Sample records for electron microscopy early

  1. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.

    PubMed

    Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna

    2017-01-01

    Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.

  2. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy

    PubMed Central

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-01-01

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young’s Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues. PMID:28817096

  3. An historical account of the development and applications of the negative staining technique to the electron microscopy of viruses.

    PubMed

    Horne, R W; Wildy, P

    1979-09-01

    A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.

  4. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    PubMed

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  6. Short review on chemical bath deposition of thin film and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  7. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM.

    PubMed

    Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J

    2016-08-01

    We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.

  8. Insights into intermediate phases of human intestinal fluids visualized by atomic force microscopy and cryo-transmission electron microscopy ex vivo.

    PubMed

    Müllertz, Anette; Fatouros, Dimitrios G; Smith, James R; Vertzoni, Maria; Reppas, Christos

    2012-02-06

    The current work aims to study at the ultrastructural level the morphological development of colloidal intermediate phases of human intestinal fluids (HIFs) produced during lipid digestion. HIFs were aspirated near the ligament of Treitz early (30 min), Aspirate(early), and 1 h, Aspirate(1h)(ave,comp), after the administration of a heterogeneous liquid meal into the antrum. The composition of the sample aspirated 1 h after meal administration was similar to the average lumenal composition 1 h after meal administration (Aspirate(1h)(ave,comp)). The colloidal structures of individual aspirates and supernatants of aspirates after ultracentrifugation (micellar phase) were characterized by means of atomic force microscopy (AFM) and cryogenic transmission electron microscopy (Cryo-TEM). AFM revealed domain-like structures in Aspirate(early) and both vesicles and large aggregates Aspirate(1h)(ave,comp). Rough surfaces and domains varying in size were frequently present in the micellar phase of both Aspirate(early) and Aspirate(1h)(ave,comp). Cryo-TEM revealed an abundance of spherical micelles and occasionally presented worm-like micelles coexisting with faceted and less defined vesicles in Aspirate(early) and Aspirate(1h)(ave,comp). In Aspirate(1h)(ave,comp) oil droplets were visualized with bilayers closely located to their surface suggesting lipolytic product phases accumulated on the surface of the oil droplet. In the micellar phase of Aspirate(early), Cryo-TEM revealed the presence of spherical micelles, small vesicles, membrane fragments, oil droplets and plate-like structures. In the micellar phase of Aspirate(1h)(ave,comp) the only difference was the absence of oil droplets. Visualization studies previously performed with biorelevant media revealed structural features with many similarities as presented in the current investigation. The impression of the complexity and diversion of these phases has been reinforced with the excessive variation of structural features visualized ex vivo in the current study offering insights at the ultrastuctural level of intermediate phases which impact drug solubilization.

  9. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  10. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  11. Detection of early osteoarthritis in the centrodistal joints of Icelandic horses: Evaluation of radiography and low-field magnetic resonance imaging.

    PubMed

    Ley, C J; Björnsdóttir, S; Ekman, S; Boyde, A; Hansson, K

    2016-01-01

    Validated noninvasive detection methods for early osteoarthritis (OA) are required for OA prevention and early intervention treatment strategies. To evaluate radiography and low-field magnetic resonance imaging (MRI) for the detection of early stage OA osteochondral lesions in equine centrodistal joints using microscopy as the reference standard. Prospective imaging of live horses and imaging and microscopy of cadaver tarsal joints. Centrodistal (distal intertarsal) joints of 38 Icelandic research horses aged 27-29 months were radiographed. Horses were subjected to euthanasia approximately 2 months later and cadaver joints examined with low-field MRI. Osteochondral joint specimens were classified as negative or positive for OA using light microscopy histology or scanning electron microscopy. Radiographs and MRIs were evaluated for osteochondral lesions and results compared with microscopy. Forty-two joints were classified OA positive with microscopy. Associations were detected between microscopic OA and the radiography lesion categories; mineralisation front defect (P<0.0001), joint margin lesion (P<0.0001), central osteophyte (P = 0.03) and the low-field MRI lesion categories; mineralisation front defect (P = 0.01), joint margin lesion (P = 0.02) and articular cartilage lesion (P = 0.0003). The most frequent lesion category detected in microscopic OA positive joints was the mineralisation front defect in radiographs (28/42 OA positive joints, specificity 97%, sensitivity 67%). No significant differences were detected between the sensitivity and specificity of radiography and low-field MRI pooled lesion categories, but radiography was often superior when individual lesion categories were compared. Early stage centrodistal joint OA changes may be detected with radiography and low-field MRI. Detection of mineralisation front defects in radiographs may be a useful screening method for detection of early OA in centrodistal joints of young Icelandic horses. © 2015 EVJ Ltd.

  12. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Johari-Ahar, M.; Rashidi, M. R.; Barar, J.; Aghaie, M.; Mohammadnejad, D.; Ramazani, A.; Karami, P.; Coukos, G.; Omidi, Y.

    2015-02-01

    Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL-1 and a linear detection range (LDR) of 0-0.1 U mL-1. Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL-1 and a linear detection range (LDR) of 0-0.1 U mL-1. Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125. Electronic supplementary information (ESI) available: Additional materials including Figures and discussion as described in the text. See DOI: 10.1039/c4nr06687a

  13. Fossil Microorganisms in Archaean deposits of Northern Karelia

    NASA Technical Reports Server (NTRS)

    Astafieva, M. M.; Hoover, R. B.; Rozanov, A. Y.; Vrevskiy, A. B.

    2005-01-01

    Newly found biomorphic microstructures from the Upper Archaean (lopian) rocks from Northern Karelia are described. The presence of various microorganisms of bacterial nature and even cyanobacteria (and possibly eukaryotic forms) is suggested. The necessity of employing methods of electron microscopy, as well as traditional methods, while studying the very early manifestations of life in Archaean and Early Proterozoic is noted.

  14. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations,more » given the enhanced antibiotic-resistence of bacteria, is emphasized.« less

  15. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  16. Electron microscopic analysis of rotavirus assembly-replication intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less

  17. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less

  18. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction.

    PubMed

    Grandfield, Kathryn; Palmquist, Anders; Gonçalves, Stéphane; Taylor, Andy; Taylor, Mark; Emanuelsson, Lena; Thomsen, Peter; Engqvist, Håkan

    2011-04-01

    The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.

  19. The Role of Electron Microscopy in Studying the Continuum of Changes in Membranous Structures during Poliovirus Infection

    PubMed Central

    Rossignol, Evan D.; Yang, Jie E.; Bullitt, Esther

    2015-01-01

    Replication of the poliovirus genome is localized to cytoplasmic replication factories that are fashioned out of a mixture of viral proteins, scavenged cellular components, and new components that are synthesized within the cell due to viral manipulation/up-regulation of protein and phospholipid synthesis. These membranous replication factories are quite complex, and include markers from multiple cytoplasmic cellular organelles. This review focuses on the role of electron microscopy in advancing our understanding of poliovirus RNA replication factories. Structural data from the literature provide the basis for interpreting a wide range of biochemical studies that have been published on virus-induced lipid biosynthesis. In combination, structural and biochemical experiments elucidate the dramatic membrane remodeling that is a hallmark of poliovirus infection. Temporal and spatial membrane modifications throughout the infection cycle are discussed. Early electron microscopy studies of morphological changes following viral infection are re-considered in light of more recent data on viral manipulation of lipid and protein biosynthesis. These data suggest the existence of distinct subcellular vesicle populations, each of which serves specialized roles in poliovirus replication processes. PMID:26473912

  20. Nanoparticle conversion to biofilms: in vitro demonstration using serum-derived mineralo-organic nanoparticles.

    PubMed

    Wong, Tsui-Yin; Peng, Hsin-Hsin; Wu, Cheng-Yeu; Martel, Jan; Ojcius, David M; Hsu, Fu-Yung; Young, John D

    2015-01-01

    Mineralo-organic nanoparticles (NPs) detected in biological fluids have been described as precursors of physiological and pathological calcifications in the body. Our main objective was to examine the early stages of mineral NP formation in body fluids. A nanomaterial approach based on atomic force microscopy, dynamic light scattering, electron microscopy and spectroscopy was used. The mineral particles, which contain the serum proteins albumin and fetuin-A, initially precipitate in the form of round amorphous NPs that gradually grow in size, aggregate and coalesce to form crystalline mineral films similar to the structures observed in calcified human arteries. Our study reveals the early stages of particle formation and provides a platform to analyze the role(s) of mineralo-organic NPs in human tissues.

  1. Structure of initial crystals formed during human amelogenesis

    NASA Astrophysics Data System (ADS)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  2. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    EPA Science Inventory

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  3. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.

    PubMed

    Kook, Min-Suk; Roh, Hee-Sang; Kim, Byung-Hoon

    2018-05-02

    This study was to investigate the effects of O 2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O 2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O 2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O 2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O 2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation.

  4. Spall Response of Additive Manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Brown, Andrew; Gregg, Adam; Escobedo, Jp; Hazell, Paul; East, Daniel; Quadir, Zakaria

    2017-06-01

    Additive manufactured (AM) Ti-6Al-4V was produced via electron beam melting (EBM) and laser melting deposition (LMD) techniques. The dynamic response of AM varieties of common aerospace and infrastructure metals are yet to be fully characterized and compared to their traditionally processed counterparts. Spall damage is one of the primary failure modes in metals subjected to shock loading from high velocity impact. Both EBM and LMD Ti-6Al-4V were shock loaded via flyer-target plate impact using a single-stage light gas gun. Target plates were subjected to pressures just above the spall strength of the material (3-5 GPa) to investigate the early onset of damage nucleation as a function of processing technique and shock orientation with respect to the AM-build direction. Post-mortem characterization of the spall damage and surrounding microstructure was performed using a combination of optical microscopy, scanning electron microscopy, and electron backscatter diffraction.

  5. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.

  6. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  7. The Operophtera brumata nucleopolyhedrovirus (OpbuNPV) represents an early, divergent lineage within genus Alphabaculovirus

    USDA-ARS?s Scientific Manuscript database

    Operophtera brumata nucleopolyhedrovirus (OpbuNPV) infects larvae of the winter moth, Operophtera brumata. As part of an effort to explore the pesticidal potential of OpbuNPV, an isolate of this virus from Massachusetts (USA), OpbuNPV-MA, was characterized by electron microscopy of OpbuNPV occlusio...

  8. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  9. Quantification of Nanoscale Density Fluctuations in Biological Cells/Tissues: Inverse Participation Ratio (IPR) Analysis of Transmission Electron Microscopy Images and Implications for Early-Stage Cancer Detection

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh; Taflove, Allen; Roy, Hemant; Dravid, Vinayak; Backman, Vadim

    2010-03-01

    We report a study of the nanoscale mass density fluctuations of biological cells and tissues by quantifying their nanoscale light-localization properties. Transmission electron microscope (TEM) images of human cells and tissues are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by statistical analysis of the inverse participation ratio (IPR) of the eigenfunctions of these optical lattices at the nanoscales. Our results indicate elevation of the nanoscale disorder strength (e.g., refractive index fluctuations) in early carcinogenesis. Importantly, our results demonstrate that the increase in the nanoscale disorder represents the earliest structural alteration in cells undergoing carcinogenesis known to-date. Potential applications of the technique for early stage cancer detection will be discussed.

  10. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  11. Specific early fine structural changes in the lung following irradiation. [X rays; mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penney, D.P.; Rubin, P.

    1977-01-01

    The lungs of mice were irradiated with single and fractionated doses of 1000 R, 2000 R, and 3000 R and recovered 1 hr, 1 day, 1 week, and 1 month following exposure. Electron microscopy revealed early changes in the decrement of lamellar bodies of Type II pneumocytes and increased fibrous content and edema in the septal walls of all animals treated. Those lungs treated with fractionated doses of irradiation displayed more pronounced cellular damage than did singly-dosed lungs. It is proposed that these early changes may predict for subsequent atelectasis.

  12. A scanning electron microscopy study of early development in vitro of Contracaecum multipapillatum s.l. (Nematoda: Anisakidae) from a brown pelican (Pelecanus occidentalis) from the Gulf of California, Mexico.

    PubMed

    Molina-Fernández, Dolores; Valles-Vega, Isabel; Hernández-Trujillo, Sergio; Adroher, Francisco Javier; Benítez, Rocío

    2017-10-01

    Eggs obtained from the uteri of female nematodes, genetically identified as Contracaecum multipapillatum s.l., found in a brown pelican (Pelecanus occidentalis) from Bahía de La Paz, Gulf of California, Mexico, were used to study the early developmental stages of this anisakid by scanning electron microscopy (SEM). Egg dimensions were approximately 54 × 45 μm measured by SEM. Observation of the eggs revealed an outer surface of fibrous appearance. The newly hatched larvae were ensheathed and highly motile. Observation with SEM showed that the sheaths of the larvae were striated and revealed an excretory pore and a cleft near the anterior end of the sheath, presumably to facilitate the opening of the sheath for the emergence of the larva. The hatched larvae were placed in nutritive culture medium, where they grew within their sheath, some exsheathing completely 2 weeks later. The surface patterns of the sheath and the cuticle of the exsheathed larvae were clearly different. Although they did not moult during culture, SEM revealed a morphology typical of third-stage larvae of Contracaecum from fish, as previously observed by optical microscopy. Thus, we suggest that newly hatched larvae from eggs of C. multipapillatum are third larval stage but with sheath of the second larval stage, as occuring in other anisakids.

  13. Bi-layered collagen nano-structured membrane prototype collagen matrix 10826® for soft tissue regeneration in rabbits: an in vivo ultra-structural study of the early healing phase.

    PubMed

    De Santis, D; Menchini Fabris, G B; Lotti, J; Palumbo, C; Ferretti, M; Castellani, R; Lotti, T; Zanotti, G; Gelpi, F; Covani, C; Nocini, P F

    Collagen Matrix (CM) 10826 is a nanostructured bi-layered collagen membrane obtained from type I and III porcine collagen, which in vitro has shown to have the potential to be a substitute and/or stimulant for soft oral tissue regeneration. The objective of this study was to evaluate the in vivo potential and safety of this membrane for soft tissue regeneration in the early stage of wound healing. Two soft tissue wounds (test and control) were created on the back skin of 5 rabbits (female New Zealand White Rabbits specific pathogen free). All wounds were protected by a special poly-tetra-fluoro-ethylene (PTFE) healing camera. On each rabbit on the test side CM-10826 was used, while on the control side conventional treatment (an autologous pedicle graft) was performed. The healing process was observed clinically after 2 and 6 days, and Magnetic Resonance Imaging (MRI) was performed after this period. After 7 days, animals were sacrificed and specimens were analyzed with light optic microscopy (LM), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These in vivo trials on rabbits confirmed that CM-10826 is well tolerated, without signs of histological inflammatory reaction and proved to be able to accelerate the spontaneous repair of the skin defect taken as the control. The light-optic and ultra-microscopy of serial biopsies showed that the new matrix is biocompatible and is able to function as a scaffold inducing soft tissue regeneration. In conclusion this study demonstrates that CM-10826 promote early soft tissue regeneration and suggests it is a potential constituent for human autologous keratinocytes seeded derma bioequivalent. It protects the wound from injuries and bacterial contamination accelerating healing process. As a clinical relevance, we consider that the quality of life of patients will be improved avoiding the use of major autologous grafts, reducing the hospitalization time and morbidity.

  14. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis.

    PubMed

    Haas, Mark

    2009-02-01

    Alport syndrome and thin glomerular basement membrane nephropathy (TBMN) are genetically heterogeneous conditions characterized by structural abnormalities in the glomerular basement membrane and an initial presentation that usually involves hematuria. Approximately 40% of patients with TBMN are heterozygous carriers for autosomal recessive Alport syndrome, with mutations at the genetic locus encoding type IV collagen alpha(3) [alpha(3)(IV)] and alpha(4) chains. However, although the clinical course of TBMN is usually benign, Alport syndrome, particularly the X-linked form with mutations in the locus encoding the alpha(5) chain of type IV collagen [alpha(5)(IV)], typically results in end-stage renal disease. Electron microscopy is essential to diagnosis of TBMN and Alport syndrome on renal biopsy, although electron microscopy alone is of limited value in distinguishing between TBMN, the heterozygous carrier state of X-linked Alport syndrome, autosomal recessive Alport syndrome, and even early stages of X-linked Alport syndrome. To review diagnostic pathologic features of each of the above conditions, emphasizing the need for immunohistology for alpha(3)(IV) and alpha(5)(IV) in addition to electron microscopy to resolve this differential diagnosis on a renal biopsy. The diagnostic value of immunofluorescence studies for alpha(5)(IV) on a skin biopsy in family members of patients with Alport syndrome also is reviewed. Original and comprehensive review articles on the diagnosis of Alport syndrome and TBMN from the past 35 years, primarily the past 2 decades, and experience in our own renal pathology laboratory. Although Alport syndrome variants and TBMN do not show characteristic light microscopic findings and can be difficult to differentiate from each other even by electron microscopy, using a combination of electron microscopy and immunohistology for alpha(3)(IV) and alpha(5)(IV) enables pathologists to definitively diagnose these disorders on renal biopsy in most cases.

  15. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel R.; Rice, Jarrett A.

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted withmore » amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.« less

  17. STEM tomography analysis of the trypanosome transition zone.

    PubMed

    Trépout, Sylvain; Tassin, Anne-Marie; Marco, Sergio; Bastin, Philippe

    2018-04-01

    The protist Trypanosoma brucei is an emerging model for the study of cilia and flagella. Here, we used scanning transmission electron microscopy (STEM) tomography to describe the structure of the trypanosome transition zone (TZ). At the base of the TZ, nine transition fibres irradiate from the B microtubule of each doublet towards the membrane. The TZ adopts a 9 + 0 structure throughout its length of ∼300 nm and its lumen contains an electron-dense structure. The proximal portion of the TZ has an invariant length of 150 nm and is characterised by a collarette surrounding the membrane and the presence of electron-dense material between the membrane and the doublets. The distal portion exhibits more length variation (from 55 to 235 nm) and contains typical Y-links. STEM analysis revealed a more complex organisation of the Y-links compared to what was reported by conventional transmission electron microscopy. Observation of the very early phase of flagellum assembly demonstrated that the proximal portion and the collarette are assembled early during construction. The presence of the flagella connector that maintains the tip of the new flagellum to the side of the old was confirmed and additional filamentous structures making contact with the membrane of the flagellar pocket were also detected. The structure and potential functions of the TZ in trypanosomes are discussed, as well as its mode of assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Murine fetal echocardiography.

    PubMed

    Kim, Gene H

    2013-02-15

    Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.

  19. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  20. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Evaluation of Left Ventricular Diastolic Dysfunction with Early Systolic Dysfunction Using Two-Dimensional Speckle Tracking Echocardiography in Canine Heart Failure Model.

    PubMed

    Wu, Wei-Chun; Ma, Hong; Xie, Rong-Ai; Gao, Li-Jian; Tang, Yue; Wang, Hao

    2016-04-01

    This study evaluated the role of two-dimensional speckle tracking echocardiography (2DSTE) for predicting left ventricular (LV) diastolic dysfunction in pacing-induced canine heart failure. Pacing systems were implanted in 8 adult mongrel dogs, and continuous rapid right ventricular pacing (RVP, 240 beats/min) was maintained for 2 weeks. The obtained measurements from 2DSTE included global strain rate during early diastole (SRe) and during late diastole (SRa) in the longitudinal (L-SRe, L-SRa), circumferential (C-SRe, C-SRa), and radial directions (R-SRe, R-SRa). Changes in heart morphology were observed by light microscopy and transmission electron microscopy at 2 weeks. The onset of LV diastolic dysfunction with early systolic dysfunction occurred 3 days after RVP initiation. Most of the strain rate imaging indices were altered at 1 or 3 days after RVP onset and continued to worsen until heart failure developed. Light and transmission electron microscopy showed myocardial vacuolar degeneration and mitochondrial swelling in the left ventricular at 2 weeks after RVP onset. Pearson's correlation analysis revealed that parameters of conventional echocardiography and 2DSTE showed moderate correlation with LV pressure parameters, including E/Esep' (r = 0.58, P < 0.01), L-SRe (r = -0.58, P < 0.01), E/L-SRe (r = 0.65, P < 0.01), and R-SRe (r = 0.53, P < 0.01). ROC curves analysis showed that these indices of conventional echocardiography and strain rate imaging could effectively predict LV diastolic dysfunction (area under the curve: E/Esep' 0.78; L-SRe 0.84; E/L-SRe 0.80; R-SRe 0.80). 2DSTE was a sensitive and accurate technique that could be used for predicting LV diastolic dysfunction in canine heart failure model. © 2015, Wiley Periodicals, Inc.

  2. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw.

    PubMed Central

    Baskaran, Xavierravi; Geo Vigila, Antony Varuvel; Parimelazhagan, Thangaraj; Muralidhara-Rao, Doulathabad; Zhang, Shouzhou

    2016-01-01

    The objective of the study was to characterize silver nanoparticles (Ag-NPs) and their bioactivities in early tracheophytes (Pteridophyta). Aqueous leaf extract of a critically endangered fern, Pteris tripartita Sw., was used for one-step green synthesis of Ag-NPs. The biosynthesized Ag-NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Morphologically, the Ag-NPs showed hexagonal, spherical, and rod-shaped structures. Size distributions of Ag-NPs, calculated using Scherrer’s formula, showed an average size of 32 nm. Ag-NPs were studied for in vitro antioxidant, antimicrobial, and in vivo anti-inflammatory activities. Ag-NPs exhibited significant anti-inflammatory activity in carrageenan-induced paw volume tests performed in female Wistar albino rats. Furthermore, Ag-NPs showed significant antimicrobial activity against 12 different microorganisms in three different assays (disk diffusion, time course growth, and minimum inhibitory concentration). This study reports that colloidal Ag-NPs can be synthesized by simple, nonhazardous methods, and that biosynthesized Ag-NPs have significant therapeutic properties. PMID:27895478

  3. Visualization and identification of the structures formed during early stages of fibrin polymerization

    PubMed Central

    Chernysh, Irina N.; Nagaswami, Chandrasekaran

    2011-01-01

    We determined the sequence of events and identified and quantitatively characterized the mobility of moving structures present during the early stages of fibrin-clot formation from the beginning of polymerization to the gel point. Three complementary techniques were used in parallel: spinning-disk confocal microscopy, transmission electron microscopy, and turbidity measurements. At the beginning of polymerization the major structures were monomers, whereas at the middle of the lag period there were monomers, oligomers, protofibrils (defined as structures that consisted of more than 8 monomers), and fibers. At the end of the lag period, there were primarily monomers and fibers, giving way to mainly fibers at the gel point. Diffusion rates were calculated from 2 different results, one based on sizes and another on the velocity of the observed structures, with similar results in the range of 3.8-0.1 μm2/s. At the gel point, the diffusion coefficients corresponded to very large, slow-moving structures and individual protofibrils. The smallest moving structures visible by confocal microscopy during fibrin polymerization were identified as protofibrils with a length of approximately 0.5 μm. The sequence of early events of clotting and the structures present are important for understanding hemostasis and thrombosis. PMID:21248064

  4. LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar cardiomyopathy: a study of 3 cases.

    PubMed

    Daniels, Brianne H; McComb, Rodney D; Mobley, Bret C; Gultekin, Sakir Humayun; Lee, Han S; Margeta, Marta

    2013-07-01

    Autophagic vacuolar cardiomyopathy is an underrecognized, but potentially fatal, complication of treatment with chloroquine (CQ) and its derivative hydroxychloroquine (HCQ), which are used as therapy for malaria and common connective tissue disorders. Currently, the diagnosis of autophagic vacuolar cardiomyopathy is established through an endomyocardial biopsy and requires electron microscopy, which is not widely available and has a significant potential for sampling error. Recently, we have reported that immunohistochemistry for autophagic markers LC3 and p62 can replace electron microscopy in the diagnosis of HCQ-induced and colchicine-induced autophagic vacuolar skeletal myopathies. In the current study, we use 3 cases of CQ-induced or HCQ-induced cardiomyopathy and 1 HCQ-treated control case to show that the same two markers can be used to diagnose autophagic vacuolar cardiomyopathies by light microscopy. CQ-induced or HCQ-induced autophagic vacuolar cardiomyopathy is not universally fatal, but successful treatment requires early detection. By lowering the barriers to diagnosis, the application of these immunohistochemical markers will decrease the number of misdiagnosed patients, thus increasing the likelihood of favorable clinical outcomes.

  5. Methods of chemical and phase composition analysis of gallstones

    NASA Astrophysics Data System (ADS)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  6. Synaptic Changes in the Dentate Gyrus of APP/PS1 Transgenic Mice Revealed by Electron Microscopy

    PubMed Central

    Merino-Serrais, Paula; Gonzalez, Santiago; DeFelipe, Javier

    2013-01-01

    Abstract Numerous studies have reported widespread synaptic dysfunction or loss in early stages of both Alzheimer disease (AD) patients and animal models; it is widely accepted that synapse loss is the major structural correlate of cognitive dysfunction. Elucidation of the changes that may affect synapses is crucial for understanding the pathogenic mechanisms underlying AD, but ultrastructural preservation of human postmortem brain tissue is often poor, and classical methods for quantification of synapses have significant technical limitations. We previously observed changes in dendritic spines in plaque-free regions of the neuropil of the dentate gyrus of double-transgenic APP/PS1 (amyloid precursor protein/presenilin 1) model mice by light microscopy. Here, we used electron microscopy to examine possible synaptic alterations in this region. We used standard stereologic techniques to determine numbers of synapses per volume. We were able to reconstruct and analyze thousands of synapses and their 3-dimensional characteristics using a focused ion beam/scanning electron microscope and 3-dimensional reconstruction software (EspINA), which performs semiautomated segmentation of synapses. Our results show that both numbers of synapses per volume and synaptic morphology are affected in plaque-free regions of APP/PS1 mice. Therefore, changes in the number and morphology of synapses seem to be widespread alterations in this animal model. PMID:23584198

  7. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding

    PubMed Central

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-01-01

    Waterborne coating is the most popular type of coating, and improving its performance is a key point of research. Cathodic delamination is one of the major modes of failure for organic coatings. It refers to the weakening or loss of adhesion between the coating and substrate. Physical and chemical characteristics of coatings have been studied via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and secondary ion mass spectrometry (SIMS). Early heterogeneous swelling at the metal-coating interface in non-defective coated metals was elucidated using frequency-dependent alternating-current scanning electrochemical microscopy. Two types of coatings (styrene-acrylic coating and terpolymer coating) were compared. The effects of thickness, surface roughness, and chemical bonding on cathodic delamination were investigated. PMID:28772757

  8. Historical and Metallurgical Characterization of a "Falchion" Sword Manufactured in Caino (Brescia, Italy) in the Early 17th Century A.D.

    NASA Astrophysics Data System (ADS)

    Tonelli, G.; Faccoli, M.; Gotti, R.; Roberti, R.; Cornacchia, G.

    2016-08-01

    A historical and metallurgical characterization of a "falchion" sword manufactured in Caino (Brescia, northern Italy) and dating from the early 17th century was performed to understand the manufacture methods of a Renaissance sword. At first, a set of size measurements was carried out to look for the existence of constant and/or recurring macroscopic sizes, which would indicate a standardized production, or of any type of proportionality between different parts of a sword, which would prove an intentional design activity. Light optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, quantometer analyses, and Vickers microhardness tests were then employed to analyze the microstructure and obtain the mechanical properties. All the metallurgical work is supported by an accurate study on the chemical composition of both metal-matrix and nonmetallic inclusions, which allowed for rebuilding and evaluating the efficiency of the whole production process.

  9. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.

    1996-01-01

    The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.

  10. Xenoliths in the CM2 Carbonaceous Chondrite LON 94101: Implications for Complex Mixing on the Asteroidal Parent Body

    NASA Technical Reports Server (NTRS)

    Lindgren, P.; Lee, M. R.; Sofe, M.; Zolensky, M. E.

    2011-01-01

    Xenoliths are foreign clasts that oc-cur in various classes of meteorites, e.g. [1,2,3]. A re-cent study reveals the presence of several distinct classes of xenoliths in regolith-bearing meteorites, in-cluding in over 20 different carbonaceous chondrites [4]. The most common types of xenoliths are fine-grained hydrous clasts, often referred to as C1 or CI clasts in the literature, although their mineralogy is actually more similar to hydrous micrometeorites [5,6]. Xenoliths in meteorites present an opportunity to study material not yet classified or available as separate meteorites, and can provide additional information on processes in the dynamic early history of the Solar Sys-tem. Here we have performed chemical and mineralogi-cal analyses of xenoliths in the CM2 carbonaceous chondrite LON 94101, using scanning electron micro-scopy (SEM) and transmission electron microscopy (TEM).

  11. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge

    NASA Astrophysics Data System (ADS)

    Sugai, Toshiki; Omote, Hideki; Bandow, Shunji; Tanaka, Nobuo; Shinohara, Hisanori

    2000-04-01

    Fullerenes and single-wall carbon nanotubes (SWNTs) have been produced for the first time by the high-temperature pulsed arc-discharge technique, which has developed in this laboratory. Fullerenes are identified quantitatively by high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal a significant amount of production of bundles of SWNTs in soot. The pulse arc production of fullerenes and SWNTs favors the high-temperature (⩾1000 °C), long pulses (⩾1 ms) and a heavy rare gas such as Ar or Kr as a buffer gas. We have found that fullerenes and SWNTs have complementary relationships in their early stage of production. The details of the pulsed arc discharge have been obtained by observing the transition from the pulsed arc discharge to the steady arc discharge while increasing the pulse width.

  12. Disruption of Desmin-Mitochondrial Architecture in Patients with Regurgitant Mitral Valves and Preserved Ventricular Function

    PubMed Central

    Soorappan, Rajasekaran Namakkal; Ahmad, Shama; Mariappan, Nithya; Litovsky, Silvio; Gupta, Himanshu; Lloyd, Steven G; Denney, Thomas S; Powell, Pamela Cox; Aban, Inmaculada; Collawn, James; Davies, James E; McGiffin, David C; Dell’Italia, Louis J

    2016-01-01

    Objective Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral valvular regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. Methods Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for Class I indications was evaluated for desmin, the voltage-dependent anion channel, αβ-crystallin, and α, β unsaturated aldehyde 4-hydroxynonelal by fluorescence microscopy and in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients pre- and 6 months post-mitral valve repair. Results LV end-diastolic volume was 1.5-fold (p<0.0001) higher and LV mass to volume ratio was lower in MR (p=0.004) vs. normal and improvement six months after mitral valve surgery. However, LV ejection fraction decreased from 65 ± 7 to 52 ± 9% (p<0.0001) and LV circumferential (p<0.0001) and longitudinal strain decreased significantly below normal values (p=0.002) post-surgery. MR hearts had a 53% decrease in desmin (p<0.0001) and a 2.6-fold increase in desmin aggregates (p<0.0001) vs. normal along with significant, intense perinuclear staining of α, β unsaturated aldehyde 4-hydroxynonelal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron dense deposits, myofibrillar loss, Z-line abnormalities and extensive granulofilamentous debris identified as desmin positive by immunogold transmission electron microscopy. Conclusion Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain post-operative LV functional decline and further supports the move toward earlier surgical intervention. PMID:27464577

  13. Metastability of the atomic structures of size-selected gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wells, Dawn M.; Rossi, Giulia; Ferrando, Riccardo; Palmer, Richard E.

    2015-04-01

    All nanostructures are metastable - but some are more metastable than others. Here we employ aberration-corrected electron microscopy and atomistic computer simulations to demonstrate the hierarchy of metastability in deposited, size-selected gold nanoparticles (clusters), an archetypal class of nanomaterials well known for the catalytic activity which only appears on the nanometer-scale. We show that the atomic structures presented by ``magic number'' Au561, Au742 and Au923 clusters are ``locked''. They are in fact determined by the solidification which occurs from the liquid state early in their growth (by assembly from atoms in the gas phase) followed by template growth. It is quite likely that transitions from a locked, metastable configuration to a more stable (but still metastable) structure, as observed here under the electron beam, will occur during catalytic reactions, for example.All nanostructures are metastable - but some are more metastable than others. Here we employ aberration-corrected electron microscopy and atomistic computer simulations to demonstrate the hierarchy of metastability in deposited, size-selected gold nanoparticles (clusters), an archetypal class of nanomaterials well known for the catalytic activity which only appears on the nanometer-scale. We show that the atomic structures presented by ``magic number'' Au561, Au742 and Au923 clusters are ``locked''. They are in fact determined by the solidification which occurs from the liquid state early in their growth (by assembly from atoms in the gas phase) followed by template growth. It is quite likely that transitions from a locked, metastable configuration to a more stable (but still metastable) structure, as observed here under the electron beam, will occur during catalytic reactions, for example. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05811a

  14. Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells

    PubMed Central

    Chakraborty, Paramita; Bjork, Per; Källberg, Eva; Olsson, Anders; Riva, Matteo; Mörgelin, Matthias; Liberg, David; Ivars, Fredrik; Leanderson, Tomas

    2015-01-01

    We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway. PMID:26661255

  15. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    PubMed

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally

    PubMed Central

    SVITKINA, Tatyana M.

    2017-01-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208

  17. Silver stain for electron microscopy

    NASA Technical Reports Server (NTRS)

    Corbett, R. L.

    1972-01-01

    Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.

  18. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation.

    PubMed

    Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A

    2013-02-01

    The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ

    PubMed Central

    Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.

    2009-01-01

    Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881

  20. Internal Membrane Control in Azotobacter vinelandii

    PubMed Central

    Pate, Jack L.; Shah, Vinod K.; Brill, Winston J.

    1973-01-01

    Azotobacter vinelandii was grown on N2, NH4+, or NO3−, and an internal membrane network was observed by electron microscopy of thin sections of cells. Cells obtained in early exponential growth contained less internal membrane than did cells from cultures in late exponential growth. It seems likely that O2 has a role in regulating the amount of internal membrane structure. Images PMID:4123239

  1. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  2. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  3. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  4. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  5. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  6. Cryo-immunogold electron microscopy for prions: toward identification of a conversion site.

    PubMed

    Godsave, Susan F; Wille, Holger; Kujala, Pekka; Latawiec, Diane; DeArmond, Stephen J; Serban, Ana; Prusiner, Stanley B; Peters, Peter J

    2008-11-19

    Prion diseases are caused by accumulation of an abnormally folded isoform (PrP(Sc)) of the cellular prion protein (PrP(C)). The subcellular distribution of PrP(Sc) and the site of its formation in brain are still unclear. We performed quantitative cryo-immunogold electron microscopy on hippocampal sections from mice infected with the Rocky Mountain Laboratory strain of prions. Two antibodies were used: R2, which recognizes both PrP(C) and PrP(Sc); and F4-31, which only detects PrP(C) in undenatured sections. At a late subclinical stage of prion infection, both PrP(C) and PrP(Sc) were detected principally on neuronal plasma membranes and on vesicles resembling early endocytic or recycling vesicles in the neuropil. The R2 labeling was approximately six times higher in the infected than the uninfected hippocampus and gold clusters were only evident in infected tissue. The biggest increase in labeling density (24-fold) was found on the early/recycling endosome-like vesicles of small-diameter neurites, suggesting these as possible sites of conversion. Trypsin digestion of infected hippocampal sections resulted in a reduction in R2 labeling of >85%, which suggests that a high proportion of PrP(Sc) may be oligomeric, protease-sensitive PrP(Sc).

  7. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  8. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  9. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  11. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  12. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model

    PubMed Central

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet–fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of sublethal tubular cell injury. PMID:26752420

  13. Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.

    PubMed

    Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C

    2006-01-01

    Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.

  14. Application of environmental scanning electron microscopy to determine biological surface structure.

    PubMed

    Kirk, S E; Skepper, J N; Donald, A M

    2009-02-01

    The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.

  15. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  16. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. An Italian case of hereditary myopathy with early respiratory failure (HMERF) not associated with the titin kinase domain R279W mutation.

    PubMed

    Tasca, Giorgio; Mirabella, Massimiliano; Broccolini, Aldobrando; Monforte, Mauro; Sabatelli, Mario; Biscione, Gian Luca; Piluso, Giulio; Gualandi, Francesca; Tonali, Pietro Attilio; Udd, Bjarne; Ricci, Enzo

    2010-11-01

    Hereditary myopathy with early respiratory failure (HMERF) is a rare disorder characterized by severe respiratory involvement at onset, muscle weakness starting in the early adulthood, and cytoplasmic bodies with peculiar immunohistochemical reactivity on muscle biopsy. Here we describe a patient who presented with hypercapnic coma at age 32. A detailed light and electron microscopy analysis on muscle biopsy was performed and, together with clinical data, led to the diagnosis. The R279W mutation in the TTN gene was excluded. This report expands the geographical region of incidence and encourages additional studies to clarify the genetic heterogeneity of the condition. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Characterization of Localized Corrosion in an Al-Cu-Li Alloy

    NASA Astrophysics Data System (ADS)

    Luo, Chen; Zhang, Xinxin; Zhou, Xiaorong; Sun, Zhihua; Zhang, Xiaoyun; Tang, Zhihui; Lu, Feng; Thompson, George E.

    2016-05-01

    Corrosion behaviors of recently developed 2A97-T6 aluminum-copper-lithium alloy in sodium chloride solution are investigated using scanning electron and transmission electron microscopies in conjunction with electron backscatter diffraction. It has been found that corrosion product rings were established on the alloy surface as early as 5 min during immersion in sodium chloride solution. Meanwhile, hydrogen continuously evolved from within the rings. Pitting corrosion is evident with crystallographic dependant corrosion channel facets mainly parallel to {100} planes. Non-uniform distribution of misorientation in the 2A97 aluminum alloy results in a portion of grains of relatively high stored energy. Such grains were preferentially attacked, serving as local anodes, during the development of crystallographic pitting.

  19. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  20. Demonstration of transmission high energy electron microscopy

    DOE PAGES

    Merrill, F. E.; Goett, J.; Gibbs, J. W.; ...

    2018-04-06

    High energy electrons have been used to investigate an extension of transmission electron microscopy. This technique, transmission high energy electron microscopy (THEEM), provides two additional capabilities to electron microscopy. First, high energy electrons are more penetrating than low energy electrons, and thus, they are able to image through thicker samples. Second, the accelerating mode of a radio-frequency linear accelerator provides fast exposures, down to 1 ps, which are ideal for flash radiography, making THEEM well suited to study the evolution of fast material processes under dynamic conditions. Lastly, initial investigations with static objects and during material processing have been performedmore » to investigate the capabilities of this technique.« less

  1. Introduction: A Symposium in Honor of Professor Sir John Meurig Thomas

    NASA Astrophysics Data System (ADS)

    Gai, P. L.; Saka, H.; Tomokiyo, Y.; Boyes, E. D.

    2002-02-01

    This issue is dedicated to Professor Sir John Meurig Thomas for his renowned contributions to electron microscopy in the chemical sciences. It is a collection of peer-reviewed leading articles in electron microscopy, based on the presentations at the Microscopy and Microanalysis (M&M) 2000 symposium, which was held to honor Professor Thomas's exceptional scientific leadership and wide-ranging fundamental contributions in the chemical applications of electron microscopy.The issue contains key papers by leading international researchers on the recent developments and applications of electron microscopy in the solid state and liquid state sciences. They include synthesis and characterization of silicon nitride nanorods, nanostructures of amorphous silica, electron microscopy studies of nanoscale structure and chemistry of Pt-Ru electrocatalysts of interest in direct methanol fuel cells, development of in situ wet-environmental transmission electron microscopy for the first nanoscale studies of dynamic liquid-catalyst reactions, strain analysis of silicon by finite element method and energy filtering convergent beam electron diffraction, applications of chemistry with electron microscopy, bismuth nanowires for applications in nanoelectronics technology, synthesis and characterization of quantum dots for superlattices and in situ electron microscopy at very high temperatures to study the motion of W5Si3 on [alpha][beta]-SiN3 substrates.We thank all the participants, including the invited speakers, contributors, and session chairs, who made the symposium successful. We also thank the authors and reviewers of the papers who worked assiduously towards the publication of this issue.We are very grateful to the Microscopy Society of America (MSA) for providing the opportunity to honor Professor Sir John Meurig Thomas. Organizational support from the MSA is also gratefully acknowledged.We thank Charles E. Lyman, editor in chief of Microscopy and Microanalysis for coordinating the publication of this issue and the entire journal staff for their efforts.

  2. Anther development of maize (Zea mays) and longstamen rice (Oryza longistaminata) revealed by cryo-SEM, with foci on locular dehydration and pollen arrangement.

    PubMed

    Tsou, Chih-Hua; Cheng, Ping-Chin; Tseng, Chiung-Maan; Yen, Hsiao-Jung; Fu, Yu-Lan; You, Tien-Rong; Walden, David B

    2015-03-01

    Key message: Pollen maturation in Poaceae. Another development has been extensively examined by various imaging tools, including transmission electron microscopy, scanning electron microscopy, and light microscopy, but none is capable of identifying liquid water. Cryo-scanning electron microscopy with high-pressure rapid freeze fixation is excellent in preserving structures at cellular level and differentiating gas- versus liquid-filled space, but rarely used in anther study. We applied this technique to examine anther development of Poaceae because of its economic importance and unusual peripheral arrangement of pollen. Maize and longstamen rice were focused on. Here, we report for the first time that anthers of Poaceae lose the locular free liquid during late-microspore to early pollen stages; the majority of pollen grains arranged in a tight peripheral whorl develops normally and reaches maturity in the gas-filled loculus. Occasionally, pollen grains are found situated in the locular cavity, but they remain immature or become shrunk at anthesis. At pollen stage, microchannels and cytoplasmic strands are densely distributed in the entire pollen exine and intine, respectively, suggesting that nutrients are transported into the pollen from the entire surface. We propose that in Poaceae, the specialized peripheral arrangement of pollen grains is crucial for pollen maturation in the gas-filled loculus, which enables pollen achieving large surface contact area with the tapetum and neighboring grains to maintain sufficient nutrient flow. This report also shows that the single aperture of pollen in Poaceae usually faces the tapetum, but other orientation is also common; pollen grains with different aperture orientations show no morphological differences.

  3. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  5. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  6. Diagenesis in coastal carbonates related to Pleistocene sea level, Bermuda Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollbrecht, R.; Meischner, D.

    1996-01-01

    Pleistocene glacioeustatic sea-level oscillation on the stable Bermuda Platform is expressed in a succession of shallow-water carbonates interrupted by lowstand unconformities. In Bermuda, the maximum highstands of the last 400,000 yr ranged within 10 m around the present level. Coastal carbonates of various highstands are exposed along the present shoreline. These carbonates were penetrated by meteoric and marine pore waters during lowstands and highstands following on deposition. Two representative Pleistocene shoreline sections were studied to see whether early diagenesis has recorded these pore-water changes. The sediments of both sections show multiple generations of cement. Optical and scanning electron microscopy, cathodoluminescencemore » microscopy, X-ray diffraction, microprobe studies and stable-isotope analyses were used to determine the diagenetic environments involved. Regardless of the degree of substrate cementation, freshwater alteration was mainly vadose whereas marine cementation was either phreatic or vadose or both. Early diagenetic oscillation is easier recorded in coastal successions than in lagoonal sediments, mainly because marine cementation is more active nearshore.Because the coastal environment is prone to wave destruction, the potential for preserving these diagenetic features is usually low. Data published on tectonically unstable areas suggest that early diagenetic oscillation may characterize stable coastlines.« less

  7. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  8. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  9. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  10. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    NASA Astrophysics Data System (ADS)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2017-03-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  11. Characterization of Pustular Mats and Related Rivularia-Rich Laminations in Oncoids From the Laguna Negra Lake (Argentina).

    PubMed

    Mlewski, Estela C; Pisapia, Céline; Gomez, Fernando; Lecourt, Lena; Soto Rueda, Eliana; Benzerara, Karim; Ménez, Bénédicte; Borensztajn, Stephan; Jamme, Frédéric; Réfrégiers, Matthieu; Gérard, Emmanuelle

    2018-01-01

    Stromatolites are organo-sedimentary structures that represent some of the oldest records of the early biosphere on Earth. Cyanobacteria are considered as a main component of the microbial mats that are supposed to produce stromatolite-like structures. Understanding the role of cyanobacteria and associated microorganisms on the mineralization processes is critical to better understand what can be preserved in the laminated structure of stromatolites. Laguna Negra (Catamarca, Argentina), a high-altitude hypersaline lake where stromatolites are currently formed, is considered as an analog environment of early Earth. This study aimed at characterizing carbonate precipitation within microbial mats and associated oncoids in Laguna Negra. In particular, we focused on carbonated black pustular mats. By combining Confocal Laser Scanning Microscopy, Scanning Electron Microscopy, Laser Microdissection and Whole Genome Amplification, Cloning and Sanger sequencing, and Focused Ion Beam milling for Transmission Electron Microscopy, we showed that carbonate precipitation did not directly initiate on the sheaths of cyanobacterial Rivularia , which dominate in the mat. It occurred via organo-mineralization processes within a large EPS matrix excreted by the diverse microbial consortium associated with Rivularia where diatoms and anoxygenic phototrophic bacteria were particularly abundant. By structuring a large microbial consortium, Rivularia should then favor the formation of organic-rich laminations of carbonates that can be preserved in stromatolites. By using Fourier Transform Infrared spectroscopy and Synchrotron-based deep UV fluorescence imaging, we compared laminations rich in structures resembling Rivularia to putatively chemically-precipitated laminations in oncoids associated with the mats. We showed that they presented a different mineralogy jointly with a higher content in organic remnants, hence providing some criteria of biogenicity to be searched for in the fossil record.

  12. Characterization of Pustular Mats and Related Rivularia-Rich Laminations in Oncoids From the Laguna Negra Lake (Argentina)

    PubMed Central

    Mlewski, Estela C.; Pisapia, Céline; Gomez, Fernando; Lecourt, Lena; Soto Rueda, Eliana; Benzerara, Karim; Ménez, Bénédicte; Borensztajn, Stephan; Jamme, Frédéric; Réfrégiers, Matthieu; Gérard, Emmanuelle

    2018-01-01

    Stromatolites are organo-sedimentary structures that represent some of the oldest records of the early biosphere on Earth. Cyanobacteria are considered as a main component of the microbial mats that are supposed to produce stromatolite-like structures. Understanding the role of cyanobacteria and associated microorganisms on the mineralization processes is critical to better understand what can be preserved in the laminated structure of stromatolites. Laguna Negra (Catamarca, Argentina), a high-altitude hypersaline lake where stromatolites are currently formed, is considered as an analog environment of early Earth. This study aimed at characterizing carbonate precipitation within microbial mats and associated oncoids in Laguna Negra. In particular, we focused on carbonated black pustular mats. By combining Confocal Laser Scanning Microscopy, Scanning Electron Microscopy, Laser Microdissection and Whole Genome Amplification, Cloning and Sanger sequencing, and Focused Ion Beam milling for Transmission Electron Microscopy, we showed that carbonate precipitation did not directly initiate on the sheaths of cyanobacterial Rivularia, which dominate in the mat. It occurred via organo-mineralization processes within a large EPS matrix excreted by the diverse microbial consortium associated with Rivularia where diatoms and anoxygenic phototrophic bacteria were particularly abundant. By structuring a large microbial consortium, Rivularia should then favor the formation of organic-rich laminations of carbonates that can be preserved in stromatolites. By using Fourier Transform Infrared spectroscopy and Synchrotron-based deep UV fluorescence imaging, we compared laminations rich in structures resembling Rivularia to putatively chemically-precipitated laminations in oncoids associated with the mats. We showed that they presented a different mineralogy jointly with a higher content in organic remnants, hence providing some criteria of biogenicity to be searched for in the fossil record. PMID:29872427

  13. Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.

  14. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  15. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  17. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D; Saeed, Fahad; Michael Payne, D; Chen, Shu-Hui; Fenton, Robert A; Pisitkun, Trairak

    2015-12-17

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI.

  18. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus

    PubMed Central

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D.; Saeed, Fahad; Michael Payne, D.; Chen, Shu-Hui; Fenton, Robert A.; Pisitkun, Trairak

    2015-01-01

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI. PMID:26674602

  19. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  20. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    PubMed

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  1. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  2. Microstructure of milk

    USDA-ARS?s Scientific Manuscript database

    The fat and protein in milk may be examined by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy, and any bacteria present may be viewed by light microscopy. The fat exists as globules, the bulk of the protein is in the form of casein micelles, a...

  3. Sequential Immunofluorescent Light Microscopy and Electron Microscopy of Recombination Nodules During Meiotic Prophase I.

    PubMed

    Anderson, Lorinda K

    2017-01-01

    Immunolocalization using either fluorescence for light microscopy (LM) or gold particles for electron microscopy (EM) has become a common tool to pinpoint proteins involved in recombination during meiotic prophase. Each method has its advantages and disadvantages. For example, LM immunofluorescence is comparatively easier and higher throughput compared to immunogold EM localization. In addition, immunofluorescence has the advantages that a faint signal can often be enhanced by longer exposure times and colocalization using two (or more) probes with different absorbance and emission spectra is straightforward. However, immunofluorescence is not useful if the object of interest does not label with an antibody probe and is below the resolution of the LM. In comparison, immunogold EM localization is higher resolution than immunofluorescent LM localization, and individual nuclear structures, such as recombination nodules, can be identified by EM regardless of whether they are labeled or not. However, immunogold localization has other disadvantages including comparatively low signal-to-noise ratios, more difficult colocalization using gold particles of different sizes, and the inability to evaluate labeling efficiency before examining the sample using EM (a more expensive and time-consuming technique than LM). Here we describe a method that takes advantage of the good points of both immunofluorescent LM and EM to analyze two classes of late recombination nodules (RNs), only one of which labels with antibodies to MLH1 protein, a marker of crossovers. The method can be used readily with other antibodies to analyze early recombination nodules or other prophase I structures.

  4. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy

    PubMed Central

    Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L.; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E.; Schnitt, Stuart J.; Beck, Andrew H.; Boyden, Edward S.

    2017-01-01

    Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research. PMID:28714966

  5. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.

    PubMed

    Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E; Schnitt, Stuart J; Beck, Andrew H; Boyden, Edward S

    2017-08-01

    Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.

  6. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  7. Towards native-state imaging in biological context in the electron microscope

    PubMed Central

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  8. An overview of state-of-the-art image restoration in electron microscopy.

    PubMed

    Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W

    2018-06-08

    In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  9. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  10. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  12. Chemistry Viewed through the Eyes of High-Resolution Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael; And Others

    1981-01-01

    This special report, prepared by several chemists working in the field of electron microscopy, provides information regarding the most recent developments in transmission and scanning electron microscopy that have chemical significance. (CS)

  13. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  14. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  15. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  16. Writing silica structures in liquid with scanning transmission electron microscopy.

    PubMed

    van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M

    2015-02-04

    Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A history of urine microscopy.

    PubMed

    Cameron, J Stewart

    2015-11-01

    The naked-eye appearance of the urine must have been studied by shamans and healers since the Stone Age, and an elaborate interpretation of so-called Uroscopy began around 600 AD as a form of divination. A 1000 years later, the first primitive monocular and compound microscopes appeared in the Netherlands, and along with many other objects and liquids, urine was studied from around 1680 onwards as the enlightenment evolved. However, the crude early instruments did not permit fine study because of chromatic and linear/spherical blurring. Only after complex multi-glass lenses which avoided these problems had been made and used in the 1820s in London by Lister, and in Paris by Chevalier and Amici, could urinary microscopy become a practical, clinically useful tool in the 1830s. Clinical urinary microscopy was pioneered by Rayer and his pupils in Paris (especially Vigla), in the late 1830s, and spread to UK and Germany in the 1840s, with detailed descriptions and interpretations of cells and formed elements of the urinary sediment by Nasse, Henle, Robinson and Golding Bird. Classes were held, most notably by Donné in Paris. After another 50 years, optical microscopy had reached its apogee, with magnifications of over 1000 times obtainable free of aberration, using immersion techniques. Atlases of the urinary sediment were published in all major European countries and in the US. Polarised light and phase contrast was used also after 1900 to study urine, and by the early 20th century, photomicroscopy (pioneered by Donné and Daguerre 50 years previously, but then ignored) became usual for teaching and recording. In the 1940s electron microscopy began, followed by detection of specific proteins and cells using immunofluorescent antibodies. All this had been using handheld methodology. Around 1980, machine-assisted observations began, and have dominated progress since.

  18. Cutin plays a role in differentiation of endosperm-derived callus of kiwifruit.

    PubMed

    Popielarska-Konieczna, Marzena; Kozieradzka-Kiszkurno, Małgorzata; Bohdanowicz, Jerzy

    2011-11-01

    Cutin fluorescence, after auramine O treatment, was detected on the surface of organogenic areas (protuberances) of endosperm derived callus induced on Murashige and Skoog medium with thidiazuron (0.5 mg l(-1)) in darkness. Electron micrographs of the protuberances revealed cuticle, visible as a dark-staining layer, and amorphous waxes on the cell wall. In some cases the cells of the epidermis-like layer and shoot buds at early stages of development showed thick and characteristically wavy cutin. This waviness corresponds with the wrinkled appearance of the cell wall as observed by scanning electron microscopy. The role of multivesicular bodies in cutin production and transfer to the plasma membrane is discussed.

  19. Precipitation of Carbides in Early Aging Stages and Their Crystallographic Orientations in Hadfield Steel Mn13

    NASA Astrophysics Data System (ADS)

    Ding, Zhimin; Liang, Bo; Zhao, Ruirong; Chen, Chunhuan

    2015-05-01

    The methods of transmission electron microscopy (TEM) and electron diffraction are used to study the carbides precipitated in Hadfield steel Mn13 during 2-h aging at 475°C. It is shown that carbides of types (Fe, Mn, Cr)23C6 and mixed (Fe, Mn, Cr)7C3 + (Fe, Mn, Cr)3C precipitate simultaneously over austenite grain boundaries. The data on precipitation of M23C- and M7C3-type carbides in a Hadfield steel after water quenching and aging are pioneer ones. Strict orientation relations of the M23C6 carbides and of the austenite matrix are determined.

  20. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  1. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  2. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  3. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  4. Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.

    PubMed

    Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien

    2018-06-04

    Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  5. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Cancer.gov

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  6. Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com

    Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.

  7. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  8. Advanced Electron Microscopy and Micro analytical technique development and application for Irradiated TRISO Coated Particles from the AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Lillo, Thomas Martin; Wen, Haiming

    2017-01-01

    A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysismore » results on selected AGR-1 coated particles.« less

  9. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy

    PubMed Central

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263

  10. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    PubMed

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  11. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  12. Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2018-01-01

    The paper "Using the Medipix3 detector for direct electron imaging in the range 60keV to 200keV in electron microscopy" by J.A. Mir, R. Plackett, I. Shipsey and J.M.F. dos Santos has been retracted following the authors' request on the basis of the existence of a disagreement about the ownership of the data, to prevent conflict between collaborators.

  13. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  14. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  15. The Effect of Electron Beam Irradiation in Environmental Scanning Transmission Electron Microscopy of Whole Cells in Liquid.

    PubMed

    Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels

    2016-06-01

    Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels.

  16. Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.

    PubMed

    Monjardino, Paulo; Rocha, Sara; Tavares, Ana C; Fernandes, Rui; Sampaio, Paula; Salema, Roberto; da Câmara Machado, Artur

    2013-04-01

    Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.

  17. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.

    Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less

  18. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions

    DOE PAGES

    Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.; ...

    2018-01-23

    Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less

  19. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  20. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Nam, Hyo On; Hwang, Il Soon; Kim, Ji Hyun

    2010-12-01

    Lead and lead-bismuth eutectic (LBE) alloy have been increasingly receiving attention as heavy liquid metal coolants (HLMC) for future nuclear energy systems. The compatibility of structural materials and components with lead-bismuth eutectic liquid at high temperature is one of key issues for the commercialization of lead fast reactors. In the present study, the corrosion behaviors of iron-based alumina-forming alloys (Kanthal-AF®, PM2000, MA956) were investigated by exposing to stagnant LBE environments at 500 °C and 550 °C for up to 500 h. After exposures, the thickness and chemistry of the oxide layer on the specimens were analyzed by scanning electron microscopy, scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. As a result, the oxide characteristics and the corrosion resistance were compared. In this study, it was shown that the corrosion resistance of FeCrAl ODS steels (PM2000, MA956) are superior to that of FeCrAl ferritic steel (Kanthal-AF®) in higher temperature LBE.

  1. High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Wei, Ming; Lin, Yuan; Jia, Quanxi; Zhi, Dan; Dho, Joonghoe; Blamire, Mark G.; MacManus-Driscoll, Judith L.

    2005-02-01

    High-resolution x-ray diffraction and transmission electron microscopy (TEM) have been used to study BiFeO3 thin films grown on the bare and SrRuO3 buffered (001) SrTiO3 substrates. Reciprocal space mapping (RSM) around (002) and (103) reflections revealed that BFO films with a thickness of about 200 nm were almost fully relaxed and had a rhombohedral structure. Cross-sectional, high-resolution TEM showed that the films started to relax at a very early stage of growth, which was consistent with the RSM results. A thin intermediate layer of about 2 nm was observed at the interface, which had a smaller lattice than the overgrown film. Twist distortions about the c axis to release the shear strain introduced by the growth of rhombic (001) BiFeO3 on cubic (001) SrTiO3 were also observed. The results indicate that a strained, coherent BiFeO3 film on (001) SrTiO3 is very difficult to maintain and (111) STO substrates are preferable.

  2. From Renaissance art to contemporary electron microscopy: DeGroft's rediscovery of Titian's "lost" portrait of Federico II Gonzaga, Duke of Mantua, of 1539-40.

    PubMed

    Tucker, J Allan; DeGroft, Aaron H

    2002-01-01

    At the Ultrapath X meeting in Florence, the regular session opened with a presentation of Aaron DeGroft's engrossing story of investigating the authenticity of a portrait of Federico II Gonzaga, Duke of Mantua. In the early 1900s, this work had been deemed to be an authentic production by Titian, a great artist of the Italian Renaissance. A respected art historian, however, discovered a conflict of dates that led to the conclusion that this work was not authentic. In a process sometimes analogous to the practice of surgical pathology, Dr. DeGroft pursued a review of the original materials that refutes this seeming contradiction of dates. Dr. DeGroft also undertook an extensive art historical examination and scientific analysis, including the use of electron microscopy, to persuasively conclude that this portrait is authentic. Further, his work provided a bridge from the conference setting in Florence, rich in Renaissance art, to the contemporary update on ultrastructural pathology provided by the conference.

  3. Microchemical and microstructural evolution of AISI 304 stainless steel irradiated in EBR-II at PWR-relevant dpa rates

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Sencer, B. H.; Garner, F. A.; Marquis, E. A.

    2015-12-01

    AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10-9 and 3.05 × 10-7 dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.

  4. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  5. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  6. A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    NASA Technical Reports Server (NTRS)

    Ware, Jacqueline; Hammond, Ernest C., Jr.

    1989-01-01

    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.

  7. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils.

    PubMed

    Pang, K; Tang, Q; Schiffbauer, J D; Yao, J; Yuan, X; Wan, B; Chen, L; Ou, Z; Xiao, S

    2013-11-01

    The well-known debate on the nature and origin of intracellular inclusions (ICIs) in silicified microfossils from the early Neoproterozoic Bitter Springs Formation has recently been revived by reports of possible fossilized nuclei in phosphatized animal embryo-like fossils from the Ediacaran Doushantuo Formation of South China. The revisitation of this discussion prompted a critical and comprehensive investigation of ICIs in some of the oldest indisputable eukaryote microfossils-the ornamented acritarchs Dictyosphaera delicata and Shuiyousphaeridium macroreticulatum from the Paleoproterozoic Ruyang Group of North China-using a suite of characterization approaches: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM). Although the Ruyang acritarchs must have had nuclei when alive, our data suggest that their ICIs represent neither fossilized nuclei nor taphonomically condensed cytoplasm. We instead propose that these ICIs likely represent biologically contracted and consolidated eukaryotic protoplasts (the combination of the nucleus, surrounding cytoplasm, and plasma membrane). As opposed to degradational contraction of prokaryotic cells within a mucoidal sheath-a model proposed to explain the Bitter Springs ICIs-our model implies that protoplast condensation in the Ruyang acritarchs was an in vivo biologically programmed response to adverse conditions in preparation for encystment. While the discovery of bona fide nuclei in Paleoproterozoic acritarchs would be a substantial landmark in our understanding of eukaryote evolution, the various processes (such as degradational and biological condensation of protoplasts) capable of producing nuclei-mimicking structures require that interpretation of ICIs as fossilized nuclei be based on comprehensive investigations. © 2013 John Wiley & Sons Ltd.

  8. A scanning electron microscopy study of CO2 laser-albumin soldering in the rabbit model.

    PubMed

    Levanon, Daniel; Katzir, Abraham; Ravid, Avi

    2004-12-01

    We sought to assess the rabbit as an experimental animal in the investigation of laser skin soldering. We studied, using the scanning electron microscope (SEM), the surface appearances of experimental incisions made on the rabbit back skin and soldered by CO(2) laser. Laser soldering of incisions in various tissues is a modality of wound healing of a very promising clinical value. At present, more component studies on animals directed at paving the way towards clinical protocols are needed. Surgical incisions on rabbits back skin were bonded using either albumin-assisted CO(2) laser soldering (experimental) or thread suturing (reference). The incisions closed were excised 2, 3, 4, and 5 days postoperatively, and skin surfaces were studied in the SEM. Naked eye inspection and SEM analysis showed that full-length sealing of soldered and sutured incisions was discernible as early as day 2. In the SEM, all incisions were found confluently coated by epidermal cells along the former cut streak. Soldering subserved to bond incisions efficiently, with surface smooth and close to normal skin. On the other hand, the surface of sutured incisions appeared convoluted and its aesthetic quality inferior to that of the former. Some of the days two and three soldered incisions suffered dehiscence on excision, which suggests an incomplete regeneration of tensile strength at this early phase of healing. Sutured incisions tolerated excision, very probably due to the microthread still present in the skin tissue rather than because of breaking strength regained during wound healing. Also, hair stumps re-grown on the skin by day 5 postoperative might impair satisfactory microscopy of bonded incisions. CO(2) laser soldering of incisions on the rabbit back skin effected rapid wound sealing and resulted in smooth scars indistinguishable from normal skin. The rabbit is well suited for this kind of studies, provided that excision of experimental cuts takes place not later than 5 days post-incision so that hair stumps may not grow large enough to jeopardize the quality of scanning electron microscopy.

  9. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  10. An integrated approach to the Taxonomic identification of prehistoric shell ornaments

    USGS Publications Warehouse

    Demarchi, Beatrice; O'Connor, Sonia; Ponzoni, Andre de Lima; Ponzoni, Raquel de Almeida Roch; Sheridan, Alison; Penkman, Kirsty; Hancock, Y.; Wilson, Julie

    2014-01-01

    Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples) to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample) and micro-destructive (sample size <2 mg). Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy) and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK). Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally.

  11. Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer's disease patients.

    PubMed

    Domínguez-Álvaro, M; Montero-Crespo, M; Blazquez-Llorca, L; Insausti, R; DeFelipe, J; Alonso-Nanclares, L

    2018-03-02

    Synaptic dysfunction or loss in early stages of Alzheimer's disease (AD) is thought to be a major structural correlate of cognitive dysfunction. Early loss of episodic memory, which occurs at the early stage of AD, is closely associated with the progressive degeneration of medial temporal lobe (MTL) structures of which the transentorhinal cortex (TEC) is the first affected area. However, no ultrastructural studies have been performed in this region in human brain samples from AD patients. In the present study, we have performed a detailed three-dimensional (3D) ultrastructural analysis using focused ion beam/scanning electron microscopy (FIB/SEM) to investigate possible synaptic alterations in the TEC of patients with AD. Surprisingly, the analysis of the density, morphological features and spatial distribution of synapses in the neuropil showed no significant differences between AD and control samples. However, light microscopy studies showed that cortical thickness of the TEC was severely reduced in AD samples, but there were no changes in the volume occupied by neuronal and glial cell bodies, blood vessels, and neuropil. Thus, the present results indicate that there is a dramatic loss of absolute number of synapses, while the morphology of synaptic junctions and synaptic spatial distribution are maintained. How these changes affect cognitive impairment in AD remains to be elucidated.

  12. Scanning electron microscopic appearance of rat otocyst of the twelfth postcoital day: elaboration of a method.

    PubMed

    Marovitz, W F; Khan, K M

    1977-01-01

    A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.

  13. Peptide nanoparticles (PNPs) modified disposable platform for sensitive electrochemical cytosensing of DLD-1 cancer cells.

    PubMed

    Yaman, Yesim Tugce; Akbal, Öznur; Bolat, Gulcin; Bozdogan, Betul; Denkbas, Emir Baki; Abaci, Serdar

    2018-05-01

    A novel diphenylalaninamid (FFA) based peptide nanoparticles (PNPs) modified pencil graphite electrodes (PGEs) for construction of electrochemical cytosensor was demonstrated for the first time in this study. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed the spherical nanostructure of the synthesized FFA based PNPs while attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectra provided information about the structure and conformation of proteins in their structure. Self-assembly of PNPs on PGE surface and adhesion of DLD-1 cancer cells on this surface was also characterized by electrochemical measurements. PNP/PGEs acted as a sensitive platform for simple and rapid quantification of low concentration of DLD-1 cancer cells in early diagnosis using the electrochemical impedance method (EIS). The offered cytosensor demonstrated outstanding performance for the detection of DLD-1 cells by the EIS method. The impedance of electronic transduction was associated with the amount of the immobilized cells ranging from 2 × 10 2 to 2.0 × 10 5 cellsmL -1 with a limit of detection of 100 cellsmL -1 . The efficient performance of the cytosensor was attributed to the well-defined nanostructure and biocompability of PNPs on the substrate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections.

    PubMed

    Moore, Chad L; Cheng, Delfine; Shami, Gerald J; Murphy, Christopher R

    2016-05-01

    In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol which provides a precise correlation accuracy using accessible techniques in biological specimen preparation. By combining a pre-embedding uranyl acetate staining step with the progressive lowering of temperature (PLT) technique, a methacrylate embedded tissue specimen is ultrathin sectioned and mounted onto a TEM finder grid for immediate viewing in the confocal and electron microscope. In this study, the protocol is applied to rat uterine epithelial cells in vivo during early pregnancy. Correlative overlay data was used to track changes in filamentous actin that occurs in these cells from fertilization (Day 1) to implantation on Day 6 as part of the plasma membrane transformation, a process essential in the development of uterine receptivity in the rat. CLEM confirmed that the actin cytoskeleton is disrupted as apical microvilli are progressively lost toward implantation, and revealed the thick and continuous terminal web is replaced by a thinner and irregular actin band, with individually distinguishable filaments connecting actin meshworks which correspond with remaining plasma membrane protrusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tissue and cellular localization of tannins in Tunisian dates (Phoenix dactylifera L.) by light and transmission electron microscopy.

    PubMed

    Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain

    2014-07-16

    A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.

  16. Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins

    PubMed Central

    Thomson, Travis; Liu, Niankun; Arkov, Alexey; Lehmann, Ruth; Lasko, Paul

    2008-01-01

    Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly. PMID:18590813

  17. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  18. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    DTIC Science & Technology

    2014-02-27

    Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices

  19. New modes of electron microscopy for materials science enabled by fast direct electron detectors

    NASA Astrophysics Data System (ADS)

    Minor, Andrew

    There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.

  20. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  1. Scanning Transmission Electron Microscopy | Materials Science | NREL

    Science.gov Websites

    mode by collecting the EDS and EELS signals point-by-point as one scans the electron probe across the . Examples of Scanning Transmission Electron Microscopy Capabilities Z-contrast image microphoto taken by

  2. Diagnostic electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  3. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    PubMed

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.

  4. Relationship between histopathological changes in post partum renal biopsies and renal function tests of African women with early onset pre-eclampsia.

    PubMed

    Khedun, S M; Naicker, T; Moodley, J

    2000-05-01

    To improve the diagnostic accuracy of concurrent renal disease in hypertension of pregnancy, biopsy evaluation is essential. In addition, establishing underlying renal disease is important for prognosis on future pregnancies. We therefore designed a study to determine the diagnostic yield of postpartum renal biopsy and the nature and frequency of complications associated with this procedure. Also, to determine relationships, if any, between renal function tests and ultrastructural and histopathological findings. Fifty renal biopsies were performed in the immediate postpartum period in black African women with early onset pre-eclampsia. Each biopsy specimen was placed in a separate container and coded so that sampling was unknown to the electron microscopist. Each biopsy specimen was divided into three parts, and processed and stained for light, fluorescent and transmission electron microscopy using conventional techniques. Renal tissue biopsies were adequate for diagnostic purposes in all cases. There were no complications in any of the 50 patients studied. Ultrastructural examination confirmed the light microscopy findings. In addition the ultrastructural findings showed intramembranous deposits, foot process fusion and mesangial deposits. In 16 patients with normal renal function tests; the biopsies evaluation from these patients showed ultrastructural changes. In the remaining 34 patients with abnormal renal function tests of varying severity; biopsy evaluation from these patients showed both ultrastructural and histopathological changes. Renal biopsy procedure is safe, and ultrastructural and histological findings obtained from postpartum renal biopsies are more informative than the routine renal function tests.

  5. Morphological Characterization of Basally Located Uninucleate Trophoblast Cells as Precursors of Bovine Binucleate Trophoblast Giant Cells.

    PubMed

    Attiger, Jeannette; Boos, Alois; Klisch, Karl

    2018-06-20

    Binucleate trophoblast giant cells (TGCs) are one characteristic feature of the ruminant placenta. In cows, the frequency of TGCs remains constant for most of the duration of pregnancy. As TGCs are depleted by their fusion with uterine epithelial cells, they need to be constantly formed. It is still unclear whether they develop from stem cells within the trophectoderm or whether they can arise from any uninucleate trophoblast cell (UTC). Within the latter, generally accepted theory, a basally located uninucleate cell (BUC) without contact to the feto-maternal interface would represent a transient cell between a UTC and a TGC. So far, no evidence for the existence of such transient cells or for the presence of stem cells has been shown. The aim of the present study is to morphologically characterize the early stages of TGC development. Placentomal tissue of 6 pregnant cows from different gestational stages (gestational days 51-214) was examined for BUCs, UTCs, and TGCs either in serial sections (light and transmission electron microscopy, TEM, n = 3), in single sections (TEM, n = 2), or by serial block face-scanning electron microscopy (n = 1). These investigations revealed the occurrence of BUCs, as well as young TGCs showing contact with the basement membrane (BM), but without apical contact to the feto-maternal interface. The study morphologically defines these 2 cell types as early stages of TGC development and shows that binucleation of TGCs can precede detachment from the BM. © 2018 S. Karger AG, Basel.

  6. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goeransson, Anna-Lena, E-mail: anngo@ifm.liu.se; Nilsson, K. Peter R., E-mail: petni@ifm.liu.se; Kagedal, Katarina, E-mail: katarina.kagedal@liu.se

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity,more » using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.« less

  7. Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells.

    PubMed

    Hahn, Nynke E; Musters, René J P; Fritz, Jan M; Pagano, Patrick J; Vonk, Alexander B A; Paulus, Walter J; van Rossum, Albert C; Meischl, Christof; Niessen, Hans W M; Krijnen, Paul A J

    2014-09-01

    Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. HALE STAIN FOR SIALIC ACID-CONTAINING MUCINS. ADAPTATION TO ELECTRON MICROSCOPY.

    PubMed

    GASIC, G; BERWICK, L

    1963-10-01

    The feasibility of using the Hale stain to identify cellular sialic acid-containing mucins by electron microscopy was investigated. Three kinds of mouse ascites tumor cells were fixed in neutral buffered formalin, exposed to fresh colloidal ferric oxide, treated with potassium ferrocyanide, imbedded in Selectron, and sectioned for electron microscopy. Additional staining with uranyl acetate and potassium permanganate was done after sectioning in order to increase contrast. Those cells known to be coated with sialomucin showed deposits of electron-opaque ferric ferrocyanide crystals in the areas where sialomucin concentrations were expected. When these cells were treated with neuraminidase beforehand, these deposits did not appear. It was concluded that, with the precautions and modifications described, the Hale stain can be successfully combined with electron microscopy to identify sialomucin.

  9. Perspectives on in situ electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haimei; Zhu, Yimei

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  10. Perspectives on in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei

    2017-03-29

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  11. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  12. Contemporary comparative placenta research--an interview with Allen Enders. Interview by Kent L Thornburg and Joan S Hunt.

    PubMed

    Enders, Allen

    2010-01-01

    This Special Issue of The International Journal of Developmental Biology is dedicated to Allen C. Enders. His accomplishments are being honored because of his outstanding scientific contributions to our understanding of the development and mature structure of the mammalian placenta. He has consistently focused his research efforts on cutting edge questions related to the interaction of maternal and fetal tissues. While he has officially retired, he continues to study implantation and comparative placentology at the ultrastructural level. Enders has served as a link between the early placentologists who struggled to resolve the thinnest of layers in the placenta using light microscopy and modern day placentologists who now take advantage of confocal microscopy and electron microscopy to elucidate pathways for nutritive molecules as they pass from maternal to fetal compartments. Enders ground breaking electron micrographs will stand the test of time in revealing the relationships between embryonic tissue and maternal structures as they are variously modified in different species. The symbiotic interactions of genetically distinct tissues that form the placenta are required to nourish the fetus and perpetuate the species. This mysterious process makes mammalian reproduction the most exciting field of research in all of biology. The story of Allen Enders success will be an inspiration to all up and coming placentologists who are destined to discover the exciting world of placental biology.

  13. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties

    PubMed Central

    Salehi, Soheil; Shandiz, Seyed Ataollah Sadat; Ghanbar, Farinaz; Darvish, Mohammad Raouf; Ardestani, Mehdi Shafiee; Mirzaie, Amir; Jafari, Mohsen

    2016-01-01

    A rapid phytosynthesis of silver nanoparticles (AgNPs) using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV–visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV–vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2–4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of −31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose-dependent inhibitory effect on the viability of cells. Real-time polymerase chain reaction was used for the investigation of Bax and Bcl-2 gene expression in cancer and normal cell lines. Our findings show that the mRNA levels of pro-apoptotic Bax gene expression were significantly upregulated, while the expression of anti-apoptotic Bcl-2 was declined in cells treated with AgNPs compared to normal cells. In addition, flow cytometric analysis showed that the number of early and late apoptotic AGS cells was significantly enhanced following treatment with AgNPs as compared to untreated cells. In addition, the AgNPs showed strong antibacterial properties against tested pathogenic bacteria such as Staphylococcus aureus, Bacillus cereus, Acinetobacter baumannii, and Pseudomonas aeruginosa. Based on the obtained data, we suggest that phytosynthesized AgNPs are good alternatives in the treatment of diseases because of the presence of bioactive agents. PMID:27199558

  14. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  15. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.

    PubMed

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.

  16. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

    PubMed Central

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885

  17. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.

    PubMed

    Chu, Ming-Wen; Chen, Cheng Hsuan

    2013-06-25

    With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.

  18. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  19. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  20. Consecutive light microscopy, scanning-transmission electron microscopy and transmission electron microscopy of traumatic human brain oedema and ischaemic brain damage.

    PubMed

    Castejon, O J; Castejon, H V; Diaz, M; Castellano, A

    2001-10-01

    Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.

  1. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  2. Sporulation of Bacillus sphaericus 2297: an electron microscope study of crystal-like inclusion biogenesis and toxicity to mosquito larvae.

    PubMed

    Kalfon, A; Charles, J F; Bourgouin, C; de Barjac, H

    1984-04-01

    Sporulation of Bacillus sphaericus strain 2297 in a synchronous liquid culture was studied by electron microscopy. The t0 of sporulation occurred 7 h after the beginning of the lag phase. Crystal-like inclusions first appeared at t2 and reached their final size between t5 and t6. The release of the spore/inclusion complex occurred at about t15 (22 h after inoculation). Toxicity against Culex pipiens larvae was related to sporulation and appeared during the early stages of sporulation. The LC50 (24 h) decreased about 10(5)-fold between t0-2 and t7, in correlation with the formation of crystalline inclusions. Heat resistance of spores appeared later than toxicity.

  3. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    PubMed

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Evaluation of anterior lenticonus in alport syndrome using tracey wavefront aberrometry and transmission electron microscopy.

    PubMed

    Kim, Kwan Soo; Kim, Mo Sae; Kim, Joon Mo; Choi, Chul Young

    2010-01-01

    To evaluate the efficacy of Tracey wavefront aberrometry (Tracey Technologies, Houston, TX) and transmission electron microscopy for the detection of anterior lenticonus in Alport syndrome. Tracey wavefront aberrometry was used to treat a patient with bilateral anterior lenticonus who had a history of Alport syndrome. For transmission electron microscopic examination, anterior lens capsules were obtained during clear lens phacoemulsification and intraocular lens implantation. Spherical aberrations were the predominant higher-order aberrations in the internal optics of both eyes. The Tracey wavefront aberrometer showed that most of the irregular astigmatism originated from the lenticular portion. Transmission electron microscopy of the specimens showed anterior lens capsules with decreased thickness and multiple dehiscences. Tracey wavefront aberrometry and transmission electron microscopy are effective tools for evaluation of anterior lenticonus in Alport syndrome. Copyright 2010, SLACK Incorporated.

  5. On the state of crystallography at the dawn of the electron microscopy revolution.

    PubMed

    Higgins, Matthew K; Lea, Susan M

    2017-10-01

    While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Fabrication of ZnS nanoparticle chains on a protein template

    PubMed Central

    Hulleman, J.; Kim, S. M.; Tumkur, T.; Rochet, J.-C.; Stach, E.; Stanciu, L.

    2011-01-01

    In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV–Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied. PMID:21804765

  7. Correlation of live-cell imaging with volume scanning electron microscopy.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research.

    PubMed

    Moretti, Elena; Sutera, Gaetano; Collodel, Giulia

    2016-06-01

    This review is aimed at discussing the role of ultrastructural studies on human spermatozoa and evaluating transmission electron microscopy as a diagnostic tool that can complete andrology protocols. It is clear that morphological sperm defects may explain decreased fertilizing potential and acquire particular value in the field of male infertility. Electron microscopy is the best method to identify systematic or monomorphic and non-systematic or polymorphic sperm defects. The systematic defects are characterized by a particular anomaly that affects the vast majority of spermatozoa in a semen sample, whereas a heterogeneous combination of head and tail defects found in variable percentages are typically non-systematic or polymorphic sperm defects. A correct diagnosis of these specific sperm alterations is important for choosing the male infertility's therapy and for deciding to turn to assisted reproduction techniques. Transmission electron microscopy (TEM) also represents a valuable method to explore the in vitro effects of different compounds (for example drugs with potential spermicidal activity) on the morphology of human spermatozoa. Finally, TEM used in combination with immunohistochemical techniques, integrates structural and functional aspects that provide a wide horizon in the understanding of sperm physiology and pathology. transmission electron microscopy: TEM; World Health Organization: WHO; light microscopy: LM; motile sperm organelle morphology examination: MSOME; intracytoplasmic morphologically selected sperm injection: IMSI; intracytoplasmic sperm injection: ICSI; dysplasia of fibrous sheath: DFS; primary ciliary dyskinesia: PCD; outer dense fibers: ODF; assisted reproduction technologies: ART; scanning electron microscopy: SEM; polyvinylpirrolidone: PVP; tert-butylhydroperoxide: TBHP.

  9. Diffraction and microscopy with attosecond electron pulse trains

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  10. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  11. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  12. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  13. Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Bakalis, Evangelos; Proetto, Maria; Li, Yiwen; Park, Chiwoo; Zerbetto, Francesco; Gianneschi, Nathan C

    2018-01-16

    Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.

  14. Ecology and life history of an amoebomastigote, Paratetramitus jugosus, from a microbial mat: new evidence for multiple fission

    NASA Technical Reports Server (NTRS)

    Enzien, M.; McKhann, H. I.; Margulis, L.

    1989-01-01

    Five microbial habitats (gypsum crust, gypsum photosynthetic community, Microcoleus mat, Thiocapsa scum, and black mud) were sampled for the presence of the euryhaline, rapidly growing amoebomastigote, Paratetramitus jugosus. Field investigations of microbial mats from Baja California Norte, Mexico, and Salina Bido near Matanzas, Cuba, reveal that P. jugosus is most frequently found in the Thiocapsa layer of microbial mats. Various stages of the life history were studied using phase-contrast, differential-interference, and transmission electron microscopy. Mastigote stages were induced and studied by electron microscopy; mastigotes that actively feed on bacteria bear two or more undulipodia. A three-dimensional drawing of the kinetid ("basal apparatus") based on electron micrographs is presented. Although promitoses were occasionally observed, it is unlikely that they can account for the rapid growth of P. jugosus populations on culture media. Dense, refractile, spherical, and irregular-shaped bodies were seen at all times in all cultures along with small mononucleate (approximately 2-7 micrometers diameter) amoebae. Cytochemical studies employing two different fluorescent stains for DNA (DAPI, mithramycin) verified the presence of DNA in these small bodies. Chromatin-like material seen in electron micrographs within the cytoplasm and blebbing off nuclei were interpreted to the chromatin bodies. Our interpretation, consistent with the data but not proven, is that propagation by multiple fission of released chromatin bodies that become small amoebae may occur in Paratetramitus jugosus. These observations are consistent with descriptions of amoeba propagules in the early literature (Hogue, 1914).

  15. Following iron speciation in the early stages of magnetite magnetosome biomineralization

    DOE PAGES

    Firlar, Emre; Perez-Gonzalez, Teresa; Olszewska, Agata; ...

    2016-02-26

    Understanding magnetosome magnetite biomineralization is of fundamental interest to devising the strategies for bioinspired synthesis of magnetic materials at the nanoscale. Thus, we investigated the early stages of magnetosome formation in this work and correlated the size and emergent crystallinity of magnetosome nanoparticles with the changes in chemical environment of iron and oxygen by utilizing advanced analytical electron microscopy techniques. We observed that magnetosomes in the early stages of biomineralization with the sizes of 5–10 nm were amorphous, with a majority of iron present as Fe 3+, indicative of ferric hydroxide. The magnetosomes with intermediate sizes showed partially crystalline structuremore » with a majority of iron present as Fe 3+ and trace amounts of Fe 2+. The fully maturated magnetosomes were indexed to magnetite. Furthermore, our approach provides spatially resolved structural and chemical information of individual magnetosomes with different particle sizes, attributed to magnetosomes at different stages of biomineralization.« less

  16. Types of neural cells in the spinal ganglia of human embryos and early fetuses.

    PubMed

    Olszewska, B; Woźniak, W; Gardner, E; O'Rahilly, R

    1979-01-01

    Spinal ganglial of human embryos and fetuses ranging in C.-R. length from 15 to 74 mm and in age from 6 1/2 to 11 postovulatory weeks were studied by light and electron microscopy. A sequence of events in differentiation and maturation enabled five types of cells to be distinguished: 1. apolar, undifferentiated neuroblasts are the main cells at 6 1/2 to 7 1/2 weeks; 2. early bipolar neuroblasts (strictly speaking, types 2 to 5 are immature neurons) predominate at the end of the embryonic period proper (8 postovulatory weeks); 3. intermediate bipolar neuroblasts are characteristic of the early fetal period; 4. late bipolar neuroblasts, in which two proceses arise separately from one pole of the cell, appear at about 10 postovulatory weeks; 5. unipolar neuroblasts are found within another week and, by that time, cells of types 1 and 2 are no longer present.

  17. Ornamentation of dermal bones of Placodermi from the Lower Devonian of Morocco as a measure of biodiversity

    NASA Astrophysics Data System (ADS)

    Antczak, Mateusz; Berkowski, Błażej

    2017-06-01

    Dermal bones are formed early during growth and thus constitute an important tool in studies of ontogenetic and evolutionary changes amongst early vertebrates. Ornamentation of dermal bones of terrestrial vertebrates is often used as a taxonomic tool, for instance in Aetosauria, extant lungfishes (Dipnoi) and ray-finned fishes (Actinopterygii), for which it have been proved to be of use in differentiating specimens to species level. However, it has not been utilised to the same extent in placoderms. Several features of the ornamentation of Early Devonian placoderms from Hamar Laghdad (Morocco) were examined using both optical and scanning electron microscopy to determine whether it is possible to distinguish armoured Palaeozoic fishes. Four distinct morphotypes, based on ornamentation of dermal bones, are differentiated. These distinct types of ornamentation may be the result of either different location of dermal plates on the body or of ontogenetic (intraspecific) and/or interspecific variation.

  18. Intermolecular and interfacial forces: Elucidating molecular mechanisms using chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Ashby, Paul David

    Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.

  19. Apatitic connecting rings in moulds of Baculites sp. from the middle part of the Smoky Hill Member, Niobrara Chalk (Santonian), of western Kansas

    USGS Publications Warehouse

    Hasenmueller, W.A.; Hattin, D.E.

    1985-01-01

    Moulds of Baculites sp. are common in the Smoky Hill Member but only five known specimens contain connecting rings that have been preserved because of mineralisation by carbonate apatite. Analysis of four of these specimens suggests that the connecting rings were originally composed of organic material and were mineralised during early diagenesis. Thin sections and scanning electron microscopy demonstrate that the connecting rings had a two-layered structure consisting of a thick siphuncular wall and a thin pellicle. ?? 1985.

  20. High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects ("Effects Of Defects")

    NASA Astrophysics Data System (ADS)

    Brandl, Erhard; Greitemeier, Daniel; Maier, Hans Jurgen; Syassen, Freerk

    2012-07-01

    The understanding of additive manufactured material properties is still at an early stage and mostly not profound. Nowadays, there is only little experience in predicting the effect of defects (e.g. porosity, unmelted spots, insufficient bonding between the layers) on the fatigue behaviour. In this paper, some of these questions are adressed. An electron beam melting process is used to manufacture Ti-6Al-4V high cycle fatigue samples without and with intentionally integrated defects inside of the samples. The samples were annealed or hot isostatically pressed. The defects were analysed by non- destructive methods before and by light/electron microscopy after the tests. In order to predict the high cycle fatigue properties, the crack propagation properties of the material (da/dN - ΔK curve) were tested and AFGROW simulation was used.

  1. New histopathologic and ultrastructural findings in Reis-Bücklers corneal dystrophy caused by the Arg124Leu mutation of TGFBI gene.

    PubMed

    Qiu, Wen-Ya; Zheng, Li-Bin; Pan, Fei; Wang, Bei-Bei; Yao, Yu-Feng

    2016-09-02

    Reis-Bücklers corneal dystrophy (RBCD) was consistently reported as a corneal dystrophy only affected Bowman's layer and superficial corneal stroma, and superficial keratectomy was a recommendation surgery for treatment in literatures. The study reported new histopathological and ultrastructural findings in RBCD caused by the Arg124Leu mutation of transforming growth factor induced (TGFBI) gene in a four-generation Chinese pedigree. Subjects including eight patients and seven unaffected family members received slit-lamp biomicroscopy and photography. DNA was obtained from all subjects, and exons 4 and 11 to 14 of TGFBI gene were analyzed by polymerase chain reaction and the products were sequenced. Anterior segment optical coherence tomography (AS OCT) and in vivo confocal microscopy were conducted for ten eyes of five patients. Based on the results of AS OCT and in vivo confocal microscopy, deep anterior lamellar keratoplasty (DLKP) using cryopreserved donor cornea was applied for four eyes of four patients. Four lamellar dystrophic corneal buttons were studied by light and transmission electron microscopy, and TGFBI immunohistochemistry. Eight patients had typical clinical manifestations of RBCD presenting recurrent painful corneal erosion starting in their early first decades, along with age-dependent progressive geographic corneal opacities. TGFBI sequencing revealed a heterozygous mutation, Arg124Leu in all eight patients. Anterior segment optical coherence tomography and in vivo confocal microscopy showed the dystrophic deposits involved not only in subepithelial and superficial stroma, but also in mid- or posterior stroma in four examined advanced eyes. Light microscopy showed Bowman's layer was absent, replaced by abnormal deposits stain bright red with Masson's trichrome. In superficial cornea, the deposits stacked and produced three to five continuous bands parallel to the corneal collagen lamellae. In mid- to posterior stroma, numerous granular or dot- like aggregates were heavily scattered, and most of them presented around the nuclei of stromal keratocytes. Transmission electron microscopy revealed the multiple electron-dense rod-shaped deposits aggregated and formed a characteristic pattern of three to five continuous bands in superficial cornea, which were similar to those seen under light microscopy. In mid- to posterior stroma, clusters of rod-shaped bodies were scattered extracellular or intracellular of the stromal keratocytes between the stromal lamellae suggesting the close relationship between mutated proteins and keratocyte. The study offer evidences indicating DLKP is a viable treatment option for advanced RBCD to avoid recurrence, and the mutated TGFBIp in dystrophic corneas are of keratocytes origin.

  2. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  3. Transient Hypothyroidism During Lactation Arrests Myelination in the Anterior Commissure of Rats. A Magnetic Resonance Image and Electron Microscope Study.

    PubMed

    Lucia, Federico S; Pacheco-Torres, Jesús; González-Granero, Susana; Canals, Santiago; Obregón, María-Jesús; García-Verdugo, José M; Berbel, Pere

    2018-01-01

    Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.

  4. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Integration of a high-NA light microscope in a scanning electron microscope.

    PubMed

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. Electron microscopy approach for the visualization of the epithelial and endothelial glycocalyx.

    PubMed

    Chevalier, L; Selim, J; Genty, D; Baste, J M; Piton, N; Boukhalfa, I; Hamzaoui, M; Pareige, P; Richard, V

    2017-06-01

    This study presents a methodological approach for the visualization of the glycocalyx by electron microscopy. The glycocalyx is a three dimensional network mainly composed of glycolipids, glycoproteins and proteoglycans associated with the plasma membrane. Since less than a decade, the epithelial and endothelial glycocalyx proved to play an important role in physiology and pathology, increasing its research interest especially in vascular functions. Therefore, visualization of the glycocalyx requires reliable techniques and its preservation remains challenging due to its fragile and dynamic organization, which is highly sensitive to the different process steps for electron microscopy sampling. In this study, chemical fixation was performed by perfusion as a good alternative to conventional fixation. Additional lanthanum nitrate in the fixative enhances staining of the glycocalyx in transmission electron microscopy bright field and improves its visualization by detecting the elastic scattered electrons, thus providing a chemical contrast. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Scanning electron microscopy of cells and tissues under fully hydrated conditions

    PubMed Central

    Thiberge, Stephan; Nechushtan, Amotz; Sprinzak, David; Gileadi, Opher; Behar, Vered; Zik, Ory; Chowers, Yehuda; Michaeli, Shulamit; Schlessinger, Joseph; Moses, Elisha

    2004-01-01

    A capability for scanning electron microscopy of wet biological specimens is presented. A membrane that is transparent to electrons protects the fully hydrated sample from the vacuum. The result is a hybrid technique combining the ease of use and ability to see into cells of optical microscopy with the higher resolution of electron microscopy. The resolution of low-contrast materials is ≈100 nm, whereas in high-contrast materials the resolution can reach 10 nm. Standard immunogold techniques and heavy-metal stains can be applied and viewed in the fluid to improve the contrast. Images present a striking combination of whole-cell morphology with a wealth of internal details. A possibility for direct inspection of tissue slices transpires, imaging only the external layer of cells. Simultaneous imaging with photons excited by the electrons incorporates data on material distribution, indicating a potential for multilabeling and specific scintillating markers. PMID:14988502

  8. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  9. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    DOE PAGES

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; ...

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  10. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  11. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    PubMed Central

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  12. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  13. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    PubMed

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  14. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  15. Fragilariopsis diatom evolution in Pliocene and Pleistocene Antarctic shelf sediments

    USGS Publications Warehouse

    Sjunneskog, Charlotte; Riesselman, Christina; Winter, Diane; Scherer, Reed

    2012-01-01

    The late Pliocene – early Pleistocene sediment record in the AND-1B core from the McMurdo Sound, Ross Sea, Antarctica, displays a rich diversity and high abundance of diatoms, including several new morphologies within the genus Fragilariopsis. These new morphologies exhibit similarities to the extinct late Miocene/early Pliocene species Fragilariopsis aurica Gersonde and Fragilariopsis praecurta Gersonde, as well as to the modern sea ice-associated species Fragilariopsis ritscheri Hustedt and Fragilariopsis obliquecostata van Heurck. From the diverse morphologies present, we use light microscopy and scanning electron microscopy to identify and describe the characteristics of three new taxa, Fragilariopsis laqueata Riesselman, Fragilariopsis bohatyi Sjunneskog et Riesselman, and Fragilariopsis robusta Sjunneskog, which are common in the diatom-bearing intervals from ~3.2 to 1.95 Ma. Comparisons with extant and extinct species are made to assess possible environmental affinities, evolutionary relationships, and potential for future biostratigraphic utility. This complex of newmorphologies diversified as conditions cooled during the Pliocene, then went into decline as heavy sea ice conditions of the Pleistocene were established. Only the lineage of F. robusta appears to continue into the late Pleistocene, where it is interpreted to have evolved into F. obliquecostata.

  16. Early development in the velvet worm Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae)

    PubMed Central

    Eriksson, Bo Joakim; Tait, Noel N.

    2012-01-01

    We present here a description of early development in the onychophoran Euperipatoides kanangrensis with emphasis on processes that are ambiguously described in older literature. Special focus has been on the pattern of early cleavage, blastoderm and germinal disc development and gastrulation. The formation of the blastopore, stomodeum and proctodeum is described from sectioned material using light and transmission electron microscopy as well as whole-mount material stained for nuclei and gene expression. The early cleavages were found to be superficial, contrary to earlier descriptions of cleavage in yolky, ovoviviparous onychophorans. Also, contrary to earlier descriptions, the embryonic anterior-posterior axis is not predetermined in the egg. Our data support the view of a blastopore that becomes elongated and slit-like, resembling some of the earliest descriptions. From gene expression data, we concluded that the position of the proctodeum is the most posterior pit in the developing embryo. This description of early development adds to our knowledge of the staging of embryonic development in onychophorans necessary for studies on the role of developmental changes in evolution. PMID:22430148

  17. Fast electron microscopy via compressive sensing

    DOEpatents

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  18. Morphologic evaluations of Q-switched Nd:YAG laser injury of human retina

    NASA Astrophysics Data System (ADS)

    Scales, David K.; Schuschereba, Steven T.; Lund, David J.; Stuck, Bruce E.

    1997-05-01

    Depiction of the cellular and immune responses in the human model is critical to design rational therapies preventing/limiting cellular destruction and ultimately functional visual loss following acute laser injuries. We report the light and electron microscopy histologic findings in a controlled ocular human laser exposure. Following informed consent, the normal eye of a patient scheduled to undergo exenteration for invasive carcinoma of the orbit was exposed to both continuous wave and Q-switched lasers. Four hours prior to exenteration, argon G lesions were placed in the superior/temporal quadrant and Nd:YAG lesions were placed in the inferior/temporal quadrant. After enucleation, the retina was prepared for routine light and transmission electron microscopy. Histology of the argon G lesions showed primarily photoreceptor and RPE photocoagulation damage. Neutrophil adhesion was limited within the choroid and no neutrophils were observed in the subretinal space. In contrast, the 4 hr Nd:YAG lesions showed extensive retinal disruption, hemorrhage within subretinal and intraretinal spaces, neutrophil accumulation in the retina, and an extensive neutrophil chemotaxic and emigration response in the choroid. Severe laser injuries elicit a significant neutrophil response by 4 hr, suggesting that neutrophils should be an early stage therapeutic target.

  19. Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films

    PubMed Central

    Xu, Chencheng; Du, Hongchu; van der Torren, Alexander J. H.; Aarts, Jan; Jia, Chun-Lin; Dittmann, Regina

    2016-01-01

    We elucidated the formation process for Ruddlesden-Popper-type defects during pulsed laser deposition of Sr rich SrTiO3 thin films by a combined analysis of in-situ atomic force microscopy, low energy electron diffraction and high resolution scanning transmission electron microscopy. At the early growth stage of 1.5 unit cells, the excess Sr results in the formation of SrO on the surface, resulting in a local termination change from TiO2 to SrO, thereby forming a Sr rich (2 × 2) surface reconstruction. With progressive SrTiO3 growth, islands with thermodynamically stable SrO rock-salt structure are formed, coexisting with TiO2 terminated islands. During the overgrowth of these thermodynamically stable islands, both lateral as well as vertical Ruddlesden-Popper-type anti-phase boundaries are formed, accommodating the Sr excess of the SrTiO3 film. We suggest the formation of thermodynamically stable SrO rock-salt structures as origin for the formation of Ruddlesden-Popper-type antiphase boundaries, which are as a result of kinetic limitations confined to certain regions on the surface. PMID:27922069

  20. Effects of growth hormone on the ultrastructure of bovine preimplantation embryos.

    PubMed

    Kölle, Sabine; Stojkovic, Miodrag; Reese, Sven; Reichenbach, Horst-Dieter; Wolf, Eckhard; Sinowatz, Fred

    2004-07-01

    Growth hormone (GH) has recently been shown to promote the development of preimplantation embryos. The aim of our study was therefore to analyze the effects of GH on the morphology and ultrastructure of the cells of bovine preimplantation embryos produced by in vitro fertilization (IVF). In order to determine the physiologically optimal morphology of blastocysts, ex vivo embryos obtained by uterine flushing were also included in the study. As shown by transmission electron microscopy, treatment with GH induced the elimination of glycogen storage in cells of the inner cell mass of 7-day-old embryos. GH also stimulated the exocytosis of lipid vesicles in the inner cell mass and trophectoderm cells of these embryos. Quantitative analysis of micrographs demonstrated a higher volume density of embryonic mitochondria in 7-day-old embryos cultured with GH than in control embryos. Treatment with GH regularly resulted in an improvement of the ultrastructural features of embryos produced in vitro, thus resembling the morphology of ex vivo embryos. Scanning electron-microscopy studies demonstrated that GH altered the structure and the pore size of the zona pellucida of blastocysts. Our studies imply that GH can modulate carbohydrate, lipid, and energy metabolism and influence transportation processes in the early IVF embryo.

  1. Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Xu, Chencheng; Du, Hongchu; van der Torren, Alexander J. H.; Aarts, Jan; Jia, Chun-Lin; Dittmann, Regina

    2016-12-01

    We elucidated the formation process for Ruddlesden-Popper-type defects during pulsed laser deposition of Sr rich SrTiO3 thin films by a combined analysis of in-situ atomic force microscopy, low energy electron diffraction and high resolution scanning transmission electron microscopy. At the early growth stage of 1.5 unit cells, the excess Sr results in the formation of SrO on the surface, resulting in a local termination change from TiO2 to SrO, thereby forming a Sr rich (2 × 2) surface reconstruction. With progressive SrTiO3 growth, islands with thermodynamically stable SrO rock-salt structure are formed, coexisting with TiO2 terminated islands. During the overgrowth of these thermodynamically stable islands, both lateral as well as vertical Ruddlesden-Popper-type anti-phase boundaries are formed, accommodating the Sr excess of the SrTiO3 film. We suggest the formation of thermodynamically stable SrO rock-salt structures as origin for the formation of Ruddlesden-Popper-type antiphase boundaries, which are as a result of kinetic limitations confined to certain regions on the surface.

  2. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.

    PubMed

    Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.

  3. Cyprinid herpesvirus 2 infection emerged in cultured gibel carp, Carassius auratus gibelio in China.

    PubMed

    Xu, Jin; Zeng, Lingbing; Zhang, Hui; Zhou, Yong; Ma, Jie; Fan, Yuding

    2013-09-27

    An epizootic with severe mortality has emerged in cultured gibel carp, Carassius auratus gibelio, in China since 2009, and caused huge economic loss. The signs and epidemiology background of the disease were investigated. Parasite examination, bacteria and virus isolation were carried out for pathogen isolation. The causative pathogen was obtained and identified as Cyprinid herpesvirus 2 (CyHV-2) by experimental infection, electron microscopy, cell culture, PCR assay and sequence alignment, designated as CyHV-2-JSSY. Experimental infection proved the high virulence of CyHV-2-JSSY to healthy gibel carp. Electron microscopy revealed that the viral nucleocapsid was hexagonal in shape measuring 110-120 nm in diameter with a 170-200 nm envelope. The virus caused significant CPE in Koi-Fin cells at the early passages, but not beyond the fifth passages. Sequence alignment of the partial viral helicase gene (JX566884) showed that it shared 99-100% identity to the published sequences of other CyHV-2 isolates. This study represented the first isolation and identification of CyHV-2 in cultured gibel carp in China and laid a foundation for the further studies of the disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Photon gating in four-dimensional ultrafast electron microscopy.

    PubMed

    Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H

    2015-10-20

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.

  5. Photon gating in four-dimensional ultrafast electron microscopy

    PubMed Central

    Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.

    2015-01-01

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835

  6. High yield production of long branched Au nanoparticles characterized by atomic resolution transmission electron microscopy

    PubMed Central

    Mayoral, Alvaro; Magen, Cesar; Jose-Yacaman, Miguel

    2011-01-01

    Long multi-branched gold nanoparticles have been synthesized in a very high yield through a facile synthesis combining two different capping agents. The stability of these materials with the time has been tested and their characterization have been performed by diverse advanced electron microscopy techniques, paying special attention to aberration corrected transmission electron microscopy in order to unambiguously analyze the surface structure of the branches and provide insights for the formation of stellated gold nanoparticles. PMID:22125420

  7. The first Loranthaceae fossils from Africa

    PubMed Central

    2018-01-01

    Abstract An ongoing re-investigation of the early Miocene Saldanha Bay (South Africa) palynoflora, using combined light and scanning electron microscopy (single grain method), is revealing several pollen types new to the African fossil record. One of the elements identified is Loranthaceae pollen. These grains represent the first and only fossil record of Loranthaceae in Africa. The fossil pollen grains resemble those produced by the core Lorantheae and are comparable to recent Asian as well as some African taxa/lineages. Molecular and fossil signals indicate that Loranthaceae dispersed into Africa via Asia sometime during the Eocene. The present host range of African Loranthaceae and the composition of the palynoflora suggest that the fossil had a range of potential host taxa to parasitise during the early Miocene in the Saldanha Bay region. PMID:29780299

  8. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    PubMed

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.

  9. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.

    2009-06-05

    Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption wasmore » unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.« less

  10. Ultrastructure of the fetal membranes of the oviparous kingsnake, Lampropeltis getula (Colubridae) as revealed by scanning electron microscopy.

    PubMed

    Kim, Young K; Blackburn, Daniel G

    2015-12-01

    In reptilian sauropsids, fetal (extraembryonic) membranes that line the eggshell sustain developing embryos by providing for gas exchange and uptake of water and eggshell calcium. However, a scarcity of morphological studies hinders an understanding of functional specializations and their evolution. In kingsnakes (Lampropeltis getula), scanning electron microscopy reveals two major fetal membranes: the chorioallantois and yolk sac omphalopleure. In early development, the chorioallantois contains tall chorionic epithelial cells, avascular connective tissue, and enlarged allantoic epithelial cells. During its maturation, the chorionic and allantoic epithelia thin dramatically and become underlain by a rich network of allantoic capillaries, yielding a membrane ideally suited for respiratory gas exchange. Yolk sac development initially is like that of typical lizards and snakes, forming an avascular omphalopleure, isolated yolk mass (IYM), and yolk cleft. However, unlike the situation in most squamates studied, the omphalopleure becomes transformed into a "secondary chorioallantois" via three asynchronous events: flattening of the epithelium, regression of the IYM, and vascularization by the allantois. Progressive expansion of chorioallantois parallels growing embryonic needs for gas exchange. In early through mid-development, external surfaces of both the chorionic and omphalopleure epithelium show an abundance of irregular surface protrusions that possibly increase surface area for water absorption. We postulate that the hypertrophied allantoic epithelial cells produce allantoic fluid, a viscous substance that facilitates water uptake and storage. Our findings are consistent with a previous study on the corn snake Pantherophis guttatus, but include new observations and novel functional hypotheses relevant to a reconstruction of basal squamate patterns. © 2015 Wiley Periodicals, Inc.

  11. Use of scanning electron microscopy and microanalysis to determine chloride content of concrete and raw materials.

    DOT National Transportation Integrated Search

    2013-02-01

    Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...

  12. Comparative morphology of zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel sperm: Light and electron microscopy

    USGS Publications Warehouse

    Walker, G.K.; Black, M.G.; Edwards, C.A.

    1996-01-01

    Adult zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels were induced to release large quantities of live spermatozoa by the administration of 5-hydroxytryptamine (serotonin). Sperm were photographed alive using phase-contrast microscopy and were fixed subsequently with glutaraldehyde followed by osmium tetroxide for eventual examination by transmission or scanning electron microscopy. The sperm of both genera are of the ect-aquasperm type. Their overall dimensions and shape allow for easy discrimination at the light and scanning electron microscopy level. Transmission electron microscopy of the cells reveals a barrel-shaped nucleus in zebra mussel sperm and an elongated nucleus in quagga mussel sperm. In both species, an acrosome is cradled in a nuclear fossa. The ultrastructure of the acrosome and axial body, however, is distinctive for each species. The structures of the midpiece are shown, including a unique mitochondrial "skirt" that includes densely packed parallel cristae and extends in a narrow sheet from the mitochondria.

  13. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  14. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  15. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    NASA Astrophysics Data System (ADS)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of <220>. Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  16. Publications - GMC 357 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 357 Publication Details Title: Thin Section and Scanning Electron Microscopy summary Laboratories, Inc., 2008, Thin Section and Scanning Electron Microscopy summary photographs from plugs taken

  17. Holes and grooves: the contribution of microscopy and taphonomy to the problem of art origins.

    PubMed

    D'Errico, F; Villa, P

    1997-07-01

    Optical and scanning electron microscopy, comparative anatomy, data from modern and Pleistocene carnivore accumulations, and analysis of archeological materials show that some of the pieces interpreted by various scholars as engraved or perforated bones from European Lower and Middle Paleolithic sites (such as Pech de l'Azé II, Stránska Skála, Kulna, Bois Roche and Cueva Morin) are not early manifestations of non-utilitarian behavior. Putative engravings are in fact vascular grooves, while perforated pieces are partially-digested bones regurgitated by hyenas. The current debate on art origins has often been centered on the symbolic value and cognitive implications of these and similar pieces without a first-hand analysis of the objects to provide convincing demonstration of the human origins of the marks. Such demonstration is a necessary prerequisite to any discussion of their significance for the evolution of symbolic behavior.

  18. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  19. Murphy's law-if anything can go wrong, it will: Problems in phage electron microscopy.

    PubMed

    Ackermann, Hans-W; Tiekotter, Kenneth L

    2012-04-01

    The quality of bacteriophage electron microscopy appears to be on a downward course since the 1980s. This coincides with the introduction of digital electron microscopes and a general lowering of standards, possibly due to the disappearance of several world-class electron microscopists The most important problem seems to be poor contrast. Positive staining is frequently not recognized as an undesirable artifact. Phage parts, bacterial debris, and aberrant or damaged phage particles may be misdiagnosed as bacterial viruses. Digital electron microscopes often seem to be operated without magnification control because this is difficult and inconvenient. In summary, most phage electron microscopy problems may be attributed to human failure. Journals are a last-ditch defense and have a heavy responsibility in selecting competent reviewers and rejecting, or not, unsatisfactory articles.

  20. Morphological changes in the tracheal epithelium of guinea pigs in conditions of "marginal" vitamin A deficiency. A light, scanning- and transmission-electron microscopic study under special breeding conditions appropriate to early vitamin A deficiency.

    PubMed

    Stofft, E; Biesalski, H K; Zschaebitz, A; Weiser, H

    1992-01-01

    The aim of the study was to find out the influence of marginal vitamin A deficiency on morphological structures in the tracheobronchial epithelium in guinea pigs. The tracheobronchial epithelium of animals with vitamin A deficiency (n = 15) and control animals (n = 7), kept under optimal laboratory conditions, was evaluated by light and electron microscopy. The cellular ultrastructure was morphometrically analyzed. The height of the respiratory epithelium was slightly increased. The basal cells were arranged in a loose cell band of three to four layers. The quantity of cytofilaments in their cytoplasm was enhanced. Goblet cells were significantly reduced in vitamin A deficiency. There was also a significant decrease in their secretory granules. The number of ciliated cells was almost unchanged. They showed a significant reduction in mitochondria. The kinocilia often contained an atypical structure of the microtubules. Our findings confirm multiple ultrastructural dysplasias in early vitamin A deficiency which may lead to a disturbance of mucociliary clearance.

  1. 75 FR 34096 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... dynamin, using negative stain nad cryo-electron microscopy methods. Justification for Duty-Free Entry..., using negative stain nad cryo-electron microscopy methods. Justification for Duty-Free Entry: There are...

  2. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2017-08-01

    An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium-oxygen, lithium-sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.

  3. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

    PubMed Central

    Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2017-01-01

    An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.

  4. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    PubMed

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  5. A compilation of cold cases using scanning electron microscopy at the University of Rhode Island

    NASA Astrophysics Data System (ADS)

    Platek, Michael J.; Gregory, Otto J.

    2015-10-01

    Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.

  6. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  7. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  8. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  9. Imaging of high-angle annular dark-field scanning transmission electron microscopy and observations of GaN-based violet laser diodes.

    PubMed

    Shiojiri, M; Saijo, H

    2006-09-01

    The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy.

  10. Application of He ion microscopy for material analysis

    NASA Astrophysics Data System (ADS)

    Altmann, F.; Simon, M.; Klengel, R.

    2009-05-01

    Helium ion beam microscopy (HIM) is a new high resolution imaging technique. The use of Helium ions instead of electrons enables none destructive imaging combined with contrasts quite similar to that from Gallium ion beam imaging. The use of very low probe currents and the comfortable charge compensation using low energy electrons offer imaging of none conductive samples without conductive coating. An ongoing microelectronic sample with Gold/Aluminum interconnects and polymer electronic devices were chosen to evaluate HIM in comparison to scanning electron microscopy (SEM). The aim was to look for key applications of HIM in material analysis. Main focus was on complementary contrast mechanisms and imaging of none conductive samples.

  11. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Mukhopadyay, K.; Yadev, J.; Varadan, V. K.

    2003-10-01

    Coiled carbon nanotubes exhibit excellent mechanical and electrical properties because of the combination of coil morphology and properties of nanotubes. They could have potential novel applications in nanocomposites and nano-electronic devices as well as nano-electromechanical systems. In this work, synthesis of regularly coiled carbon nanotubes is presented. It involves pyrolysis of hydrocarbon gas over metal/support catalyst by both thermal filament and microwave catalytic chemical vapor deposition methods. Scanning electron microscopy and transmission electron microscopy were performed to observe the coil morphology and nanostructure of coiled nanotubes. The growth mechanism and structural and electrical properties of coiled carbon nanotubes are also discussed.

  12. Use of light, scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll., 1899).

    PubMed

    Asensio, L; Lopez-Llorca, L V; López-Jiménez, J A

    2005-01-01

    We have evaluated the parasitism of the red scale insect of the date palm (Phoenicococcus marlatti) by entomopathogenic fungi, using light microscopy (LM), scanning electron microscopy (SEM) and low temperature scanning electron microscopy (LTSEM). Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium cf. psalliotae, were inoculated directly on the scale insects or on insect infested plant material. We found that L. dimorphum and L. cf. psalliotae developed on plant material and on scale insects, making infection structures. B. bassiana was a bad colonizer of date palm leaves (Phoenix dactylifera L.) and did not parasite the scale insects.

  13. Airborne asbestos in Colorado public schools.

    PubMed

    Chadwick, D A; Buchan, R M; Beaulieu, H J

    1985-02-01

    Levels of airborne asbestos for six Colorado public school facilities with sprayed-on asbestos materials were documented using three analytical techniques. Phase contrast microscopy showed levels up to the thousandths of a fiber per cubic centimeter (f/cc), scanning electron microscopy (SEM) up to the hundredths of a f/cc, and transmission electron microscopy coupled to selected area electron diffraction and energy dispersive X-ray analysis (TEM-SAED-EDXA) up to the tenths of an asbestos f/cc. Phase contrast microscopy was found to be an inadequate analytical technique for documenting the levels of airborne asbestos fibers in the schools: only large fibers which were not embedded in the filter were counted, and asbestos fibers were not distinguished from nonasbestos.

  14. Further description of Cruzia tentaculata (Rudolphi, 1819) Travassos, 1917 (Nematoda: Cruzidae) by light and scanning electron microscopy.

    PubMed

    Adnet, F A O; Anjos, D H S; Menezes-Oliveira, A; Lanfredi, R M

    2009-04-01

    Species of Cruzia are parasites of the large intestine of marsupials, reptiles, amphibians, and mammalians. Cruzia tentaculata specimens were collected from the large intestine of Didelphis marsupialis (Mammalia: Didelphidae) from Colombia (new geographical record) and from Brazil and analyzed by light and scanning electron microscopy. The morphology of males and females by light microscopy corroborated most of the previous description and the ultrastructure by scanning electron microscopy evidence: the topography of the cuticle, deirids, amphids, phasmids in both sexes, a pair of papillae near the vulva opening, and the number and location of male caudal papillae, adding new features for species identification only observed by this technique.

  15. Magnetism of epitaxial Tb films on W(110) studied by spin-polarized low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Prieto, J. E.; Chen, Gong; Schmid, A. K.; de la Figuera, J.

    2016-11-01

    Thin epitaxial films of Tb metal were grown on a clean W(110) substrate in ultrahigh vacuum and studied in situ by low-energy electron microscopy. Annealed films present magnetic contrast in spin-polarized low-energy electron microscopy. The energy dependence of the electron reflectivity was determined and a maximum value of its spin asymmetry of about 1% was measured. The magnetization direction of the Tb films is in-plane. Upon raising the temperature, no change in the domain distribution is observed, while the asymmetry in the electron reflectivity decreases when approaching the critical temperature, following a power law ˜(1-T /TC) β with a critical exponent β of 0.39.

  16. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    PubMed

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  17. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  18. Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM).

    PubMed

    Bridier, A; Meylheuc, T; Briandet, R

    2013-05-01

    In this contribution, we used a set of microscopic techniques including confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM) and field emission scanning electron microscopy (FESEM) to analyze the three-dimensional spatial arrangement of cells and their surrounding matrix in Bacillus subtilis biofilm. The combination of the different techniques enabled a deeper and realistic deciphering of biofilm architecture by providing the opportunity to overcome the limits of each single technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fingerprint-Based Structure Retrieval Using Electron Density

    PubMed Central

    Yin, Shuangye; Dokholyan, Nikolay V.

    2010-01-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628

  20. Fingerprint-based structure retrieval using electron density.

    PubMed

    Yin, Shuangye; Dokholyan, Nikolay V

    2011-03-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.

  1. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  3. Electron Energy Loss Spectral Imaging of TiC Formed by Supernovae: A Scanning Transmission Electron Microscopy Study of Grain Formation and Alteration Mechanisms

    NASA Astrophysics Data System (ADS)

    Daulton, T. L.; Bernatowicz, T. J.; Croat, T. K.

    2012-03-01

    Micrometer-sized spherules of graphite formed by supernovae contain numerous TiC and Fe-Ni subgrains. These subgrains often have disordered surface rims. The mechanism(s) of rim formation on these subgrains is studied by transmission electron microscopy.

  4. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-04-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  5. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.

    Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less

  6. Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene.

    PubMed

    Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C

    2018-03-19

    Atomically resolved images of monolayer organic crystals have only been obtained with scanning probe methods so far. On the one hand, they are usually prepared on surfaces of bulk materials, which are not accessible by (scanning) transmission electron microscopy. On the other hand, the critical electron dose of a monolayer organic crystal is orders of magnitudes lower than the one for bulk crystals, making (scanning) transmission electron microscopy characterization very challenging. In this work we present an atomically resolved study on the dynamics of a monolayer CuPcCl 16 crystal under the electron beam as well as an image of the undamaged molecules obtained by low-dose electron microscopy. The results show the dynamics and the radiation damage mechanisms in the 2D layer of this material, complementing what has been found for bulk crystals in earlier studies. Furthermore, being able to image the undamaged molecular crystal allows the characterization of new composites consisting of 2D materials and organic molecules.

  7. Environmental scanning electron microscopy in cell biology.

    PubMed

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  8. Software electron counting for low-dose scanning transmission electron microscopy.

    PubMed

    Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C

    2018-05-01

    The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za; Olivier, E.J.; Neethling, J.H.

    2015-11-15

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we heremore » demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.« less

  10. Correlative light-electron fractography for fatigue striations characterization in metallic alloys.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-09-01

    The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Copyright © 2013 Wiley Periodicals, Inc.

  11. Transmission Electron Microscopy Analysis of Skin Lesions from Sporotrichosis Epidemic in Rio de Janeiro, Brazil

    PubMed Central

    Porto Ferreira, Cassio; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana

    2015-01-01

    Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. PMID:25653392

  12. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE PAGES

    Du, Ming; Jacobsen, Chris

    2017-10-07

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  13. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Ming; Jacobsen, Chris

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  14. Microscopy with slow electrons: from LEEM to XPEEM

    ScienceCinema

    Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States

    2017-12-09

    The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.

  15. Microscopy image segmentation tool: Robust image data analysis

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  16. Apoptosis of mouse MS-2 fibrosarcoma cells induced by photodynamic therapy with Zn (II)-phthalocyanine.

    PubMed

    Zhou, C; Shunji, C; Jinsheng, D; Junlin, L; Jori, G; Milanesi, C

    1996-05-01

    The destructive process of mouse MS-2 fibrosarcoma induced by photodynamic therapy (PDT) with liposome-administered Zn(II)-phthalocyanine (ZnPc) was studied by electron microscopy. Pronounced ultrastructural changes characteristic of apoptosis were observed for several tumour cells, including early occurrence of condensation and margination of chromatin, disappearance of nuclear pores, karyopyknosis, karyorrhexis, protuberance formation at the cell surface and cell fragmentation. The findings indicate that apoptosis was involved in the process of tumour cell death induced by ZnPc-PDT. The detailed mechanism and pathways controlling this phenomenon need to be elucidated further.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  18. Morphogenesis and growth of the soft tissue and cartilage of the vomeronasal organ in pigs

    PubMed Central

    Salazar, Ignacio; Lombardero, Matilde; Cifuentes, José M; Quinteiro, Pablo Sánchez; Alemañ, Nuria

    2003-01-01

    The morphology of the soft tissue and supporting cartilage of the vomeronasal organ of the fetal pig was studied from early stages to term. Specimens obtained from an abattoir were aged by crown-to-rump distance. Series of transverse sections show that some time before birth all structures – cartilage, connective tissue, blood vessels, nerves, glands and epithelia – are well developed and very similar in appearance to those of the adult. Furthermore, in transmission electron microscopy photomicrographs obtained at this stage the vomeronasal glands exhibit secretory activity. PMID:12846472

  19. Composition of primary fluid and melt inclusions in regenerated olivines from hypabyssal kimberlites of the Malokuonapskaya pipe (Yakutia)

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Kuzmin, D. V.; Bulbak, T. A.; Timina, T. Yu.; Sobolev, N. V.

    2015-11-01

    The primary fluid and melt inclusions in regenerated zonal crystals of olivine from kimberlites of the Malokuonapskaya pipe were first examined by means of microthermometry, optic and scanning electron microscopy, and Raman spectroscopy. The high-pressure genesis of homogenous central parts of the olivines was revealed, probably under intense metasomatism at early hypogene stages with subsequent regeneration in the kimberlitic melt. The olivine crystals were regenerated from silicate-carbonate melts at about 1100°C. The composition of the kimberlitic melt was changed by way of an increase in the calcium content.

  20. Nonspecific iodine accumulation in surgical suture material mimicking follicular thyroid cancer bone metastasis in (131)I scintigraphy.

    PubMed

    Winkens, Thomas; Nietzsche, Sandor; Gottschaldt, Michael; Freesmeyer, Martin

    2014-02-01

    A 23-year-old man with follicular thyroid carcinoma and cervical lymph node metastases showed a clear I focus on the skull after radioiodine therapy; therefore, an osseous metastasis was suspected. I and MRI fusion suggested the I focus to be adjacent to an epicranial suture from an early childhood trepanation for epidural hematoma. Radio-guided surgery found dark brown material to be the source of the radiation and successfully removed the material. Subsequent electron microscopy revealed a thread within the dark brown material, suggesting suture material as the cause of I accumulation.

  1. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    PubMed Central

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  2. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  3. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    PubMed Central

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  4. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells

    PubMed Central

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2016-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021

  5. In situ transmission electron microscopy of transistor operation and failure.

    PubMed

    Wang, Baoming; Islam, Zahabul; Haque, Aman; Chabak, Kelson; Snure, Michael; Heller, Eric; Glavin, Nicholas

    2018-08-03

    Microscopy is typically used as a post-mortem analytical tool in performance and reliability studies on nanoscale materials and devices. In this study, we demonstrate real time microscopy of the operation and failure of AlGaN/GaN high electron mobility transistors inside the transmission electron microscope. Loading until failure was performed on the electron transparent transistors to visualize the failure mechanisms caused by self-heating. At lower drain voltages, thermo-mechanical stresses induce irreversible microstructural deformation, mostly along the AlGaN/GaN interface, to initiate the damage process. At higher biasing, the self-heating deteriorates the gate and catastrophic failure takes place through metal/semiconductor inter-diffusion and/or buffer layer breakdown. This study indicates that the current trend of recreating the events, from damage nucleation to catastrophic failure, can be replaced by in situ microscopy for a quick and accurate account of the failure mechanisms.

  6. Low-voltage electron microscopy of polymer and organic molecular thin films.

    PubMed

    Drummy, Lawrence F; Yang, Junyan; Martin, David C

    2004-06-01

    We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. Copyright 2004 Elsevier B.V.

  7. [THE CHARACTERISTICS OF MORPHOLOGY OF BIOFILM OF PERIODONTIUM UNDER INFLAMMATORY DISEASES OF GUMS (CHRONIC CATARRHAL GINGIVITIS, CHRONIC PERIODONTITIS, CANDIDA-ASSOCIATED PERIODONTITIS) ACCORDING RESULTS OF ELECTRONIC MICROSCOPY].

    PubMed

    Ippolitov, E V; Didenko, L V; Tzarev, V N

    2015-12-01

    The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).

  8. Analysis of Long Bone and Vertebral Failure Patterns.

    DTIC Science & Technology

    1982-09-30

    processes further supported the findings of • :the scanning electron microscopy studies . In the impacted animals, the cartilage surface was eroded... cartilage matrix. In the six years post-impaction group, the articular cartilage had converted to fibrocartilage instead of normal hyaline cartilage . The...columns of four rhesus monkeys have been collected and are being processed for study with light microscopy and scanning electron microscopy. The baboon

  9. A simple method for maintaining relative positions of separate tissue elements during processing for electron microscopy.

    PubMed

    Stirling, C A

    1978-09-01

    Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.

  10. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  11. STEM VQ Method, Using Scanning Transmission Electron Microscopy (STEM) for Accurate Virus Quantification

    DTIC Science & Technology

    2017-02-02

    Corresponding Author Abstract Accurate virus quantification is sought, but a perfect method still eludes the scientific community. Electron...unlimited. UNCLASSIFIED 2 provides morphology data and counts all viral particles, including partial or noninfectious particles; however, EM methods ...consistent, reproducible virus quantification method called Scanning Transmission Electron Microscopy – Virus Quantification (STEM-VQ) which simplifies

  12. Evaluation of a hybrid pixel detector for electron microscopy.

    PubMed

    Faruqi, A R; Cattermole, D M; Henderson, R; Mikulec, B; Raeburn, C

    2003-04-01

    We describe the application of a silicon hybrid pixel detector, containing 64 by 64 pixels, each 170 microm(2), in electron microscopy. The device offers improved resolution compared to CCDs along with faster and noiseless readout. Evaluation of the detector, carried out on a 120 kV electron microscope, demonstrates the potential of the device.

  13. Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2000-01-01

    The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.

  14. Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Bandmann, Vera; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.

  15. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P., E-mail: vlabella@albany.edu

    2013-11-15

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to bemore » below the region of best fit for the power law form of the BK model, demonstrating its region of validity.« less

  16. Grinding and polishing instead of sectioning for the tissue samples with a graft: Implications for light and electron microscopy.

    PubMed

    Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G

    2016-06-01

    A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ultrastructural characterization of the new NG97ht human-derived glioma cell line using two different electron microscopy technical procedures.

    PubMed

    Machado, Camila Maria Longo; Zorzeto, Tatiane Queiroz; Bianco, Juares E Romero; Rosa, Renata Giardini; Genari, Selma Candelaria; Joazeiro, Paulo Pinto; Verinaud, Liana

    2009-04-01

    On the basis of transmission electron microscopy observations in tumor cell lines, oncologists have made innumerous diagnostic and therapeutical progresses. Following this path, the UNICAMP immunopathologies laboratory established the NG97 cell line derived from a human astrocytoma grade III, which when injected to the athymic nude mouse flank developed a grade IV astrocytoma. In this study, we focused on ultrastructural characterization of the NG97 cells after being recovered from xenotransplant (NG97ht). These cells in culture were assayed by two different electron microscopy procedures to characterize ultrastructures related to grade IV astrocytomas and to observe their structures through cell subcultivation. Additionally, comparative morphological descriptions of different cell passages in these technical procedures could be a useful tool for improving electron microscopy cell lineage protocols. Results from many cell passage observations showed ultrastructural similarities, which suggest malignant and glioblastoma phenotypes. In the first procedure, NG97ht cells were harvested and then incorporated into agarose before subjecting them to electron microscopy protocols, whereas in the second one, monolayer cells grew first on cover slides. Comparison among protocols revealed that organelles, cytoplasmatic extensions, spatial conformation of filopodia, and cell attachment to substrate were more preserved in the second procedure. Furthermore, in this latter procedure, a unique ellipsoidal structure was observed, which was already described when dealing with gliosarcoma cell line elsewhere. Therefore, these analyses demonstrated a morphological characterization of a new NG97ht cell line using electron transmission microscopy. Moreover, it has been shown that the second procedure provides more detailed information compared with the first.

  18. Aharonov-Bohm Effect in the Photodetachment Microscopy of Hydrogen Negative Ions in an Electric Field

    NASA Astrophysics Data System (ADS)

    Wang, Dehua

    2014-09-01

    The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.

  19. Analysis of liquid suspensions using scanning electron microscopy in transmission: estimation of the water film thickness using Monte-Carlo simulations.

    PubMed

    Xiao, J; Foray, G; Masenelli-Varlot, K

    2018-02-01

    Environmental scanning electron microscopy (ESEM) allows the observation of liquids under specific conditions of pressure and temperature. Moreover, when working in the transmission mode, that is in scanning transmission electron microscopy (STEM), nano-objects can be analysed inside a liquid. The contrast in the images is mass-thickness dependent as in STEM-in-TEM (transmission electron microscopy) using closed cells. However, in STEM-in-ESEM, as the liquid-vapour equilibrium is kept dynamically, the thickness of the water droplet remains unknown. In this paper, the contrasts measured in the experimental images are compared with calculations using Monte-Carlo simulations in order to estimate the thickness of water. Two examples are given. On gold nanoparticles, the thickness of a thick film can be estimated thanks to a contrast inversion. On core-shell latex particles, the grey level of the shell compared with those of the core and of the water film gives a relatively precise measurement of the water film thickness. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    PubMed Central

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  1. Simulated electron beam trajectories toward a field ion microscopy specimen

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Camus, P. P.; Kelly, T. F.

    1993-04-01

    This article explores the conditions under which a directed electron beam originating nearly normal to the specimen axis can be made to impact the near-apex region of a field ion microscopy specimen in a high electric field. Electron trajectories were calculated using a modified Runge-Kutta numerical method. The results indicate that an electron beam can be directed to a specimen under typical field ion microscopy conditions using two methods: by varying initial beam tilt (less than 60 mrad) or by translating the initial beam position relative to the specimen apex (less than 5 mm). The net focusing effect of the high electric field on the electron beam can be treated, to first order, as an astigmatism and may be correctable by a post-lens deflection system.

  2. Direct observation of iron-induced conformational changes of mitochondrial DNA by high-resolution field-emission in-lens scanning electron microscopy.

    PubMed Central

    Yaffee, M; Walter, P; Richter, C; Müller, M

    1996-01-01

    When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643576

  3. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. The interaction of small particles and thin films of metals with gases. I - A brief review of the early stages of oxide formation

    NASA Technical Reports Server (NTRS)

    Poppa, H.

    1976-01-01

    Existing work on gas-solid reactions making use of thin film technologies is reviewed. The discussion concentrates on two major areas of gas-metal interactions: chemisorption and the early stages of oxidation of metals (characterized by a non-volatile reaction product) and catalytic surface reactions (featuring volatile reaction products). A brief survey of oxide formation on metals is presented. Here it is of importance to distinguish between reactions on continuous thin film substrates and reactions on particulate deposits. Small particle-gas interactions also affect the nucleation, growth and sintering processes of thin films. It is shown that various combinations of UHV and high resolution electron microscopy techniques, which include in situ experimentation, can provide the appropriate tools for studying angstrom particle chemistry.

  5. Transmission electron microscopy of amyloid fibrils.

    PubMed

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  6. Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope

    DTIC Science & Technology

    2017-06-29

    Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of

  7. Preface: phys. stat. sol. (a) 202/12

    NASA Astrophysics Data System (ADS)

    Neumann, Wolfgang; Stutzmann, Martin; Hildebrandt, Stefan

    2005-09-01

    The present special issue contains a collection of Original Papers dedicated to Professor Johannes Heydenreich on the occasion of his 75th birthday.Johannes Heydenreich, born on 20 June 1930 in Plauen/Vogtland near Dresden, studied physics at the Pädagogische Hochschule Potsdam, where he obtained his first academic degree Dipl. Phys. in 1958. He received his doctoral degree at the Martin Luther University in Halle in 1961 and the Habilitation degree in 1969. Already during his studies in Potsdam, he showed an interest in electron microscopy due to the influence of his teacher and supervisor Prof. Picht, one of the pioneers in electron optics. His interests were strengthened when Johannes Heydenreich did the experimental work for his Diploma degree at the Institute for Experimental Physics of the University of Halle, where he met Prof. Heinz Bethge for the first time. This was the beginning of a fruitful and longstanding collaboration. In 1962 Johannes Heydenreich joined the team of the later Institute for Solid State Physics and Electron Microscopy of the Academy of Sciences of the GDR, in Halle, for which the basis was laid by Prof. Bethge in 1960.Heydenreich has been working as Assistant Director for many years and played a decisive role in introducing and organising the various techniques of electron microscopy in the institute.The research activities of Prof. Heydenreich covered a broad spectrum over the years. At the beginning of his career he made significant contributions in the field of electron mirror microscopy. After that, his main interests were focused on transmission electron microscopy, ranging from diffraction contrast analysis of crystal defects to high-resolution electron microscopy and image processing. His favourite field was studies of defect-induced phenomena in advanced materials. The so-called Bethge-Heydenreich, the book Electron Microscopy in Solid State Physics, published at first in a German edition in 1982 and later in a revised English edition by Elsevier in 1987, provides an excellent overview both of Heydenreich's work and of the spectrum of the Institute of Solid State Physics and Electron Micros-copy in Halle.The international reputation of this institute was the basis for the transformation of it, after the re-unification of Germany, into the Max Planck Institute of Microstructure Physics, the first institute of the Max Planck Society in the Eastern part of Germany. From the beginning, Prof. Heydenreich was on the Board of Directors and served as the Executive Director from 1993 until his retirement in 1995.During this year, the International Centre of Advanced Materials and Electron Microscopy celebrates its 30th anniversary. The Centre was founded in Halle in 1975 as a Centre of Electron Microscopy for the Eastern countries.A remarkable and time-consuming part of Heydenreich's work was associated with this centre. Young scientists from Eastern Europe were trained in the theoretical and practical aspects of electron microscopy during the annual spring and autumn meetings. All in all, Johannes Heydenreich conducted 35 of these schools! From the beginning, he was a member of the Scientific Council of the Centre, and from 1985 until his retirement he was the Director of the Centre. Nowadays, the Centre acts as a real bridge between East and West largely due to the efforts of Johannes Heydenreich.Furthermore, Johannes Heydenreich had been active as a leading member of various scientific boards for many years. He was a co-editor of several journals covering electron microscopy, solid state physics and crystallography. As a member of the Executive Committee of the European Society for Elec-tron Microscopy (CESEM) for many years, and as a member of the Executive board of the German Soci-ety for Electron Microscopy, Johannes Heydenreich has invested a great deal of time and effort in the welfare of the scientific community.Over the course of nearly three decades, Johannes Heydenreich worked as a Professor at the Universities of Halle and Leipzig. Generations of students have admired his excellent lectures with clear repre-sentation and rigorous scholarship.The scientific work of Johannes Heydenreich was honoured by his election to the Academy of Natural Scientists Leopoldina where he worked as a Secretary of Natural Science for many years. The Technical University of Chemnitz conferred an honory doctors degree on Prof. Heydenreich in recognition of his scientific work. The German Society for Electron Microscopy awarded him Honorary Membership.Wolfgang Neumann especially acknowledges with gratitude the time of inspiring collaboration in Halle.All his friends, colleagues, and students wish him many further years of good health. The Editors of physica status solidi join these wishes and add their gratefulness for his long-standing and continuous engagement as a member of the Advisory and Editorial Board of physica status solidi (a).

  8. Electron Microscopy Localization and Characterization of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Leukemia Cells

    PubMed Central

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965

  9. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  10. The application of scanning electron microscopy to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, C.R.; McGill, B.L.

    1994-10-01

    Many failures involve fracture, and determination of the fracture process is a key factor in understanding the failure. This is frequently accomplished by characterizing the topography of the fracture surface. Scanning electron microscopy has a prominent role in fractography due to three features of the scanning electron microscope (SEM): high resolution, great depth of field, and the ability to obtain chemical information via analysis of the X-rays generated by the electrons. A qualitative treatment is presented of the interaction of electrons with a sample and the effect of the SEM operating parameters on image formation, quality, and X-ray analysis. Fractographsmore » are presented to illustrate these features of scanning electron microscopy and to illustrate the limitations and precautions in obtaining fractographs and x-ray analyses. The review is concluded with examples of fracture surface features of metallic, ceramic, and polymeric materials.« less

  11. The spatial coherence function in scanning transmission electron microscopy and spectroscopy.

    PubMed

    Nguyen, D T; Findlay, S D; Etheridge, J

    2014-11-01

    We investigate the implications of the form of the spatial coherence function, also referred to as the effective source distribution, for quantitative analysis in scanning transmission electron microscopy, and in particular for interpreting the spatial origin of imaging and spectroscopy signals. These questions are explored using three different source distribution models applied to a GaAs crystal case study. The shape of the effective source distribution was found to have a strong influence not only on the scanning transmission electron microscopy (STEM) image contrast, but also on the distribution of the scattered electron wavefield and hence on the spatial origin of the detected electron intensities. The implications this has for measuring structure, composition and bonding at atomic resolution via annular dark field, X-ray and electron energy loss STEM imaging are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electron probe X-ray microanalysis of cultured myogenic C2C12 cells with scanning and scanning transmission electron microscopy.

    PubMed

    Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M

    2000-01-01

    Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.

  13. [Electron microscopic study on the petechial hemorrhagic spots in patients with epidemic hemorrhage fever (EHF)].

    PubMed

    Wang, S Q; Feng, M; Yang, L

    1994-12-01

    EHF viral particles were found in the squamous epithelial cells and capillary endothelial cells of the petechial spots located at the mucous membrane of the soft palate in cases of early stage of severe type EHF by transmission electron microscopy. The viral particles are round or oval in shape, about 100 nm in diameter with a lipid bilayer envelope from which spikes are protruding. The virions matured by budding through the intracytoplasmic membranes into the smooth surfaced vesicles. The morphological characteristics of the virion coincided with the viral particles of Family Bunyaviridae. It was the first time to demonstrate that the squamous epithelial cells of the soft palate is one of the target cells in EHF virus infection and to describe the subcellular morphological evidence of the petechial spots at the soft palate by EM.

  14. The thermal and deformational history of apollo 15418, A partly shock-melted lunar breccia

    USGS Publications Warehouse

    Nord, G.L.; Christie, J.M.; Lally, J.S.; Heuer, A.H.

    1977-01-01

    A thermal and mechanical history of lunar gabbroic anorthosite 15418 (1140g) has been deduced from petrographic examination of both exterior and interior thin sections and electron microprobe analysis and transmission electron microscopy of interior thin sections. We suggest that the rock underwent two major shock events - an early brecciation and annealing that produced a recrystallized breccia, followed by a second shock event that melted the surface of the rock, vitrified the interior plagioclase and heavily deformed the mafic phases. This latter shock even was also followed by annealing which crystallized the shock-produced glass and promoted recovery and recrystallization of the deformed crystalline phases. The complex mechanical and thermal history of 15418 compared with other ANT suite rocks at Spur Crater suggests that it had a different provenance. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.

  15. Development and morphology of the inverted yolk sac in the guinea pig (Cavia porcellus).

    PubMed

    Vasconcelos, Bruno Gomes; Favaron, Phelipe Oliveira; Miglino, Maria Angelica; Mess, Andrea Maria

    2013-10-01

    Although the guinea pig is an important animal model for human placentation, aspects of fetal nutrition are not fully understood, especially in regard to the yolk sac that is regarded to be essential for early development of the embryo. We investigated differentiation by means of histology, histochemistry, immunohistochemistry, and transmission electron microscopy. Data suggest that the guinea pig's yolk sac was not sufficiently developed to facilitate substantial fetal nutrition in early pregnancy. On Day 12, it was a flat, inverted, but avascular structure. This was followed by differentiation to form the typical, highly villous and vascularized condition of advanced gestation. Finally, the yolk sac degenerated toward term. We suggest that the guinea pig and other caviomorphs rely predominantly on hemotrophic nutrition via the placenta even in very early pregnancy. In contrast to the general pattern of mammals, histiotrophic nutrition via yolk sac routes seems to be most essential during mid-gestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Functional morphology of mouthparts and digestive system during larval development of the cleaner shrimp Lysmata amboinensis (de Man, 1888).

    PubMed

    Tziouveli, Vasiliki; Bastos Gomes, Giana; Bastos-Gomez, Giana; Bellwood, Orpha

    2011-09-01

    Mouthpart and alimentary canal development was examined in Lysmata amboinensis larvae using scanning electron microscopy and histology. The gross morphological features of external mouthparts and internal digestive tract structures of larvae at different developmental stages indicate that ingestive and digestive capabilities are well developed from early on. With increasing age of the larvae the mouthpart appendages increased in size, the hepatopancreas in tubular density and the midgut in length. The density of setae and robustness of teeth and spines of individual structures increased. The most pronounced changes from early to late stage larvae involved formation of pores on the paragnaths and labrum, transformation of the mandibular spine-like teeth to molar cusps, development of the filter press in the proventriculus and of infoldings in the previously straight hindgut. The results suggest that early stage L. amboinensis larvae may benefit from soft, perhaps gelatinous prey, whereas later stages are better equipped to handle larger, muscular or more fibrous foods. 2011 Wiley-Liss, Inc.

  17. Sequence of Tissue Responses in the Early Stages of Experimental Allergic Encephalomyelitis (EAE): Immunohistochemical, Light Microscopic, and Ultrastructural Observations in the Spinal Cord

    NASA Technical Reports Server (NTRS)

    DAmelio, Fernando E.; Smith, Marion E.; Eng, Lawrence F.

    1990-01-01

    Experimental allergic encephalomyelitis (EAE) was induced in adult Lewis rats with purified guinea pig CNS myelin and Freund's adjuvant. As soon as the very earliest clinical signs appeared the animals were perfused with fixatives and the spinal cord analyzed by electron microscopy, silver methods, and immunocytochemistry. Our findings suggest that in the early stages of EAE a sequence of events can be traced, although these events frequently overlap. The earliest morphological change appears to be astrocytic edema in both the cell body and processes. Increased amounts of glycogen particles and dispersion of glial filaments are prominent. These changes seem to occur just prior to the time when inflammatory cells begin to penetrate the capillary walls. Invasion of the neuropil mainly by macrophages and lymphocytes closely follows. Both macrophages and microglia seem to participate in phagocytosis of oligodendrocytes and myelin. Demyelination, however, is not a prominent feature at this early stage.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at themore » microscopic level.« less

  19. Transmission electron microscopy analysis of skin lesions from sporotrichosis epidemic in Rio de Janeiro, Brazil.

    PubMed

    Ferreira, Cassio Porto; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana

    2015-02-01

    Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. © The American Society of Tropical Medicine and Hygiene.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmermans, F. J.; Otto, C.

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less

  1. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  2. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  3. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  4. Scanning and transmission electron microscopic observations of the acute morphological response of the mouse urinary bladder to 4-ethylsulfonylnaphthalene-1-sulfonamide.

    PubMed

    Frith, C H; Ayres, P H; Shinohara, Y; West, R

    1986-01-01

    A total of 75 BALB/cStCrlfC3H/Nctr male weanling mice were administered either 0 or 250 ppm of 4 ethylsulfonylnaphthalene-1-sulfonamide (ENS) in the diet for periods up to 14 days to evaluate the early morphological changes of the transitional epithelium of the urinary bladder with scanning (SEM) and transmission (TEM) electron microscopy. Primary TEM changes included hyperplasia of the epithelium, loosening of the intercellular junctions, autophagic vacuoles and electron dense granules in the mitochondria. Primary SEM changes included sloughing of epithelial cells, irregularity in the size and shape of the transitional epithelial cells and the presence of microvilli. Although pleomorphic microvilli were present after only three days of treatment with ENS, it appears that they are a transient observation in a series of morphological changes. The reversibility or transient nature of the pleomorphic microvilli may indicate that they are an acute toxic response and may not necessarily indicate a preneoplastic change.

  5. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    PubMed Central

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  6. Strategies for Multi-Modal Analysis

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Wang, Cheng; Pandolfi, Ronald; Kumar, Dinesh; Venkatakrishnan, Singanallur; Sethian, James; Camera Team

    This section on soft materials will be dedicated to discuss the extraction of the chemical distribution and spatial arrangement of constituent elements and functional groups at multiple length scales and, thus, the examination of collective dynamics, transport, and electronic ordering phenomena. Traditional measures of structure in soft materials have relied heavily on scattering and imaging based techniques due to their capacity to measure nanoscale dimensions and their capacity to monitor structure under conditions of dynamic stress loading. Special attentions are planned to focus on the application of resonant x-ray scattering, contrast-varied neutron scattering, analytical transmission electron microscopy, and their combinations. This session aims to bring experts in both scattering and electron microscope fields to discuss recent advances in selectively characterizing structural architectures of complex soft materials, which have often multi-components with a wide range of length scales and multiple functionalities, and thus hopes to foster novel ideas to decipher a higher level of structural complexity in soft materials in future. CAMERA, Early Career Award.

  7. Quantitative Cryo-Scanning Transmission Electron Microscopy of Biological Materials.

    PubMed

    Elbaum, Michael

    2018-05-11

    Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Environmental scanning electron microscopy gold immunolabeling in cell biology.

    PubMed

    Rosso, Francesco; Papale, Ferdinando; Barbarisi, Alfonso

    2013-01-01

    Immunogold labeling (IGL) technique has been utilized by many authors in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain the identification/localization of receptors and antigens, both in cells and tissues. Environmental scanning electron microscopy (ESEM) represents an important tool in biomedical research, since it does not require any severe processing of the sample, lowering the risk of generating artifacts and interfere with the IGL procedure. The absence of metal coating could yield further advantages for our purpose as the labeling detection is based on the atomic number difference between nanogold spheres and the biological material. Using the gaseous secondary electron detector, compositional contrast is easily revealed by the backscattered electron component of the signal. In spite of this fact, only few published papers present a combination of ESEM and IGL. Hereby we present our method, optimized to improve the intensity and the specificity of the labeling signal, in order to obtain a semiquantitative evaluation of the labeling signal.In particular, we used a combination of IGL and ESEM to detect the presence of a protein on the cell surface. To achieve this purpose, we chose as an experimental system 3T3 Swiss albino mouse fibroblasts and galectin-3.

  9. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy

    PubMed Central

    Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.

    2016-01-01

    ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357

  10. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    PubMed

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impacts of Carrier Transport and Deep Level Defects on Delayed Cathodoluminescence in Droop-Mitigating InGaN/GaN LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhibo; Singh, Akshay; Chesin, Jordan

    Prevalent droop mitigation strategies in InGaN-based LEDs require structural and/or compositional changes in the active region but are accompanied by a detrimental reduction in external quantum efficiency (EQE) due to increased Shockley-Read-Hall recombination. Understanding the optoelectronic impacts of structural modifications in InGaN/GaN quantum wells (QW) remains critical for emerging high-power LEDs. In this work, we use a combination of electron microscopy tools along with standard electrical characterization to investigate a wide range of low-droop InGaN/GaN QW designs. We find that chip-scale EQE is uncorrelated with extended well-width fluctuations observed in scanning transmission electron microscopy. Further, we observe delayed cathodoluminescence (CL)more » response from designs in which calculated band profiles suggest facile carrier escape from individual QWs. Samples with the slowest CL responses also exhibit the lowest EQEs and highest QW defect densities in deep level optical spectroscopy. We propose a model in which the electron beam (i) passivates deep level defect states and (ii) drives charge carrier accumulation and subsequent reduction of the built-in field across the multi-QW active region, resulting in delayed radiative recombination. Finally, we correlate CL rise dynamics with capacitance-voltage measurements and show that certain early-time components of the CL dynamics reflect the open circuit carrier population within one or more QWs.« less

  12. Composition and microstructure of maiolica from the museum of ceramics in Ascoli Piceno (Italy): evidences by electron microscopy and microanalysis

    NASA Astrophysics Data System (ADS)

    Gulmini, M.; Scognamiglio, F.; Roselli, G.; Vaggelli, G.

    2015-09-01

    The present work focuses on majolica objects from the collection of the museum of ceramic in Ascoli Piceno (Italy). The scientific investigation was performed on fragments detached from seven maiolicas attributed to the Castelli production (Abruzzi region) and one majolica from the Ascoli Piceno production (Marche region). The Castelli artifacts (late sixteenth-early eighteenth century) belong to the decorated style known as " compendiario." The piece from Ascoli Piceno recalls the decoration style of the other considered objects and is attributable to the "Paci" manufacture (first half of the nineteenth century). The selected objects were investigated by fiber optics reflectance spectroscopy, micro-X-ray fluorescence spectroscopy and scanning electron microscopy coupled with electron-dispersive X-ray spectrometry. The ceramic bodies of all objects are calcareous, whereas the glazes are lead-alkali type opacified by tin dioxide. Blue and purplish-red decorations were obtained by cobalt and manganese compounds dissolved in the glaze, respectively. Yellow and orange decorations were obtained by particles of lead antimonate and hematite. Finally, black decorations were obtained using compounds rich in manganese and iron. The study contributes to knowledge on the production of Castelli ceramics and presents first archaeometric data on the maiolica production from Ascoli Piceno. The scientific examination highlights continuity with the Renaissance production, and the joint contribution of the three analytical techniques suggests distinctive features among different productions, thus integrating and refining the information obtained by the art-historical study.

  13. Sparse imaging for fast electron microscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt

    2013-02-01

    Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).

  14. Magnetic iodixanol - a novel contrast agent and its early characterization.

    PubMed

    Arokiaraj, M C; Menesson, E; Feltin, N

    2018-02-01

    Contrast-induced nephropathy is a commonly encountered problem in clinical practice. The purpose of the study was to design and develop a novel contrast agent, which could be used to prevent contrast-induced nephropathy in the future. In total, 20-220nm magnetic nanoparticles were conjugated with iodixanol, and their radio-opacity and magnetic properties were assessed thereafter. Scanning electron microscopy pictures were acquired. Thereafter, the nanoparticles conjugate was tested in cell culture (HUVEC cells), and Quantibody ® assay was studied after cell treatment in 1:5 dilutions for 48h, compared with control. The conjugate preparation had an adequate radio-opacity. A 4mm magnetic bubble was attached to a bar magnet and the properties were studied. The magnetic bubble maintained its structural integrity in all angles including antigravity position. Scanning electron microscopy showed magnetic nanoparticles in all pictures and the particles are of 100-400nm agglomerates with primary particle sizes of roughly 20nm. 1:5 diluted particles had no effect on secretion of IL-1a, IL-1b, IL-4, IL-10, IL-13 and TNFa. Particles increased secretion of IL-8 from 24h and 48h. Secretion of IFNg was also increased when particles were added to the cells as early as 1h. Likewise, IL-6 was strongly secreted by HUVEC treated with particles from 24h incubation time. In contrast, the secretion of MCP-1 was slightly reduced on HUVEC treated with particles. There is potential for a novel iodixanol-magnetic nanoparticle conjugate to be used in cineradiography. Further investigations need to be performed to study its performance in vitro and in vivo. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    PubMed Central

    Schneeberger, Kerstin; Vogel, Georg F.; Teunissen, Hans; van Ommen, Domenique D.; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H. M.; Beekman, Jeffrey M.; Klumperman, Judith; Müller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A.; Hess, Michael W.; Clevers, Hans; van Es, Johan H.; Nieuwenhuis, Edward E. S.; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear. To address the specific role of MYO5B in the intestine, we generated an intestine-specific conditional Myo5b-deficient (Myo5bfl/fl;Vil-CreERT2) mouse model. We analyzed intestinal tissues and cultured organoids of Myo5bfl/fl;Vil-CreERT2 mice by electron microscopy, immunofluorescence, and immunohistochemistry. Our data showed that Myo5bfl/fl;Vil-CreERT2 mice developed severe diarrhea within 4 d after tamoxifen induction. Periodic Acid Schiff and alkaline phosphatase staining revealed subapical accumulation of intracellular vesicles in villus enterocytes. Analysis by electron microscopy confirmed an almost complete absence of apical microvilli, the appearance of microvillus inclusions, and enlarged intercellular spaces in induced Myo5bfl/fl;Vil-CreERT2 intestines. In addition, we determined that MYO5B is involved not only in apical but also basolateral trafficking of proteins. The analysis of the intestine during the early onset of the disease revealed that subapical accumulation of secretory granules precedes occurrence of microvillus inclusions, indicating involvement of MYO5B in early differentiation of epithelial cells. By comparing our data with a novel MVID patient, we conclude that our mouse model completely recapitulates the intestinal phenotype of human MVID. This includes severe diarrhea, loss of microvilli, occurrence of microvillus inclusions, and subapical secretory granules. Thus, loss of MYO5B disturbs both apical and basolateral trafficking of proteins and causes MVID in mice. PMID:26392529

  16. Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Amitabha; Stoecker, Andrew; Schatten, Heide

    1995-01-01

    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods.

  17. Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system.

    PubMed

    Pron, B; Boumaila, C; Jaubert, F; Sarnacki, S; Monnet, J P; Berche, P; Gaillard, J L

    1998-02-01

    The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer's patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the delta inlAB, the delta hly, and the delta actA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer's patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer's patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer's patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer's patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer's patches than in villous intestine. At early stages of Peyer's patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer's patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined.

  18. Comprehensive Study of the Intestinal Stage of Listeriosis in a Rat Ligated Ileal Loop System

    PubMed Central

    Pron, Benedicte; Boumaila, Claire; Jaubert, Francis; Sarnacki, Sabine; Monnet, Jean-Paul; Berche, Patrick; Gaillard, Jean-Louis

    1998-01-01

    The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer’s patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the ΔinlAB, the Δhly, and the ΔactA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer’s patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer’s patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer’s patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer’s patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer’s patches than in villous intestine. At early stages of Peyer’s patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer’s patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined. PMID:9453636

  19. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

    DOE PAGES

    Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...

    2016-09-16

    We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less

  20. TEM characterization of nanodiamond thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found inmore » PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.« less

  1. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    PubMed

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  2. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    EPA Science Inventory

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  3. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    EPA Science Inventory

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  4. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory

    Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...

  5. Thymosin α1 modifies podosome architecture and promptly stimulates the expression of podosomal markers in mature macrophages.

    PubMed

    Serafino, Annalucia; Andreola, Federica; Pittaluga, Eugenia; Krasnowska, Ewa K; Nicotera, Giuseppe; Sferrazza, Gianluca; Sinibaldi Vallebona, Paola; Pierimarchi, Pasquale; Garaci, Enrico

    2015-01-01

    The immunomodulatory activity of thymosin α1 (Tα1) on innate immunity has been extensively described, but its mechanism of action is not completely understood. We explored the possibility that Tα1-stimulation could affect the formation of podosomes, the highly dynamic, actin-rich, adhesion structures involved in macrophage adhesion/chemotaxis. The following methods were used: optical and scanning electron microscopy for analyzing morphology of human monocyte-derived macrophages (MDMs); time-lapse imaging for visualizing the time-dependent modifications induced at early times by Tα1 treatment; confocal microscopy and Western blot for analyzing localization and expression of podosome components; and Matrigel Migration Assay and zymography for testing MDM invasive ability and metalloproteinase secretion. We obtained data to support that Tα1 could affect MDM motility, invasion and chemotaxis by promptly stimulating assembly and disassembly of podosomal structures. At very early times after its addition to cell culture medium and within 1 h of treatment, Tα1 induces modifications in MDM morphology and in podosomal components that are suggestive of increased podosome turnover. Since impairment of podosome formation leads to reduced innate immunity and is associated with several immunodeficiency disorders, we confirm the validity of Tα1 as a potent activator of innate immunity and suggest possible new clinical application of this thymic peptide.

  6. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  7. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C{sub 4}A{sub 3}S{sup ¯}) in the presence of gypsum and varying amounts of calcium hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Craig W.; Kirchheim, Ana Paula; Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu

    Suspensions of synthetic ye'elimite (C{sub 4}A{sub 3}S{sup ¯}) in a saturated gypsum (CS{sup ¯}H{sub 2}) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C{sub 4}A{sub 3}S{sup ¯}, 15% CS{sup ¯}H{sub 2}, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO{sub 4}{sup 2−}/OH{sup −}) AFmmore » phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate.« less

  8. Analytical characterization of glass tesserae from mosaics of early Christian basilicas in Albania

    NASA Astrophysics Data System (ADS)

    Vataj, Esmeralda; Hobdari, Elio; Röhrs, Stefan; Vandenabele, Peter; Civici, Nikolla

    2017-01-01

    The present paper constitutes the first archaeometric study of the glass mosaic tesserae recovered from the archaeological excavation of the mosaics at the Early Christian basilicas in Bylis, Lin and Elbasan, belonging to fifth to sixth century AD. The main objective of the study is the characterization of the materials, glass matrix, colourants and opacifiers used for their production. A multi-analytical approach, which includes optical microscopy, scanning electron microscopy equipped with energy-dispersive spectrometer, micro-X-ray fluorescence and Raman spectroscopy, is used during the investigation of 72 tesserae of different colours collected from the three sites. All the tesserae are opaque and have heterogeneous surfaces with several bubbles and crystalline inclusions. Most of the glass tesserae have the characteristic soda-lime-silica composition, and low concentrations of potash and magnesium indicate natron as soda source, which is typical for the Roman glass. Compounds containing Mn, Fe, Cu, Co, Pb and Sn are used as colourants in the tesserae of different colours. Mineral inclusions are mostly composed of undissolved raw materials, i.e., silicon-, calcium- and tin-rich particles. It is interesting to notice that SnO2 has been used as opacifier in all the tesserae. Thin layers of Au foil placed between two transparent glasses are identified in the gold-coloured tesserae.

  9. Direct observation of anti-phase boundaries in heteroepitaxy of GaSb thin films grown on Si(001) by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.

    2012-10-01

    Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.

  10. A Survey of the Use of Iterative Reconstruction Algorithms in Electron Microscopy

    PubMed Central

    Otón, J.; Vilas, J. L.; Kazemi, M.; Melero, R.; del Caño, L.; Cuenca, J.; Conesa, P.; Gómez-Blanco, J.; Marabini, R.; Carazo, J. M.

    2017-01-01

    One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET). PMID:29312997

  11. Tannins Possessing Bacteriostatic Effect Impair Pseudomonas aeruginosa Adhesion and Biofilm Formation

    PubMed Central

    Trentin, Danielle S.; Silva, Denise B.; Amaral, Matheus W.; Zimmer, Karine R.; Silva, Márcia V.; Lopes, Norberto P.; Giordani, Raquel B.; Macedo, Alexandre J.

    2013-01-01

    Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0–72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience. PMID:23776646

  12. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  13. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.

    PubMed

    Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald

    2008-01-01

    Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.

  14. High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease.

    PubMed

    Bester, Janette; Buys, Antoinette V; Lipinski, Boguslaw; Kell, Douglas B; Pretorius, Etheresia

    2013-01-01

    Unliganded iron both contributes to the pathology of Alzheimer's disease (AD) and also changes the morphology of erythrocytes (RBCs). We tested the hypothesis that these two facts might be linked, i.e., that the RBCs of AD individuals have a variant morphology, that might have diagnostic or prognostic value. We included a literature survey of AD and its relationships to the vascular system, followed by a laboratory study. Four different microscopy techniques were used and results statistically compared to analyze trends between high and normal serum ferritin (SF) AD individuals. Light and scanning electron microscopies showed little difference between the morphologies of RBCs taken from healthy individuals and from normal SF AD individuals. By contrast, there were substantial changes in the morphology of RBCs taken from high SF AD individuals. These differences were also observed using confocal microscopy and as a significantly greater membrane stiffness (measured using force-distance curves). We argue that high ferritin levels may contribute to an accelerated pathology in AD. Our findings reinforce the importance of (unliganded) iron in AD, and suggest the possibility both of an early diagnosis and some means of treating or slowing down the progress of this disease.

  15. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less

  16. Trypanosoma cruzi Necrotizing Meningoencephalitis in a Venezuelan HIV+-AIDS Patient: Pathological Diagnosis Confirmed by PCR Using Formalin-Fixed- and Paraffin-Embedded-Tissues

    PubMed Central

    Rossi Spadafora, Marcello Salvatore; Céspedes, Ghislaine; Romero, Sandra; Fuentes, Isabel; Boada-Sucre, Alpidio A.; Cañavate, Carmen; Flores-Chávez, María

    2014-01-01

    Coinfections with human immunodeficiency virus (HIV) and infectious agents have been recognized since the early 90s. In the central nervous system (CNS) of HIV+ patients, parasitic protozoans like Toxoplasma gondii have been described as responsible for the space occupying lesions (SOL) developed. However, the involvement of Trypanosoma cruzi is also described but appears to be less frequent in acquired immunodeficiency syndrome (AIDS) and transplant recipients, associated with necrotizing myocarditis and neurological symptoms related to the occurrence of necrotizing pseudotumoral encephalitis (NPE) and meningoencephalitis (NME). The present work aims to present a Venezuelan case of NME associated with the coinfection of HIV and a T. cruzi-like trypanosomatid as well as its evolution and diagnosis by histopathological techniques, electron microscopy, and PCR methods using formalin-fixed- (FF-) and paraffin-embedded- (PE-) tissues. Postmortem cytological studies of leptomeninges imprints reveal the presence of trypomastigotes of Trypanosoma sp. Histopathological and electron microscopy studies allowed us to identify an amastigote stage and to reject the involvement of other opportunistic microorganisms as the etiological agent of the SOL. The definitive confirmation of T. cruzi as the etiological agent was achieved by PCR suggesting that the NME by T. cruzi was due to a reactivation of Chagas' disease. PMID:25763312

  17. High resolution electron microscopy study of crystal growth mechanisms in chicken bone composites

    NASA Astrophysics Data System (ADS)

    Cuisinier, F. J. G.; Steuer, P.; Brisson, A.; Voegel, J. C.

    1995-12-01

    The present study describes the early stages of chicken bone crystal growth, followed by high resolution electron microscopy (HREM). We have developed an original analysis procedure to determine the crystal structure. Images were first digitalized and selected areas were fast Fourier transformed. Numerical masks were selected around the most intense spots and the filtered signal was retransformed back to real space. The filtered images were then compared to computer calculated images to identify the inorganic mineral phase. Nanometer-sized particles were observed on amorphous areas. These particles have a structure loosely related to hydroxyapatite (HA) and a specific orientation. In a more advanced situation, the nanoparticles appeared to grow in two dimensions and to form plate-like crystals. These crystals seem, in a last growth step, to fuse by their (100) faces. These experimental observations allowed us to propose a four-step model for the development and growth of chicken bone crystals. The two initial stages are the ionic adsorption onto the organic substrate followed by the nucleation of nanometer-sized particles. The two following steps, i.e. two-dimensional growth of the nanoparticles leading to the formation of needle-like crystals, and the lateral fusion of these crystals by their (100) faces, are controlled only by spatial constraints inside the extracellular organic matrix.

  18. Synthesis and characterization of nanostructured CaSiO3 biomaterial

    NASA Astrophysics Data System (ADS)

    Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.

    2013-04-01

    Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.

  19. Myoarchitecture and connective tissue in hearts with tricuspid atresia

    PubMed Central

    Sanchez-Quintana, D; Climent, V; Ho, S; Anderson, R

    1999-01-01

    Objective—To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils.
Methods—Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts.
Results—There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts.
Conclusions—The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

 Keywords: tricuspid atresia; congenital heart defects; connective tissue; fibrosis PMID:9922357

  20. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography

    PubMed Central

    Ouyang, Yan; Zhu, Li; Li, Yifang; Guo, Miaomiao; Liu, Yang; Cheng, Jin; Zhao, Jing; Wu, Yi

    2016-01-01

    Mammalian AMP-activated protein kinase (AMPK) acts as an important sensor of cellular energy homeostasis related with AMP/ADP to ATP ratio. The overall architecture of AMPK has been determined in either homotrimer or monomer form by electron microscopy (EM) and X-ray crystallography successively. Accordingly proposed models have consistently revealed a key role of the α subunit linker in sensing adenosine nucleoside binding on the γ subunit and mediating allosteric regulation of kinase domain (KD) activity, whereas there are vital differences in orienting N-terminus of α subunit and locating carbohydrate-binding module (CBM) of β subunit. Given that Mg2+, an indispensable cofactor of AMPK was present in the EM sample preparation buffer however absent when forming crystals, here we carried out further reconstructions without Mg2+ to expectably inspect if this ion may contribute to this difference. However, no essential alteration has been found in this study compared to our early work. Further analyses indicate that the intra-molecular movement of the KD and CBM are most likely due to the flexible linkage of the disordered linkers with the rest portion as well as a contribution from the plasticity in the inter-molecular assembly mode, which might ulteriorly reveal an architectural complication of AMPK. PMID:27063142

  1. Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties.

    PubMed

    Inzunza, Débora; Covarrubias, Cristian; Von Marttens, Alfredo; Leighton, Yerko; Carvajal, Juan Carlos; Valenzuela, Francisco; Díaz-Dosque, Mario; Méndez, Nicolás; Martínez, Constanza; Pino, Ana María; Rodríguez, Juan Pablo; Cáceres, Mónica; Smith, Patricio

    2014-01-01

    Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  2. DESIGN NOTE: A modified Nanosurf scanning tunnelling microscope for ballistic electron emission microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Thompson, Pete; van Schendel, P. J. A.

    2006-04-01

    We describe the design and implementation of modifications to an ambient STM with a slip stick approach mechanism to create a system capable of ballistic electron emission microscopy (BEEM) and spectroscopy (BEES). These modifications require building a custom sample holder which operates as a high gain transimpedance preamplifier. Results of microscopy and spectroscopy using a Au/n-GaAs Schottky device demonstrate the effectiveness of our design.

  3. The study of documentary photographs of the early 20th century by the optical coherence microscopy method

    NASA Astrophysics Data System (ADS)

    Ryseva, Ekaterina; Zhukova, Ekaterina

    2013-05-01

    The wide field and spectral methods of optical coherence microscopy were used for extensive studying the photographs printed in the early 20th century. Tomographic images (B-scans) of photo and paper materials are presented and discussed.

  4. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  5. Ion Microscopy on Diamond

    NASA Astrophysics Data System (ADS)

    Manfredotti, Claudio

    Because of its physical properties (strong radiation hardness, wide energy gap with a consequent extremely low dark current, very large electron and hole mobility) diamond is a very good candidate for nuclear particle detection, particularly in harsh environments or in conditions of strong radiation damage. Being commonly polycrystalline, diamond samples obtained by chemical vapour deposition (CVD) are not homogeneous, not only from the morphological point of view, but also from the electronic one. As a consequence, as it was indicated quite early starting from 1995, charge collection properties such as charge collection efficiency (cce) are not uniform, but they are depending on the site hit by incoming particle. Moreover, these properties are influenced by previous irradiations which are used in order to improve them and, finally, they are also dependent on the thickness of the sample, since the electronic non uniformity extends also in depth by affecting the profile of the electrical field from top to bottom electrode of the nuclear detector in the standard "sandwich" arrangement. By the use of focussed ion beams, it is possible to investigate these non uniformities by the aid of techniques like IBIC (Ion Beam Induced Charge) and IBIL (Ion Beam Induced Luminescence) with a space resolution of the order of 1 m. This relatively new kind of microscopy, which is called "ion microscopy", is capable not only to give 2D maps of cce, which can be quite precisely compared with morphological images obtained by Scanning Electron Microscopy (generally the grains display a much better cce than intergrain regions), but also to give the electric field profile from one electrode to the other one in a "lateral" arrangement of the ion beam. IBIL, by supplying 2D maps of luminescence intensity at different wavelength, can give information about the presence of specific radiative recombination centers and their distribution in the material. Finally, a new technique called XBIC (X-ray Beam Induced Charge), which makes use of very collimated (to 0.1 m) x-ray beams from high energy electron synchrotrons, opens new ways to map cce with a less damaging radiation and with a better energy resolution. In this paper we resume recent and less recent work carried out by our group by using these techniques, a work that has been undertaken afterwards also by other research groups in the world. In particular, topics such as the better homogeneity obtained by "priming" and the effects of "light priming", together with a certain "complementarity" between IBIC and IBIL maps, giving evidence that radiative recombination centers along the grain boundaries or in damaged regions are important in affecting cce, will be presented and discussed in some details. The conclusion is that ion microscopy is a powerful and essentially unique method for the investigation of diamond and other semiconductor materials proposed for nuclear detection.

  6. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy. PMID:27500060

  7. A Dose-Rate Effect in Single-Particle Electron Microscopy

    PubMed Central

    Chen, James Z.; Sachse, Carsten; Xu, Chen; Mielke, Thorsten; Spahn, Christian M. T.; Grigorieff, Nikolaus

    2008-01-01

    A low beam-intensity, low electron-dose imaging method has been developed for single-particle electron cryo-microscopy (cryo-EM). Experiments indicate that the new technique can reduce beam-induced specimen movement and secondary radiolytic effects, such as “bubbling”. The improvement in image quality, especially for multiple-exposure data collection, will help single-particle cryo-EM to reach higher resolution. PMID:17977018

  8. Recombinant Reflectin-Based Optical Materials

    DTIC Science & Technology

    2012-01-01

    sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural

  9. Analysis of electromagnetic forces and causality in electron microscopy.

    PubMed

    Reyes-Coronado, Alejandro; Ortíz-Solano, Carlos Gael; Zabala, Nerea; Rivacoba, Alberto; Esquivel-Sirvent, Raúl

    2018-09-01

    The non-physical effects on the transverse momentum transfer from fast electrons to gold nanoparticles associated to the use of non-causal dielectric functions are studied. A direct test of the causality based on the surface Kramers-Kronig relations is presented. This test is applied to the different dielectric function used to describe gold nanostructures in electron microscopy. Copyright © 2018. Published by Elsevier B.V.

  10. The microscopic world: A demonstration of electron microscopy for younger students

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.

  11. Scanning electron microscopy study of adhesion in sea urchin blastulae. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Crowther, Susan D.

    1988-01-01

    The dissociation supernatant (DS) isolated by disaggregating Strongylocentrotus purpuratus blastulae in calcium- and magnesium-free seawater specifically promotes reaggregation of S. purpuratus blastula cells. The purpose of this study was to use scanning electron microscopy to examine the gross morphology of aggregates formed in the presence of DS to see if it resembles adhesion in partially dissociated blastulae. A new reaggregation procedure developed here, using large volumes of cell suspension and a large diameter of rotation, was utilized to obtain sufficient quantities of aggregates for scanning electron microscopy. The results indicate that aggregates formed in the presence of DS resemble partially dissociated intact embryos in terms of the direct cell-cell adhesion observed. DS did not cause aggregation to form as a result of the entrapment of cells in masses of extracellular material. These studies provide the groundwork for further studies using transmission electron microscopy to more precisely define the adhesive contacts made by cells in the presence of the putative adhesion molecules present in DS.

  12. Comparison of macroscopic and microscopic (stereomicroscopy and scanning electron microscopy) features of bone lesions due to hatchet hacking trauma.

    PubMed

    Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique

    2017-03-01

    This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.

  13. Intracerebral Injections and Ultrastructural Analysis of High-Pressure Frozen Brain Tissue.

    PubMed

    Weil, Marie-Theres; Ruhwedel, Torben; Möbius, Wiebke; Simons, Mikael

    2017-01-03

    Intracerebral injections are an invasive method to bypass the blood brain barrier and are widely used to study molecular and cellular mechanisms of the central nervous system. The administered substances are injected directly at the site of interest, executing their effect locally. By combining injections in the rat brain with state-of-the-art electron microscopy, subtle changes in ultrastructure of the nervous tissue can be detected prior to overt damage or disease. The protocol presented here involves stereotactic injection into the corpus callosum of Lewis rats and the cryopreparation of freshly dissected tissue for electron microscopy. The localization of the injection site in tissue sections during the sample preparation for transmission electron microscopy is explained and possible artifacts of the method are indicated. With the help of this powerful combination of injections and electron microscopy, subtle effects of the applied substances on the biology of neural cells can be identified and monitored over time. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less

  15. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues

    PubMed Central

    Boassa, Daniela; Hu, Junru; Romoli, Benedetto; Phan, Sebastien; Dulcis, Davide

    2018-01-01

    Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications. PMID:29749931

  16. Blood Accessibility to Fibrin in Venous Thrombosis is Thrombus Age-Dependent and Predicts Fibrinolytic Efficacy: An In Vivo Fibrin Molecular Imaging Study

    PubMed Central

    Stein-Merlob, Ashley F.; Kessinger, Chase W.; Erdem, S. Sibel; Zelada, Henry; Hilderbrand, Scott A.; Lin, Charles P.; Tearney, Guillermo J.; Jaff, Michael R.; Reed, Guy L.; Henke, Peter K.; McCarthy, Jason R.; Jaffer, Farouc A.

    2015-01-01

    Fibrinolytic therapy of venous thromboembolism (VTE) is increasingly utilized, yet limited knowledge is available regarding in vivo mechanisms that govern fibrinolytic efficacy. In particular, it is unknown how age-dependent thrombus organization limits direct blood contact with fibrin, the target of blood-based fibrinolytic agents. Utilizing high-resolution in vivo optical molecular imaging with FTP11, a near-infrared fluorescence (NIRF) fibrin-specific reporter, here we investigated the in vivo interrelationships of blood accessibility to fibrin, thrombus age, thrombus neoendothelialization, and fibrinolysis in murine venous thrombosis (VT). In both stasis VT and non-stasis VT, NIRF microscopy showed that FTP11 fibrin binding was thrombus age-dependent. FTP11 localized to the luminal surface of early-stage VT, but only minimally to subacute VT (p<0.001). Transmission electron microscopy of early stage VT revealed direct blood cell contact with luminal fibrin-rich surfaces. In contrast, subacute VT exhibited an encasing CD31+ neoendothelial layer that limited blood cell contact with thrombus fibrin in both VT models. Next we developed a theranostic strategy to predict fibrinolytic efficacy based on the in vivo fibrin accessibility to blood NIRF signal. Mice with variably aged VT underwent FTP11 injection and intravital microscopy (IVM), followed by tissue plasminogen activator infusion to induce VT fibrinolysis. Fibrin molecular IVM revealed that early stage VT, but not subacute VT, bound FTP11 (p<0.05), and experienced higher rates of fibrinolysis and total fibrinolysis (p<0.05 vs. subacute VT). Before fibrinolysis, the baseline FTP11 NIRF signal predicted the net fibrinolysis at 60 minutes (p<0.001). Taken together, these data provide novel insights into the temporal evolution of VT and its susceptibility to therapeutic fibrinolysis. Fibrin molecular imaging may provide a theranostic strategy to identify venous thrombi amenable to fibrinolytic therapies. PMID:26516370

  17. Nanodiamonds as multi-purpose labels for microscopy.

    PubMed

    Hemelaar, S R; de Boer, P; Chipaux, M; Zuidema, W; Hamoh, T; Martinez, F Perona; Nagl, A; Hoogenboom, J P; Giepmans, B N G; Schirhagl, R

    2017-04-07

    Nanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.

  18. Retracing in correlative light electron microscopy: where is my object of interest?

    PubMed

    Hodgson, Lorna; Nam, David; Mantell, Judith; Achim, Alin; Verkade, Paul

    2014-01-01

    Correlative light electron microscopy (CLEM) combines the strengths of light and electron microscopy in a single experiment. There are many ways to perform a CLEM experiment and a variety of microscopy modalities can be combined either on separate instruments or as completely integrated solutions. In general, however, a CLEM experiment can be divided into three parts: probes, processing, and analysis. Most of the existing technologies are focussed around the development and use of probes or describe processing methodologies that explain or circumvent some of the compromises that need to be made when performing both light and electron microscopy on the same sample. So far, relatively little attention has been paid to the analysis part of CLEM experiments. Although it is an essential part of each CLEM experiment, it is usually a cumbersome manual process. Here, we briefly discuss each of the three above-mentioned steps, with a focus on the analysis part. We will also introduce an automated registration algorithm that can be applied to the analysis stage to enable the accurate registration of LM and EM images. This facilitates tracing back the right cell/object seen in the light microscope in the EM. © 2014 Elsevier Inc. All rights reserved.

  19. Clinical evaluation of tuberculosis viability microscopy for assessing treatment response.

    PubMed

    Datta, Sumona; Sherman, Jonathan M; Bravard, Marjory A; Valencia, Teresa; Gilman, Robert H; Evans, Carlton A

    2015-04-15

    It is difficult to determine whether early tuberculosis treatment is effective in reducing the infectiousness of patients' sputum, because culture takes weeks and conventional acid-fast sputum microscopy and molecular tests cannot differentiate live from dead tuberculosis. To assess treatment response, sputum samples (n=124) from unselected patients (n=35) with sputum microscopy-positive tuberculosis were tested pretreatment and after 3, 6, and 9 days of empiric first-line therapy. Tuberculosis quantitative viability microscopy with fluorescein diacetate, quantitative culture, and acid-fast auramine microscopy were all performed in triplicate. Tuberculosis quantitative viability microscopy predicted quantitative culture results such that 76% of results agreed within ±1 logarithm (rS=0.85; P<.0001). In 31 patients with non-multidrug-resistant (MDR) tuberculosis, viability and quantitative culture results approximately halved (both 0.27 log reduction, P<.001) daily. For patients with non-MDR tuberculosis and available data, by treatment day 9 there was a >10-fold reduction in viability in 100% (24/24) of cases and quantitative culture in 95% (19/20) of cases. Four other patients subsequently found to have MDR tuberculosis had no significant changes in viability (P=.4) or quantitative culture (P=.6) results during early treatment. The change in viability and quantitative culture results during early treatment differed significantly between patients with non-MDR tuberculosis and those with MDR tuberculosis (both P<.001). Acid-fast microscopy results changed little during early treatment, and this change was similar for non-MDR tuberculosis vs MDR tuberculosis (P=.6). Tuberculosis quantitative viability microscopy is a simple test that within 1 hour predicted quantitative culture results that became available weeks later, rapidly indicating whether patients were responding to tuberculosis therapy. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  20. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    DTIC Science & Technology

    2015-06-01

    either Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy...Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM...diagram of the Palmstrøm lab in-situ growth and char- acterization setup, with 6 MBE growth chambers, 3 scanning probe microscopes, an x - ray

  1. Microcapsules on Streptococcus mutans serotypes by electron microscopy.

    PubMed

    Grenier, E M; Gray, R H; Loesche, W J; Eveland, W C

    1977-02-01

    Extracellular microcapsules have been demonstrated on cells of most serotypes of Streptococcus mutans by electron microscopy, using bacterial strains of the various serotypes and peroxidase labeled or unlabeled immune serum. A correlation was noted between the amount of capsular substance on the strains of S mutans examined and degree of antigenicity as expressed by the indirect fluorescent antibody (FA) title. A serotype d strain was shown to lose both antigenicity as determined by the FA reaction and capsular material as seen by electron microscopy with repeated in vitro passage. When 10% unheated rabbit serum was added to the medium, antigenicity and capsular material were restored.

  2. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  3. Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.

    1986-01-01

    Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.

  4. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    NASA Astrophysics Data System (ADS)

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  5. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  6. Damage Precursor Identification via Microstructure-Sensitive Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Wisner, Brian John

    Damage in materials is a complex and stochastic process bridging several time and length scales. This dissertation focuses on investigating the damage process in a particular class of precipitate-hardened aluminum alloys which is widely used in automotive and aerospace applications. Most emphasis in the literature has been given either on their ductility for manufacturing purposes or fracture for performance considerations. In this dissertation, emphasis is placed on using nondestructive evaluation (NDE) combined with mechanical testing and characterization methods applied at a scale where damage incubation and initiation is occurring. Specifically, a novel setup built inside a Scanning Electron Microscope (SEM) and retrofitted to be combined with characterization and NDE capabilities was developed with the goal to track the early stages of the damage process in this type of material. The characterization capabilities include Electron Backscatter Diffraction (EBSD) and Energy Dispersive Spectroscopy (EDS) in addition to X-ray micro-computed tomography (μ-CT) and nanoindentation, in addition to microscopy achieved by the Secondary Electron (SE) and Back Scatter Electron (BSE) detectors. The mechanical testing inside the SEM was achieved with the use of an appropriate stage that fitted within its chamber and is capable of applying both axial and bending monotonic and cyclic loads. The NDE capabilities, beyond the microscopy and μ-CT, include the methods of Acoustic Emission and Digital Image Correlation (DIC). This setup was used to identify damage precursors in this material system and their evolution over time and space. The experimental results were analyzed by a custom signal processing scheme that involves both feature-based analyses as well as a machine learning method to relate recorded microstructural data to damage in this material. Extensions of the presented approach to include information from computational methods as well as its applicability to other material systems are discussed.

  7. Advanced electron microscopy methods for the analysis of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Birajdar, B.; Peranio, N.; Eibl, O.

    2008-02-01

    Advanced electron microscopy methods used for the analysis of superconducting MgB2 wires and tapes are described. The wires and tapes were prepared by the powder in tube method using different processing technologies and thoroughly characterised for their superconducting properties within the HIPERMAG project. Microstructure analysis on μm to nm length scales is necessary to understand the superconducting properties of MgB2. For the MgB2 phase analysis on μm scale an analytical SEM, and for the analysis on nm scale a energy-filtered STEM is used. Both the microscopes were equipped with EDX detector and field emission gun. Electron microscopy and spectroscopy of MgB2 is challenging because of the boron analysis, carbon and oxygen contamination, and the presence of large number of secondary phases. Advanced electron microscopy involves, combined SEM, EPMA and TEM analysis with artefact free sample preparation, elemental mapping and chemical quantification of point spectra. Details of the acquisition conditions and achieved accuracy are presented. Ex-situ wires show oxygen-free MgB2 colonies (a colony is a dense arrangement of several MgB2 grains) embedded in a porous and oxygen-rich matrix, introducing structural granularity. In comparison, in-situ wires are generally more dense, but show inhibited MgB2 phase formation with significantly higher fraction of B-rich secondary phases. SiC additives in the in-situ wires forms Mg2Si secondary phases. The advanced electron microscopy has been used to extract the microstructure parameters like colony size, B-rich secondary phase fraction, O mole fraction and MgB2 grain size, and establish a microstructure-critical current density model [1]. In summary, conventional secondary electron imaging in SEM and diffraction contrast imaging in the TEM are by far not sufficient and advanced electron microscopy methods are essential for the analysis of superconducting MgB2 wires and tapes.

  8. Asbestos Analysis: What School Officials Should Know.

    ERIC Educational Resources Information Center

    Harris, Bonnie Lee

    1984-01-01

    Transmission electron microscopy and scanning electron microscopy are used to detect asbestos by analyzing filters from air tests. The modes of operation and types of samples examined by each are explained. Circumstances that a school board should consider when deciding whether to use these methods are discussed. (MLF)

  9. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    EPA Science Inventory

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  10. Keggin-type polyoxometalate nanosheets: synthesis and characterization via scanning transmission electron microscopy.

    PubMed

    Hiyoshi, Norihito

    2018-05-17

    Polyoxometalate nanosheets were synthesized at the gas/liquid interface of an aqueous solution of Keggin-type silicotungstic acid, cesium chloride, and n-octylamine. The structure of the nanosheets was elucidated via aberration-corrected scanning transmission electron microscopy at the atomic and molecular levels.

  11. Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.

    PubMed

    Zumelzu, E; Cabezas, C; Vera, A

    2003-01-01

    The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates.

  12. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  13. Amorphous silica maturation in chemically weathered clastic sediments

    NASA Astrophysics Data System (ADS)

    Liesegang, Moritz; Milke, Ralf; Berthold, Christoph

    2018-03-01

    A detailed understanding of silica postdepositional transformation mechanisms is fundamental for its use as a palaeobiologic and palaeoenvironmental archive. Amorphous silica (opal-A) is an important biomineral, an alteration product of silicate rocks on the surface of Earth and Mars, and a precursor material for stable silica phases. During diagenesis, amorphous silica gradually and gradationally transforms to opal-CT, opal-C, and eventually quartz. Here we demonstrate the early-stage maturation of several million year old opal-A from deeply weathered Early Cretaceous and Ordovician sedimentary rocks of the Great Artesian Basin (central Australia). X-ray diffraction, scanning electron microscopy, and electron probe microanalyses show that the mineralogical maturation of the nanosphere material is decoupled from its chemical properties and begins significantly earlier than micromorphology suggests. Non-destructive and locally highly resolved X-ray microdiffraction (μ-XRD2) reveals an almost linear positive correlation between the main peak position (3.97 to 4.06 Å) and a new asymmetry parameter, AP. Heating experiments and calculated diffractograms indicate that nucleation and growth of tridymite-rich nanodomains induce systematic peak shifts and symmetry variations in diffraction patterns of morphologically juvenile opal-A. Our results show that the asymmetry parameter traces the early-stage maturation of amorphous silica, and that the mineralogical opal-A/CT stage extends to smaller d-spacings and larger FWHM values than previously suggested.

  14. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    NASA Astrophysics Data System (ADS)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-06-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.

  15. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2018-02-13

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  16. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

    PubMed Central

    Bittencourt, Carla; Van Tendeloo, Gustaaf

    2015-01-01

    Summary A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms. PMID:26425406

  17. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors.

    PubMed

    Mari, Muriel; Bujny, Miriam V; Zeuschner, Dagmar; Geerts, Willie J C; Griffith, Janice; Petersen, Claus M; Cullen, Pete J; Klumperman, Judith; Geuze, Hans J

    2008-03-01

    Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.

  18. Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy.

    PubMed

    Hondow, Nicole; Brown, M Rowan; Starborg, Tobias; Monteith, Alexander G; Brydson, Rik; Summers, Huw D; Rees, Paul; Brown, Andy

    2016-02-01

    Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Functionalization of a nanostructured hydroxyapatite with Cu(II) compounds as a pesticide: in situ transmission electron microscopy and environmental scanning electron microscopy observations of treated Vitis vinifera L. leaves.

    PubMed

    Battiston, Enrico; Salvatici, Maria C; Lavacchi, Alessandro; Gatti, Antonietta; Di Marco, Stefano; Mugnai, Laura

    2018-02-19

    The present study evaluated a biocompatible material for plant protection with the aim of reducing the amount of active substance applied. We used a synthetic hydroxyapatite (HA) that has been studied extensively as a consequence of its bioactivity and biocompatibility. An aggregation between HA nanoparticles and four Cu(II) compounds applied to Vitis vinifera L. leaves as a pesticide was studied. Formulations were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS) and electron microscopy and applied in planta to verify particle aggregation and efficiency in controlling the pathogen Plasmopara viticola. The XRD patterns showed different crystalline phases dependig on the Cu(II) compound formulated with HA particles, DLS showed that nanostructured particles are stable as aggregates out of the nanometer range and, in all formulations, transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM) microscopy showed large aggregates which were partially nanostructured and were recognized as stable in their micrometric dimensions. Such particles did not show phytotoxic effects after their application in planta. A formulation based on HA and a soluble Cu(II) compound showed promising results in the control of the fungal pathogen, confirming the potential role of HA as an innovative delivery system of Cu(II) ions. The present work indicates the possibility of improving the biological activity of a bioactive substance by modifying its structure through an achievable formulation with a biocompatible material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. The sea urchin egg jelly coat is a three-dimensional fibrous network as seen by intermediate voltage electron microscopy and deep etching analysis.

    PubMed

    Bonnell, B S; Larabell, C; Chandler, D E

    1993-06-01

    The egg jelly (EJ) coat which surrounds the unfertilized sea urchin egg undergoes extensive swelling upon contact with sea water, forming a three-dimensional network of interconnected fibers extending nearly 50 microns from the egg surface. Owing to its solubility, this coat has been difficult to visualize by light and electron microscopy. However, Lytechinus pictus EJ coats remain intact, if the fixation medium is maintained at pH 9. The addition of alcian blue during the final dehydration step of sample preparation stains the EJ for visualization of resin embedded eggs by both light and electron microscopy. Stereo pairs taken of thick sections prepared for intermediate voltage electron microscopy (IVEM) produce a three-dimensional image of the EJ network, consisting of interconnected fibers decorated along their length by globular jelly components. Using scanning electron microscopy (SEM), we have shown that before swelling, EJ exists in a tightly bound network of jelly fibers, 50-60 nm in diameter. In contrast, swollen EJ consists of a greatly extended network whose fibrous components measure 10 to 30 nm in diameter. High resolution stereo images of hydrated jelly produced by the quick-freeze/deep-etch/rotary-shadowing technique (QF/DE/RS) show nearly identical EJ networks, suggesting that dehydration does not markedly alter the structure of this extracellular matrix.

  1. New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament

    PubMed Central

    Ribeiro, Ana R.; Barbaglio, Alice; Benedetto, Cristiano D.; Ribeiro, Cristina C.; Wilkie, Iain C.; Carnevali, Maria D. C.; Barbosa, Mário A.

    2011-01-01

    The mutable collagenous tissue (MCT) of echinoderms has the ability to undergo rapid and reversible changes in passive mechanical properties that are initiated and modulated by the nervous system. Since the mechanism of MCT mutability is poorly understood, the aim of this work was to provide a detailed morphological analysis of a typical mutable collagenous structure in its different mechanical states. The model studied was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was characterized in different functional states mimicking MCT mutability. Transmission electron microscopy, histochemistry, cryo-scanning electron microscopy, focused ion beam/scanning electron microscopy, and field emission gun-environmental scanning electron microscopy were used to visualize CDLs at the micro- and nano-scales. This investigation has revealed previously unreported differences in both extracellular and cellular constituents, expanding the current knowledge of the relationship between the organization of the CDL and its mechanical state. Scanning electron microscopies in particular provided a three-dimensional overview of CDL architecture at the micro- and nano-scales, and clarified the micro-organization of the ECM components that are involved in mutability. Further evidence that the juxtaligamental cells are the effectors of these changes in mechanical properties was provided by a correlation between their cytology and the tensile state of the CDLs. PMID:21935473

  2. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. [Changes in the peritoneum of the small intestine and diaphragm in experimental portal hypertension].

    PubMed

    Khoroshaev, V A; Vorozheĭkin, V M; Baĭbekov, I M

    1991-04-01

    Diaphragm and small intestine peritoneum morphology was studied in experimental portal hypertension in rats with the help of luminescent, transmission and scanning electron microscopy techniques. Structural organizations of these peritoneum portions and performance function were different: fluid transudation realized through the small intestine peritoneum and resorption occurred via diaphragm peritoneum. Morphological signs allowed to judge about the increasing of fluid transudation in abdominal cavity and diaphragmatic resorption in early period of portal hypertension. Morphological alterations appeared in peritoneum resorption sites (pumping diaphragmatic hatchs) according to progress of portal hypertension that indicated decompensation process of peritoneal fluid absorption and led to ascites.

  4. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    PubMed

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  5. The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law.

    PubMed

    Humphreys, C J

    2013-01-01

    Bragg's second law, which deserves to be more widely known, is recounted. The significance of Bragg's law in electron diffraction and microscopy is then discussed, with particular emphasis on differences between X-ray and electron diffraction. As an example of such differences, the critical voltage effect in electron diffraction is described. It is then shown that the lattice imaging of crystals in high-resolution electron microscopy directly reveals the Bragg planes used for the imaging process, exactly as visualized by Bragg in his real-space law. Finally, it is shown how in 2012, for the first time, on the centennial anniversary of Bragg's law, single atoms have been identified in an electron microscope using X-rays emitted from the specimen. Hence atomic resolution X-ray maps of a crystal in real space can be formed which give the positions and identities of the different atoms in the crystal, or of a single impurity atom in the crystal.

  6. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  7. [Small-cell anaplastic neuroendocrine carcinoma of the rectum].

    PubMed

    Molas, G; Bougis-de-Brux, M A; Potet, F

    1987-12-01

    A pediculed tumor of the rectum was discovered in a 63 years old man. Within the tumor adenomatous dysplastic proliferation was associated with a neuroendocrine small-cell anaplastic carcinoma. The neuroendocrine nature of the tumor was suspected on conventional optic microscopy and confirmed by a positive Grimelius technique. Specific typical granules were also found on electron microscopy. Immunohistochemical techniques using neurospecific enolase were also positive. Carcinomatous invasion was limited to the submucosa, but the surgical specimen showed that one lymph node was metastatic. Three months later, hepatic metastasis was suspected on physical examination and the patient died of hepatic failure ten months after the discovery of the tumor. Twenty-two similar cases were found in the literature: of these five cases were associated with benign adenomatous lesions. In all cases the patients died of early metastatic diffusion. This tumor raises the problems of diagnosis, terminology, classification and therapy: only aggressive chemotherapy, similar to that applied to the same type of carcinoma in the respiratory tract might improve prognosis.

  8. Nuclear fusion during yeast mating occurs by a three-step pathway.

    PubMed

    Melloy, Patricia; Shen, Shu; White, Erin; McIntosh, J Richard; Rose, Mark D

    2007-11-19

    In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in approximately 80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.

  9. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  10. Insights into the prominent effect of mahanimbine on Acanthamoeba castellanii: Cell profiling analysis based on microscopy techniques

    NASA Astrophysics Data System (ADS)

    Hashim, Fatimah; Amin, Nakisah Mat

    2017-02-01

    Mahanimbine (MH), has been shown to have antiamoeba properties. Therefore, the aim of this study was to assess the growth inhibitory mechanisms of MH on Acanthamoeba castellanii, a causative agents for Acanthamoeba keratitis. The IC50 value obtained for MH against A. castellanii was 1.18 µg/ml. Light and scanning electron microscopy observation showed that most cells were in cystic appearance. While transmission electron microscopy observation revealed changes at the ultrastructural level and fluorescence microscopy observation indicated the induction of apoptosis and autophagic activity in the amoeba cytoplasms. In conclusion, MH has very potent anti-amoebic properties on A. castellanii as is shown by cytotoxicity analyses based on microscopy techniques.

  11. Quantum dot formation by molecular beam epitaxy of Ge on Si(100)

    NASA Astrophysics Data System (ADS)

    Chaparro, Sergio Arturo

    1999-11-01

    A new technique for producing electron systems with quantum confinement in three dimensions, quantum dots, has been studied. These quantum dots are coherent islands spontaneously formed at the early stages of Ge/Si(100) epitaxy due to the misfit of the system. Our goal is to gain understanding and control of the growth process so uniform quantum dot ensembles can be created for possible use in optoelectronic devices. A UHV Molecular Beam Epitaxy (MBE) growth system was built and calibrated to grow our samples. The samples were prepared by depositing Ge onto a Si(100) surface cleaned by flash desorption of the native oxides. Varying the growth rates from 0.6 ML/min to 4.0 ML/min, the substrate temperature from 450°C to 600°C, and the coverage from 3.5 ML to 14 ML produces different sample morphologies. After growth, the samples were analyzed both in situ and ex situ. The in situ analysis consisted of Auger electron spectroscopy for elemental analysis and reflection high energy electron diffraction, for surface structure analysis. The ex situ analysis included atomic force microscopy (AFM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM). Many digital images were obtained from the microscope analysis. A novel, computer based, analysis was developed to extract the islands parameters from the microscope images. This data, which includes island area and average height for each island on every image, was used for a statistical analysis. Also from the data, island size distributions (histograms of island size) were generated. These measurements confirm that islands form after growth of a 3 ML wetting layer and that islands evolve as they grow. As more Ge is deposited these islands grow and as they grow they evolve from huts, square based pyramids, to domes, truncated pyramids, to dislocated domes. Our results show that the substrate temperature, deposition rate, and amount of deposited material are factors that affect the growth evolution. Higher growth temperature affects the size at which islands evolve from one type of island to another, also introduces new strain release mechanisms such as alloying and trench formation that compete with dislocation formation. Finally a detailed morphological characterization of the observed islands was done.

  12. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  13. The complete genome sequence of a second distinct betabaculovirus from the true armyworm, Mythimna unipuncta

    USDA-ARS?s Scientific Manuscript database

    The betabaculovirus Pseudaletia (Mythimna) sp. granulovirus #8 (MyspGV#8) was examined by electron microscopy, host barcoding PCR, and determination of the nucleotide sequence of its genome. Scanning and transmission electron microscopy revealed that the occlusion bodies of MyspGV#8 possessed the c...

  14. Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission electron microscopy and atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Nag, Soumya; Banerjee, Rajarshi

    2013-10-19

    The benefit of direct coupling of APT with TEM dark field imaging to investigate early stages of phase transformation in multicomponent alloys is demonstrated by analyzing alpha phase precipitated in a model Ti-10 at% Mo-10 at% Al alloy during annealing at 400oC. Through such a direct coupling approach a thermodynamically unexpected solute partitioning trend between beta matrix and alpha precipitate is observed in the early stages of precipitation, which is explained based on possible nucleation of alpha phase in the Ti rich (Mo and Al depleted regions) created as a result of phase separation in beta matrix. On further highermore » temperature annealing at 600oC for 1 hour, the alpha precipitates were shown to grow and get enriched in Al and further depleted in Mo reaching the thermodynamic equilibrium.« less

  15. Non-invasive toluene sensor for early diagnosis of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Rahul; Srivastava, Sudha, E-mail: sudha.srivastava@jiit.ac.in

    Here we present, quantification of volatile organic compounds in human breath for early detection of lung cancer to increase survival probability. Graphene oxide nanosheets synthesized by modified Hummer’s method were employed as a sensing element to detect the presence of toluene in the sample. Optical and morphological characterization of synthesized nanomaterial was performed by UV-Visible spectroscopy and scanning electron microscopy (SEM) respectively. Spectroscopic assay shows a linearly decreasing intensity of GO absorption peak with increasing toluene concentration with a linear range from 0-200 pM. While impedimetric sensor developed on a graphene oxide nanosheetsmodified screen printed electrodes displayed a decreasing electronmore » transfer resistance increasing toluene with much larger linear range of 0-1000 pM. Reported techniques are advantageous as these are simple, sensitive and cost effective, which can easily be extended for primary screening of other VOCs.« less

  16. Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua, E-mail: yc982@163.com; Li, Weifeng; Zhang, Shenbiao

    2015-01-15

    Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the hydration kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the phase development in the process of hydration. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second hydration rate of the aluminatemore » and ferrite phases, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the hydration of alite and reduces the pore size and porosity.« less

  17. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  18. Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification.

    PubMed

    Schipke, Julia; Brandenberger, Christina; Rajces, Alexandra; Manninger, Martin; Alogna, Alessio; Post, Heiner; Mühlfeld, Christian

    2017-04-01

    Fibrotic remodeling of the heart is a frequent condition linked to various diseases and cardiac dysfunction. Collagen quantification is an important objective in cardiac fibrosis research; however, a variety of different histological methods are currently used that may differ in accuracy. Here, frequently applied collagen quantification techniques were compared. A porcine model of early stage heart failure with preserved ejection fraction was used as an example. Semiautomated threshold analyses were imprecise, mainly due to inclusion of noncollagen structures or failure to detect certain collagen deposits. In contrast, collagen assessment by automated image analysis and light microscopy (LM)-stereology was more sensitive. Depending on the quantification method, the amount of estimated collagen varied and influenced intergroup comparisons. PicroSirius Red, Masson's trichrome, and Azan staining protocols yielded similar results, whereas the measured collagen area increased with increasing section thickness. Whereas none of the LM-based methods showed significant differences between the groups, electron microscopy (EM)-stereology revealed a significant collagen increase between cardiomyocytes in the experimental group, but not at other localizations. In conclusion, in contrast to the staining protocol, section thickness and the quantification method being used directly influence the estimated collagen content and thus, possibly, intergroup comparisons. EM in combination with stereology is a precise and sensitive method for collagen quantification if certain prerequisites are considered. For subtle fibrotic alterations, consideration of collagen localization may be necessary. Among LM methods, LM-stereology and automated image analysis are appropriate to quantify fibrotic changes, the latter depending on careful control of algorithm and comparable section staining. NEW & NOTEWORTHY Direct comparison of frequently applied histological fibrosis assessment techniques revealed a distinct relation of measured collagen and utilized quantification method as well as section thickness. Besides electron microscopy-stereology, which was precise and sensitive, light microscopy-stereology and automated image analysis proved to be appropriate for collagen quantification. Moreover, consideration of collagen localization might be important in revealing minor fibrotic changes. Copyright © 2017 the American Physiological Society.

  19. Molecular and ultrastructural analysis of forisome subunits reveals the principles of forisome assembly

    PubMed Central

    Müller, Boje; Groscurth, Sira; Menzel, Matthias; Rüping, Boris A.; Twyman, Richard M.; Prüfer, Dirk; Noll, Gundula A.

    2014-01-01

    Background and Aims Forisomes are specialized structural phloem proteins that mediate sieve element occlusion after wounding exclusively in papilionoid legumes, but most studies of forisome structure and function have focused on the Old World clade rather than the early lineages. A comprehensive phylogenetic, molecular, structural and functional analysis of forisomes from species covering a broad spectrum of the papilionoid legumes was therefore carried out, including the first analysis of Dipteryx panamensis forisomes, representing the earliest branch of the Papilionoideae lineage. The aim was to study the molecular, structural and functional conservation among forisomes from different tribes and to establish the roles of individual forisome subunits. Methods Sequence analysis and bioinformatics were combined with structural and functional analysis of native forisomes and artificial forisome-like protein bodies, the latter produced by expressing forisome genes from different legumes in a heterologous background. The structure of these bodies was analysed using a combination of confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the function of individual subunits was examined by combinatorial expression, micromanipulation and light microscopy. Key Results Dipteryx panamensis native forisomes and homomeric protein bodies assembled from the single sieve element occlusion by forisome (SEO-F) subunit identified in this species were structurally and functionally similar to forisomes from the Old World clade. In contrast, homomeric protein bodies assembled from individual SEO-F subunits from Old World species yielded artificial forisomes differing in proportion to their native counterparts, suggesting that multiple SEO-F proteins are required for forisome assembly in these plants. Structural differences between Medicago truncatula native forisomes, homomeric protein bodies and heteromeric bodies containing all possible subunit combinations suggested that combinations of SEO-F proteins may fine-tune the geometric proportions and reactivity of forisomes. Conclusions It is concluded that forisome structure and function have been strongly conserved during evolution and that species-dependent subsets of SEO-F proteins may have evolved to fine-tune the structure of native forisomes. PMID:24694827

  20. A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments.

    PubMed

    Tromp, R M; Fujikawa, Y; Hannon, J B; Ellis, A W; Berghaus, A; Schaff, O

    2009-08-05

    Addition of an electron energy filter to low energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM) instruments greatly improves their analytical capabilities. However, such filters tend to be quite complex, both electron optically and mechanically. Here we describe a simple energy filter for the existing IBM LEEM/PEEM instrument, which is realized by adding a single scanning aperture slit to the objective transfer optics, without any further modifications to the microscope. This energy filter displays a very high energy resolution ΔE/E = 2 × 10(-5), and a non-isochromaticity of ∼0.5 eV/10 µm. The setup is capable of recording selected area electron energy spectra and angular distributions at 0.15 eV energy resolution, as well as energy filtered images with a 1.5 eV energy pass band at an estimated spatial resolution of ∼10 nm. We demonstrate the use of this energy filter in imaging and spectroscopy of surfaces using a laboratory-based He I (21.2 eV) light source, as well as imaging of Ag nanowires on Si(001) using the 4 eV energy loss Ag plasmon.

  1. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    PubMed

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.

    PubMed

    Hammel, Ilan; Anaby, Debbie

    2007-09-01

    The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.

  3. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  4. The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs.

    PubMed

    Mikhailovich Irianov, Iurii; Vladimirovna Diuriagina, Olga; Iurevna Karaseva, Tatiana; Anatolevich Karasev, Evgenii

    2014-02-01

    The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase.

  5. Attosecond electron pulses for 4D diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2007-01-01

    In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (≈50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials. PMID:18000040

  6. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    PubMed

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.

    2016-01-01

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  8. Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

  9. Pitting corrosion of titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casillas, N.; Charlebois, S.; Smyrl, W.H.

    1994-03-01

    The breakdown of native and anodically grown oxide films on Ti electrodes is investigated by scanning electrochemical microscopy (SECM), video microscopy, transmission electron microscopy, and voltammetry. SECM is used to demonstrated that the oxidation of Br[sup [minus

  10. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  11. Low-temperature and conventional scanning electron microscopy of human urothelial neoplasms.

    PubMed

    Hopkins, D M; Morris, J A; Oates, K; Huddart, H; Staff, W G

    1989-05-01

    The appearance of neoplastic human urothelium viewed by low-temperature scanning electron microscopy (LTSEM) and conventional scanning electron microscopy (CSEM) was compared. Fixed, dehydrated neoplastic cells viewed by CSEM had well-defined, often raised cell junctions; no intercellular gaps; and varying degrees of pleomorphic surface microvilli. The frozen hydrated material viewed by LTSEM, however, was quite different. The cells had a flat or dimpled surface, but no microvilli. There were labyrinthine lateral processes which interdigitated with those of adjacent cells and outlined large intercellular gaps. The process of fixation and dehydration will inevitably distort cell contours and on theoretical grounds, the images of frozen hydrated material should more closely resemble the in vivo appearance.

  12. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black

    NASA Astrophysics Data System (ADS)

    Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai

    2018-07-01

    The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.

  13. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE PAGES

    Sun, Cheng; Sprouster, David J.; Hattar, K.; ...

    2018-02-09

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  14. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-01-01

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350

  15. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  16. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng; Sprouster, David J.; Hattar, K.

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  17. Understanding electron magnetic circular dichroism in a transition potential approach

    NASA Astrophysics Data System (ADS)

    Barthel, J.; Mayer, J.; Rusz, J.; Ho, P.-L.; Zhong, X. Y.; Lentzen, M.; Dunin-Borkowski, R. E.; Urban, K. W.; Brown, H. G.; Findlay, S. D.; Allen, L. J.

    2018-04-01

    This paper introduces an approach based on transition potentials for inelastic scattering to understand the underlying physics of electron magnetic circular dichroism (EMCD). The transition potentials are sufficiently localized to permit atomic-scale EMCD. Two-beam and three-beam systematic row cases are discussed in detail in terms of transition potentials for conventional transmission electron microscopy, and the basic symmetries which arise in the three-beam case are confirmed experimentally. Atomic-scale EMCD in scanning transmission electron microscopy (STEM), using both a standard STEM probe and vortex beams, is discussed.

  18. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  19. Gold nanoparticle uptake in whole cells in liquid examined by environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-02-01

    The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.

  20. Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina).

    PubMed

    Jud, Nathan A; Iglesias, Ari; Wilf, Peter; Gandolfo, Maria A

    2018-06-08

    The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well-represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses. Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature. We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide. Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps' affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  1. Breaking resolution limits in ultrafast electron diffraction and microscopy.

    PubMed

    Baum, Peter; Zewail, Ahmed H

    2006-10-31

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions.

  2. Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos

    PubMed Central

    Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg

    2010-01-01

    Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819

  3. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  4. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation

    Treesearch

    Q.Q. Wang; J.Y. Zhu; R. Gleisner; T.A. Kuster; U. Baxa; S.E. McNeil

    2012-01-01

    This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified (1) highly kinked, naturally...

  5. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  6. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  7. Synthesis of carbon-encapsulated metal nanoparticles from wood char

    Treesearch

    Yicheng Du; Chuji Wang; Hossein Toghiani; Zhiyong Cai; Xiaojian Liu; Jilei Zhang; Qiangu Yan

    2010-01-01

    Carbon-encapsulated metal nanoparticles were synthesized by thermal treatment of wood char, with or without transition metal ions pre-impregnated, at 900ºC to 1,100ºC. Nanoparticles with concentric multilayer shells were observed. The nanoparticles were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction...

  8. Low temperature–scanning electron microscopy to evaluate morphology and predation of Scolothrips sexmaculatus Pergande (Thysanoptera: Thripidae) against spider mites (Acari: Tetranychidae: Tetranychus species)

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...

  9. Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy

    ERIC Educational Resources Information Center

    Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.

    2009-01-01

    The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…

  10. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-11-01

    In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  11. Experiments in electron microscopy: from metals to nerves

    NASA Astrophysics Data System (ADS)

    Unwin, Nigel

    2015-04-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse.

  12. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  13. Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy

    DOE PAGES

    Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; ...

    2017-01-03

    Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. We show that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distributionmore » determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. Lastly, the absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.« less

  14. Brain Tissue Compartment Density Estimated Using Diffusion-Weighted MRI Yields Tissue Parameters Consistent With Histology

    PubMed Central

    Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi

    2015-01-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639

  15. Active control of bright electron beams with RF optics for femtosecond microscopy

    DOE PAGES

    Williams, J.; Zhou, F.; Sun, T.; ...

    2017-08-01

    A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less

  16. Active control of bright electron beams with RF optics for femtosecond microscopy

    PubMed Central

    Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.

    2017-01-01

    A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325

  17. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.

    2015-05-01

    Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1 immunolabeling. See DOI: 10.1039/c5nr01539a

  18. Transmission electron microscopy of the preclinical phase of experimental phytophotodermatitis.

    PubMed

    Almeida, Hiram Larangeira de; Sotto, Miriam Nakagami; Castro, Luis Antonio Suita de; Rocha, Nara Moreira

    2008-06-01

    To examine the epidermis in induced phytophotodermatitis using transmission electron microscopy in order to detect histologic changes even before lesions are visible by light microscopy. In the first six hours after the experimental induction of phytophotodermatitis, no changes are detectable by light microscopy. Only after 24 hours can keratinocyte necrosis and epidermal vacuolization be detected histologically, and blisters form by 48 hours. The dorsum of four adult rats (Rattus norvegicus) was manually epilated. After painting the right half of the rat with the peel juice of Tahiti lemon, they were exposed to sunlight for eight minutes under general anesthesia. The left side was used as the control and exposed to sunlight only. Biopsies were performed immediately after photoinduction and one and two hours later, and the tissue was analyzed by transmission electron microscopy. No histological changes were seen on the control side. Immediately after induction, vacuolization in keratinocytes was observed. After one hour, desmosomal changes were also observed in addition to vacuolization. Keratin filaments were not attached to the desmosomal plaque. Free desmosomes and membrane ruptures were also seen. At two hours after induction, similar changes were found, and granular degeneration of keratin was also observed. The interaction of sunlight and psoralens generates a photoproduct that damages keratinocyte proteins, leading to keratinocyte necrosis and blister formation. Transmission electron microscopy can detect vacuolization, lesions of the membrane, and desmosomes in the first two hours after experimental induction of phytophotodermatitis.

  19. In Vitro Evaluation of the Biological Responses of Canine Macrophages Challenged with PLGA Nanoparticles Containing Monophosphoryl Lipid A.

    PubMed

    Guldner, Delphine; Hwang, Julianne K; Cardieri, Maria Clara D; Eren, Meaghan; Ziaei, Parissa; Norton, M Grant; Souza, Cleverson D

    2016-01-01

    Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been considerably studied as a promising biodegradable delivery system to induce effective immune responses and to improve stability, safety, and cost effectiveness of vaccines. The study aimed at evaluating early inflammatory effects and cellular safety of PLGA NPs, co-encapsulating ovalbumin (PLGA/OVA NPs), as a model antigen and the adjuvant monophosphoryl lipid A (PLGA/MPLA NPs) as an adjuvant, on primary canine macrophages. The PLGA NPs constructs were prepared following the emulsion-solvent evaporation technique and further physic-chemically characterized. Peripheral blood mononuclear cells were isolated from canine whole blood by magnetic sorting and further cultured to generate macrophages. The uptake of PLGA NP constructs by macrophages was demonstrated by flow cytometry, transmission electron microscopy and confocal microscopy. Macrophage viability and morphology were evaluated by trypan blue exclusion and light microscopy. Macrophages were immunophenotyped for the expression of MHC-I and MHC-II and gene expression of Interleukin-10 (IL-10), Interleukin-12 (IL-12p40), and tumor necrosis factor alpha (TNF-α) were measured. The results showed that incubation of PLGA NP constructs with macrophages revealed effective early uptake of the PLGA NPs without altering the viability of macrophages. PLGA/OVA/MPLA NPs strongly induced TNF-α and IL-12p40 expression by macrophages as well as increase relative expression of MHC-I but not MHC-II molecules. Taken together, these results indicated that PLGA NPs with addition of MPLA represent a good model, when used as antigen carrier, for further, in vivo, work aiming to evaluate their potential to induce strong, specific, immune responses in dogs.

  20. Cell migration is another player of the minute virus of mice infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2014-11-15

    The parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation. Using a combination of fluorescence and electron microscopy, we found that various parameters of the cell migration process affect MVMp infection. We show that, after binding to the plasma membrane, MVMp particles rapidly cluster at the leading edgemore » of migrating cells, which exhibit higher levels of MVMp uptake than non-motile cells. Moreover, promoting cell migration on a fibronectin matrix increased MVMp infection, and induction of epithelial–mesenchymal transition allowed MVMp replication in non-permissive epithelial cells. Hence, we propose that cell migration influences the early stages of MVMp infection. - Highlights: • We document early steps of MVMp infection. • We report that a fibronectin matrix promotes MVMp infection. • We show that cellular migration plays a role in MVMp uptake. • We show that epithelial–mesenchymal transition allows MVMp replication.« less

  1. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus.

    PubMed

    Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang

    2016-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.

  2. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.

  3. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

  4. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  5. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  6. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  7. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    PubMed

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  8. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    DTIC Science & Technology

    2015-03-30

    for the structural of the atomically sharp interface between hBN and Bi2Te3. Finally, we have developed unprecedentedly clean graphene supercoductor...crystals by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and...by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and Bi2Te3

  9. Epitaxial Growth and Electronic Structure of Half Heuslers Co1-xNixTiSb (001), Ni1-xCoxTiSn, and PtLuSb

    DTIC Science & Technology

    2016-01-09

    studied in detail using scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the...angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room temperature was comparable...scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room

  10. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Sara; Sparrenbom, Charlotte; Fiandaca, Gianluca; Lindskog, Anders; Olsson, Per-Ivar; Dahlin, Torleif; Rosqvist, Håkan

    2017-02-01

    Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra of the time decays and inversion for Cole-Cole parameters. The aims of this study is to investigate if large-scale geoelectrical variations as well as small-scale structural and compositional variations exist within the Kristianstad limestone, and to evaluate the usefulness of Cole-Cole inverted IP data in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy, and the results showed that varying amounts of pyrite, glauconite and clay matrix were present at different levels in the limestone. The local high IP anomalies in the limestone could be caused by these minerals otherwise the IP responses were generally weak. There were also differences in the texture of the limestone at different levels, governed by fossil shapes and composition, proportions of calcareous cement and matrix as well as amount of silicate grains. Textural variations may have implications on the variation in Cole-Cole relaxation time and frequency factor. However, more research is needed in order to directly connect microgeometrical properties in limestone to spectral IP responses. The results from this study show that it is possible to recover useable spectral information from early decay times. We also show that under certain conditions (e.g. relatively short relaxation times in the subsurface), it is possible to extract spectral information from time domain IP data measured with on-off times as short as 1 s.

  11. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.

    PubMed

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J

    2017-10-01

    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 4D visualization of embryonic, structural crystallization by single-pulse microscopy

    PubMed Central

    Kwon, Oh-Hoon; Barwick, Brett; Park, Hyun Soon; Baskin, J. Spencer; Zewail, Ahmed H.

    2008-01-01

    In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding. PMID:18562291

  14. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  15. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    PubMed

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  16. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the orthorhombic phase of KNbO3 by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Tsuda, Kenji; Tanaka, Michiyoshi

    2015-08-01

    Rhombohedral nanostructures previously found in the orthorhombic phase of KNbO3, by convergent-beam electron diffraction [Tsuda et al., Appl. Phys. Lett. 102, 051913 (2013)], have been investigated by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction. Two-dimensional distributions of the rhombohedral nanostructures, or nanometer-scale spatial fluctuations of polarization clusters, have been successfully visualized. The correlation length of the observed spatial fluctuations of local polarizations is related to the cpc/apc ratio and the transition entropy.

  17. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; ...

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  18. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  19. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    PubMed

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  1. 4D multiple-cathode ultrafast electron microscopy

    PubMed Central

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.

    2014-01-01

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261

  2. 4D multiple-cathode ultrafast electron microscopy.

    PubMed

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H

    2014-07-22

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

  3. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging†

    PubMed Central

    Patterson, Joseph P.; Sanchez, Ana M.; Petzetakis, Nikos; Smart, Thomas P.; Epps, Thomas H.; Portman, Ian

    2013-01-01

    Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies. PMID:24049544

  4. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    PubMed

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Theory and applications of free-electron vortex states

    NASA Astrophysics Data System (ADS)

    Bliokh, K. Y.; Ivanov, I. P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M. A.; Schattschneider, P.; Nori, F.; Verbeeck, J.

    2017-05-01

    Both classical and quantum waves can form vortices : entities with helical phase fronts and circulating current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translating theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.

  6. Constitutive expression and silencing of a novel seed specific calcium dependent protein kinase gene in rice reveals its role in grain filling.

    PubMed

    Manimaran, P; Mangrauthia, Satendra K; Sundaram, R M; Balachandran, S M

    2015-02-01

    Ca(2+) sensor protein kinases are prevalent in most plant species including rice. They play diverse roles in plant signaling mechanism. Thirty one CDPK genes have been identified in rice and some are functionally characterized. In the present study, the newly identified rice CDPK gene OsCPK31 was functionally validated by overexpression and silencing in Taipei 309 rice cultivar. Spikelets of overexpressing plants showed hard dough stage within 15d after pollination (DAP) with rapid grain filling and early maturation. Scanning electron microscopy of endosperm during starch granule formation confirmed early grain filling. Further, seeds of overexpressing transgenic lines matured early (20-22 DAP) and the average number of maturity days reduced significantly. On the other hand, silencing lines showed more number of unfilled spikelet without any difference in maturity duration. It will be interesting to further decipher the role of OsCPK31 in biological pathways associated with distribution of photosynthetic assimilates during grain filling stage. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Diagenetic history of late Oligocene-early Miocene carbonates in East Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Zainal Abidin, N. S.; Raymond, R. R.; Bashah, N. S. I.

    2017-10-01

    Limestones are particularly susceptible to drastic early diagenesis modifications, mainly cementation and dissolution. During the early Miocene, a major tectonic deformation has caused a widespread of uplift in Sabah. This has resulted change in depositional environment from deep to shallow marine, which favours the deposition of Gomantong Limestone. This study aims to investigate the diagenetic history of Gomantong Limestone in East Sabah. Thorough understanding of the diagenetic processes may provide data to unravel the tectonic activities which affected the reservoir quality of the carbonates. Combining the data from comprehensive petrographic analysis, and Scanning Electron Microscopy (SEM) of 30 samples, two main cements type were identified. These are microcrystalline cement and Mg-calcite cement of granular and blocky mosaics which are dominantly seen in all samples. The sequence of diagenesis events are determined as (1) micritization; (2) grain scale compaction; (3) cementation (pore-filling); (4) mechanical compaction and cementation infilling fractures and (5) chemical compaction. These diagenetic events are interpreted as reflection of changes in diagenetic environment from shallow marine to deep burial. The massive cementation in the Gomantong Limestone has resulted into a poor reservoir quality.

  8. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke

    2014-01-01

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  9. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  10. Reflections on the value of electron microscopy in the study of heterogeneous catalysts

    PubMed Central

    2017-01-01

    Electron microscopy (EM) is arguably the single most powerful method of characterizing heterogeneous catalysts. Irrespective of whether they are bulk and multiphasic, or monophasic and monocrystalline, or nanocluster and even single-atom and on a support, their structures in atomic detail can be visualized in two or three dimensions, thanks to high-resolution instruments, with sub-Ångstrom spatial resolutions. Their topography, tomography, phase-purity, composition, as well as the bonding, and valence-states of their constituent atoms and ions and, in favourable circumstances, the short-range and long-range atomic order and dynamics of the catalytically active sites, can all be retrieved by the panoply of variants of modern EM. The latter embrace electron crystallography, rotation and precession electron diffraction, X-ray emission and high-resolution electron energy-loss spectra (EELS). Aberration-corrected (AC) transmission (TEM) and scanning transmission electron microscopy (STEM) have led to a revolution in structure determination. Environmental EM is already playing an increasing role in catalyst characterization, and new advances, involving special cells for the study of solid catalysts in contact with liquid reactants, have recently been deployed. PMID:28265196

  11. Changes in fine structure of pericytes and novel desmin-immunopositive perivascular cells during postnatal development in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Horiguchi, Kotaro; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2013-09-01

    Pericytes are perivascular cells associated with capillaries. We previously demonstrated that pericytes, identified by desmin immunohistochemistry, produce type I and III collagens in the anterior pituitary gland of adult rats. In addition, we recently used desmin immunoelectron microscopy to characterize a novel type of perivascular cell, dubbed a desmin-immunopositive perivascular cell, in the anterior pituitary. These two types of perivascular cells differ in fine structure. The present study attempted to characterize the morphological features of pituitary pericytes and novel desmin-immunopositive perivascular cells during postnatal development, in particular their role in collagen synthesis. Desmin immunostaining revealed numerous perivascular cells at postnatal day 5 (P5) and P10. Transmission electron microscopy showed differences in the fine structure of the two cell types, starting at P5. Pericytes had well-developed rough endoplasmic reticulum and Golgi apparatus at P5 and P10. The novel desmin-immunopositive perivascular cells exhibited dilated cisternae of rough endoplasmic reticulum at P5-P30. In addition, during early postnatal development in the gland, a number of type I and III collagen-expressing cells were observed, as were high expression levels of these collagen mRNAs. We conclude that pituitary pericytes and novel desmin-immunopositive perivascular cells contain well-developed cell organelles and that they actively synthesize collagens during the early postnatal period.

  12. Composition, Preservation and Production Technology of Augusta Emerita Roman Glasses from the First to the Sixth Century a.d.

    NASA Astrophysics Data System (ADS)

    Palomar, Teresa; Garcia-Heras, Manuel; Sabio, Rafael; Rincon, Jesus-Maria; Villegas, Maria-Angeles

    This paper presents the results derived from an archaeometric study undertaken on glass samples from the Roman town of Augusta Emerita (Mérida, Spain). The main goal of the research was to provide for the first time some compositional and technological insights into the glass finds unearthed in this town. Glass samples from different sites and chronology, either from inside or from outside the perimeter of the ancient town and from the first to the sixth century AD, were analyzed and characterized through optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS), X-ray fluorescence (XRF) spectrometry and VIS spectrophotometry. Resulting data indicated that all the samples studied were natron-based soda lime silicate glasses, even though two chronological and compositionally distinct groups were distinguished. One composed of Early Empire glasses and a second one composed of glasses from the fourth century AD onward, which was characterized by the presence of the so-called HIMT (high iron, manganese, and titanium) glasses. Comparison with coeval glasses suggested that Augusta Emerita shared the same trade glass circles than other contemporary Roman towns, within the frame of a secondary production scale. Finally, some outstanding differences connected to composition and chronology were found, since Late Roman glasses presented a higher and distinct degree of alteration than Early Empire ones.

  13. Nanomorphology of P3HT:PCBM-based absorber layers of organic solar cells after different processing conditions analyzed by low-energy scanning transmission electron microscopy.

    PubMed

    Pfaff, Marina; Klein, Michael F G; Müller, Erich; Müller, Philipp; Colsmann, Alexander; Lemmer, Uli; Gerthsen, Dagmar

    2012-12-01

    In this study the nanomorphology of P3HT:PC61BM absorber layers of organic solar cells was studied as a function of the processing parameters and for P3HT with different molecular weight. For this purpose we apply scanning transmission electron microscopy (STEM) at low electron energies in a scanning electron microscope. This method exhibits sensitive material contrast in the high-angle annular dark-field (HAADF) mode, which is well suited to distinguish materials with similar densities and mean atomic numbers. The images taken with low-energy HAADF STEM are compared with conventional transmission electron microscopy and atomic force microscopy images to illustrate the capabilities of the different techniques. For the interpretation of the low-energy HAADF STEM images, a semiempirical equation is used to calculate the image intensities. The experiments show that the nanomorphology of the P3HT:PC61BM blends depends strongly on the molecular weight of the P3HT. Low-molecular-weight P3HT forms rod-like domains during annealing. In contrast, only small globular features are visible in samples containing high-molecular-weight P3HT, which do not change significantly after annealing at 150°C up to 30 min.

  14. Conformational Switching in PolyGln Amyloid Fibrils Resulting from a Single Amino Acid Insertion

    PubMed Central

    Huang, Rick K.; Baxa, Ulrich; Aldrian, Gudrun; Ahmed, Abdullah B.; Wall, Joseph S.; Mizuno, Naoko; Antzutkin, Oleg; Steven, Alasdair C.; Kajava, Andrey V.

    2014-01-01

    The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design. PMID:24853742

  15. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis.

    PubMed

    Muto, Shunsuke; Tatsumi, Kazuyoshi

    2017-02-08

    Advancements in the field of renewable energy resources have led to a growing demand for the analysis of light elements at the nanometer scale. Detection of lithium is one of the key issues to be resolved for providing guiding principles for the synthesis of cathode active materials, and degradation analysis after repeated use of those materials. We have reviewed the different techniques currently used for the characterization of light elements such as high-resolution transmission electron microscopy, scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). In the present study, we have introduced a methodology to detect lithium in solid materials, particularly for cathode active materials used in lithium-ion battery. The chemical states of lithium were isolated and analyzed from the overlapping multiple spectral profiles, using a suite of STEM, EELS and hyperspectral image analysis. The method was successfully applied in the chemical state analyses of hetero-phases near the surface and grain boundary regions of the active material particles formed by chemical reactions between the electrolyte and the active materials. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Weak-beam scanning transmission electron microscopy for quantitative dislocation density measurement in steels.

    PubMed

    Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi

    2017-04-01

    To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Focus on membrane differentiation and membrane domains in the prokaryotic cell.

    PubMed

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology. More recently, light microscopy in combination with the use of fluorescent dyes has become an attractive technique for protein localization with the natural membrane. However, the resolution problem in light microscopy remains and overinterpretation of observed phenomena is a pitfall. Thus, light microscopy as a stand-alone technique is not sufficient to prove, for instance, the long-range helical distribution of proteins in membrane such as MinD spirals in Bacillus subtilis. Electron tomography is an emerging electron microscopy technique that can provide three-dimensional reconstructions of small, nonchemically fixed bacteria. It will become a useful tool for studying prokaryotic membranes in more detail and is expected to collect information complementary to those of advanced light microscopy. Together, microscopy techniques can meet the challenge of the coming years: to specify membrane structures in more detail and to bring them to the level of specific protein-protein interactions. Copyright © 2013 S. Karger AG, Basel.

  18. Characterizing individual particles on tree leaves using computer automated scanning electron microscopy

    Treesearch

    D. L. Johnson; D. J. Nowak; V. A. Jouraeva

    1999-01-01

    Leaves from twenty-three deciduous tree species and five conifer species were collected within a limited geographic range (1 km radius) and evaluated for possible application of scanning electron microscopy and X-ray microanalysis techniques of individual particle analysis (IPA). The goal was to identify tree species with leaves suitable for the automated...

  19. Observing Tin-Lead Alloys by Scanning Electron Microscopy: A Physical Chemistry Experiment Investigating Macro-Level Behaviors and Micro-Level Structures

    ERIC Educational Resources Information Center

    Wang, Yue; Xu, Xinhua; Wu, Meifen; Hu, Huikang; Wang, Xiaogang

    2015-01-01

    Scanning electron microscopy (SEM) was introduced into undergraduate physical chemistry laboratory curriculum to help students observe the phase composition and morphology characteristics of tin-lead alloys and thus further their understanding of binary alloy phase diagrams. The students were captivated by this visual analysis method, which…

  20. Detection of parvoviruses in wolf feces by electron microscopy

    USGS Publications Warehouse

    Muneer, M.A.; Farah, I.O.; Pomeroy, K.A.; Goyal, S.M.; Mech, L.D.

    1988-01-01

    One hundred fifteen wolf (Canis lupus) feces were collected between 1980 and 1984 from northeastern Minnesota and were examined for canine parvovirus by negative contrast electron microscopy. Of these, seven (6%) samples revealed the presence of parvovirus. Some of these viruses were able to grow in cell cultures forming intranuclear inclusion bodies and giant cells.

Top