV-vis/DRS). The results indicate that the graphene on HZO@Gr remains high quality and the optical properties of the composite change a lot with sunlight absorption improving, bandgap and photoluminescence (PL) intensity decreasing. The obtained HZO photocatalyst shows good photocatalytic activity for methylene blue (MB) under UV-visible irradiation. Furthermore, the HZO@Gr photocatalyst exhibits the best photodegradation rate of MB reaching up to 98.2% within 50 minutes. The graphene-coated HZO structure could offer new directions which would further extend the scope for synthesis of various ZnO/graphene composites with improved properties useful for various applications.
NASA Astrophysics Data System (ADS)
Han, Weijia; Ren, Long; Qi, Xiang; Liu, Yundan; Wei, Xiaolin; Huang, Zongyu; Zhong, Jianxin
2014-04-01
A novel ternary CdS/ZnO/graphene composite has been successfully prepared by loading ZnO and CdS nanoparticles in graphene nanosheets via a facile one-step hydrothermal method. The microstructures and properties have been examined by X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive spectroscope (EDS), transmission electron microscopy, Raman and UV-vis diffuse reflectance spectra (DRS). The characterization results reveal that the crystalline of the composite is very well, the graphene sheets were tightly coated with ZnO and CdS nanoparticles, and the light-harvesting was effectively strengthened. Taking photoelectrochemical test, the ternary CdS/ZnO/graphene composite exhibits enhanced photocatalytic activity compared with its foundation matrix binary composites and pure ZnO and CdS. The improved photocatalytic performance can be attributed to the enhanced light absorption, the extremely efficient charge separation, as well as superior durability of the ternary composite. It is proposed that graphene-based composites by coupling graphene to suitable, multiple semiconductors can not only greatly improve the capacity for photocatalytic, but also expand the exploration and utilization of graphene-based nanocomposites for energy conversion.
Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli
2015-01-01
Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709
NASA Astrophysics Data System (ADS)
Zhao, Guoqing; Li, Caifeng; Wu, Xia; Yu, Jingang; Jiang, Xinyu; Hu, Wenjihao; Jiao, Feipeng
2018-03-01
Calcined layered double hydroxides (CLDH) are one of the remarkable photocatalysts passionately studied for photodecolorization of organic dyes. NiFe-CLDH was successfully modified by reduced graphene oxide (RGO) through a facile in situ crystallization technique. The obtained RGO/NiFe-CLDH composites were fully characterized by powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), and UV-vis diffuse reflectance spectroscopy (DRS). The results analysis indicated that RGO sheets could work as base course to prompt the growth of LDH crystallites and NiFe-LDH lamellar crystal promiscuously distributed on the sheets with a strong interplay between each other. The photocatalytic performance of RGO/NiFe-CLDH composites toward decolorization of methylene blue tightly depended on the mass fraction of RGO and calcinated temperature. At the RGO weight loading of 1%, calcination temperature of 500 °C, the photocatalytic degradation efficiency of RGO/NiFe-CLDH composites reached 93.0% within 5.0 h. The enhanced activity of RGO/NiFe-CLDH composites may be due to the concerted catalysis effect between two constituents of as-prepared composites.
TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tosten, M; Michael Morgan, M
2008-12-12
A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similarmore » in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.« less
NASA Astrophysics Data System (ADS)
Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang
2013-11-01
Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Zare, Elham; Pourseyedi, Shahram; Khatami, Mehrdad; Darezereshki, Esmaeel
2017-10-01
Nanoparticles with antimicrobial activity, especially as a new class of biomedical materials for use in increasing the level of public health in daily life have emerged. In this study, green synthesis of zinc oxide) ZnO(nanoparticles was studied by Cuminum cyminum (cumin) as novel natural source and zinc nitrate [Zn(NO3)2] as Zn2+ source. The results showed that parameters such as concentration, time, temperature and pH have a direct impact on the synthesis of zinc nanoparticles and change in any of the factors causing the change in the process of synthesis. The properties of synthesized nanoparticles were examined by UV-visible Spectrophotometer, X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The UV-visible spectroscopy presented the absorption peak in the range of 370 nm. Transmission electron microscopy images of synthesized nanoparticles are mainly spherical or oval with an average size of about 7 nm. The effect of antimicrobial nanoparticles calculated using disk diffusion method and broth MIC and MBC in different strains of bacteria, which showed that gram positive and negative were sensitive to zinc oxide nanoparticles. The sensitivity of gram-negative bacteria was more.
NASA Astrophysics Data System (ADS)
Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu
CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.
NASA Astrophysics Data System (ADS)
Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui
2018-03-01
CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Lianxia; Yang Haibin; Fu Wuyou
W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less
NASA Astrophysics Data System (ADS)
Dado, Boaz; Gelbstein, Yaniv; Mogilansky, Dimitri; Ezersky, Vladimir; Dariel, Moshe P.
2010-09-01
Pseudoternary (Ge,Sn,Pb)Te compounds display favorable thermoelectric properties. Spinodal decomposition in the quasiternary (Ge,Sn,Pb)Te system is at the origin of a wide solubility gap at low Sn concentrations. The structural evolution of the spinodal decomposition was investigated as a function of aging time at 500°C, using x-ray diffraction, electron microscopy, and scanning electron microscopy. The evolution of the structure at 500°C consists initially of a short diffusion-controlled demixing stage into Pb- and Ge-rich coherent areas, with compositions corresponding to the inflection points of the free-energy curve. The Pb-rich areas adopt configurations associated with the directions of the soft elastic moduli of the cubic compound. Both the Pb- and Ge-rich areas are supersaturated and undergo in a second stage a nucleation and growth process and give rise to a biphased structure with equilibrium compositions corresponding to the boundaries of the miscibility gap. The resulting Pb-rich areas display a relatively stable microstructure suggesting the presence of long-range interactions between the Pb-rich precipitates in the Ge-rich matrix.
Fractional CO₂ Laser Pretreatment Facilitates Transdermal Delivery of Two Vitamin C Derivatives.
Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Yau-Li; Huang, Chun-Hsun
2016-11-16
Topical vitamin C derivatives have been used to treat melasma and used as a skin whitener. The aim of this study was to compare skin histology and permeation of l-ascorbic acid 2-phosphate sesquimagnesium salt (MAP-1) and magnesium l-ascorbic acid-2-phosphate (MAP-2) after fractional CO₂ laser pretreatment. The effect of fractional laser treatment on porcine skin was examined by scanning electron microscopy and confocal laser scanning electron microscopy. The effect of fractional CO₂ laser treatment of different fluencies and pass numbers on transdermal flux of the two vitamin C derivatives through porcine skin was examined in vitro using a Franz diffusion chamber. Fluxes of MAP-1 and MAP-2 across fractional CO₂ laser-treated (5 W) skin were eight- to 13-fold, and 20- to 22-fold higher, respectively, than the fluxes of these compounds across intact skin. Fluxes of MAP-1 and MAP-2 across fractional CO₂ laser-treated (9 W) skin were 14- to 19-fold, and 30- to 42-fold higher, respectively, than their fluxes across intact skin. Fractional CO₂ laser treatment is an effective way of delivering vitamin C derivatives into the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.
2000-01-01
To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosionmore » kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.« less
Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke
2016-01-01
Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301
New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.
Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E
2010-05-15
A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.
2016-11-01
Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.
Baskaran, Xavierravi; Geo Vigila, Antony Varuvel; Parimelazhagan, Thangaraj; Muralidhara-Rao, Doulathabad; Zhang, Shouzhou
2016-01-01
The objective of the study was to characterize silver nanoparticles (Ag-NPs) and their bioactivities in early tracheophytes (Pteridophyta). Aqueous leaf extract of a critically endangered fern, Pteris tripartita Sw., was used for one-step green synthesis of Ag-NPs. The biosynthesized Ag-NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Morphologically, the Ag-NPs showed hexagonal, spherical, and rod-shaped structures. Size distributions of Ag-NPs, calculated using Scherrer’s formula, showed an average size of 32 nm. Ag-NPs were studied for in vitro antioxidant, antimicrobial, and in vivo anti-inflammatory activities. Ag-NPs exhibited significant anti-inflammatory activity in carrageenan-induced paw volume tests performed in female Wistar albino rats. Furthermore, Ag-NPs showed significant antimicrobial activity against 12 different microorganisms in three different assays (disk diffusion, time course growth, and minimum inhibitory concentration). This study reports that colloidal Ag-NPs can be synthesized by simple, nonhazardous methods, and that biosynthesized Ag-NPs have significant therapeutic properties. PMID:27895478
NASA Astrophysics Data System (ADS)
Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.
2014-09-01
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries
Su, Jing; Liang, Hao; Gong, Xian-Nian; Lv, Xiao-Yan; Long, Yun-Fei; Wen, Yan-Xuan
2017-01-01
Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions, and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller analysis, charge-discharge testing, cyclic voltammograms, and electrochemical impedance spectra. Experimental results reveal that the as-prepared MnO/C, with a specific surface area of 96.66 m2·g−1 and average pore size of 24.37 nm, exhibits excellent electrochemical performance, with a discharge capacity of 655.4 mAh·g−1 after cycling 50 times at 1 C and capacities of 808.3, 743.7, 642.6, 450.1, and 803.1 mAh·g−1 at 0.2, 0.5, 1, 2, and 0.2 C, respectively. Moreover, the controlled method of using a microchannel reactor, which can produce larger specific surface area porous MnO/C with improved cycling performance by shortening lithium-ion diffusion distances, can be easily applied in real production on a large scale. PMID:28587120
Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation
NASA Astrophysics Data System (ADS)
Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.
2015-03-01
In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.
Behavior of deuterium retention and surface morphology for VPS–W/F82H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuhisa Oya; Masashi Shimada; Tomonori Tokunaga
The deuterium (D) retention for Vacuum Plasma Spray (VPS)–tungsten (W)/F82H was studied using two different implantation methods, namely D plasma exposure and View the MathML source implantation. The D retention for polished VPS–W/F82H after plasma exposure was found to be reduced compared to that for polycrystalline tungsten. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that porous structures around grain boundaries and the interface between VPS–W layers would be potential D diffusion paths, leading to low D retention. In the case of View the MathML source implantation, the shape of D2 TDS spectrum was almost the samemore » as that for D plasma-exposed VPS–W/F82H; however, the D retention was quite high for unpolished VPS–W/F82H, indicating that most of D was trapped by the oxide layer, which was produced by the VPS process. The reduction of surface area due to the polishing process also reduces D retention for VPS–W/F82H. These results indicate that controlling the surface chemical states is important for the reduction of tritium retention for future fusion reactors.« less
NASA Astrophysics Data System (ADS)
Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis
2017-12-01
We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.
Diffuse light-sheet microscopy for stripe-free calcium imaging of neural populations.
Taylor, Michael A; Vanwalleghem, Gilles C; Favre-Bulle, Itia A; Scott, Ethan K
2018-06-19
Light-sheet microscopy is used extensively in developmental biology and neuroscience. One limitation of this approach is that absorption and scattering produces shadows in the illuminating light sheet, resulting in stripe artifacts. Here, we introduce diffuse light-sheet microscopes that use a line diffuser to randomize the light propagation within the image plane, allowing the light sheets to reform after obstacles. We incorporate diffuse light sheets in two existing configurations: selective plane illumination microscopy (SPIM) in which the sample is illuminated with a static sheet of light, and digitally scanned light sheet (DSLS) in which a thin Gaussian beam is scanned across the image plane during each acquisition. We compare diffuse light-sheet microscopes to their conventional counterparts for calcium imaging of neural activity in larval zebrafish. We show that stripe artifacts can cast deep shadows that conceal some neurons, and that the stripes can flicker, producing spurious signals that could be interpreted as biological activity. Diffuse light sheets mitigate these problems, illuminating the blind spots produced by stripes and removing artifacts produced by the stripes' movements. The upgrade to diffuse light sheets is simple and inexpensive, especially in the case of DSLS, where it requires the addition of one optical element. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paillard, Pascal
Two try-out campaigns of friction stir welding (FSW) were performed with different friction parameters to join S690QL high yield strength steel. The welds were investigated at macroscopic and microscopic scales using optical and electronic microscopy and microhardness mapping. Welds of the second campaign exhibit microstructures and mechanical properties in accordance with requirements for service use. Microtexture measurements were carried out in different zones of welds by electron backscattered diffraction (EBSD). It is shown that that texture of the bottom of the weld is similar to that of the base metal, suggesting a diffusion bonding mechanism. Finally, the mechanical properties (tensilemore » strength, resilience, bending) were established on the most promising welds. It is shown that it is possible to weld this high yield strength steel using FSW process with satisfactory geometric, microstructural and mechanical properties. - Highlights: •1000 mm ∗ 400 mm ∗ 8 mm S690QL steel plates are joined by friction stir welding (FSW). •Maximum hardness is reduced by optimization of process parameters. •Various microstructures are formed but no martensite after process optimization. •Texture is modified in mechanically affected zones of the weld. •Texture in the bottom of the weld is preserved, suggesting diffusion bonding.« less
Yang, Lin; Zhang, Feng; Meng, Fan -Qiang; ...
2018-05-12
A metastable ε-Al 60Sm 11 phase appears during the initial devitrification of as-quenched Al-10.2 at.% Sm glasses. The ε phase is nonstoichiometric in nature since Al occupation is observed on the 16 f Sm lattice sites. Scanning transmission electron microscopic images reveal profound spatial correlation of Sm content on these sites, which cannot be explained by the “average crystal” description from Rietveld analysis of diffraction data. Thermodynamically favorable configurations, established by Monte Carlo (MC) simulations based on a cluster-expansion model, also give qualitatively different correlation functions from experimental observations. On the other hand, molecular dynamics simulations of the growth ofmore » ε-Al 60Sm 11 in undercooled liquid show that when the diffusion range of Sm is limited to ~4 Å, the correlation function of the as-grown crystal structure agrees well with that of the scanning transmission electronic microscopy (STEM) images. Furthermore, our results show that kinetic effects, especially the limited diffusivity of Sm atoms plays the fundamental role in determining the nonstoichiometric site occupancies of the ε-Al 60Sm 11 phase during the crystallization process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lin; Zhang, Feng; Meng, Fan -Qiang
A metastable ε-Al 60Sm 11 phase appears during the initial devitrification of as-quenched Al-10.2 at.% Sm glasses. The ε phase is nonstoichiometric in nature since Al occupation is observed on the 16 f Sm lattice sites. Scanning transmission electron microscopic images reveal profound spatial correlation of Sm content on these sites, which cannot be explained by the “average crystal” description from Rietveld analysis of diffraction data. Thermodynamically favorable configurations, established by Monte Carlo (MC) simulations based on a cluster-expansion model, also give qualitatively different correlation functions from experimental observations. On the other hand, molecular dynamics simulations of the growth ofmore » ε-Al 60Sm 11 in undercooled liquid show that when the diffusion range of Sm is limited to ~4 Å, the correlation function of the as-grown crystal structure agrees well with that of the scanning transmission electronic microscopy (STEM) images. Furthermore, our results show that kinetic effects, especially the limited diffusivity of Sm atoms plays the fundamental role in determining the nonstoichiometric site occupancies of the ε-Al 60Sm 11 phase during the crystallization process.« less
Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.
Quah, Hock Jin; Cheong, Kuan Yew
2014-05-28
A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.
Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa
2017-01-01
Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962
Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa
2017-05-31
Pure TiO₂, Y-N single-doped and codoped TiO₂ powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO₂ was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms.
In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils
2016-01-01
The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749
Silver stain for electron microscopy
NASA Technical Reports Server (NTRS)
Corbett, R. L.
1972-01-01
Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.
Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ
Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.
2009-01-01
Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881
NASA Astrophysics Data System (ADS)
Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Castiglioni, Jorge; Mombrú, Alvaro W.
2017-06-01
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of 3-8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications.
Diffusive transport of several hundred keV electrons in the Earth's slot region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.
2017-12-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.
2017-10-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge
2006-05-09
A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.
Self-consistent modeling of electrochemical strain microscopy of solid electrolytes
Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; ...
2014-10-10
Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less
Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Liu, Shao-Bo; Zeng, Guang-Ming; Cai, Xiaoxi; Hu, Xin-Jiang; Wang, Hui; Liu, Si-Mian; Jiang, Lu-Hua
2016-12-15
A novel biochar/MgAl-layered double hydroxides composite (CB-LDH) was prepared for the removal of crystal violet from aqueous solution by pyrolyzing MgAl-LDH pre-coated ramie stem (Boehmeria nivea (L.) Gaud.). Pyrolysis played dual role for both converting biomass into biochar and calcining MgAl-LDH during the pyrolysis process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and zeta potential analysis were used to characterize the CB-LDH. The results of characterization suggested that the calcined LDH was successfully synthesized and coated on biochar. The resulted CB-LDH had higher total pore volume and more functional groups than the pristine biochar. Adsorption experimental data fitted well with the pseudo-second order kinetics model and the Freundlich isotherm model. The rate-controlled step was controlled by film-diffusion initially and then followed by intra-particle diffusion. Thermodynamic analysis showed that the adsorption of crystal violet was a spontaneous and endothermic process. The higher pH and temperature of the solution enhanced the adsorption performance. CB-LDH could also have excellent ability for the removal of crystal violet from the actual industrial wastewater and groundwater with high ionic strength. LDH adsorption, electrostatic attraction, pore-filling, π-π interaction and hydrogen bond might be the main mechanisms for crystal violet adsorption on CB-LDH. The results of this study indicated that CB-LDH is a sustainable and green adsorbent with high performance for crystal violet contaminated wastewater treatment and groundwater remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity
NASA Technical Reports Server (NTRS)
Howard, Jack B.; Brooker, John E. (Technical Monitor)
2002-01-01
The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found for a surprisingly high dilution fuel with argon. The maximum flame temperature seems to be of minor importance in fullerene formation. The HRTEM analysis of the soot showed an increase of the curvature of the carbon layers, and hence increased fullerenic character. After this maximum, the curvature decreases. In addition to the soot, the samples included fullerenic nanostructures, such as tubes and spheroids including highly-ordered multilayered or onion-like structures. The soot itself shows highly ordered regions that appear to have been cells of ongoing fullerenic nanostructure formation.
Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.
Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke
2015-06-11
The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.
Judith Vijaya, J; Jayaprakash, N; Kombaiah, K; Kaviyarasu, K; John Kennedy, L; Jothi Ramalingam, R; Al-Lohedan, Hamad A; V M, Mansoor-Ali; Maaza, M
2017-12-01
Green synthesis of silver nanoparticles (Ag NPs) using an extract of dried Zingiber officinale (ginger) root as a reducing and capping agent in the presence of microwave irradiation was herein reported for the first time. The formation of symmetrical spheres is confirmed from the UV-Visible spectrum of Ag NPs. Fourier transform infra-red spectroscopy confirms the formation of the Ag NPs. X-ray diffraction analysis was utilized to calculate the crystallite size of Ag NPs and the value was found to be 10nm. High-resolution transmission electron microscopy and high-resolution scanning electron microscopy were used to investigate the morphology and size of the synthesized samples. The sphere like morphology is confirmed from the images. The purity and crystallinity of Ag NPs is confirmed by energy-dispersive X-Ray analysis and selected area electron diffraction respectively. The electrochemical behavior of the synthesized Ag NPs was assessed by cyclic voltammetry (CV) and shows the redox peaks in the potential range of -1.1 to +1.1V. Agar diffusion method is used to examine the antibacterial activity of Ag NPs. For this purpose, two gram positive and two gram negative bacteria were studied. This single step approach was found to be simple, short time, cost-effective, reproducible, and eco-friendly. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Meng, Pengcheng; Heng, Huimin; Sun, Yanhong; Liu, Xia
2018-01-01
A novel direct Z-scheme P-containing tungsten trioxide/polyimide (PWO/PI) photocatalyst was synthesized by an in-situ solid-state polymerization strategy to enhance the visible-light photocatalytic oxidation capacity of PI. The effects of polymerization temperature and PWO content on the physicochemical properties of PWO/PI composites and photocatalytic degradation efficiency of imidacloprid were investigated. The photocatalysts were characterized by X-ray powder diffraction, Fourier transformed infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-vis diffused reflection spectra and N2 adsorption-desorption isothermals. The results showed that the photocatalysts with visible-light photocatalytic activity can already be prepared at 300 °C. The PWO/PI composites exhibited a lamellar structure and PWO was wrapped by PI. After PWO was introduced, there was a significant interaction between PWO and PI, and the visible light response of photocatalysts was also improved. The visible-light photocatalytic degradation efficiency of imidacloprid on 3% PWO/PI-300 composite was about 3.2 times of commercial P25, and the corresponding pseudo-first-order rate constant was about 2.9 times of pristine PI. The Z-scheme photocatalytic system of PWO/PI composites was confirmed by the electron spin resonance technology, terephthalic acid photoluminescence probing technique, reactive species trapping experiments, X-ray photoelectron spectroscopy and photoluminescence of PWO/PI composites and pristine photocatalysts.
Zhao, Wei; Li, Cheng; Wang, Aijian; Lv, Cuncai; Zhu, Weihua; Dou, Shengping; Wang, Qian; Zhong, Qin
2017-11-01
Polyaniline (PANI)-decorated Bi 2 MoO 6 nanosheets (BMO/PANI) were prepared by a facile solvothermal method. Different characterization techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, photocurrent spectroscopy, and nanosecond time-resolved emission studies, have been employed to investigate the structure, optical and electrical properties of the BMO/PANI composites. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. The associated photocatalytic activity and optical nonlinearities for the BMO/PANI composites are shown to be dependent on the PANI loadings. The rational mechanisms responsible for deteriorating pollutants and improving optical nonlinearities were also proposed, which could be mainly attributed to the efficient interfacial charge transfer and the interfacial electronic interactions between PANI and Bi 2 MoO 6 . The photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent spectroscopy studies confirmed that the interface charge separation efficiency was greatly improved by coupling Bi 2 MoO 6 with PANI. The tuning of photocatalysis and nonlinear optical behaviors with variation in the content of PANI provides an easy way to attain tunable properties, which are exceedingly required in optoelectronics applications.
NASA Astrophysics Data System (ADS)
Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan
2018-06-01
Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.
NASA Astrophysics Data System (ADS)
Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran
2018-06-01
In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.
Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling
NASA Astrophysics Data System (ADS)
Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu
2017-08-01
Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.
Dislocation mediated alignment during metal nanoparticle coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, A. P.; Samanta, A.; Majidi, H.
2016-09-13
Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leadingmore » to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and elsewhere.« less
NASA Astrophysics Data System (ADS)
Chen, Jingshuai; Jiang, Liang-Liang; Liu, Xing-Pei; Mao, Chang-Jie; Song, Ji-Ming; Niu, Helin; Zhang, Shengyi
2017-05-01
Olive-like BiVO4 microstructures with lengths of 600-1000 nm and widths of 300-600 nm have been synthesized via a facile and additive-free solvothermal method. Studies find that the type of solvent plays an important role in the morphology of the final products. Furthermore, Ag3PO4 nanocrystals are successfully deposited on monoclinic olive-like BiVO4 via in situ precipitation method. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectra, and UV-vis diffuse reflectance spectra (DRS). The photocatalytic activities of the catalysts are evaluated by degradation of rhodamine B (RhB) and methylene blue (MB) under visible light (≥420 nm) irradiation. The experimental results suggest that catalytic activity of the composite photocatalysts is greatly influenced by the loading level of Ag3PO4. The molar ratio of 0.8:1.0 Ag3PO4-loaded BiVO4 exhibits higher photocatalytic activity in both the decolorization of RhB and MB than that of individual BiVO4 and P25. The observed improvement in photocatalytic activity is associated with the extended absorption in the visible light region resulting from the Ag3PO4 nanoparticles, and the effective separation of photogenerated carriers at the Ag3PO4/BiVO4 interfaces through the formation of heterojunction structure. The study provides a general and effective method in the fabrication of composite with sound heterojunctions that may show a variety of applications.
Nuclear microscopy of diffuse plaques in the brains of transgenic mice
NASA Astrophysics Data System (ADS)
Rajendran, Reshmi; Ren, Minqin; Casadesus, Gemma; Smith, Mark A.; Perry, George; Huang, En; Ong, Wei Yi; Halliwell, Barry; Watt, Frank
2005-04-01
Using nuclear microscopy, extracellular diffuse amyloid deposits in fresh unstained brain tissue from Alzheimer's disease transgenic mice Tg2576 have been identified and analyzed for trace element content. Off-axis scanning transmission ion microscopy (STIM) images can be obtained which are similar to the images produced using direct STIM. Since the proton beam current required for off-axis STIM is compatible with PIXE and RBS, we can identify the plaque location and analyze for trace elements simultaneously. Analysis of the diffuse plaques showed an increase in the transition metals iron and zinc compared with the surrounding area of comparable areal density. This supports the theory that redox interactions between Aβ and metals could be at the heart of a pathological feedback system wherein Aβ amyloidosis and oxidative stress promote each other, possibly via Fenton chemistry.
NASA Astrophysics Data System (ADS)
Yu, Changlin; Yang, Kai; Xie, Yu; Fan, Qizhe; Yu, Jimmy C.; Shu, Qing; Wang, Chunying
2013-02-01
Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals.Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals. Electronic supplementary information (ESI) available: Fig. S1-S3. See DOI: 10.1039/c2nr33595f
Scanning ultrafast electron microscopy.
Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H
2010-08-24
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.
Woehl, Taylor J.; Prozorov, Tanya
2015-08-20
The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Photon-induced selenium migration in TiSe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.
2017-02-20
TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less
Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong
2011-11-01
Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces.
Synthesis and visible-light photocatalytic performance of flower-like porous Bi5O7I
NASA Astrophysics Data System (ADS)
Yao, Lizhu; Shi, Lei; Wang, Fangxiao
2018-04-01
Flower-like porous Bi5O7I was successfully synthesized through an easy thermal decomposition of flower-like BiOI. And its chemical structure, morphology and optical property were thoroughly analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscope, energydispersive spectrometry elements mapping, transmission electron microscopy, N2 adsorption-desorption isotherm, BET, and UV–vis diffuse reflectance spectra. The visible-light photocatalytic elimination of rhodamine B (RhB) was investigated. The experimental results indicated that flower-like porous Bi5O7I exhibited enhanced photocatalytic activity for degrading RhB in comparsion of flower-like BiOI, g-C3N4 and N-doped TiO2. Additionally, the as-prepared flower-like porous Bi5O7I possessed catalytic stability after recycles.
Cai, Yunyu; Ye, Yixing; Tian, Zhenfei; Liu, Jun; Liu, Yishu; Liang, Changhao
2013-12-14
We report a self-sacrificed in situ growth design toward preparation of ZnTiO3-TiO2 heterojunction structure. Highly reactive zinc oxide colloidal particles derived by laser ablation in liquids can react with TiO2 nanotubes to form a lamellar ZnTiO3 nanosheet structure in a hydrothermal-treatment process. Such hybrid structural product was characterized by X-ray diffraction, scanning and transmission electron microscopy, UV-vis diffuse reflection spectroscopy and X-ray photoelectron spectroscopy. The enhanced photocatalytic activity of the hybrid structure toward degradation of methyl orange (MO) and pentachlorophenol (PCP) molecules was demonstrated and compared with single phase TiO2, as a result of the efficient separation of light excited electrons and holes at the hetero-interfaces in the two semiconductors.
High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites
2005-01-01
AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
Ma, Q.; Li, W.; Thorne, R. M.; ...
2017-09-29
Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less
Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels
2010-07-27
Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.
Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels
2010-01-01
Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177
Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo
2016-04-07
Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Timore » interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.« less
Takahashi, Chisato; Muto, Shunsuke; Yamamoto, Hiromitsu
2017-08-01
In this study, we developed a scanning transmission electron microscopy (STEM) method for imaging the antibacterial activity of organic polymeric nanoparticles (NPs) toward biofilms formed by Staphylococcus epidermidis bacterial cells, for optimizing NPs to treat biofilm infections. The combination of sample preparation method using a hydrophilic ionic liquid (IL) and STEM observation using the cooling holder eliminates the need for specialized equipment and techniques for biological sample preparation. The annular dark-field STEM results indicated that the two types of biodegradable poly-(DL-lactide-co-glycolide) (PLGA) NPs: PLGA modified with chitosan (CS), and clarithromycin (CAM)-loaded + CS-modified PLGA, prepared by emulsion solvent diffusion exhibited different antibacterial activities in nanoscale. To confirm damage to the sample during STEM observation, we observed the PLGA NPs and the biofilm treated with PLGA NPs by both the conventional method and the newly developed method. The optimized method allows microstructure of the biofilm treated with PLGA NPs to be maintained for 25 min at a current flow of 40 pA. The developed simple sample preparation method would be helpful to understand the interaction of drugs with target materials. In addition, this technique could contribute to the visualization of other deformable composite materials at the nanoscale level. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1432-1437, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
In situ imaging of the soldering reactions in nanoscale Cu/Sn/Cu and Sn/Cu/Sn diffusion couples
NASA Astrophysics Data System (ADS)
Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Wang, Jirui; Stach, Eric A.; Zhou, Guangwen
2018-01-01
The soldering reactions of three-segmented Sn/Cu/Sn and Cu/Sn/Cu diffusion couples are monitored by in-situ transmission electron microscopy to reveal the metallurgical reaction mechanism and the associated phase transformation pathway. For Sn/Cu/Sn diffusion couples, there is no ɛ-Cu3Sn formation due to the relatively insufficient Cu as compared to Sn. Kirkendall voids form initially in the Cu segment and then disappear due to the volume expansion associated with the continued intermetallic compound (IMC) formation as the reaction progresses. The incoming Sn atoms react with Cu to form η-Cu6Sn5, and the continuous reaction then transforms the entire nanowire to η-Cu6Sn5 grains with remaining Sn. With continued heating slightly above the melting point of Sn, an Sn-rich liquid phase forms between η-Cu6Sn5 grains. By contrast, the reaction in the Cu/Sn/Cu diffusion couples results in the intermetallic phases of both Cu3Sn and Cu6Sn5 and the development of Cu6Sn5 bulges on Cu3Sn grains. Kirkendall voids form in the two Cu segments, which grow and eventually break the nanowire into multiple segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Zhang, Lei; Kang, Qinjun
Here, porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsicmore » permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. We find that for the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.« less
Chen, Li; Zhang, Lei; Kang, Qinjun; ...
2015-01-28
Here, porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsicmore » permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. We find that for the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.« less
Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan
2015-01-01
Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed. PMID:25627247
Eusebi, Anna Laura; Bellezze, Tiziano; Chiappini, Gianluca; Sasso, Marco; Battistoni, Paolo
2017-06-15
The paper deals with the evaluation of the effect of on/off switching of diffuser membranes, in the intermittent aeration process of the urban wastewater treatments. Accelerated tests were done using two types of commercial EPDM diffusers, which were submitted to several consecutive cycles up to the simulation of more than 8 years of real working conditions. The effect of this switching on the mechanical characteristics of the membranes was evaluated in terms of pressure increment of the air operating at different flow rates (2, 3.5 and 6 m 3 /h/diff): during accelerated tests, such increment ranged from 2% to 18%. The intermittent phases emphasized the loss both of the original mechanical proprieties of the diffusers and of the initial pore shapes. The main cause of pressure increment was attributed to the fouling of the internal channels of the pores. Further analyses performed by scanning electron microscopy and by mechanical tests on EPDM membrane, using a traditional tensile test and a non destructive optical method, from which the Young's Modulus was obtained, supported previous conclusions. Any changes in terms of oxygen transfer parameters (KLa and SOTE%) were specifically founded by causing to the repeated on/off switching. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.H., E-mail: AZHLIU@ntu.edu.sg; Zhang, D.Q., E-mail: ZHANGDQ@ntu.edu.sg; Sing, S.L., E-mail: SING0011@e.ntu.edu.sg
2014-08-15
Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracturemore » was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.« less
Effect of nitrogen segregation on TED and loss of phosphorus in CZ-Si
NASA Astrophysics Data System (ADS)
Fujiwara, N.; Saito, K.; Nakabayashi, Y.; Osuman, H. I.; Toyonaga, K.; Matsumoto, S.; Sato, Y.
2002-01-01
Transient enhanced diffusion (TED) and dose loss (pile-up) are investigated for phosphorus-implanted samples covered with both oxide and nitride films. P ions were implanted into p-type (1 0 0) CZ-Si (dose 5×10 13 cm-3, 100 keV) through a chemical vapor deposition (CVD) Si 3N 4 film. For a half of samples, Si 3N 4 was etched off and SiO 2 films were grown by CVD. Both samples were annealed for 20-360 min at 700 °C. Diffusivity of P and the dose loss were estimated based on the secondary-ion mass spectrometry (SIMS) P profiles. Both Si/Si 3N 4 and Si/SiO 2 interfaces were investigated with transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). There is no significant difference in P diffusivity between the SiO 2 and Si 3N 4 films for the present annealing condition of 700 °C for 20-360 min. Regarding dose loss, a distinct different behavior was observed. In case of the SiO 2 cover film, amount of dose decreases with the annealing time. On the other hand, amount of dose decrease with annealing time up to 180 min, but is recovered for more than 180 min in case of the Si 3N 4 cover film. From TEM and EELS analyses, it is found that nitrogen segregates at the Si/Si 3N 4 interface, resulting in recovery of dose loss.