Sample records for electron microscopy reduction

  1. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  2. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  3. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  4. Crystallographic texture and earing behavior analysis for different second cold reductions of double-reduction tinplate

    NASA Astrophysics Data System (ADS)

    Liao, Lu-hai; Zheng, Xiao-fei; Kang, Yong-lin; Liu, Wei; Yan, Yan; Mo, Zhi-ying

    2018-06-01

    Since the production of tinplate with non-earing properties is difficult, especially when it is produced via the double-reduction process, the optimal degree of second cold reduction is particularly important for achieving desirable drawing properties. The evolution of texture and the earing propensity of double-reduction tinplate with different extents of second reduction were investigated in this study. Optical microscopy and scanning electron microscopy were used to observe the changes in the microstructure at various extents of reduction. Two common testing methods, X-ray diffraction (XRD) and electron backscatter diffraction, were used to investigate the texture of the specimens, which revealed the effects of deformation percentage on the final texture development and the change in the grain boundary. The earing rate was determined via earing tests involving measurement of the height of any ear. The results obtained from both XRD analyses and earing tests revealed the same ideal value for the second cold reduction on the basis of the relationship between crystallographic texture and the degree of earing.

  5. Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Glucose.

    PubMed

    Pan, Hui; Liu, Ruiqi; Li, Guanglong; Wang, Xiaodong; Ding, Tao

    2018-05-01

    In this paper, we develop a simple and facile approach to prepare graphene nanosheets through chemical reduction with glucose as reducing agent and modification agent. The reduced and modified graphene by glucose (denoted as g-rGO) was characterized with techniques of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. It is found that, besides the desired reduction capability to graphene oxide (denoted as GO), glucose plays an important role as a modifying reagent in stabilizing the as-prepared graphene nanosheets simultaneously and the g-rGO exhibits good dispersibility and stability in water and waterborne polyurethane matrix (denoted as WPU). Moreover, the g-rGO can improve evidently the mechanical properties, weather ability and water resistance of WPU.

  6. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    PubMed

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  7. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    DOE PAGES

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻ aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻ aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the ratemore » of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻ aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻ aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less

  8. Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Jayashree

    2012-05-01

    Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.

  9. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    NASA Astrophysics Data System (ADS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-12-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.

  10. Reduction of aqueous Crvi using nanoscale zero-valent iron dispersed by high energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-09-01

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  11. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  12. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    PubMed

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  13. Research on the Ordered Mesoporous Silica for Tobacco Harm Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Y Li, Z.; Ding, J. X.; Hu, Z. J.; Liu, Z.; Zhou, G.; Huang, T. H.

    2017-12-01

    For reducting tobacco harm, this paper prepared an ordered mesoporous silica by using triblock copolymer Pluronic P123 as template. The property of this material was characterized by the X-ray scattering spectrum(XRD), Transmission electron microscopy(TEM), Scanning electron microscopy (SEM) and Nitrogen adsorption/desorption. Then this ordered mesoporous silica was added into the cigarette filter in order to researching its effect of cigarette harm index. The result shows that the feature of SBA-15 was grain morphology, ordered arrangement, tubular porous 2-D hexagonal structure. The application of SBA-15 in cigarette filter can selectively reduce harmful components in cigarette smoke such as crotonaldehyde, hydrogen cyanide, benzo pyrene and tar. The synthesized SBA-15 could properly reduce cigarette harm index.

  14. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    NASA Astrophysics Data System (ADS)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06734k

  15. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    NASA Astrophysics Data System (ADS)

    Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui

    2017-01-01

    Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  16. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector.

    PubMed

    Takeda, Seiji; Kuwauchi, Yasufumi; Yoshida, Hideto

    2015-04-01

    Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness

    NASA Astrophysics Data System (ADS)

    Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.

  18. Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy.

    PubMed

    Li, Jiao; Ding, Tian; Liao, Xinyu; Chen, Shiguo; Ye, Xingqian; Liu, Donghong

    2017-09-01

    This study evaluated the synergetic effects of ultrasound and slightly acidic electrolyzed water (SAEW) on the inactivation of Staphylococcus aureus using flow cytometry and electron microscopy. The individual ultrasound treatment for 10min only resulted in 0.36logCFU/mL reductions of S. aureus, while the SAEW treatment alone for 10min resulted in 3.06logCFU/mL reductions. The log reductions caused by combined treatment were enhanced to 3.68logCFU/mL, which were greater than the sum of individual treatments. This phenomenon was referred to as synergistic effects. FCM analysis distinguished live and dead cells as well as revealed dynamic changes in the physiological states of S. aureus after different treatments. The combined treatment greatly reduced the number of viable but nonculturable (VBNC) bacteria to 0.07%; in contrast, a single ultrasound treatment for 10min induced the formation of VBNC cells to 45.75%. Scanning and transmission electron microscopy analysis revealed that greater damage to the appearance and ultrastructure of S. aureus were achieved after combined ultrasound-SAEW treatment compared to either treatment alone. These results indicated that combining ultrasound with SAEW is a promising sterilization technology with potential uses for environmental remediation and food preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Reduction of aqueous CrVI using nanoscale zero-valent iron dispersed by high energy electron beam irradiation.

    PubMed

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-10-21

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of CrVI to CrIII in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  20. Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy

    NASA Astrophysics Data System (ADS)

    Ferdous, M. S.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Hersee, S. D.

    2006-05-01

    The density of dislocations in n-type GaN was measured by photoelectrochemical etching. A 10× reduction in dislocation density was observed compared to planar GaN grown at the same time. Cross-sectional transmission electron microscopy studies indicate that defect reduction is due to the mutual cancellation of dislocations with equal and opposite Burger's vectors. The nanoheteroepitaxy sample exhibited significantly higher photoluminescence intensity and higher electron mobility than the planar reference sample.

  1. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography.

    PubMed

    Baier, Sina; Damsgaard, Christian D; Klumpp, Michael; Reinhardt, Juliane; Sheppard, Thomas; Balogh, Zoltan; Kasama, Takeshi; Benzi, Federico; Wagner, Jakob B; Schwieger, Wilhelm; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2017-06-01

    When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

  2. Simple synthesis of MoS{sub 2} inorganic fullerene-like nanomaterials from MoS{sub 2} amorphous nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; China Faw Group Corporation R and D Center, Changchun, 130011; Yang Haibin

    The amorphous MoS{sub 2} nanoparticles have been synthesized by a simple oxidation-reduction reaction in an aqueous solution. A series of products with different morphologies, such as MoS{sub 2} nanospheres, inorganic fullerene-like nanospheres, nanorods and Mo bended rods, can be obtained by annealing the amorphous MoS{sub 2} nanoparticles under N{sub 2} atmosphere under 400-1200 deg. C. These products have been characterized by X-ray diffraction, field emission scanning electronic microscopy, transmission electron microscopy and high-resolution transmission electron microscopy in detail. The possible transformation mechanism for the structure has been discussed based on the experimental results. In addition, the optical properties of IF-MoS{submore » 2} have also been performed by UV-vis absorption spectroscopy.« less

  3. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and Its Catalytic Activity in the Reduction of Nitro Compounds

    PubMed Central

    Mendes, Marta; Pombeiro, Armando J. L.

    2018-01-01

    Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl4 with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics. PMID:29748502

  4. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds.

    PubMed

    Alegria, Elisabete C B A; Ribeiro, Ana P C; Mendes, Marta; Ferraria, Ana M; do Rego, Ana M Botelho; Pombeiro, Armando J L

    2018-05-10

    Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl₄ with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet⁻visible spectroscopy (UV⁻vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics.

  5. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Temperature and pH effect on reduction of graphene oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tai, Guoan; Zeng, Tian; Li, Hongxiang; Liu, Jinsong; Kong, Jizhou; Lv, Fuyong

    2014-09-01

    Reduced graphene oxides (RGOs) have usually been obtained by hydrazine reduction, but hydrazine-related compounds are corrosive, highly flammable and very hazardous, and the obtained RGOs heavily aggregated. Here we investigated extensively the effect of temperature and pH value on the structure of RGOs in hydrothermal environments without any reducing agents. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra showed that reduction rate of GOs remarkably increased with the temperature from 100 to 180 °C and with pH value from 3 to 10. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) exhibited the structural transition of the RGOs. Energy-dispersive x-ray analysis (EDX) showed the reduction degree of the RGO samples quantitatively. The results demonstrate that the GOs can be reduced controllably by a hydrothermal reduction process at pH value of 10 at 140 °C, and the large-scale RGOs are cut into small nanosheets with size from several to a few tens of nanometers with increasing temperature and duration. This study provides a feasible approach to controllably reduce GO with different nanostructures such as porous structures and quantum dots for applications in optoelectronics and biomedicals.

  7. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries.

    PubMed

    Lu, Liqiang; Andela, Paul; De Hosson, Jeff Th M; Pei, Yutao

    2018-05-25

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys.

  8. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries

    PubMed Central

    2018-01-01

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys. PMID:29911687

  9. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei

    2013-05-01

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.

  10. Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI)

    NASA Astrophysics Data System (ADS)

    Sun, Qing; Li, Hui; Zheng, Shuilin; Sun, Zhiming

    2014-08-01

    In this paper, the TiO2 nanoparticles were immobilized on diatomite (DIA) via a typical hydrolysis precipitation process using TiCl4 as precursor. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). TiO2 nanoparticles with the average grain size of around 7-14 nm were well deposited on the surface of diatomite. The photocatalytic activity toward the reduction of aqueous Cr (VI) was demonstrated under UV light. The influence of initial pH values, catalyst amount, illumination intensity and initial concentration of Cr (VI) on photocatalytic reduction of Cr (VI) were investigated. Compared with the commercial TiO2 (P25, Degussa), the TiO2/DIA composites had better reactive activity because of their relatively higher adsorption capacity. Furthermore, the prepared photocatalyst exhibited relatively good photocatalytic stability depending on the reusability tests.

  11. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes.

    PubMed

    Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei

    2013-05-21

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.

  12. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Alizadeh, Mohammad; Bagherzadeh, Mojtaba

    2016-03-15

    Through this manuscript the green synthesis of palladium nanoparticles supported on reduced graphene oxide (Pd NPs/RGO) under the mild conditions through reduction of the graphene oxide and Pd(2+) ions using barberry fruit extract as reducing and stabilizing agent is reported. The as-prepared Pd NPs/RGO was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd NPs/RGO could be used as an efficient and heterogeneous catalyst for reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  14. Yttria catalyzed microstructural modifications in oxide dispersion strengthened V-4Cr-4Ti alloys synthesized by field assisted sintering technique

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran; Verma, Shailendra Kumar; Dash, Biswaranjan; Agrawal, Priyanka; Subramanian, Karthikeyan

    2017-08-01

    The present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V-4Cr-4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V-4Cr-4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V-4Cr-4Ti) with and without yttria addition has resulted in single phase α-V (V-4Cr-4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr-V and Ti-V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α-V alloys. High temperature compression test of 0.9 at% yttria dispersed α-V alloy reveals a glassy behaviour.

  15. Co3O4/CoP composite hollow polyhedron: A superior catalyst with dramatic efficiency and stability for the room temperature reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Li, Xiangqing; Qin, Lixia; Mu, Jin; Kang, Shi-Zhao

    2018-03-01

    In the present work, Co3O4/CoP composite hollow polyhedrons were prepared and characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. Then, the catalytic activity of the as-prepared Co3O4/CoP hollow polyhedrons was evaluated for the borohydride-assisted reduction of 4-nitrophenol at room temperature. The results indicate that the as-prepared Co3O4/CoP hollow polyhedrons are an efficient recyclable catalyst for the reduction of 4-nitrophenol. When the 4-nitrophenol initial concentration is 1.0 × 10-4 mol L-1 (100 mL), almost 100% 4-nitrophenol can be reduced within 3 min in the presence of the Co3O4/CoP hollow polyhedrons. The apparent rate constant of the 4-nitrophenol reduction is 1.61 min-1 at room temperature, and the activity factor is about 5.37 × 104 mL min-1 g-1, which is almost two times higher than that over Ag nanoparticles. Finally, the catalytic mechanism was preliminarily discussed. It is found that CoP plays an important role in the catalytic process. Here, CoP serves as active sites, which leads to efficient formation of hydrogen atoms from BH4- and fast electron transfer.

  16. GePb Alloy Growth Using Layer Inversion Method

    NASA Astrophysics Data System (ADS)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-04-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  17. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.

  18. GePb Alloy Growth Using Layer Inversion Method

    NASA Astrophysics Data System (ADS)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-07-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  19. Structural changes in graphene oxide thin film by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Lakshmi, G. B. V. S.; Kumar, Sunil; Tripathi, Ambuj; Avasthi, D. K.

    2016-07-01

    Although we have a whole class of 2D materials, graphene has drawn much attention for its excellent electronic, optical, thermal and mechanical properties. Recent researches have shown its large scale production by the reduction of graphene oxide either thermally, chemically or electrochemically. Although the structure of graphene oxide is inhomogeneous and hence complicated due to the presence of organic moieties e.g. epoxy, carboxylic acid, hydroxyl groups etc., its properties can be tuned by reduction according to desired application. The aim of this work is to synthesize continuous thin film of graphene oxide using commercially available graphene oxide solution and to study its reduction by 25 keV electron beam irradiation at fluences varying from 2 × 1011 to 2 × 1013 e-/cm2. Our studies using X-ray diffraction, Raman microscopy and UV-Vis spectroscopy showed that electron-beam irradiation is an effective tool for reduction of graphene oxide and for tuning its band gap.

  20. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  1. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.

    PubMed

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-06-15

    We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  3. IF-WS{sub 2} nanoparticles size design and synthesis via chemical reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoreishi, S.M., E-mail: ghoreshi@cc.iut.ac.ir; Meshkat, S.S.; Dadkhah, A.A.

    2010-05-15

    An innovative synthesis of inorganic fullerene-like disulfide tungsten (IF-WS{sub 2}) nanoparticles was developed using a chemical reduction reaction in a horizontal quartz reactor. In this process, first tungsten trisulfide (WS{sub 3}) was formed via a chemical reaction of tetra thiotungstate ammonium ((NH{sub 4}){sub 2}WS{sub 4}), polyethylene glycol (PEG), and hydrochloric acid (HCl) at ambient temperature and pressure. Subsequently, WS{sub 3} was reacted with hydrogen (H{sub 2}) at high temperature (1173-1373 K) in a quartz tube. The produced WS{sub 2} nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), and transmission electron microscopy (TEM). Themore » characterization results indicated that the high-purity (100%) IF-WS{sub 2} nanoparticles were produced. Moreover, addition of surfactant (PEG) and higher operating temperature (1173-1373 K) decreased the particles agglomeration, and consequently led to the reduction of average diameter of WS{sub 2} particles in the range of 50-78 nm. The developed method is simple, environmentally compatible, and cost-effective in contrast to the conventional techniques.« less

  4. Doped Lanthanum Hafnates as Scintillating Materials for High-Energy Photon Detection

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Recent years have seen the emergence of nanocrystalline complex oxide scintillators for use in X-ray and gamma-ray detection. In this study, we investigate the structural and optical properties of La2Hf2O7 nanoparticles doped with varying levels of Eu3+ or Ce3+ by use of X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and optical photoluminescence. In addition, scintillation response under X-ray and gamma-ray exposure is reported. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  5. One-Pot Silver Nanoring Synthesis

    NASA Astrophysics Data System (ADS)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  6. One-pot silver nanoring synthesis.

    PubMed

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2009-12-16

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  7. One-Pot Silver Nanoring Synthesis

    PubMed Central

    2010-01-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation. PMID:20672109

  8. Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n-n heterojunction effects.

    PubMed

    Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng

    2017-10-24

    A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.

  9. Isothermal reduction kinetics and mineral phase of chromium-bearing vanadium-titanium sinter reduced with CO gas at 873-1273 K

    NASA Astrophysics Data System (ADS)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Xue, Xiang-xin

    2018-02-01

    Reduction of chromium-bearing vanadium-titanium sinter (CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22-99.69 kJ/mol. Phase transformations in CVTS reduction are as follows: Fe2O3→Fe3O4→FeO→Fe; Fe2TiO5→Fe2TiO4→FeTiO3; FeO·V2O3→V2O3; FeO·Cr2O3→Cr2O3.

  10. Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution

    NASA Astrophysics Data System (ADS)

    Divya, K. S.; Chandran, Akash; Reethu, V. N.; Mathew, Suresh

    2018-06-01

    A series of RGO/Ag nanocomposites with different weight addition ratios of graphene oxide (GO) have been successfully prepared in situ through the simultaneous reduction of GO and AgNO3 via a facile microwave irradiation. X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, UV-vis diffuse reflectance spectra, Scanning electron microscopy, Photoluminescence spectra, Raman spectra, Atomic Force Microscopy, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy are employed to determine the properties of the samples. It is found that RGO/Ag nanocomposites with a proper weight addition ratios of GO exhibit higher photocatalytic activity toward liquid phase photodegradation of Rhodamine B under visible light irradiation. The improved photoactivity of RGO/Ag nanocomposites can be ascribed to the integrative synergestic effect of enhanced adsorption capacity, the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag nanoparticles. This study also shows that graphene sheets act as electronic conductive channels to efficiently separate charge carriers from Ag nanoparticles.

  11. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents

    PubMed Central

    Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.

    2014-01-01

    Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422

  12. Localized electronic structures of graphene oxide studied using scanning tunneling microscopy and spectroscopy.

    PubMed

    Katano, Satoshi; Wei, Tao; Sasajima, Takumi; Kasama, Ryuhei; Uehara, Yoichi

    2018-06-21

    We have used scanning tunneling microscopy (STM) to elucidate the nanoscale electronic structures of graphene oxide (GO). The unreduced GO layer was imaged using STM without reduction processes when deposited on a Au(111) surface covered with an octanethiolate self-assembled monolayer (C8S-SAM). The STM image of the GO sheet exhibits a grainy structure having a thickness of about 1 nm, which is in good agreement with the previous results obtained using atomic force microscopy (AFM). We found that the C8S-SAM suppresses the adsorption of water remaining on the substrate, which would be important to accomplish the nanoscale imaging of the unreduced GO by STM. Furthermore, we successfully detected the π and π* states localized in the GO sheet using scanning tunneling spectroscopy (STS). The π-π* gap energy and the gap center are not uniform within the GO sheet, indicating the existence of various sizes of the sp2 domain and evidence for the local electronic doping by the substituents.

  13. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-05-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  14. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    PubMed

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  15. Rapid microwave fixation of rat mast cells. I. Localization of granule chymase with an ultrastructural postembedding immunogold technique.

    PubMed

    Login, G R; Galli, S J; Morgan, E; Arizono, N; Schwartz, L B; Dvorak, A M

    1987-11-01

    We defined the ultrastructural localization of chymase in rat peritoneal mast cells using standard aldehyde fixation and a newly described microwave fixation method (Login GR, Dvorak AM: Microwave energy fixation for electron microscopy. Am J Pathol 120: 230, 1985; Login GR, Stavinoha WB, Dvorak AM: Ultrafast microwave energy fixation for electron microscopy. J Histochem Cytochem 34:381, 1986) and postembedding immunogold labeling. Thin sections were exposed first to goat IgG anti-rat chymase and second to gold-conjugated rabbit Ig directed against goat IgG. By transmission electron microscopy, gold particles were localized to the matrix of cytoplasmic granules. Control sections treated with nonimmune sera did not exhibit labeling of mast cells. Thin sections treated simultaneously with purified rat mast cell chymase and anti-chymase antibody in competition studies, showed a marked reduction in granule staining. These findings demonstrate that a microwave fixation method can be used to rapidly fix cell suspensions for postembedding immunocytochemical studies.

  16. Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.

    2013-12-01

    Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.

  17. Electron Beam-Induced Writing of Nanoscale Iron Wires on a Functional Metal Oxide

    PubMed Central

    2013-01-01

    Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring. PMID:24159366

  18. Synthesis of metal nanoparticle and patterning in polymeric films induced by electron beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi; Marignier, Jean-Louis; Mostafavi, Mehran; Belloni, Jacqueline

    2018-03-01

    Using an electron beam, thin polymeric films loaded with metal nanoparticles of silver were prepared by a one-step irradiation-induced reduction of the metal ions embedded in the polymer. The metal nanoparticles were observed by either optical absorption or microscopy. The mechanism of the reduction of metal ions and of the polymer crosslinking were deduced from the average absorbance measurements. In view of realizing specific patterns of high resolution using the electron beam, electron beam produces 200 nm wide lines that can be separated by unexposed spaces of adjustable width, where precursors were dissolved. The resolution of the electron beam has been exploited to demonstrate the achievement of nanopatterning on polymer films using a direct-writing process. This method supplies interesting applications such as masks, replicas, or imprint molds of improved density and contrast.

  19. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Revelation of graphene-Au for direct write deposition and characterization

    NASA Astrophysics Data System (ADS)

    Bhandari, Shweta; Deepa, Melepurath; Joshi, Amish G.; Saxena, Aditya P.; Srivastava, Avanish K.

    2011-06-01

    Graphene nanosheets were prepared using a modified Hummer's method, and Au-graphene nanocomposites were fabricated by in situ reduction of a gold salt. The as-produced graphene was characterized by X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). In particular, the HR-TEM demonstrated the layered crystallites of graphene with fringe spacing of about 0.32 nm in individual sheets and the ultrafine facetted structure of about 20 to 50 nm of Au particles in graphene composite. Scanning helium ion microscopy (HIM) technique was employed to demonstrate direct write deposition on graphene by lettering with gaps down to 7 nm within the chamber of the microscope. Bare graphene and graphene-gold nanocomposites were further characterized in terms of their composition and optical and electrical properties.

  1. Investigation of high temperature fracture of T-111 and ASTAR-811C

    NASA Technical Reports Server (NTRS)

    Gold, R. E.

    1971-01-01

    The high temperature deformation and fracture behavior of T-111 and ASTAR-811C were studied over the temperature range 982 to 2205 C (1800 to 4000 F). As-cast and wrought-recrystallized material as well as GTA welds in sheet and plate were evaluated using conventional tensile and creep tests. Post test examinations were performed using optical metallography, scanning electron microscopy and transmission electron microscopy. A high temperature region of reduced ductility, in terms of tensile elongation, was identified for both alloys. The reduction in tensile elongation became more severe with increase in grain size, being near catastrophic for the as-cast specimens. Optical and electron metallography indicated that even for failures at very low total strain, considerable deformation of a very localized nature had occurred prior to fracture.

  2. Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory.

    PubMed

    Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D

    2017-07-12

    Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

  3. Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert

    2018-07-01

    Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.

  4. Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy.

    PubMed

    Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert

    2018-04-17

    Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.

  5. Cobalt nanoparticles on charcoal: a versatile catalyst in the Pauson-Khand reaction, hydrogenation, and the reductive Pauson-Khand reaction.

    PubMed

    Son, Seung Uk; Park, Kang Hyun; Chung, Young Keun

    2002-10-31

    [formula: see text] Dispersions of nanometer-sized cobalt particles with very high stability were prepared in charcoal and analyzed by electron microscopy and X-ray analysis. The resulting cobalt nanoparticles on charcoal (CNC) were successfully used as a catalyst for the carbonylative cycloaddition of alkyne, alkene, and carbon monoxide (Pauson-Khand reaction), hydrogenation, and the reductive Pauson-Khand reaction.

  6. Anti-friction performance of FeS nanoparticle synthesized by biological method

    NASA Astrophysics Data System (ADS)

    Zhou, Lu Hai; Wei, Xi Cheng; Ma, Zi Jian; Mei, Bin

    2017-06-01

    FeS nanoparticle is prepared by a biological method. The size, morphology and structure of the FeS nanoparticle are characterized by the means of X-ray diffraction and transmission electron microscopy. The anti-friction behavior of the FeS nanoparticle as a lubricating oil additive is evaluated in the engine oil by using a face-to-face contact mode. The worn surface is characterized by using the scanning electron microscopy and secondary ion mass spectroscopy in order to find the reasons resulting in the reduction of friction coefficient due to the addition of the FeS nanoparticle. The anti-friction mechanism of the FeS nanoparticle is elucidated based on the experimental results.

  7. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water.

    PubMed

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-05-01

    In this paper, silver nanoparticles (Ag NPs) are synthesized using Achillea millefolium L. extract as reducing and stabilizing agents and peach kernel shell as an environmentally benign support. FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermo gravimetric-differential thermal analysis (TG-DTA) and Transmission Electron Microscopy (TEM) were used to characterize peach kernel shell, Ag NPs, and Ag NPs/peach kernel shell. The catalytic activity of the Ag NPs/peach kernel shell was investigated for the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), and Methylene Blue (MB) at room temperature. Ag NPs/peach kernel shell was found to be a highly active catalyst. In addition, Ag NPs/peach kernel shell can be recovered and reused several times with no significant loss of its catalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    PubMed

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  10. Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: A macroscopic and spectroscopic study.

    PubMed

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2017-03-01

    The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur. Copyright © 2016. Published by Elsevier B.V.

  11. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    PubMed Central

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  12. Simultaneous AuIII Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis.

    PubMed

    Mora-Tamez, Lucía; Esquivel-Peña, Vicente; Ocampo, Ana L; Rodríguez de San Miguel, Eduardo; Grande, Daniel; de Gyves, Josefina

    2017-04-10

    A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of Au III salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for Au III extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L -1 4-nitrophenol aqueous solution with 10 mmol L -1 NaBH 4 solution within 25 min. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  14. Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.) Solms

    NASA Astrophysics Data System (ADS)

    Firdhouse, M. Jannathul; Lalitha, P.

    2014-10-01

    The aqueous extract of Eichhornia crassipes was used as reductant to produce graphene from graphene oxide by refluxing method. The complete reduction of graphene oxide was monitored using UV-Vis spectrophotometer. Characterization of graphene was made through FTIR, XRD, and Raman spectroscopy analysis. The stability of graphene was studied by thermal gravimetric analysis and zeta potential measurements. The nature and surface morphology of the synthesized graphene was analyzed by transmission electron microscopy. The production of graphene using phytoextract as reductant emphasizes on the facile method of synthesis and greener nanotechnology.

  15. 3,4-Ethylenedioxythiophene functionalized graphene with palladium nanoparticles for enhanced electrocatalytic oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Choe, Ju Eun; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    Poly(3,4-ethylenedioxythiophene) functionalized graphene with palladium nanoparticles (denoted as Pd/PEDOT/rGO) has been synthesized for electrochemical oxygen reduction reaction (ORR) in alkaline solution. The structural features of catalyst are characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The TEM images suggest a well dispersed PdNPs onto PEDOT/rGO film. The ORR activity of Pd/PEDOT/rGO has been investigated via cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in 0.1 M KOH aqueous solution. Comparative CV analysis suggests a general approach of intermolecular charge-transfer in between graphene sheet and PdNPs via PEDOT which leads to the better PdNPs dispersion and subsequently superior ORR kinetics. The results from ORR measurements show that Pd/PEDOT/rGO has remarkable electrocatalytic activity and stability compared to Pd/rGO and state-of-the-art Pt/C. The Koutecky-Levich and Tafel analysis suggest that the proposed main path in the ORR mechanism has direct four-electron transfer process with faster transfer kinetic rate on the Pd/PEDOT/rGO.

  16. Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: A surfactant free laser ablation approach

    NASA Astrophysics Data System (ADS)

    Sai Siddhardha, R. S.; Lakshman Kumar, V.; Kaniyoor, Adarsh; Sai Muthukumar, V.; Ramaprabhu, S.; Podila, Ramakrishna; Rao, A. M.; Ramamurthy, Sai Sathish

    2014-12-01

    A facile surfactant free laser ablation mediated synthesis (LAMS) of gold-graphene composite is reported here. The material was characterized using transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powdered X-ray diffraction, Raman spectroscopy, Zeta potential measurements and UV-Visible spectroscopic techniques. The as-synthesized gold-graphene composite was effectively utilized as catalyst for decolorization of 4 important textile and laser dyes. The integration of gold nanoparticles (AuNPs) with high surface area graphene has enhanced the catalytic activity of AuNPs. This enhanced activity is attributed to the synergistic interplay of pristine gold's electronic relay and π-π stacking of graphene with the dyes. This is evident when the Rhodamine B (RB) reduction rate of the composite is nearly twice faster than that of commercial citrate capped AuNPs of similar size. In case of Methylene blue (MB) the rate of reduction is 17,000 times faster than uncatalyzed reaction. This synthetic method opens door to laser ablation based fabrication of metal catalysts on graphene for improved performance without the aid of linkers and surfactants.

  17. Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods.

    PubMed

    Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W

    2013-06-28

    This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.

  18. One-pot synthesis of nitrogen and sulfur co-doped onion-like mesoporous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Han, Ce; Bo, Xiangjie; Zhang, Yufan; Li, Mian; Guo, Liping

    2014-12-01

    Nitrogen and sulfur co-doped onion-like mesoporous carbon vesicle (NS-MCV) with multilayer lamellar structure is synthesized as a metal-free catalyst through a convenient and economical procedure. The synthesized materials are systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, nitrogen adsorption-desorption, and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrate that N and S atoms can be successfully doped into the framework of MCV with little impact on the morphology and structure. The NS-MCV manifests a remarkably high electrocatalytic activity as a metal-free electrocatalyst for the oxygen reduction reaction (ORR) with mainly a four-electron transfer pathway. Moreover, in contrast to the commercially available Pt/C catalyst, the NS-MCV shows much better long-term stability and tolerance toward methanol crossover in an alkaline medium. Such excellent performances can be mainly attributed to the synergistic effect arising from the addition of N and S heteroatom, optimized S content and high surface area. The NS-MCV with a simple synthesis method may further exploited as potentially efficient and inexpensive metal-free ORR catalyst materials.

  19. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  20. Lunar resources: Oxygen from rocks and soil

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Gibson, M. A.; Knudsen, C. W.; Kanamori, H.; Morris, R. V.; Keller, L. P.; Mckay, D. S.

    1992-01-01

    The first set of hydrogen reduction experiments to use actual lunar material was recently completed. The sample, 70035, is a coarse-grained vesicular basalt containing 18.46 wt. percent FeO and 12.97 wt. percent TiO2. The mineralogy includes pyroxene, ilmenite, plagioclase, and minor olivine. The sample was crushed to a grain size of less than 500 microns. The crushed basalt was reduced with hydrogen in seven tests at temperatures of 900-1050 C and pressures of 1-10 atm for 30-60 minutes. A capacitance probe, measuring the dew point of the gas stream, was used to follow reaction progress. Experiments were also conducted using a terrestrial basalt similar to some lunar mare samples. Minnesota Lunar Simulant (MLS-1) contains 13.29 wt. percent FeO, 2.96 wt. percent Fe2O3, and 6.56 wt. percent TiO2. The major minerals include plagioclase, pyroxene, olivine, ilmenite, and magnetite. The rock was ground and seived, and experiments were run on the less than 74- and 500-1168-micron fractions. Experiments were also conducted on less than 74-micron powders of olivine, pyroxene, synthetic ilmenite, and TiO2. The terrestrial rock and mineral samples were reduced with flowing hydrogen at 1100 C in a microbalance furnace, with reaction progress monitored by weight loss. Experiments were run at atmospheric pressure for durations of 3-4 hr. Solid samples from both sets of experiments were analyzed by Mossbauer spectroscopy, petrographic microscopy, scanning electron microscopy, tunneling electron microscopy, and x-ray diffraction. Apollo 17 soil 78221 was examined for evidence of natural reduction in the lunar environment. This sample was chosen based on its high maturity level (I sub s/FeO = 93.0). The FeO content is 11.68 wt. percent and the TiO2 content is 3.84 wt. percent. A polished thin section of the 90-150 micron size fraction was analyzed by petrographic microscopy and scanning electron microscopy.

  1. Carbon nanotube-DNA nanoarchitectures and electronic functionality.

    PubMed

    Wang, Xu; Liu, Fei; Andavan, G T Senthil; Jing, Xiaoye; Singh, Krishna; Yazdanpanah, Vahid R; Bruque, Nicolas; Pandey, Rajeev R; Lake, Roger; Ozkan, Mihrimah; Wang, Kang L; Ozkan, Cengiz S

    2006-11-01

    Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single-walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single-stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical-functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrical measurements (I-V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I-V characterization on platinum-metallized SWNT-ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.

  2. Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor

    NASA Astrophysics Data System (ADS)

    Burman, Debasree; Santra, Sumita; Pramanik, Panchanan; Guha, Prasanta Kumar

    2018-03-01

    In this work, we report the fabrication of a low power, humidity sensor where platinum nanoparticles (NPs) decorated few-layered molybdenum disulphide (MoS2) nanoflakes have been used as the sensing layer. A mixed solvent was used to exfoliate the nanoflakes from the bulk powder. Then the Pt/MoS2 composites were prepared by reducing Pt NPs from chloroplatinic acid hexahydrate using a novel reduction technique using sulphide salt. The successful reduction and composite preparation were confirmed using various material characterization tools like scanning electron microscopy, atomic force microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy and UV-visible spectroscopy. The humidity sensors were prepared by drop-coating the Pt-decorated MoS2 on gold interdigitated electrodes and then exposed to various levels of relative humidity (RH). Composites with different weight ratios of Pt were tested and the best response was shown by the Pt/MoS2 (0.25:1) sample with a record high response of ˜4000 times at 85% RH. The response and recovery times were ˜92 s and ˜154 s respectively with repeatable behaviour. The sensor performance was found to be stable when tested over a few months. The underlying sensing mechanisms along with detailed characterization of the various composites have been discussed.

  3. SILVER IMPREGNATION OF ULTRATHIN SECTIONS FOR ELECTRON MICROSCOPY

    PubMed Central

    Marinozzi, Vittorio

    1961-01-01

    A new procedure is described for silver impregnation of thin sections for electron microscopy. Sections of various tissues, fixed in OsO4 and embedded in methacrylate, were treated with an ammoniacal silver solution, directly or after oxidation with periodic acid or hydrogen peroxide. After OsO4 fixation all cellular membranous systems exhibit a primary argentaffinity probably due to the reduction of ammoniacal silver solution by the reduced osmium bound to unsaturated lipids. Bleaching the sections with hydrogen peroxide removes the argentaffinity of protoplasmic structures. Treatment of the sections with periodic acid results in decreased argentaffinity of protoplasmic components while the argentaffinity of metaplasmic structures is greatly enhanced. The latter procedure appears particularly useful for enhancing the contrast of basement membranes. PMID:13766855

  4. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  5. Synthesis of noble metal/carbon nanotube composites in supercritical methanol.

    PubMed

    Sun, Zhenyu; Fu, Lei; Liu, Zhimin; Han, Buxing; Liu, Yunqi; Du, Jimin

    2006-03-01

    A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.

  6. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Structural, morphological and optical properties of chromium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babukutty, Blessy; Parakkal, Fasalurahman; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    2015-06-24

    Chromium oxide nanoparticles are synthesized by reduction route from chloride precursors with surfactant, trioctylphosphine oxide (TOPO). Structural and morphological characterization are analyzed using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Transmission Electron micrographs show that the average grain size lies in the range 5nm to 10nm. Optical characterization has been done by UV-VIS spectrophotometer. Distinct optical absorptions of Cr{sup 3+} ions show hinting towards the presence of Cr{sub 2}O{sub 3}. Presence of oxygen is also confirmed from Electron Energy Loss Spectroscopy (EELS) studies.

  8. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

    PubMed

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-03-15

    For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd 2+ ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd 2+ ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP)more » using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.« less

  10. Simple glucose reduction route for one-step synthesis of copper nanofluids

    NASA Astrophysics Data System (ADS)

    Shenoy, U. Sandhya; Shetty, A. Nityananda

    2014-01-01

    One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron microscopy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conductivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction parameters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal conductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.

  11. Total coliphages removal by activated sludge process and their morphological diversity by transmission electron microscopy.

    PubMed

    Jebri, Sihem; Hmaied, Fatma; Yahya, Mariem; Ben Ammar, Aouatef; Hamdi, Moktar

    This study was conducted to isolate phages in treated sewage collected from wastewater treatment plant, and explore their morphological diversity by transmission electron microscopy (TEM). Fates of total bacteriophages and their reduction by biological treatment were also assayed. Phages were isolated using the plaque assay then negatively stained and observed by electron microscope. Electron micrographs showed different types of phages with different shapes and sizes. The majority of viruses found in treated sewage ranged from 30 to 100 nm in capsid diameter. Many of them were tailed, belonging to Siphoviridae, Myoviridae and Podoviridae families. Non-tailed phage particles were also found at a low rate, presumably belonging to Leviviridae or Microviridae families. This study shows the diversity and the abundance of bacteriophages in wastewater after biological treatment. Their persistence in wastewater reused in agriculture should raise concerns about their potential role in controlling bacterial populations in the environment. They should be also included in water treatment quality controlling guidelines as fecal and viral indicators.

  12. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGES

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO 2), which serves as a UO 2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO 2 with an energy deposition of 12 and 36 keV/nm show damagemore » consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  13. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion.

    PubMed

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei; Whelan, Patrick R; Tremblay, Pier-Luc; Chi, Qijin; Zhang, Tian

    2017-08-22

    During microbial electrosynthesis (MES) driven CO 2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO 2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m -2 d -1 with RGO paper cathodes poised at -690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m -2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO 2 .

  14. Swift heavy ion irradiation reduces porous silicon thermal conductivity

    NASA Astrophysics Data System (ADS)

    Massoud, M.; Canut, B.; Newby, P.; Frechette, L.; Chapuis, P. O.; Bluet, J. M.

    2014-12-01

    While the electrical conductivity of semiconductors can be easily changed over order of magnitudes (8 in silicon) by playing on the doping, the thermal conductivity (TC) control is a challenging issue. Nevertheless, numerous applications require TC control in Si down to 1 W m-1 K-1. Among them, there are thermal insulation requirements in MEMS, thermal management issues in 3D packaging or TC reduction for thermoelectric applications. Towards this end, the formation of nanoporous Si by electrochemical anodisation is efficient. Nevertheless, in this case the material is too fragile for MEMS application or even to withstand CMOS technological processes. In this work, we show that ion irradiation in the electronic regime is efficient for reducing TC in meso-porous Si (PSi), which is more mechanically robust than the nanoporous PSi. We have studied three different mass to energy ratios (238U at 110 MeV and 130Xe at 91 MeV and 29 MeV) with fluences ranging from 1012 cm-2 to 7 × 1013 cm-2. The sample properties, after irradiation, have been measured by infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The TC has been measured using scanning thermal microscopy. Although, bulk Si is insensitive to ion interaction in the electronic regime, we have observed the amorphisation of the PSi resulting in a TC reduction even for the low dose and energy. For the highest irradiation dose a very important reduction factor of four was obtained.

  15. Control of Sulfidogenesis Through Bio-oxidation of H 2S Coupled to (per)chlorate Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregoire, Patrick; Engelbrektson, Anna; Hubbard, Christopher G.

    2014-04-04

    Here, we investigate H 2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H 2S coupled to (per)chlorate reduction without sustaining growth. H 2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. We also propose a novel hybrid enzymatic-abiotic mechanism for H 2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.

  16. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.

    2015-05-19

    Reduction of U(VI) to U(VI) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies Indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(VI),. We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a, magnetite electrode at,pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) . Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS, analysis Of the magnetitemore » electrodes polarized in uranium solutions at voltages - from -0.1 to -0.9 V (E-U(VI)/U(V)(0)= -0.135 V vs Ag/AgCl) show the presence of, only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-O-axial distance of 2.05 + 0.01 A was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) On magnetite only yields,U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism, U(V) does not disproportionate but stabilizes on magnetite through precipitation Of mixed-valence state -U(V)/U(VI) solids.« less

  17. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  18. Reversible Stabilization of Vesicles: Redox-Responsive Polymer Nanocontainers for Intracellular Delivery.

    PubMed

    de Vries, Wilke C; Grill, David; Tesch, Matthias; Ricker, Andrea; Nüsse, Harald; Klingauf, Jürgen; Studer, Armido; Gerke, Volker; Ravoo, Bart Jan

    2017-08-01

    We present the self-assembly of redox-responsive polymer nanocontainers comprising a cyclodextrin vesicle core and a thin reductively cleavable polymer shell anchored via host-guest recognition on the vesicle surface. The nanocontainers are of uniform size, show high stability, and selectively respond to a mild reductive trigger as revealed by dynamic light scattering, transmission electron microscopy, atomic force microscopy, a quantitative thiol assay, and fluorescence spectroscopy. Live cell imaging experiments demonstrate a specific redox-responsive release and cytoplasmic delivery of encapsulated hydrophilic payloads, such as the pH-probe pyranine, and the fungal toxin phalloidin. Our results show the high potential of these stimulus-responsive nanocontainers for cell biological applications requiring a controlled delivery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract

    NASA Astrophysics Data System (ADS)

    Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.

    2015-03-01

    Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.

  20. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  1. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  2. Discovery and characterization of iron sulfide and polyphosphate bodies coexisting in Archaeoglobus fulgidus cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth

    Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidusstrain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent inA. fulgiduscells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell containsmore » not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less

  3. Discovery and characterization of iron sulfide and polyphosphate bodies coexisting in Archaeoglobus fulgidus cells

    DOE PAGES

    Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth; ...

    2016-01-01

    Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidusstrain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent inA. fulgiduscells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell containsmore » not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less

  4. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiao; Zhang, Bingsen; Li, Chuang

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1})more » produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.« less

  5. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  7. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    NASA Astrophysics Data System (ADS)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  8. Correlation between molten vanadium salts and the structural degradation of HK-type steel superheater tubes

    NASA Astrophysics Data System (ADS)

    de Carvalho Nunes, Frederico; de Almeida, Luiz Henrique; Ribeiro, André Freitas

    2006-12-01

    HK steels are among the most used heat-resistant cast stainless steels, being corrosion-resistant and showing good mechanical properties at high service temperatures. These steels are widely used in reformer furnaces and as superheater tubes. During service, combustion gases leaving the burners come in contact with these tubes, resulting in corrosive attack and a large weight loss occurs due to the presence of vanadium, which forms low melting point salts, removing the protective oxide layer. In this work the external surface of a tube with dramatic wall thickness reduction was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. The identification of the phases was achieved by energy dispersive spectroscopy (EDS) analyses. The results showed oxides arising from the external surface. In this oxidized region vanadium compounds inside chromium carbide particles were also observed, due to inward vanadium diffusion during corrosion attack. A chemical reaction was proposed to explain the presence of vanadium in the metal microstructure.

  9. Influence of 20 MeV electron irradiation on the optical properties and phase composition of SiOx thin films

    NASA Astrophysics Data System (ADS)

    Hristova-Vasileva, Temenuga; Petrik, Peter; Nesheva, Diana; Fogarassy, Zsolt; Lábár, János; Kaschieva, Sonia; Dmitriev, Sergei N.; Antonova, Krassimira

    2018-05-01

    Homogeneous films from SiO1.3 (250 nm thick) were deposited on crystalline Si substrates by thermal evaporation of silicon monoxide. A part of the films was further annealed at 700 °C to grow amorphous Si (a-Si) nanoclusters in an oxide matrix, thus producing composite a-Si-SiO1.8 films. Homogeneous as well as composite films were irradiated by 20-MeV electrons at fluences of 7.2 × 1014 and 1.44 × 1015 el/cm2. The film thicknesses and optical constants were explored by spectroscopic ellipsometry. The development of the phase composition of the films caused by the electron-beam irradiation was studied by transmission electron microscopy. The ellipsometric and electron microscopy results have shown that the SiOx films are optically homogeneous and the electron irradiation with a fluence of 7.2 × 1014 el/cm2 has led to small changes in the optical constants and the formation of very small a-Si nanoclusters. The irradiation of the a-Si-SiOx composite films caused a decrease in the effective refractive index and, at the same time, an increase in the refractive index of the oxide matrix. Irradiation induced increase in the optical band gap and decrease in the absorption coefficient of the thermally grown amorphous Si nanoclusters have also been observed. The obtained results are discussed in terms of the formation of small amorphous silicon nanoclusters in the homogeneous layers and electron irradiation induced reduction in the nanocluster size in the composite films. The conclusion for the nanoparticle size reduction is supported by infrared transmittance results.

  10. Changes in neutrophil morphology and morphometry following exposure to cigarette smoke.

    PubMed Central

    Lannan, S.; McLean, A.; Drost, E.; Gillooly, M.; Donaldson, K.; Lamb, D.; MacNee, W.

    1992-01-01

    Acute cigarette smoking delays neutrophils within the pulmonary circulation in some smokers. Evidence from an in-vitro Micropore filter model of the pulmonary capillaries indicates that this may be due to a smoke induced decrease in cell deformability. In order to determine whether changes in cell shape are associated with the observed decrease in neutrophil deformability following smoke exposure, cell morphology, using scanning electron microscopy, and morphometric measurements, made using transmission electron microscopy, were performed on aliquots of neutrophils harvested from whole blood in non-smoking subjects before and after exposure in vitro to cigarette smoke. Smoke exposure increased the maximum diameter and circumference of neutrophils, without changing their area. There was also a change in the maximum to minimum cell diameter ratio, which indicated that the cells had become less spherical. Scanning electron microscopy showed that smoke exposed cells had developed blebbing of their surface membranes, suggestive of an oxidative injury to the cell membrane rather than the shape changes associated with cell activation. These changes in the morphology and morphometry of smoke exposed neutrophils may contribute to the reduction in cell deformability induced by cigarette smoke. Images Fig. 3 Fig. 4 Fig. 5 PMID:1571278

  11. Investigation of porous asphalt microstructure using optical and electron microscopy.

    PubMed

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  12. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  13. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  14. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanismsmore » of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly in the form of sub-nanometer Cr2O3 in association with residual clay minerals as micro-aggregates. This textural association was expected to minimize the chance of Cr(III) reoxidation upon exposure to oxidants. These results are important for our understanding of how various clay minerals may be used to reductively immobilize the heavy metal contaminant Cr in the environment.« less

  15. c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    PubMed Central

    Marshall, Matthew J; Dohnalkova, Alice C; Kennedy, David W; Shi, Liang; Wang, Zheming; Boyanov, Maxim I; Lai, Barry; Kemner, Kenneth M; McLean, Jeffrey S; Reed, Samantha B; Culley, David E; Bailey, Vanessa L; Simonson, Cody J; Saffarini, Daad A; Romine, Margaret F; Zachara, John M

    2006-01-01

    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments. PMID:16875436

  16. Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene

    PubMed Central

    Canty, Russell; Gonzalez, Edwin; MacDonald, Caleb; Osswald, Sebastian; Zea, Hugo; Luhrs, Claudia C.

    2015-01-01

    Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES) method utilizing graphite oxide (GO) and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i) promoting the reduction of the GO and (ii) providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD), Raman Spectroscopy, and Brunauer Emmet Teller (BET). The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene. PMID:28793618

  17. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  18. Plasma-assisted reduction of silver ions impregnated into a natural zeolite framework

    NASA Astrophysics Data System (ADS)

    Osonio, Airah P.; Vasquez, Magdaleno R.

    2018-02-01

    A green, dry, and energy-efficient method for the fabrication of silver-zeolite (AgZ) composite via 13.56 MHz radio-frequency plasma reduction is demonstrated. Impregnation by soaking and ion-exchange deposition were performed to load the silver ions (Ag+) into the sodium-zeolite samples. Characterization was performed by optical emission spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analyses. Results indicate the successful reduction of Ag+ to its metallic state on the surface of the zeolite with a mean diameter of 165 nm. This plasma-induced reduction technique opens possibilities in several areas including catalysis, adsorption, water treatment, and medicine.

  19. Exfoliated, Nitrogen-Doped Graphene Nanosheet Cathode for Lithium-Oxygen Batteries

    DTIC Science & Technology

    2014-06-01

    scanning electron microscopy; oxygen reduction reaction; cyclic voltammetry ; lithium-oxygen battery. Introduction The continuous...77 K (Micromeritics ASAP 2020). The porosity of cathode material was characterized by a gas pycnometer (Micromeritis, Accu Pyc II 1340). Cyclic ... voltammetry (CV) and galvanostatic charge-discharge measurements of the specimens were conducted using a computer controlled VersaSTAT 4 (Princeton

  20. Electron transfer at the cell-uranium interface in Geobacter spp.

    PubMed

    Reguera, Gemma

    2012-12-01

    The in situ stimulation of Fe(III) oxide reduction in the subsurface stimulates the growth of Geobacter spp. and the precipitation of U(VI) from groundwater. As with Fe(III) oxide reduction, the reduction of uranium by Geobacter spp. requires the expression of their conductive pili. The pili bind the soluble uranium and catalyse its extracellular reductive precipitation along the pili filaments as a mononuclear U(IV) complexed by carbon-containing ligands. Although most of the uranium is immobilized by the pili, some uranium deposits are also observed in discreet regions of the outer membrane, consistent with the participation of redox-active foci, presumably c-type cytochromes, in the extracellular reduction of uranium. It is unlikely that cytochromes released from the outer membrane could associate with the pili and contribute to the catalysis, because scanning tunnelling microscopy spectroscopy did not reveal any haem-specific electronic features in the pili, but, rather, showed topographic and electronic features intrinsic to the pilus shaft. Pili not only enhance the rate and extent of uranium reduction per cell, but also prevent the uranium from traversing the outer membrane and mineralizing the cell envelope. As a result, pili expression preserves the essential respiratory activities of the cell envelope and the cell's viability. Hence the results support a model in which the conductive pili function as the primary mechanism for the reduction of uranium and cellular protection in Geobacter spp.

  1. Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films.

    PubMed

    Kern, P; Müller, Y; Patscheider, J; Michler, J

    2006-11-30

    Electrolytically deposited amorphous TiO2 films on steel are remarkably sensitive to electron beam (e-beam) irradiation at moderate energies at 20 keV, resulting in controlled local oxide reduction and crystallization, opening the possibility for local topographical, chemical, and structural modifications within a biocompatible, amorphous, and semiconducting matrix. The sensitivity is shown to vary significantly with the annealing temperature of as-deposited films. Well-defined irradiation conditions in terms of probe current IP (5 microA) and beam size were achieved with an electron probe microanalyzer. As shown by atomic force and optical microscopy, micro-Raman spectroscopy, wavelength-dispersive X-ray (WDX), and Auger analyses, e-beam exposure below 1 Acm-2 immediately leads to electron-stimulated oxygen desorption, resulting in a well-defined volume loss primarily limited to the irradiated zone under the electron probe and in a blue color shift in this zone because of the presence of Ti2O3. Irradiation at 5 Acm(-2) (IP = 5 microA) results in local crystallization into anatase phase within 1 s of exposure and in reduction to TiO after an extended exposure of 60 s. Further reduction to the metallic state could be observed after 60 s of exposure at approximately 160 Acm(-2). The local reduction could be qualitatively sensed with WDX analysis and Auger line scans. An estimation of the film temperature in the beam center indicates that crystallization occurs at less than 150 degrees C, well below the atmospheric crystallization temperature of the present films. The high e-beam sensitivity in combination with the well-defined volume loss from oxygen desorption allows for precise electron lithographic topographical patterning of the present oxides. Irradiation effects leading to the observed reduction and crystallization phenomena under moderate electron energies are discussed.

  2. Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films

    NASA Astrophysics Data System (ADS)

    Tangirala, Ravisubhash; Hu, Yunxia; Zhang, Qingling; He, Jinbo; Russell, Thomas; Emrick, Todd

    2008-03-01

    Aldehyde-functionalized CdSe quantum dots and nanorods, and horse spleen ferritin bionanoparticles, were co-assembled at an oil-water interface. Reaction of the aldehydes with the surface-available amines on the ferritin particles enabled cross-linking at the interface, converting the assembled nanoparticles into robust ultra-thin films. The cross-linked capsules and sheets thus made by aldehyde-amine conjugation could be disrupted by addition of acid. Reductive amination chemistry could be performed to convert these degradable capsules and sheets into structures with irreversible cross-linking. Fluorescence confocal microscopy, scanning force microscopy and pendant drop tensiometry were used to characterize these hybrid nanoparticle-based materials, and transmission electron microscopy (TEM) confirmed the presence of both the synthetic and naturally derived nanoparticles.

  3. Reduction reactions and densification during in situ TEM heating of iron oxide nanochains

    NASA Astrophysics Data System (ADS)

    Bonifacio, Cecile S.; Das, Gautom; Kennedy, Ian M.; van Benthem, Klaus

    2017-12-01

    The reduction reactions and densification of nanochains assembled from γ-Fe2O3 nanoparticles were investigated using in situ transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during in situ TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L2,3 absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from Fe2O3 over Fe3O4, FeO to metallic Fe. Phase transitions during the in situ heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.

  4. Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study

    USGS Publications Warehouse

    Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.

    2003-01-01

    Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).

  5. Signal-to-noise ratio estimation on SEM images using cubic spline interpolation with Savitzky-Golay smoothing.

    PubMed

    Sim, K S; Kiani, M A; Nia, M E; Tso, C P

    2014-01-01

    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. The role of chemical structure on the magnetic and electronic properties of Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/Si(111) interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuerbanjiang, Balati; Nedelkoski, Zlatko; Ghasemi, Arsham

    2016-04-25

    We show that Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitutional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the filmmore » leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} film into the Si substrate, besides the structural integrity of this junction.« less

  7. Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byoungkoo; Tan, Lizhen; Xu, C.

    In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less

  8. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

    2014-06-01

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

  9. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Ievlev, Anton V; Jesse, Stephen; Cochell, Thomas J; Unocic, Raymond R; Protopopescu, Vladimir A; Kalinin, Sergei V

    2015-12-22

    Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

  10. Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering.

    PubMed

    Arán-Ais, Rosa M; Yu, Yingchao; Hovden, Robert; Solla-Gullón, Jose; Herrero, Enrique; Feliu, Juan M; Abruña, Héctor D

    2015-12-02

    We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500-1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

  11. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andarini, Mellissa; Lazim, Azwan

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10{sup −4} g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 – 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application inmore » various areas, especially the use of hydrogel system as a responsive template.« less

  12. Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi Kant; Ghose, Ranjana

    2015-04-01

    Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.

  13. Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation

    DOE PAGES

    Kim, Byoungkoo; Tan, Lizhen; Xu, C.; ...

    2015-12-30

    In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less

  14. Germination and Outgrowth of Single Spores of Saccharomyces cerevisiae Viewed by Scanning Electron and Phase-Contrast Microscopy

    PubMed Central

    Rousseau, Paul; Halvorson, Harlyn O.; Bulla, Lee A.; Julian, Grant St.

    1972-01-01

    Single spores of Saccharomyces cerevisiae were examined during germination and outgrowth by scanning electron and phase-contrast microscopy. Also determined were changes in cell weight and light absorbance, trehalose utilization, and synthesis of protein and KOH-soluble carbohydrates. These studies reveal that development of the vegetative cell from a spore follows a definite sequence of events involving dramatic physical and chemical modifications. These changes are: initial rapid loss in cellular absorbance followed later by an abrupt gain in absorbance; reduction in cell weight and a subsequent progressive increase; modification of the spore surface with concomitant diminution in refractility; elongation of the cell and augmentation of surface irregularities; rapid decline in trehalose content of the cell accompanied by extensive formation of KOH-soluble carbohydrates; and bud formation. Images PMID:4551750

  15. Role of LiCoO 2 Surface Terminations in Oxygen Reduction and Evolution Kinetics

    DOE PAGES

    Han, Binghong; Qian, Danna; Risch, Marcel; ...

    2015-03-22

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities of LiCoO 2 nanorods with sizes in the range from 9 to 40 nm were studied in alkaline solution. The sides of these nanorods were terminated with low-index surfaces such as (003) while the tips were terminated largely with high-index surfaces such as (104) as revealed by high-resolution transmission electron microscopy. Electron energy loss spectroscopy demonstrated that low-spin Co 3+ prevailed on the sides, while the tips exhibited predominantly high- or intermediate-spin Co 3+. We correlated the electronic and atomic structure to higher specific ORR and OER activities at themore » tips as compared to the sides, which was accompanied by more facile redox of Co 2+/3+ and higher charge transferred per unit area. These findings highlight the critical role of surface terminations and electronic structures of transition metal oxides on the ORR and OER activity.« less

  16. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  17. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  18. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth.

    PubMed

    Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.

  19. Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2

    PubMed Central

    Trainer, Daniel J.; Putilov, Aleksei V.; Di Giorgio, Cinzia; Saari, Timo; Wang, Baokai; Wolak, Mattheus; Chandrasena, Ravini U.; Lane, Christopher; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Kronast, Florian; Gray, Alexander X.; Xi, Xiaoxing X.; Nieminen, Jouko; Bansil, Arun; Iavarone, Maria

    2017-01-01

    Recent progress in the synthesis of monolayer MoS2, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here, we report a study of highly crystalline islands of MoS2 grown via a refined chemical vapor deposition synthesis technique. Using high resolution scanning tunneling microscopy and spectroscopy (STM/STS), photoemission electron microscopy/spectroscopy (PEEM) and μ-ARPES we investigate the electronic properties of MoS2 as a function of the number of layers at the nanoscale and show in-depth how the band gap is affected by a shift of the valence band edge as a function of the layer number. Green’s function based electronic structure calculations were carried out in order to shed light on the mechanism underlying the observed bandgap reduction with increasing thickness, and the role of the interfacial Sulphur atoms is clarified. Our study, which gives new insight into the variation of electronic properties of MoS2 films with thickness bears directly on junction properties of MoS2, and thus impacts electronics application of MoS2. PMID:28084465

  20. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy.

    PubMed

    Zečević, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; de Jong, Krijn P; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inter-layer coupling induced valence band edge shift in mono- to few-layer MoS 2

    DOE PAGES

    Trainer, Daniel J.; Putilov, Aleksei V.; Di Giorgio, Cinzia; ...

    2017-01-13

    In this study, recent progress in the synthesis of monolayer MoS 2, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here,we report a study of highly crystalline islands of MoS 2 grown via a refined chemical vapor deposition synthesis technique. Using high resolution scanning tunneling microscopy and spectroscopy (STM/STS), photoemission electron microscopy/spectroscopy (PEEM) and μ-ARPES we investigate the electronic properties of MoS 2 as a function of the number of layers at the nanoscale and show in-depth how themore » band gap is affected by a shift of the valence band edge as a function of the layer number. Green’s function based electronic structure calculations were carried out in order to shed light on the mechanism underlying the observed bandgap reduction with increasing thickness, and the role of the interfacial Sulphur atoms is clarified. Our study, which gives new insight into the variation of electronic properties of MoS 2 films with thickness bears directly on junction properties of MoS2, and thus impacts electronics application of MoS 2.« less

  2. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    PubMed Central

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  3. Electron irradiation induced phase separation in a sodium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.

    2004-06-01

    Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.

  4. Thermal stability characterization of SiC ceramic fibers. II. Fractography and structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, L.C.; Chen, R.T.; Haimbach, F.,IV

    1986-08-01

    SiC ceramic fibers (Nicalon) exhibit tensile strength reduction following thermal treatment in air, argon and nitrogen environments above 1200 C. Grain-size variations have been observed in the treated fibers by X-ray diffraction and electron microscopy. Fractography studies show that strength reduction occurs in all thermal treatments, although the mechanism of fiber failure varies depending upon the specific environment. Structure-property relations will be developed as mechanical testing and fractography of the thermally treated fibers are associated with tensile strength loss mechanisms. 16 references.

  5. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  6. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.

  7. Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy.

    PubMed

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; Chung, Kyung Yoon; Choi, Wonchang; Kim, Seung Min; Chang, Wonyoung

    2017-06-07

    Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na x CoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3 O 4 , CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na x CoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na x CoO 2 . The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.

  8. Investigation of Thermal Stability of P2–Na xCoO 2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi

    In this paper, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na xCoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3O 4, CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction ofmore » Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na xCoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na xCoO 2. Finally, the observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.« less

  9. Investigation of Thermal Stability of P2–Na xCoO 2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy

    DOE PAGES

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; ...

    2017-05-11

    In this paper, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na xCoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3O 4, CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction ofmore » Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na xCoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na xCoO 2. Finally, the observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.« less

  10. Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell▿†

    PubMed Central

    Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; Byrne-Bailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D.

    2011-01-01

    Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction. PMID:21908627

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet

    Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  12. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and

  13. Effects of basic calponin on the flexural mechanics and stability of F-actin.

    PubMed

    Jensen, Mikkel Herholdt; Watt, James; Hodgkinson, Julie L; Gallant, Cynthia; Appel, Sarah; El-Mezgueldi, Mohammed; Angelini, Thomas E; Morgan, Kathleen G; Lehman, William; Moore, Jeffrey R

    2012-01-01

    The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations. Copyright © 2011 Wiley Periodicals, Inc.

  14. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light

    PubMed Central

    Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke

    2016-01-01

    Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301

  15. Direct nucleation of silver nanoparticles on graphene sheet.

    PubMed

    Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J

    2012-08-01

    Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.

  16. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.

    PubMed

    Rahim, Moniba; Iram, Sana; Khan, Mohd Sajid; Khan, M Salman; Shukla, Ankur R; Srivastava, A K; Ahmad, Saheem

    2014-05-01

    This study presents a novel approach to synthesize glycogenic gold nanoparticles (glycogenic GNps) capped with glycated products (Schiff's base, Heyns products, fructosylamine etc.). These glycogenic GNps have been found to be active against human osteosarcoma cell line (Saos-2) with an IC50 of 0.187 mM, while the normal human embryonic lung cell line (L-132) remained unaffected up to 1mM concentration. The size of glycogenic GNps can also be controlled by varying the time of incubation of gold solution. Glycation reactions involving a combination of fructose and HSA (Human Serum Albumin) were found to be effective in the reduction of gold to glycogenic GNps whereas glucose in combination with HSA did not result in the reduction of gold. The progress of the reaction was followed using UV-visible spectroscopy and NBT (Nitroblue tetrazolium) assay. The glycogenic GNps were found to be spherical in shape with an average size of 24.3 nm, in a stable emulsion. These GNps were characterized using UV-visible spectroscopy, zeta potential analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract.

    PubMed

    Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq

    This article reports the green fabrication of cerium oxide nanoparticles (CeO 2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO 2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO 2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm -1 , showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO 2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.

  18. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract

    PubMed Central

    Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq

    2016-01-01

    This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm−1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis. PMID:27785011

  19. Behavior of deuterium retention and surface morphology for VPS–W/F82H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuhisa Oya; Masashi Shimada; Tomonori Tokunaga

    The deuterium (D) retention for Vacuum Plasma Spray (VPS)–tungsten (W)/F82H was studied using two different implantation methods, namely D plasma exposure and View the MathML source implantation. The D retention for polished VPS–W/F82H after plasma exposure was found to be reduced compared to that for polycrystalline tungsten. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that porous structures around grain boundaries and the interface between VPS–W layers would be potential D diffusion paths, leading to low D retention. In the case of View the MathML source implantation, the shape of D2 TDS spectrum was almost the samemore » as that for D plasma-exposed VPS–W/F82H; however, the D retention was quite high for unpolished VPS–W/F82H, indicating that most of D was trapped by the oxide layer, which was produced by the VPS process. The reduction of surface area due to the polishing process also reduces D retention for VPS–W/F82H. These results indicate that controlling the surface chemical states is important for the reduction of tritium retention for future fusion reactors.« less

  20. In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature.

    PubMed

    Prestat, Eric; Kulzick, Matthew A; Dietrich, Paul J; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M Grace; Haigh, Sarah J; Zaluzec, Nestor J

    2017-08-18

    We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO 2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yisi; Li, Jie; Li, Wenzhang; Li, Yaomin; Chen, Qiyuan; Zhan, Faqi

    2015-12-01

    Spinel CoMn2O4 (CMO) nanoparticles grown on three-dimensional (3D) nitrogen-doped graphene areogel (NGA) is prepared by a facile two-step hydrothermal method. The NGA not only possesses the intrinsic property of graphene, but also has abundant pore conformations for supporting spinel metal oxide nanoparticles, thus would be suitable as a good electrocatalysts' support for oxygen reduction reaction (ORR). The structure, morphology, porous properties, and chemical composition of CMO/NGA are investigated by X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, nitrogen adsorption-desorption measurements, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of catalysts is discussed by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and rotating disk electrode (RDE) measurements in O2-saturated 0.1 M KOH electrolyte. The CMO/NGA hybrid exhibits more positive onset potential and half-wave potential, faster charge transfer than that of CMO and NGA, and its electrocatalytic performance is comparable with the commercial 20 wt.% Pt/C. Furthermore, it mainly favors a direct 4e- reaction pathway, and has excellent ethanol tolerance and high durability, which is attributed to the unique 3D crumpled porous nanostructure of NGA with large specific area and fast electron transport, and the synergic covalent coupling between the CoMn2O4 nanoparticles and NGA.

  2. Towards spin-polarized two-dimensional electron gas at a surface of an antiferromagnetic insulating oxide

    DOE PAGES

    Mishra, Rohan; Kim, Young -Min; He, Qian; ...

    2016-07-18

    Here, the surfaces of transition-metal oxides with the perovskite structure are fertile grounds for the discovery of novel electronic and magnetic phenomena. In this article, we combine scanning transmission electron microscopy (STEM) with density functional theory (DFT) calculations to obtain the electronic and magnetic properties of the (001) surface of a (LaFeO 3) 8/(SrFeO 3) 1 superlattice film capped with four layers of LaFeO 3. Simultaneously acquired STEM images and electron-energy-loss spectra reveal the surface structure and a reduction in the oxidation state of iron from Fe 3+ in the bulk to Fe 2+ at the surface, extending over severalmore » atomic layers, which signals the presence of oxygen vacancies. The DFT calculations confirm the reduction in terms of oxygen vacancies and further demonstrate the stabilization of an exotic phase in which the surface layer is half metallic and ferromagnetic, while the bulk remains antiferromagnetic and insulating. Based on the calculations, we predict that the surface magnetism and conductivity can be controlled by tuning the partial pressure of oxygen.« less

  3. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    NASA Astrophysics Data System (ADS)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  4. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.

    PubMed

    Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo

    2012-11-21

    To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.

  5. Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rezaei-Zarchi, Saeed; Imani, Saber; mohammad Zand, Ali; Saadati, Mojtaba; Zaghari, Zahra

    2012-09-01

    Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (fructose and sucrose) as the reducing and stabilizing agents. In comparison with other metals, platinum oxide has less environmental pollution. Therefore, Pt is considered an appropriate candidate to deal with environmental pathogens. The crystallite size of these nanoparticles was evaluated from X-ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) and was found to be 10 nm, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM. The nanoparticles were administered to the Pseudomonas stutzeri and Lactobacillus cultures, and the incubation was done at 37°C for 24 h. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. stutzeri and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates. The results of this paper showed that carbohydrates can serve as a carrier for platinum oxide nanoparticles, and nanocomposites can have potential biological applications.

  6. Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kepeng; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang; Schmid, Herbert

    2014-03-01

    Epitaxial CeO{sub 2} films with different thickness were grown on Y{sub 2}O{sub 3} stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO{sub 2} films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce{sup 4+} to Ce{sup 3+} at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also formore » understanding ceria catalytic properties.« less

  7. Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets.

    PubMed

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H; Yin, Geping; Lin, Yuehe

    2011-03-22

    Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity toward formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.

  8. Modified Unzipping Technique to Prepare Graphene Nano-Sheets

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, B. H.; Farid, S. B. H.; Chyad, F. A.

    2018-05-01

    Graphene nano-sheets have been prepared via unzipping approach of multiwall carbon nanotubes (MWCNTs). The method includes two chemical-steps, in which a multi-parameter oxidation step is performed to achieve unzipping the carbon nanotubes. Then, a reduction step is carried out to achieve the final graphene nano-sheets. In the oxidation step, the oxidant material was minimized and balanced with longer curing time. This modification is made in order to reduce the oxygen-functional groups at the ends of graphene basal planes, which reduce its electrical conductivity. In addition, a similar adjustment is achieved in the reduction step, i.e. the consumed chemicals is reduced which make the overall process more economic and eco-friendly. The prepared nano-sheets were characterized by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The average thickness of the prepared graphene was about 5.23 nm.

  9. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    PubMed

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  10. Magnetite nanoparticles functionalized with α-tocopheryl succinate (α-TOS) promote selective cervical cancer cell death

    NASA Astrophysics Data System (ADS)

    Angulo-Molina, Aracely; Méndez-Rojas, Miguel Ángel; Palacios-Hernández, Teresa; Contreras-López, Oscar Edel; Hirata-Flores, Gustavo Alonso; Flores-Alonso, Juan Carlos; Merino-Contreras, Saul; Valenzuela, Olivia; Hernández, Jesús; Reyes-Leyva, Julio

    2014-08-01

    The vitamin E analog α-tocopheryl succinate (α-TOS) selectively induces apoptosis in several cancer cells, but it is sensitive to esterases present in cervical cancer cells. Magnetite nanoparticles (Nps) were prepared by a reduction-coprecipitation method; their surface was silanized and conjugated to α-TOS to enhance its resistance. Morphology, size, and crystal structure were analyzed by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Chemical composition was analyzed by energy-dispersive X-ray spectroscopy; functional groups were determined by Fourier transform infrared spectroscopy; and α-TOS content was estimated by thermogravimetric analysis. The cytotoxic activity of α-TOS-Nps was evaluated in non-malignant fibroblasts and cervical cancer cells by means of the colorimetric MTT viability test. Intracellular localization was identified by confocal laser scanning microscopy. Characterization of α-TOS-Nps revealed sphere-like Nps with 15 nm average size, formed by mineral and organic constituents with high stability. α-TOS-Nps were internalized in the nucleus and selectively affected the viability of cervical cancer cells in a dose- and time-dependent manner but were biocompatible with non-malignant fibroblasts. In conclusion, functionalization of magnetite Nps protected the cytotoxic activity of α-TOS in non-sensitive cervical cancer cells.

  11. Preparation of porous palladium nanowire arrays and their catalytic performance for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Ye, Ke; Gao, Yinyi; Zhang, Hongyu; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue

    2016-01-01

    Nanoporous palladium supported on the carbon coated titanium carbide (C@TiC) nanowire arrays (Pd NP/C@TiC) are successfully prepared by a facile chemical vapor deposition of three-dimensional (3D) C@TiC substrate, followed by electrochemical codeposition of Pd-Ni and removal of Ni via dealloying. The structure and morphology of the obtained Pd NP/C@TiC electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) are used to examine the catalytic performances of the electrodes for H2O2 electroreduction in H2SO4 solution. The Pd NP/C@TiC electrode exhibits a largely effective specific surface area owing to its open nanoporous structure allowing the full utilization of Pd surface active sites. At the potential of 0.2 V in 2.0 mol L-1 H2O2 and 2 mol L-1 H2SO4 solutions, the reduction current density reaches 3.47 A mg-1, which is significantly higher than the catalytic activity of H2O2 electroreduction achieved previously with precious metals as catalysts.

  12. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Progress of reduction of graphene oxide by ascorbic acid

    NASA Astrophysics Data System (ADS)

    De Silva, K. Kanishka H.; Huang, Hsin-Hui; Yoshimura, Masamichi

    2018-07-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are in greater demand in many research fields. As a result, the synthesis of these materials on a large scale in a costeffective manner is more concerned for numerous applications. In the present work, GO was synthesized by oxidizing natural graphite and reduced by ascorbic acid (AA), which is a green reductant. The reduced products obtained at different time periods were in detail characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results showed that the oxidation of graphite has given highly oxidized GO with a 9.30 Å interlayer space and about 33% of oxygen atomic percentage. Until 50 min of the reduction, both GO and RGO coexist. The reduction rate is fast within the first 30 min. In addition, the suitability of natural graphite over synthetic graphite for the synthesis of GO is shown. The findings of this work pave the way to select GO and RGO for applications of interest in a cheap, green and efficient manner.

  14. Structure of a CLC chloride ion channel by cryo-electron microscopy

    PubMed Central

    Park, Eunyong; Campbell, Ernest B.; MacKinnon, Roderick

    2017-01-01

    CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture based on sequence homology. To solve this puzzle we determined the structure of a mammalian CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient. PMID:28002411

  15. Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances

    PubMed Central

    Chen, Liang; Zhang, Yu; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Lu, Daoqiang Daniel; Sun, Rong; Wong, Chingping

    2015-01-01

    Monodisperse Cu2O of different microstructures, such as cubes, flower-like, and microspheres, have been extensively synthesized by a simple polyol reduction method using different copper salts, i.e. (Cu(acac)2, Cu(OH)2, and Cu(Ac)2·H2O). The effects of copper salts on the morphology of Cu2O were investigated in details through various characterization methods, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV-Vis absorption spectra. The effects of morphology on the electrochemical properties were further studied. Among the different structures, Cu2O with the microspheric morphology shows the highest specific capacitance and the best cycling stability compared with those of the other two structures, thus bear larger volume charge during the electrochemical reaction due to the microspheres of small nanoparticles. PMID:25857362

  16. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites.

    PubMed

    Zainuddin, Siti Yasmine Zanariah; Ahmad, Ishak; Kargarzadeh, Hanieh; Abdullah, Ibrahim; Dufresne, Alain

    2013-02-15

    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    PubMed

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Nanosilver particle formation on a high surface area titanate.

    PubMed

    Shi, Meng; Lin, Christopher C H; Wu, Lan; Holt, Christopher M B; Mitlin, David; Kuznicki, Steven M

    2010-12-01

    Titanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations. The nanoparticles range in size from 4 to 12 nm, centered at around 6 nm. In addition to SEM and TEM, XRD and surface area analysis were used to characterize the material. The results indicate that this sodium titanate has a high surface area (>263 m2/g), and high ion exchange capacity for silver (30+ wt%) making it an excellent substrate for the exchange and generation of uniform, high-density silver nanoparticles.

  19. Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.

    2018-05-01

    Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.

  20. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  1. Tribological properties of graphene oxide and carbon spheres as lubricating additives

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Wang, Zhiqiang; Yang, Jin

    2016-10-01

    The purpose of this paper was to investigate the tribological properties of carbon materials with various morphologies [i.e., graphene oxide (GO) and carbon spheres (CSs)] utilized as lubricating additives on a ball-plate tribotester. The morphology and spectroscopy characterization of GO and CSs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetric analysis. Friction and wear properties of the sunflower seed oil filled with GO and CSs were investigated by using a MS-T3000 ball-on-disk apparatus. Results show that the sunflower seed oil containing 0.3 wt% GO nanosheets exhibited a substantial diminution in friction and wear compared with the 3.0 wt% CSs as sunflower seed oil additives. Formation of low-shear strength tribofilms containing GO and its self-lubricating behavior was the key factor in reduction of the friction and prevention from wear and deformation. In addition, friction mechanism of CSs was also discussed.

  2. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens.

    PubMed

    Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei

    2017-02-01

    As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The (2 × 2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries

    NASA Astrophysics Data System (ADS)

    Ghouri, Zafar Khan; Zahoor, Awan; Barakat, Nasser A. M.; Alsoufi, Mohammad S.; Bawazeer, Tahani M.; Mohamed, Ahmed F.; Kim, Hak Yong

    2016-02-01

    The (2 × 2) tunnels structured manganese dioxide nanorods with α phase (α-MnO2) are synthesized via simplistic hydrothermal method at low temperature. The obtained tunnels structured α-MnO2 nanorods are characterized by, Transmission electron microscopy, Scanning electron microscopy, and X-ray diffraction techniques. The oxygen reduction reaction (ORR) activity was studied by cyclic voltammetry and rotating ring-disc electrode voltammetry techniques in alkaline media. Moreover; the highly electrocatalytic tunnels structured α-MnO2 nanorods were then also applied as cathode in rechargeable Li-O2 cells. The Li-O2 cells exhibited initial discharge capacity as high as ∼4000 mAh/g with the tunnels structured α-MnO2 nanorods which was double the original capacity of the cells without any catalyst. Also we obtained 100% round trip efficiency upon cycling with limited capacity for more than 50 cycles.

  4. Facile approach to prepare Pt decorated SWNT/graphene hybrid catalytic ink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayavan, Sundar, E-mail: sundarmayavan@cecri.res.in; Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701; Mandalam, Aditya

    Highlights: • Pt NPs were in situ synthesized onto CNT–graphene support in aqueous solution. • The as-prepared material was used directly as a catalyst ink without further treatment. • Catalyst ink is active toward methanol oxidation. • This approach realizes both scalable and greener production of hybrid catalysts. - Abstract: Platinum nanoparticles were in situ synthesized onto hybrid support involving graphene and single walled carbon nanotube in aqueous solution. We investigate the reduction of graphene oxide, and platinum nanoparticle functionalization on hybrid support by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The as-preparedmore » platinum on hybrid support was used directly as a catalyst ink without further treatment and is active toward methanol oxidation. This work realizes both scalable and greener production of highly efficient hybrid catalysts, and would be valuable for practical applications of graphene based fuel cell catalysts.« less

  5. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  6. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    NASA Astrophysics Data System (ADS)

    Maiyalagan, T.; Scott, Keith

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.

  7. Optical microtopographic inspection of the surface of tooth subjected to stripping reduction

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Pereira, Pedro B.

    2011-05-01

    In orthodontics, the decreasing of tooth-size by reducing interproximal enamel surfaces (stripping) of teeth is a common procedure which allows dental alignment with minimal changes in the facial profile and no arch expansion. In order to achieve smooth surfaces, clinicians have been testing various methods and progressively improved this therapeutic technique. In order to evaluate the surface roughness of teeth subject to interproximal reduction through the five most commonly used methods, teeth were inspected by scanning electron microscopy and microtopographically measured using the optical active triangulation based microtopographer MICROTOP.06.MFC. The metrological procedure will be presented as well as the comparative results concluding on the most suitable tooth interproximal reduction method.

  8. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  9. Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron

    DOE PAGES

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean; ...

    2018-04-11

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  10. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    NASA Astrophysics Data System (ADS)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  11. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  12. Reduction of Cr(6+) to Cr(3+) in a packed-bed bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C.E.; Apel, W.A.; Camp, C.E.

    1997-12-31

    Hexavalent chromium, Cr(6{sup +}), is a common and toxic pollutant in soils and waters. Reduction of the mobile Cr(6{sup +}) to the less mobile and less toxic trivalent chromium, Cr(3{sup +}), can be achieved with conventional chemical reduction technologies. Alternatively, Cr(6{sup +}) can be biochemically reduced to Cr(3{sup +}) by anaerobic microbial consortia which appear to use Cr(6{sup +}) as a terminal electron acceptor. A bioprocess for Cr(6{sup +}) reduction has been demonstrated using a packed-bed bioreactor containing ceramic packing, and then compared to a similar bioreactor containing DuPont Bio-Sep beads. An increase in volumetric productivity from 4 mg Cr(6{supmore » +})/L/h to 260 mg Cr(6{sup +})/L/h, probably due to an increase in biomass density, was obtained using Bio-Sep beads. The beads contain internal macropores which were shown by scanning electron microscopy to house dense concentrations of bacteria. Comparisons to conventional Cr(6{sup +}) treatment technologies indicate that a bioprocess has several economic and operational advantages. 7 refs., 4 figs.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  14. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  15. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    PubMed

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  16. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand

    PubMed Central

    Park, Jeung Hun; Steingart, Daniel A.; Kodambaka, Suneel; Ross, Frances M.

    2017-01-01

    We develop a solution-based nanoscale patterning technique for site-specific deposition and dissolution of metallic nanocrystals. Nanocrystals are grown at desired locations by electron beam–induced reduction of metal ions in solution, with the ions supplied by dissolution of a nearby electrode via an applied potential. The nanocrystals can be “erased” by choice of beam conditions and regrown repeatably. We demonstrate these processes via in situ transmission electron microscopy using Au as the model material and extend to other metals. We anticipate that this approach can be used to deposit multicomponent alloys and core-shell nanostructures with nanoscale spatial and compositional resolutions for a variety of possible applications. PMID:28706992

  17. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  18. Preparation of Al-Ti Master Alloys by Aluminothermic Reduction of TiO2 in Cryolite Melts at 960°C

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Xie, Kaiyu; Li, Liangxing; Shi, Zhongning; Hu, Xianwei; Xu, Junli; Gao, Bingliang; Wang, Zhaowen

    Al-Ti master alloys were prepared by aluminothermic reduction between the dissolved titanium dioxide and aluminum in cryolite melts at 960°C. The kinetic analysis by differential scanning calorimetry indicated that the apparent activation energy of the reaction of reducing titanium dioxide by aluminium is 22.3 kJ/mol, and the reaction order is 0.5. The products were analyzed by means of X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectrometer. Results from X-ray diffraction showed that the phase compositions of produced alloys are Al and Al3Ti. In addition, Al-Ti master alloys containing 2-6 mass% Ti were formed at different reduction time of 2-5h in aluminothermic reduction experiment.

  19. Monodisperse Ultrasmall Manganese-Doped Multimetallic Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst.

    PubMed

    Zhang, Yingying; Wang, Xiang; Hu, Dandan; Xue, Chaozhuang; Wang, Wei; Yang, Huajun; Li, Dongsheng; Wu, Tao

    2018-04-25

    The highly efficient and cheap non-Pt-based electrocatalysts such as transition-based catalysts prepared via facile methods for oxygen reduction reaction (ORR) are desirable for large-scale practical industry applications in energy conversion and storage systems. Herein, we report a straightforward top-down synthesis of monodisperse ultrasmall manganese-doped multimetallic (ZnGe) oxysulfide nanoparticles (NPs) as an efficient ORR electrocatalyst by simple ultrasonic treatment of the Mn-doped Zn-Ge-S chalcogenidometalate crystal precursors in H 2 O/EtOH for only 1 h at room temperature. Thus obtained ultrasmall monodisperse Mn-doped oxysulfide NPs with ultralow Mn loading level (3.92 wt %) not only exhibit comparable onset and half-wave potential (0.92 and 0.86 V vs reversible hydrogen electrode, respectively) to the commercial 20 wt % Pt/C but also exceptionally high metal mass activity (189 mA/mg at 0.8 V) and good methanol tolerance. A combination of transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analysis demonstrated that the homogenous distribution of a large amount of Mn(III) on the surface of NPs mainly accounts for the high ORR activity. We believe that this simple synthesis of Mn-doped multimetallic (ZnGe) oxysulfide NPs derived from chalcogenidometalates will open a new route to explore the utilization of discrete-cluster-based chalcogenidometalates as novel non-Pt electrocatalysts for energy applications and provide a facile way to realize the effective reduction of the amount of catalyst while keeping desired catalytic performances.

  20. A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode

    NASA Astrophysics Data System (ADS)

    De Vos, Caroline; Baneton, Joffrey; Witzke, Megan; Dille, Jean; Godet, Stéphane; Gordon, Michael J.; Mohan Sankaran, R.; Reniers, François

    2017-03-01

    A comparative study of the reduction of aqueous silver (Ag) and gold (Au) salts to colloidal Ag and Au nanoparticles, respectively, by a gaseous, cathodic, atmospheric-pressure microplasma electrode is presented. The resulting nanoparticles (NPs) were characterized by ultraviolet-visible (UV-vis) absorption spectroscopy and transmission electron microscopy (TEM), and the aqueous solution composition before and after experiments was determined by ionic conductivity, electrochemical potential, and/or UV-vis absorption measurements. TEM showed that Ag and Au NPs were spherical and non-agglomerated when synthesized in the presence of a stabilizer, polyvinyl alcohol. The charge injected by the plasma was correlated to the maximum intensity in the absorbance spectra which in turn depends on the nanoparticle concentration. Separately, the charge injected was correlated to the metal cation concentration. Ag and Au reduction rates were found to be directly proportional to the charge injected, independent of plasma current and process time. Differences in the mechanism for Ag and Au reduction were also observed, and solution species generated by the plasma and their role in the reduction process (e.g. H2O2, electrons) is discussed.

  1. Synthesis of gold nanochains via photoactivation technique and their catalytic applications.

    PubMed

    Sinha, Arun Kumar; Basu, Mrinmoyee; Sarkar, Sougata; Pradhan, Mukul; Pal, Tarasankar

    2013-05-15

    The article reports a simple photoactivation technique for the synthesis of chain like assembly of spherical Au nanocrystals using a nontoxic biochemical, β-cyclodextrin under ~365 nm UV-light irradiation. Under UV irradiation, β-cyclodextrin acts as a reducing as well as capping agent and eventually becomes a stabilizing linker for Au nanoparticles. The UV-visible spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopic techniques are employed to systematically characterize the Au nanochains. Additionally, it is shown that the Au nanocrystals act as an effective catalyst for the reduction in nitrobenzene to aniline and methylene blue to leuco methylene blue in presence of suitable reducing agent. The catalytic reduction reactions and kinetic parameters are evaluated from UV-visible spectroscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Pt 3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction

    DOE PAGES

    Raciti, David; Kubal, Joseph; Ma, Cheng; ...

    2015-12-25

    Development of renewable energy technologies requires advanced catalysts for efficient electrical-chemical energy conversion reactions. Here in this paper, we report the study of Pt-Re alloy nanoparticles as an electrocatalyst for the oxygen reduction reaction (ORR). An organic solution approach is developed to synthesize monodisperse and homogeneous Pt 3Re alloy nanoparticles. Electrochemical studies show that these nanoparticles exhibit an improvement factor of 4 in catalytic activity for the ORR compared to commercial Pt catalysts of similar particle sizes. Fundamental understanding of the structure-property relationship is established by combining material characterization using X-ray spectroscopy and atomically resolved electron microscopy, as well asmore » Density Functional Theory (DFT) calculations. Lastly, our work revealed that an electronic modification of the surface properties of Pt by subsurface Re (ligand effect) accounts for the catalytic enhancement.« less

  3. Improvement in crystal quality and optical properties of n-type GaN employing nano-scale SiO2 patterned n-type GaN substrate.

    PubMed

    Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key

    2013-01-01

    n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.

  4. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  5. Cobalt-doped carbon xerogel with different initial pH values toward oxygen reduction

    NASA Astrophysics Data System (ADS)

    Fitri, Azim; Loh, Kee Shyuan; Puspasari, Ifa; Mohamad, Abu Bakar

    2017-12-01

    In this study, cobalt-doped carbon xerogel (Co-CX) was synthesized via sol-gel polymerization resorcinol-formaldehyde, catalyzed with cobalt nitrate, followed by drying and carbonization process under nitrogen gas flow. The effect of initial pH value (5.5, 6.5 and 7.5) and the type of carbon precursors on the morphology of Co-CX have been investigated with Field Emission-Transmission Electron Microscopy (FESEM). The catalytic activity of Co-CX for the oxygen reduction reaction (ORR) in 0.1 M KOH has been studied by using a rotating ring-disk electrode (RRDE) technique. FESEM revealed that Co doping promotes the formation of more pores. While the conditions allow obtaining xerogel with higher porosity at pH 7.5. The RRDE result display that Co-CX exhibited good catalytic activity tends to favor two electrons pathway.

  6. Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2015-12-01

    Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06028a

  7. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    NASA Astrophysics Data System (ADS)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  8. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda

    2006-03-15

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silvermore » nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)« less

  9. An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes

    NASA Astrophysics Data System (ADS)

    Zhu, Menghua; Li, Xin; Liu, Weiwei; Cui, Ying

    2014-09-01

    The graphene-TiO2 nanocomposite has been prepared by mixing graphene oxide (GO) and tetra-n-butyl titanate (TBT) followed by the facile hydrothermal process when the reduction of GO to reduced graphene oxide (RGO) and the hydrolysis of TBT to TiO2 happen. Characterization of the graphene-TiO2 nanostructures is investigated in detail by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. A dye-sensitized solar cell (DSSC) based on graphene-TiO2 composite photoelectrode exhibits a high energy conversion efficiency of 4.28%, compared with a DSSC based on pure TiO2 photoelectrode (3.11%), accompanied by an increment in both short-circuit photocurrent density and open-circuit voltage. The significant enhancement in performance of DSSC is investigated through intensity-modulated photovoltage spectroscopy, intensity-modulated photocurrent spectroscopy, and electrochemical impedance spectroscopy. It is found that the incorporation of two-dimensional graphene nanosheets in the TiO2 electrodes is the key factor leading to the improved photogenerated electron transfer ability and reduced charge recombination.

  10. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  11. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  12. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE PAGES

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...

    2016-06-03

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  13. Impacts of Carrier Transport and Deep Level Defects on Delayed Cathodoluminescence in Droop-Mitigating InGaN/GaN LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhibo; Singh, Akshay; Chesin, Jordan

    Prevalent droop mitigation strategies in InGaN-based LEDs require structural and/or compositional changes in the active region but are accompanied by a detrimental reduction in external quantum efficiency (EQE) due to increased Shockley-Read-Hall recombination. Understanding the optoelectronic impacts of structural modifications in InGaN/GaN quantum wells (QW) remains critical for emerging high-power LEDs. In this work, we use a combination of electron microscopy tools along with standard electrical characterization to investigate a wide range of low-droop InGaN/GaN QW designs. We find that chip-scale EQE is uncorrelated with extended well-width fluctuations observed in scanning transmission electron microscopy. Further, we observe delayed cathodoluminescence (CL)more » response from designs in which calculated band profiles suggest facile carrier escape from individual QWs. Samples with the slowest CL responses also exhibit the lowest EQEs and highest QW defect densities in deep level optical spectroscopy. We propose a model in which the electron beam (i) passivates deep level defect states and (ii) drives charge carrier accumulation and subsequent reduction of the built-in field across the multi-QW active region, resulting in delayed radiative recombination. Finally, we correlate CL rise dynamics with capacitance-voltage measurements and show that certain early-time components of the CL dynamics reflect the open circuit carrier population within one or more QWs.« less

  14. Facile fabrication of mesoporous Fe-Ti-SBA15 silica with enhanced visible-light-driven simultaneous photocatalytic degradation and reduction reactions

    NASA Astrophysics Data System (ADS)

    Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng

    2018-03-01

    A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.

  15. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    PubMed

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally

    PubMed Central

    SVITKINA, Tatyana M.

    2017-01-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelgund, Gururaj M.; Oki, Aderemi, E-mail: aroki@pvamu.edu; Luo, Zhiping

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HAmore » was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.« less

  18. Rational design of template-free MnOx-CeO2 hollow nanotube as de-NOx catalyst at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Chenlu; Tang, Xiaolong; Yi, Honghong; Wang, Lifeng; Cui, Xiaoxu; Chu, Chao; Li, Jingying; Zhang, Runcao; Yu, Qingjun

    2018-01-01

    MnOx-CeO2 hollow nanotube was synthesized for the low temperature selective catalytic reduction (SCR) of NOx with NH3. The nanotube was fabricated firstly through the interfacial oxidation-reduction reaction by dealing the Ce(OH)CO3 intermediate with KMnO4 aqueous solution, then followed by selective wash with HNO3. The catalysts were systematically examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption measurements and catalytic activity test. It was found that the as-prepared MnOx-CeO2-B nanotube exhibited best NOx removal efficiency among the catalysts investigated, where 96% NOx conversion at 100 °C at a space velocity of 30000 h-1 was obtained. Meanwhile, superior resistance to H2O and SO2 was achieved as well as high thermal stability. On the basis of various analysis results, the remarkable de-NOx performance of the MnOx-CeO2-B nanobube could be attributed to the uniform distribution of active species, abundant content of Mn4+ and Oα species, and especially the hollow porous architectures provided huge specific surface area and sufficient acidic sites.

  19. TiCN/TiNbCN multilayer coatings with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Amaya, C.; Yate, L.; Gómez, M. E.; Zambrano, G.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.

    2010-08-01

    Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods ( Λ) and bilayer numbers ( n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 15 nm ( n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.

  20. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction

    NASA Astrophysics Data System (ADS)

    Amstaetter, Katja; Borch, Thomas; Kappler, Andreas

    2012-05-01

    Microbial reduction of Fe(III) minerals at neutral pH is faced by the problem of electron transfer from the cells to the solid-phase electron acceptor and is thought to require either direct cell-mineral contact, the presence of Fe(III)-chelators or the presence of electron shuttles, e.g. dissolved or solid-phase humic substances (HS). In this study we investigated to which extent the ratio of Pahokee Peat Humic Acids (HA) to ferrihydrite in the presence and absence of phosphate influences rates of Fe(III) reduction by Shewanella oneidensis MR-1 and the identity of the minerals formed. We found that phosphate generally decreased reduction rates by sorption to the ferrihydrite and surface site blocking. In the presence of low ferrihydrite concentrations (5 mM), the addition of HA helped to overcome this inhibiting effect by functioning as electron shuttle between cells and the ferrihydrite. In contrast, at high ferrihydrite concentrations (30 mM), the addition of HA did not lead to an increase but rather to a decrease in reduction rates. Confocal laser scanning microscopy images and ferrihydrite sedimentation behaviour suggest that the extent of ferrihydrite surface coating by HA influences the aggregation of the ferrihydrite particles and thereby their accessibility for Fe(III)-reducing bacteria. We further conclude that in presence of dissolved HA, iron reduction is stimulated through electron shuttling while in the presence of only sorbed HA, no stimulation by electron shuttling takes place. In presence of phosphate the stimulation effect did not occur until a minimum concentration of 10 mg/l of dissolved HA was reached followed by increasing Fe(III) reduction rates up to dissolved HA concentrations of approximately 240 mg/l above which the electron shuttling effect ceased. Not only Fe(III) reduction rates but also the mineral products changed in the presence of HA. Sequential extraction, XRD and 57Fe-Mössbauer spectroscopy showed that crystallinity and grain size of the magnetite produced by Fe(III) reduction in the presence of HA is lower than the magnetite produced in the absence of HA. In summary, this study shows that both the concentration of HA and Fe(III) minerals strongly influence microbial Fe(III) reduction rates and the mineralogy of the reduction products. Thus, deviations in iron (hydr)oxide reactivity with changes in aggregation state, such as HA induced ferrihydrite aggregation, need to be considered within natural environments.

  1. Silver stain for electron microscopy

    NASA Technical Reports Server (NTRS)

    Corbett, R. L.

    1972-01-01

    Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.

  2. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+Soultion : Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Dai, C.; Zhang, Y.

    2015-12-01

    The nanoscale particle and low oxidation reduction potential make nano zero-valent iron (nZVI) an efficient sorbent and reductant for treating many kinds of organic contaminants and heavy metals.The structures of nanoscale zero-valent iron (nZVI) particles are evolving in reactions, and the reactions are influenced by the evolved structures. In order to understand the detail removal process, it is important to investigate the interactions between reactions and structural evolution. In this work, reactions between nZVI and Co2+ at different initial concentrations in anoxic aqueous solutions (to eliminate the effects of O2) were tracked for 10 days using a variety of methods including inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution-transmission electron microscopy (HR-TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Continuous removal and reduction of Co2+ by nZVI caused by structural evolution were revealed in reaction processes. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the corrosion rate of nZVI, was deemed as the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results showed that the formation and dissolution of sheet structure impacts on the ratio of Fe (0) on nZVI's surface and the surface reduction of Co2+. The cavity structure provides the possibility of Co migrating from surface to inside of nZVI leading a continuous removal. A subacidity condition could accelerate the evolution to improve the removal of Co2+ and the results of structural controlled reactions further indicated that the removal was suspended by sheet structure and enhanced by cavity structure. The results in this study revealed "structural influence" for fully and dynamically understanding nZVI's reactions.

  3. The evaluation of dentinal tubule occlusion by desensitizing agents: a real-time measurement of dentinal fluid flow rate and scanning electron microscopy.

    PubMed

    Kim, S Y; Kim, E J; Kim, D S; Lee, I B

    2013-01-01

    The aims of this study were to examine changes in dentinal fluid flow (DFF) during the application of a desensitizing agent and to compare the permeability reduction levels among different types of desensitizing agents. A cervical cavity was prepared for the exposure of cervical dentin on an extracted human premolar connected to a subnanoliter fluid flow measuring device under 20 cm of water pressure. The cavity was acid-etched with 32% phosphoric acid to make dentin highly permeable. The different types of desensitizing agents that were applied on the cavity were Seal&Protect as the light-curing adhesive type, SuperSeal and BisBlock as oxalate types, Gluma Desensitizer as the protein-precipitation type, and Bi-Fluoride 12 as the fluoride type. DFF was measured from the time before the application of the desensitizing agent throughout the application procedure to five minutes after the application. The characteristics of dentinal tubule occlusion of each desensitizing agent were examined by scanning electron microscopy. The DFF rate after each desensitizing agent application was significantly reduced when compared to the initial DFF rate before application for all of the desensitizing agents (p<0.05). Seal&Protect showed a greater reduction in the DFF rate when compared to Gluma Desensitizer and Bi-Fluoride 12 (p<0.05). SuperSeal and BisBlock exhibited a greater reduction in DFF rate when compared to Bi-Fluoride 12 (p<0.05). The dentin hypersensitivity treatment effects of the employed desensitizing agents in this study were confirmed through real-time measurements of DFF changes. The light-curing adhesive and oxalate types showed greater reduction in the DFF rate than did the protein-precipitation and fluoride types.

  4. Hierarchical porous silver metal using Pluronic F-127 and graphene oxide as reinforcing agents for the reduction of o-nitroaniline to 1, 2-benzenediamine

    NASA Astrophysics Data System (ADS)

    Bano, Mustri; Ahirwar, Devendra; Thomas, Molly; Sheikh, Mehraj Ud Din; Khan, Farid

    2017-04-01

    An elegant method is used to prepare silver monoliths with Pluronic F-127(F-127) as sacrificial template by modified sol-gel method. Si nanoparticles (SiNPs) and graphene oxide (GO) are added in situ to Ag/F-127 hydrogel for the reduction of ο-nitroaniline (ο-NA) to 1, 2-benzenediamine. Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Raman Spectroscopy, Powder X-Ray Diffraction (PXRD) analysis and Brunauer-Emmett-Teller (BET) Nitrogen adsorption techniques were used for characterization of monoliths. An epoch-making catalytic activity of Ag/F-127/GO monoliths is observed in the reduction of ο-NA to 1, 2-benzenediamine in presence of NaBH4 in aqueous media. The catalyst Ag/F-127/GO took only 2 min which is the minimum time reported so far with significant rate constant claimed itself a leading catalyst for the reduction of ο-NA to 1,2-benzenediamine. Pseudo first order rate constant (k) and Turn over frequency (TOF) values are 0.231 min-1 and 30.053×1019 molecules min-1 respectively suggest that the catalyst has industrial importance. Recyclability and stability of Ag/F-127/GO catalyst are studied successfully up to 10 cycles. Energy of activation (Ea), and thermodynamic parameters viz. activation enthalpy (ΔH≠), activation Gibbs free energy (ΔG≠), and entropy of activation (ΔS≠) were also ascertained. Catalytic activities of Ag/F-127, Ag/F-127/Dextran, Ag/F-127/Trimethylbenzene (TMB), Ag/F-127/SiNPs, and Ag/F-127/Si/GO monoliths were also studied.

  5. Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ

    PubMed Central

    Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.

    2009-01-01

    Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881

  6. Thermal stability and reduction of iron oxide nanowires at moderate temperatures.

    PubMed

    Paolone, Annalisa; Angelucci, Marco; Panero, Stefania; Betti, Maria Grazia; Mariani, Carlo

    2014-01-01

    The thermal stability of iron oxide nanowires, which were obtained with a hard template method and are promising elements of Li-ion based batteries, has been investigated by means of thermogravimetry, infrared and photoemission spectroscopy measurements. The chemical state of the nanowires is typical of the Fe2O3 phase and the stoichiometry changes towards a Fe3O4 phase by annealing above 440 K. The shape and morphology of the nanowires is not modified by moderate thermal treatment, as imaged by scanning electron microscopy. This complementary spectroscopy-microscopy study allows to assess the temperature limits of these Fe2O3 nanowires during operation, malfunctioning or abuse in advanced Li-ion based batteries.

  7. Joint Research on Scatterometry and AFM Wafer Metrology

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  8. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  9. Acetic acid effects on enhancement of growth rate and reduction of amorphous carbon deposition on CNT arrays along a growth window in a floating catalyst reactor

    NASA Astrophysics Data System (ADS)

    Maghrebi, Morteza; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Sane, Ali; Rahimi, Mohsen; Shirazi, Yaser; Tsakadze, Zviad; Mhaisalkar, Subodh

    2009-11-01

    The mm-long carbon nanotube (CNT) arrays were grown in a floating catalyst reactor, using xylene-ferrocene and a small amount of acetic acid as the feed. The CNT arrays deposited on a quartz substrate at several positions along the reactor were extensively characterized using Raman spectroscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and optical microscopy. Various characterization methods consistently reveal that the acetic acid additive to the feed alleviates deposition of amorphous carbon layer, which gradually thickens CNTs along the reactor. The acetic acid also resulted in a higher growth rate along the so-called growth window, where CNT arrays are deposited on the quartz substrate. High-performance liquid chromatography of extracted byproducts (PAHs) confirmed the presence of some polycyclic aromatic hydrocarbons. The solid weight of PAHs decreased upon addition of ferrocene as the catalyst precursor, as well as of acetic acid to xylene feed. The results suggest that primary light products of xylene pyrolysis can be competitive reactants for both catalytic and subsequent pyrolytic reactions. They may also be more efficient feeds for CNT growth than xylene itself.

  10. Green synthesis and characterization of graphene nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductantmore » but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.« less

  11. Reduction and removal of heptavalent technetium from solution by Escherichia coli.

    PubMed

    Lloyd, J R; Cole, J A; Macaskie, L E

    1997-03-01

    Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.

  12. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  13. Effect of Electron Donor and Solution Chemistry on Products of Dissimilatory Reduction of Technetium by Shewanella putrefaciens

    PubMed Central

    Wildung, R. E.; Gorby, Y. A.; Krupka, K. M.; Hess, N. J.; Li, S. W.; Plymale, A. E.; McKinley, J. P.; Fredrickson, J. K.

    2000-01-01

    To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing 99Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O4−] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H2 served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0.85% NaCl and with extracellular particulates (0.2 to 0.001 μm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 μm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O4− in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of Eh and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products. PMID:10831424

  14. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  15. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji

    2012-06-01

    A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.

  16. Characterization of nanostructured surfaces generated by reconstitution of the porin MspA from Mycobacterium smegmatis.

    PubMed

    Wörner, Michael; Lioubashevski, Oleg; Basel, Matthew T; Niebler, Sandra; Gogritchiani, Eliso; Egner, Nicole; Heinz, Christian; Hoferer, Jürgen; Cipolloni, Michela; Janik, Katharine; Katz, Evgeny; Braun, Andre M; Willner, Itamar; Niederweis, Michael; Bossmann, Stefan H

    2007-06-01

    Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.

  17. Disinfection of Streptococcus mutans Biofilm by a Non-Thermal Atmospheric Plasma Brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Yu, Qingsong

    2015-09-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. S. mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using MTT assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% and 95% bacterial reduction in the biofilms was observed after 1 and 5 min plasma treatment, respectively. Scanning electron microscopy examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. CLSM showed that plasma treatment was effective as deep as 20 μm into the biofilms. When combined with 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment. These results indicate that plasma treatment is effective and promising in dental biofilm disinfection.

  18. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.

    PubMed

    Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D

    2012-08-01

    A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, TiChang; Wang, XiaoPing; Hu, TianYang

    2017-10-01

    The effects of MgO on the carbothermic reduction behavior of vanadium titanomagnetite concentrates (VTC) from Chengde, China, were investigated via temperature-programmed heating under nitrogen atmosphere in a sealed furnace. Gaseous product content was measured by using an infrared gas analyzer, and it was found that the addition of MgO to VTC with char decreased the reduction rate and reduction degree, and the utilization of CO in VTC reduction was also reduced. X-ray diffraction results showed that magnesium titanate (Mg2TiO4) was formed but FeTi2O5 was not observed in the VTC reduction process by adding 6 wt.% MgO, which can be explained by thermodynamic analysis. Scanning electron microscopy revealed that the enrichment of Mg in the unreacted core was the main reason that the further reduction of VTC was restricted. However, comparatively pure particles of Mg2TiO4 were generated, and the titanium and iron were separated well due to the combination of magnesium and titanium.

  20. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  1. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  2. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  3. In vitro inhibitory activity of probiotic products against oral Candida species.

    PubMed

    Zhao, C; Lv, X; Fu, J; He, C; Hua, H; Yan, Z

    2016-07-01

    To evaluate the inhibitory activity of probiotics against oral Candida species. Four commercial probiotic products were screened. Bacillus subtilis R0179 was found to have a significant antifungal effect. Bacillus subtilis-Candida interactions were evaluated using disc diffusion tests, confocal laser scanning microscopy, scanning electron microscopy and interaction with engineered human oral mucosa tissue. Bacillus subtilis exhibited clear zones of inhibition for Candida albicans and Candida parapsilosis but not for Candida krusei. A remarkable reduction in the number of Candida cells and abundant Candida cell death were visualized with confocal laser scanning microscopy. Shrinkage and deformation of Candida cells was observed using scanning electron microscopy. Culture of C. albicans on engineered human oral mucosa tissues resulted in the presence of a large number of yeast cells on the tissue surface and the development of large-scale tissue damage. However, comparatively fewer Candida cells were observed on B. subtilis-treated tissues. We also use ultra performance liquid chromatography/time of flight mass spectrometry (UPLC/TOF MS) to explore the preliminary antifungal mechanism of B. subtilis R0179 and to detect that whether it can secrete an antifungal agent, Iturin A. Bacillus subtilis R0179 exhibits a significant inhibitory effect on the growth of Candida species. Bacillus subtilis has the potential to be used in the prevention or treatment of oral candidiasis. © 2016 The Society for Applied Microbiology.

  4. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less

  5. Static and dynamic structural characterization of nanomaterial catalysts

    NASA Astrophysics Data System (ADS)

    Masiel, Daniel Joseph

    Heterogeneous catalysts systems are pervasive in industry, technology and academia. These systems often involve nanostructured transition metal particles that have crucial interfaces with either their supports or solid products. Understanding the nature of these interfaces as well as the structure of the catalysts and support materials themselves is crucial for the advancement of catalysis in general. Recent developments in the field of transmission electron microscopy (TEM) including dynamic transmission electron microscopy (DTEM), electron tomography, and in situ techniques stand poised to provide fresh insight into nanostructured catalyst systems. Several electron microscopy techniques are applied in this study to elucidate the mechanism of silica nanocoil growth and to discern the role of the support material and catalyst size in carbon dioxide and steam reforming of methane. The growth of silica nanocoils by faceted cobalt nanoparticles is a process that was initially believed to take place via a vapor-liquid-solid growth mechanism similar to other nanowire growth techniques. The extensive TEM work described here suggests that the process may instead occur via transport of silicate and silica species over the nanoparticle surface. Electron tomography studies of the interface between the catalyst particles and the wire indicate that they grow from edges between facets. Studies on reduction of the Co 3O4 nanoparticle precursors to the faceted pure cobalt catalysts were carried out using DTEM and in situ heating. Supported catalyst systems for methane reforming were studied using dark field scanning TEM to better understand sintering effects and the increased activity of Ni/Co catalysts supported by carbon nanotubes. Several novel electron microscopy techniques are described including annular dark field DTEM and a metaheuristic algorithm for solving the phase problem of coherent diffractive imaging. By inserting an annular dark field aperture into the back focal plane of the objective lens in a DTEM, time-resolved dark field images can be produced that have vastly improved contrast for supported catalyst materials compared to bright field DTEM imaging. A new algorithm called swarm optimized phase retrieval is described that uses a population-based approach to solve for the missing phases of diffraction data from discrete particles.

  6. Dielectric Properties of Reduced Graphene Oxide/Copper Phthalocyanine Nanocomposites Fabricated Through π- π Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.

  7. Dynamical backaction cooling with free electrons.

    PubMed

    Niguès, A; Siria, A; Verlot, P

    2015-09-18

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  8. Degradation product analysis from the photocatalytic oxidation/reduction of 2,4-dichlorophenol in the presence of mesoporous silica encapsulated TiO2 particles and TiO2 dispersions (presentation)

    EPA Science Inventory

    Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...

  9. Electron Microscopy of Staphylococcus aureus Cell Wall Lysis

    PubMed Central

    Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia

    1966-01-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482

  10. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  11. Production of Solar-grade Silicon by Halidothermic Reduction of Silicon Tetrachloride

    NASA Astrophysics Data System (ADS)

    Yasuda, Kouji; Saegusa, Kunio; Okabe, Toru H.

    2011-02-01

    To develop a new production process for solar-grade Si, a fundamental study on halidothermic reduction based on the subhalide reduction of SiCl4 by Al subchloride reductant was carried out at 1273 K (1000 °C). Aluminum subchloride reductant was produced by reacting AlCl3 vapor with metallic Al. Silicon tetrachloride was reduced to Si in a gas-phase reaction by vapors of Al subchloride reductant. Silicon deposits produced in the halidothermic reduction were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray fluorescence (XRF). The Al content in the Si deposits was no more than 0.5 at pct. The Si deposits have a fibrous or hexagonal columnar morphology with diameters ranging from 100 nm to several tens of microns. The reaction was discussed by comparison with the results of the conventional aluminothermic reduction of SiCl4. Moreover, the halidothermic reduction reactions were analyzed from thermodynamical viewpoints. This study demonstrates the feasibility of a halidothermic reduction for producing solar-grade Si with high productivity.

  12. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  13. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  14. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, S.; Mondal, A.; Dey, K.

    Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorptionmore » reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.« less

  16. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  17. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential

    NASA Astrophysics Data System (ADS)

    Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick

    2018-03-01

    In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.

  18. A biocompatible synthesis of gold nanoparticles by Tris(hydroxymethyl)aminomethane

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wang, Yanwei; Ma, Jun; Yang, Guangcan

    2014-05-01

    Gold nanoparticles' novel properties are widely realized in catalysis, plasmonics, electronics, and biomedical applications. For biomedical application, one challenge is to find a non-toxic chemical and/or physical method of functionalizing gold nanoparticles with biomolecular compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term effects on human health and reproduction. In the present study, we describe a new method by using Tris(hydroxymethyl)aminomethane (Tris), a widely used buffer solvent of nucleic acid and proteins, as the reducing agent for synthesizing gold nanoparticles by one step. It is found that Tris carries out the reduction reactions in relatively mild conditions for biomacromolecules. Particularly, it can be used to modify the DNA during the process of preparation of gold nanoparticles. The morphology and size distribution of gold nanoparticles are consistent and were confirmed by many different approaches including dynamic light scattering (DLS), UV-visible (UV-vis) spectrophotometry, atomic force microscopy (AFM), and transmission electron microscopy (TEM).

  19. Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts

    NASA Astrophysics Data System (ADS)

    Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong; Zhu, Hongmin; Jiao, Shuqiang

    2015-08-01

    The electrodeposition of carbon films with a Mo2C interlayer was investigated in LiCl-NaCl-Na2CO3 melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo2C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo2C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo2C) leads to the formation and growth of Mo2C interlayer.

  20. Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects

    PubMed Central

    Vivek, Marimuthu; Kumar, Palanisamy Senthil; Steffi, Sesurajan; Sudha, Sellappa

    2011-01-01

    The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the aqueous extract of red seaweed Gelidiella acerosa as the reducing agent to study the antifungal activity. The formation of Ag-NPs was confirmed by UV-Visible Spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The synthesized Ag-NPs was predominately spherical in shape and polydispersed. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nano-Ag was capped with bimolecular compounds which are responsible for reduction of silver ions. The antifungal effects of these nanoparticles were studied against Humicola insolens (MTCC 4520), Fusarium dimerum (MTCC 6583), Mucor indicus (MTCC 3318) and Trichoderma reesei (MTCC 3929). The present study indicates that Ag-NPs have considerable antifungal activity in comparison with standard antifungal drug, and hence further investigation for clinical applications is necessary. PMID:23408653

  1. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  3. Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper.

    PubMed

    Liu, Kai; Liang, Hunan; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2016-05-20

    An effective method of preparing composites containing inorganic (Ag) and organic (beeswax) particles was established in this study. Ag nanoparticles were first immobilized on the cellulose nanocrystals (CNC) during the reduction of AgNO3 in the presence of CNC, then mixed with beeswax by high speed stirring. Scanning transmission electron microscopy (STEM) images indicated that Ag and beeswax particles were uniformly dispersed and stable in the network structure formed by CNC. Upon coating on a paper surface, a layer of beeswax film was evident based on scanning electron microscopy (SEM) images. The dynamic contact angle and antibacterial activity tests indicated that the contact angle of coated paper reached 113.06° and the growth inhibition of Escherichia coli increased to 99.96%, respectively, at a coating amount of 21.53 g/m(2). When applied onto paper surface by coating, the CNC/Ag/beeswax composites can impact paper with antibacterial property and improved water resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2015-06-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  5. Morphology-controlled synthesis of α-Fe 2O 3 nanostructures with magnetic property and excellent electrocatalytic activity for H 2O 2

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie

    2011-12-01

    α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.

  6. Challenges in Resolution for IC Failure Analysis

    NASA Astrophysics Data System (ADS)

    Martinez, Nick

    1999-10-01

    Resolution is becoming more and more of a challenge in the world of Failure Analysis in integrated circuits. This is a result of the ongoing size reduction in microelectronics. Determining the cause of a failure depends upon being able to find the responsible defect. The time it takes to locate a given defect is extremely important so that proper corrective actions can be taken. The limits of current microscopy tools are being pushed. With sub-micron feature sizes and even smaller killing defects, optical microscopes are becoming obsolete. With scanning electron microscopy (SEM), the resolution is high but the voltage involved can make these small defects transparent due to the large mean-free path of incident electrons. In this presentation, I will give an overview of the use of inspection methods in Failure Analysis and show example studies of my work as an Intern student at Texas Instruments. 1. Work at Texas Instruments, Stafford, TX, was supported by TI. 2. Work at Texas Tech University, was supported by NSF Grant DMR9705498.

  7. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  8. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants.

    PubMed

    Rasheed, Tahir; Bilal, Muhammad; Li, Chuanlong; Nabeel, Faran; Khalid, Muhammad; Iqbal, Hafiz M N

    2018-04-01

    Herein, we reported a facile, green and environmental friendlier biosynthesis of silver nanoparticles using the Convolvulus arvensis extract. The influences of various physicochemical factors such as the concentration of the plant extract, reaction time, and different pH levels were investigated by UV-Vis spectroscopy. The UV-Visible absorption spectrum of biogenic silver nanoparticles at λ max around ~400 nm suggested the biosynthesis of silver nanoparticles. Fourier transform infrared spectroscopy was employed to confirm the chemical transformation and role of various phyto-reductants in the conversion of Ag + to Ag 0 . The surface morphology, topography, and elemental composition were analyzed by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. X-ray diffraction corroborated the face-centered cubic crystalline structure. The dynamic light scattering and zeta potential demonstrate the size distribution (90.9 nm) and surface charge (-18.5). Finally, the newly developed C. arvensis based silver nanoparticles were exploited as a catalyst for the catalytic reduction of azo dyes in the presence of NaBH 4 as a reducing agent, and reducing the activity of C. arvensis based silver nanoparticles was evaluated by a decrease in optical density using UV-Vis spectrophotometer. The nanoparticles developed herein displayed potential efficiency for the degradation of all the tested dye pollutants. Conclusively, plant-based synthesis of nanoparticles provides an environmentally-responsive option for the reduction of highly environmental-polluted organic compounds including toxic azo dyes as compared to chemical and physical methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Effect of cold rolling on the microstructural evolution of new β-typed Ti–6Mo–6V–5Cr–3Sn–2.5Zr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Gwnaghyo; Lee, Kwangmin, E-mail: kmlee@jnu.a

    A Ti–6Mo–6V–5Cr–3Sn–2.5Zr (wt.%) alloy was designed as a new metastable β-Ti alloy. The effect that cold rolling had on the microstructural evolution of the material was investigated via optical microscopy (OM), X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) measurements. A single β phase formed in the alloy after solution treatment at 780 °C for 30 min followed by water quenching. The solution-treated alloy was cold rolled with thickness reductions of 10%, 30%, 50% and 70%, and the hardness values increased as the thickness of the specimen decreased. The textures of the cold rolled specimen weremore » characterized according to the 〈110〉 partial parallel to the rolling direction as the rolling reduction increased. The crystallographic orientation showed principal α-fiber textures for (111)〈110〉 and (112)〈110〉. The cold deformation led to the appearance of martensite α″ phases, particularly stress-induced martensite (SIM) α″ phases. - Highlights: • Effect of cold rolling on new β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy was studied. • A single β phase was obtained after solution treatment at 780 °C for 30 min. • α-Fiber textures became dominated with the increase in cold rolling reduction. • A stress-induced α″ martensite was caused by cold rolling.« less

  10. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity.

    PubMed

    Shameli, Kamyar; Bin Ahmad, Mansor; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.

  11. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  12. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  13. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  14. Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy

    PubMed Central

    Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice

    2016-01-01

    The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889

  15. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  17. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  18. Optimization of the nanotwin-induced zigzag surface of copper by electromigration

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Ping; Huang, Chun-Wei; Wang, Chun-Wen; Wu, Wen-Wei; Liao, Chien-Neng; Chen, Lih-Juann; Tu, King-Ning

    2016-01-01

    By adding nanotwins to Cu, the surface electromigration (EM) slows down. The atomic mobility of the surface step-edges is retarded by the triple points where a twin meets a free surface to form a zigzag-type surface. We observed that EM can alter the zigzag surface structure to optimize the reduction of EM, according to Le Chatelier's principle. Statistically, the optimal alternation is to change an arbitrary (111)/(hkl) zigzag pair to a pair having a very low index (hkl) plane, especially the (200) plane. Using in situ ultrahigh vacuum and high-resolution transmission electron microscopy, we examined the effects of different zigzag surfaces on the rate of EM. The calculated rate of surface EM can be decreased by a factor of ten.By adding nanotwins to Cu, the surface electromigration (EM) slows down. The atomic mobility of the surface step-edges is retarded by the triple points where a twin meets a free surface to form a zigzag-type surface. We observed that EM can alter the zigzag surface structure to optimize the reduction of EM, according to Le Chatelier's principle. Statistically, the optimal alternation is to change an arbitrary (111)/(hkl) zigzag pair to a pair having a very low index (hkl) plane, especially the (200) plane. Using in situ ultrahigh vacuum and high-resolution transmission electron microscopy, we examined the effects of different zigzag surfaces on the rate of EM. The calculated rate of surface EM can be decreased by a factor of ten. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05418d

  19. Nb2O5 nanowires in-situ grown on carbon fiber: A high-efficiency material for the photocatalytic reduction of Cr(VI).

    PubMed

    Du, Yucheng; Zhang, Shihao; Wang, Jinshu; Wu, Junshu; Dai, Hongxing

    2018-04-01

    Niobium oxide nanowire-deposited carbon fiber (CF) samples were prepared using a hydrothermal method with amorphous Nb 2 O 5 ·nH 2 O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), UV-visible spectroscopy (UV-vis), N 2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined. Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb 2 O 5 /carbon fiber sample obtained after hydrothermal treatment at 160°C for 14hr. The maximal Cr(VI) adsorption capacity of the Nb 2 O 5 nanowire/CF sample was 115mg/g. This Nb 2 O 5 /CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(VI) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area, abundant surface hydroxyl groups, and good UV-light absorption ability. Copyright © 2017. Published by Elsevier B.V.

  20. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yiqiong; Dong, Han; Wang, Yin; He, Chi; Wang, Yuxin; Zhang, Xiaodong

    2018-02-01

    A series of octahedral structure Cu-BTC derivatives were successfully achieved through direct calcination of copper based metal organic framework Cu-BTC under different atmosphere (CO reaction gas, oxidizing gas O2, reducing gas H2, inert gas Ar). The Cu-BTC derivatives were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), N2 adsorption-desorption isotherm, element analysis, H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). It is found that Cu-BTC derivative derived from MOF calcined under reaction gas/O2 (Cu-BTC-CO/Cu-BTC-O) only retain Cu2O and CuO species. In addition, a weak Cu-BTC structure and Cu particles were observed on Cu-BTC derivative derived from MOF calcined under H2 (Cu-BTC-H). Obviously differently, Cu-BTC derivative derived from MOF calcined under Ar (Cu-BTC-Ar) still retains good MOF structure. The catalytic performance for CO oxidation over Cu-BTC derivatives was studied. It was found that Cu-BTC-CO showed a smaller specific surface area (8.0 m2/g), but presented an excellent catalytic performance, long-term stability and cycling stability with a complete CO conversion temperature (T100) of 140 °C, which was ascribed to the higher Cu2O/CuO ratio, good low temperature reduction behavior and a high quantity of surface active oxygen species.

  1. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  2. Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.

    PubMed

    Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C

    2006-01-01

    Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.

  3. Application of environmental scanning electron microscopy to determine biological surface structure.

    PubMed

    Kirk, S E; Skepper, J N; Donald, A M

    2009-02-01

    The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.

  4. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  5. Preparation of Aluminum-Zirconium Master Alloy by Aluminothermic Reduction in Cryolite Melt

    NASA Astrophysics Data System (ADS)

    Liu, Fengguo; Ding, Chenliang; Tao, Wenju; Hu, Xianwei; Gao, Bingliang; Shi, Zhongning; Wang, Zhaowen

    2017-12-01

    Al-Zr master alloy was prepared by aluminothermic reduction in cryolite melt without alumina impurity. The Al-Zr master alloy was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The composition of the master alloy was analyzed by inductively coupled plasma optical emission spectrometry. The results indicated that Al-Zr master alloy with high purity could be obtained when byproduct Al2O3 was dissolved in the cryolite melt. The Al-Zr alloy was embedded in the Al matrix in the form of Al3Zr phase with long rod or tetragonal morphology due to temperature variation. Finally, we obtained Al-Zr alloy with 7 wt.% Zr by aluminothermic reduction for 90 min in cryolite melt at 980°C.

  6. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  7. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.

    PubMed

    Sadeghi, Babak; Gholamhoseinpoor, F

    2015-01-05

    Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH₂), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synthesis of camptothecin-loaded gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Xing, Zhimin; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Zhao, Chunjian; Zhao, Xiuhua; Meng, Ronghua; Tan, Shengnan

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  10. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.

    PubMed

    Zeng, Lingxing; Zheng, Cheng; Deng, Cuilin; Ding, Xiaokun; Wei, Mingdeng

    2013-03-01

    In the present work, the nanocomposite of MoO2-ordered mesoporous carbon (MoO2-OMC) was synthesized for the first time using a carbon thermal reduction route and the mesoporous carbon as the nanoreactor. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Furthermore, this nanocomposite was used as an anode material for Li-ion intercalation and exhibited large reversible capacity, high rate performance, and good cycling stability. For instance, a high reversible capacity of 689 mAh g(-1) can remain after 50 cycles at a current density of 50 mA g(-1). It is worth mentioning that the MoO2-OMC nanocomposite electrode can attain a high reversible capacity of 401 mAh g(-1) at a current density as high as 2 A g(-1). These results might be due to the intrinsic characteristics of nanocomposite, which offered a better accommodation of the strain and volume changes and a shorter path for Li-ion and electron transport, leading to the improved capacity and enhanced rate capability.

  11. Electron microscopy of vesicular-arbuscular mycorrhizae of yellow poplar. II. Intracellular hyphae and vesicles.

    PubMed

    Kinden, D A; Brown, M F

    1975-11-01

    Intracellular hyphae and vesicles in mycorrhizal roots of yellow poplar were examined by electron microscopy. An investing layer of host wall material and cytoplasm enclosed the endophyte within the cells. Young developing hyphae contained abundant cytoplasm and few vacuoles. As hyphae matured, they became highly vacuolated and accumulated carbohydrate (glycogen) and lipid reserves. Mature vesicles were engorged with lipid droplets, possessed a trilaminate wall and were also enclosed by host wall material and cytoplasm. Compared with uninfected cells, infected cortical cells showed an increase in cytoplasmic volume, enlarged nuclei, and a reduction of starch reserves. Host nuclei were always proximal to the hyphae during hyphal development and deterioration. While other cytoplasmic components of infected and uninfected cells were comparable large electron-dense bodies occurred in vacuoles of most cells containing hyphae. Deterioration of intracellular hyphae occurred throughout the samples examined. Septa separated functional and degenerating portions of the hyphae. Hyphal deterioration involved degeneration and ultimate disappearance of fungal cytoplasm as well as collapse of hyphal walls. Based on these observations, the authors hypothesize that deterioration of the endophyte may release significant quantities of mineral nutrients, via hyphal contents, which are absorbed by the host.

  12. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol.

    PubMed

    Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan

    2013-12-01

    Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (111), (200), (220) and (311) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of heavy tempering on microstructure and yield strength of 28CrMo48VTiB martensitic steel

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Gu, Shunjie; Wang, Qian; Wang, Huibin; Wang, Qingfeng; Zhang, Fucheng

    2018-02-01

    The 28CrMo48VTiB martensitic steel for sulfide stress cracking (SSC) resistance oil country tubular goods (OCTG) of C110 grade was thermally processed through quenching at 890 °C and tempering at 600 °C-720 °C for 30-90 min. The microstructures of all samples were characterized using field emission scanning electron microscopy (FESEM), electron backscattering diffraction (EBSD), transmission electron microscopy (TEM) and x-ray diffractometry (XRD). Also, the tensile properties were measured. The results indicated that the yield strength (YS) decreased as both the tempering temperature and duration increased, due to the coarsening of martensitic packet/block/lath structures, the reduction of dislocation density, as well as the increase of both the volume fraction and average diameter of the precipitates. The martensitic lath width was the key microstructural parameter controlling the YS of this heavily-tempered martensitic steel, whereas the corresponding relationship was in accordance with the Langford-Cohen model. Furthermore, the martensitic structure boundary and the solid solution strengthening were the two most significant factors dominating the YS, in comparison with the dislocation and precipitation strengthening.

  14. [Effects of infrasound therapy on proliferation, apoptosis and ultrastructure of human B lymphoma Raji cells].

    PubMed

    Bao, Yong; Fan, Jian-Zhong; Li, Ke; Li, Chuan; Yang, Jun-Feng

    2008-06-01

    To investigate the effect of infrasound therapy on the proliferation, apoptosis and ultrastructure of human B lymphoma Raji cells. Human B lymphoma Raji cells were exposed to infrasound treatment for 15, 30, 60, 90 and 120 min and cultured subsequently for 24 or 48 h. MTT assay, flow cytometry analysis, and electron microscopy were performed to examine the proliferative status, cell apoptosis and ultrastructural changes of the exposed cells, respectively. MTT assay revealed no significant changes in the proliferation of the cells exposed to infrasound treatment (P>0.05), nor did flow cytometry analysis identified significant variation in the cell apoptosis (P>0.05). Scanning electron microscopy, however, identified shortened or reduced cell processes and microvilli on the surface of the cells with infrasound exposure and a subsequent 24-hour culture, and the cell membrane surface became smooth. Under transmission electron microscope, the cells with infrasound treatment presented with significantly reduced microvilli, and the cell nuclei appeared homogeneous, with cytoplasmic budding and losses after a 48-hour culture. Infrasound less than 90 dB does not obviously affect the proliferation and apoptosis of Raji cells, but may directly cause cell ultrastructural changes such as reduction of the cell processes.

  15. Enhanced and Facet-specific Electrocatalytic Properties of Ag/Bi2Fe4O9 Composite Nanoparticles.

    PubMed

    Wang, Kai; Xu, Xiaoguang; Lu, Liying; Wang, Haicheng; Li, Yan; Wu, Yong; Miao, Jun; Zhang, Jin Zhong; Jiang, Yong

    2018-04-18

    Ag/Bi 2 Fe 4 O 9 nanoparticles (BFO NPs) have been synthesized using a two-step approach involving glycine combustion and visible light irradiation. Their structures were characterized in detail using X-ray diffraction, transmission electron microscope, scanning electron microscopy, and scanning transmission electron microscopy techniques. Their electrocatalytic properties were studied through enzymatic glucose detection with an amperometric biosensor. The Ag deposited on selective crystal facets of BFO NPs significantly enhanced their electrocatalytic activity. To gain insights into the origin of the enhanced electrocatalytic activities, we have carried out studies of Ag + reduction and Mn 2+ oxidation reaction at the {200} and {001} facets, respectively. The results suggest effective charge separation on the BFO NP surfaces, which is likely responsible for the enhanced electrocatalytic properties. Furthermore, enhanced ferromagnetism was observed after the Ag deposition on BFO NPs, which may be related to the improved electrocatalytic properties through spin-dependent charge transport. The facet-specific electrocatalytic properties are highly interesting and desired for chemical reactions. This study demonstrates that Ag/BFO NPs are potentially useful for electrocatalytic applications including biosensing and chemical synthesis with high product selectivity.

  16. Microstructure, crystallography and nucleation mechanism of NANOBAIN steel

    NASA Astrophysics Data System (ADS)

    Huang, Yao; Zhao, Ai-min; He, Jian-guo; Wang, Xiao-pei; Wang, Zhi-gang; Qi, Liang

    2013-12-01

    The microstructure of bainite ferrite in NANOBAIN steel transformed at different temperatures was investigated by scanning electron microscopy, transmission electron microscopy, electron back-scattered diffraction, and vickers hardness tester in detail. It is found that the average width of bainitic ferrite (BF) plates can be refined to be thinner with the reduction of temperature (473-573 K), and the bainitic ferrite plates can reach up to 20-74 nm at 473 K. Crystallographic analysis reveals that the bainitic ferrite laths are close to the Nishiyama-Wasserman orientation relationship with their parent austenite. Temperature shows a significant effect on the variant selection, and a decrease in temperature generally weakens the variant selection. Thermodynamic analyses indicates that the Lacher, Fowler and Guggenheim (LFG) model is more suitable than the Kaufman, Radcliffe and Cohen (KRC) model dealing with NANOBAIN steel at a low temperature range. The free energy change Δ G γ→BF is about -1500 J·mol-1 at 473 K, which indicates that nucleation in NANOBAIN steel is the shear mechanism. Finally, the formation of carbon poor regions is thermodynamically possible, and the existence of carbon poor regions can greatly increase the possibility of the shear mechanism.

  17. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  18. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Kim, J.; Eberl, D.D.

    2007-01-01

    The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of structural Fe3+ was investigated by using a thermophilic metal-reducing bacterium, Thermoanaerobacter ethanolicus, isolated from the deep subsurface. T. ethanolicus was incubated with lactate as the sole electron donor and structural Fe3+ in nontronite as the sole electron acceptor, and anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle in a growth medium (pH 6.2 and 9.2, 65 ??C) with or without an external supply of Al and K sources. With an external supply of Al and K, the extent of reduction of Fe3+ in NAu-2 was 43.7 and 40.4% at pH 6.2 and 9.2, respectively. X-ray diffraction and scanning and transmission electron microscopy revealed formation of discrete illite at pH 9.2 with external Al and K sources, while mixed layers of illite/smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake to pseudo-hexagonal shape. An external supply of Al and K under alkaline conditions enhances the smectite-illite reaction during microbial Fe3+ reduction of smectite. Biogenic SiO2 was observed as a result of bioreduction under all conditions. The microbially promoted smectite-illite reaction proceeds via dissolution of smectite and precipitation of illite. Thermophilic iron reducing bacteria have a significant role in promoting the smectite to illite reaction under conditions common in sedimentary basins.

  19. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts

    NASA Astrophysics Data System (ADS)

    Cai, Sixiang; Zhang, Dengsong; Shi, Liyi; Xu, Jing; Zhang, Lei; Huang, Lei; Li, Hongrui; Zhang, Jianping

    2014-06-01

    In this work, we successfully in situ decorated nickel foam with porous Ni-Mn oxide nanosheets (3DH-NM/NF) as 3D hierarchical monolith de-NOx catalysts via a simple hydrothermal reaction and calcination process. The catalysts were carefully examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and NH3 temperature-programmed desorption measurements. The results indicated that the nanosheets are composed of a Ni6Mn1O8 spinel and the metal species are uniformly dispersed in bi-metal oxides. As a result, the strong synergistic effects between the Mn and Ni species have been observed. The active oxygen species, reducible species and acidity are enhanced by the in situ formation of the nanosheets on the surface of nickel foam. These desirable features of 3DH-NM/NF catalysts bring about the excellent de-NOx performance. Moreover, the 3DH-NM/NF catalysts also present good stability and H2O resistance. Based on these favorable properties, 3DH-NM/NF could be considered as a promising candidate for the monolith de-NOx catalysts.In this work, we successfully in situ decorated nickel foam with porous Ni-Mn oxide nanosheets (3DH-NM/NF) as 3D hierarchical monolith de-NOx catalysts via a simple hydrothermal reaction and calcination process. The catalysts were carefully examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and NH3 temperature-programmed desorption measurements. The results indicated that the nanosheets are composed of a Ni6Mn1O8 spinel and the metal species are uniformly dispersed in bi-metal oxides. As a result, the strong synergistic effects between the Mn and Ni species have been observed. The active oxygen species, reducible species and acidity are enhanced by the in situ formation of the nanosheets on the surface of nickel foam. These desirable features of 3DH-NM/NF catalysts bring about the excellent de-NOx performance. Moreover, the 3DH-NM/NF catalysts also present good stability and H2O resistance. Based on these favorable properties, 3DH-NM/NF could be considered as a promising candidate for the monolith de-NOx catalysts. Electronic supplementary information (ESI) available: Experimental details and catalytic performance of the NM/cordierite catalysts, SEM image and EDX analysis of the NF and 3DH-N/NF catalysts, N2 selectivity and catalytic performance under different gas hourly space velocities of the 3DH-NM/NF catalysts. See DOI: 10.1039/c4nr00475b

  20. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    NASA Astrophysics Data System (ADS)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02787b

  1. In situ spectroscopic characterization of Ni 1-xZn x/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less

  2. Synthesis of ternary oxide for efficient photo catalytic conversion of CO2

    NASA Astrophysics Data System (ADS)

    Wan, Lijuan

    2018-01-01

    Zn2GeO4 Nan rods were prepared by solution phase route. The morphology and structure of the as-prepared products were characterized by scanning electron microscopy (SEM) and Bruner-Emmett-Teller (BET) surface area measurements. The results revealed that Zn2GeO4 Nan rods with higher surface area have higher photo catalytic activity in photo reduction of CO2 than Zn2GeO4 prepared through solid-state reaction.

  3. Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles.

    PubMed

    Li, Sisi; Tang, Lin; Zeng, Guangming; Wang, Jiajia; Deng, Yaocheng; Wang, Jingjing; Xie, Zhihong; Zhou, Yaoyu

    2016-11-01

    Hexavalent chromium Cr(VI) is a toxic water pollutant which can cause serious influence to the health of the human and animals. Therefore, developing new methods to remove hexavalent chromium in water attracts great attention of scholars. In our research, we successfully synthesized a new type of magnetic mesoporous carbon hybrid nitrogen (Fe-NMC) loaded with catalyst Pd nanoparticles (NPs), which performed excellent catalytic reduction efficiency toward Cr(VI). The characterization of Pd/Fe-NMC composite was investigated in detail using scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption measurements. According to the experimental results, we dealt with in-depth discussion and studied on the mechanism of hexavalent chromium removed by Pd/Fe-NMC composite. Furthermore, the batch experiments were conducted to investigate the catalytic reduction ability of composite. It was found that the chromium reduction process conforms to pseudo-first-order reaction kinetics model when the concentrations of chromium and sodium formate were low. It took only 20 min for the Pd/Fe-NMC composite to reach 99.8 % reduction of Cr(VI) (50 mg/L). The results suggested that the Pd/Fe-NMC composite may exhibit significantly improved catalytic activity for the hexavalent chromium reduction at industrial wastewater.

  4. Titanium deposition from ionic liquids - appropriate choice of electrolyte and precursor.

    PubMed

    Berger, Claudia A; Arkhipova, Maria; Farkas, Attila; Maas, Gerhard; Jacob, Timo

    2016-02-14

    In this study titanium isopropoxide was dissolved in 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI) and further in a custom-made guanidinium-based ionic liquid (N11N11NpipGuaTFSI). Electrochemical investigations were carried out by means of cyclic voltammetry (CV) and the initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). For BMITFSI we found one large cathodic reduction peak at a potential of -1.2 V vs. Pt, corresponding to the growth of monoatomic high islands. The obtained deposit was identified as elemental titanium by Auger Electron Spectroscopy (AES). Furthermore, we found a corresponding anodic peak at -0.3 V vs. Pt, which is associated with the dissolution of the islands. This observation leads to the assumption that titanium deposition from the imidazolium-based room-temperature ionic liquid (RTIL) proceeds in a one-step electron transfer. In contrast, for the guanidinium-based RTIL we found several peaks during titanium reduction and oxidation, which indicates a multi-step electron transfer in this alternative electrolyte.

  5. Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung

    2016-09-01

    We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.

  6. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection.

    PubMed

    Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James

    2009-12-09

    A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO(3) concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).

  7. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection

    NASA Astrophysics Data System (ADS)

    Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James

    2009-12-01

    A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO3 concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).

  8. Mesoporous Cu2O-CeO2 composite nanospheres with enhanced catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Pang, Juanjuan; Li, Wenting; Cao, Zhenhao; Xu, Jingjing; Li, Xue; Zhang, Xiaokai

    2018-05-01

    In this paper, mesoporous Cu2O-CeO2 nanospheres were fabricated via a facile, low-temperature solution route in the presence of poly(2-vinylpyridine)-b-poly(ethylene Oxide) (P2VP-b-PEO) block copolymers. The prepared mesoporous Cu2O-CeO2 nanospheres were characterized systematically by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption. The formation mechanism of mesoporous Cu2O-CeO2 nanospheres was discussed. The results show that the molar ratios of Ce3+/Cu2+ and the reaction time have an important influence on the nanostructure of Cu2O-CeO2 composite spheres. The resultant Cu2O-CeO2 nanospheres exhibit superior catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. The activity factor (K = k/m) for the Cu2O-CeO2 nanospheres prepared with the molar ratio of Ce3+/Cu2+ of 5/1 is 3006.6 s-1 g-1, which is much higher than reported values. This paper demonstrates a highly controllable approach to the production of mesoporous Cu2O-CeO2 nanospheres, which have potential applications in the areas of catalysis, adsorption, sensors and so on.

  9. Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine.

    PubMed

    Ponnusamy, Vinoth Kumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Wan-Tran; Jen, Jen-Fon

    2014-03-01

    In this study, a simple and fast microwave assisted chemical reduction method for the preparation of graphene nanosheet/polyethyleneimine/gold nanoparticle (GNS/PEI/AuNP) composite was developed. PEI, a cationic polymer, was used both as a non-covalent functionalizing agent for the graphene oxide nanosheets (GONSs) through electrostatic interactions in the aqueous medium and also as a stabilizing agent for the formation of AuNPs on PEI wrapped GNSs. This preparation method involves a simple mixing step followed by a simultaneous microwave assisted chemical reduction of the GONSs and gold ions. The prepared composite exhibits the dispersion of high density AuNPs which were densely decorated on the large surface area of the PEI wrapped GNS. X-ray photoelectron spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy, and thermo-gravimetric analysis, were used to characterize the properties of the resultant composite. The prepared GNS/PEI/AuNP composite film exhibited excellent electrocatalytical activity towards the selective determination of dopamine in the presence of ascorbic acid, which showed potential application in electrochemical sensors. The applicability of the presented sensor was also demonstrated for the determination of dopamine in human urine samples. © 2013 Elsevier B.V. All rights reserved.

  10. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  11. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract

    NASA Astrophysics Data System (ADS)

    Seralathan, Janani; Stevenson, Priscilla; Subramaniam, Shankar; Raghavan, Rachana; Pemaiah, Brindha; Sivasubramanian, Aravind; Veerappan, Anbazhagan

    2014-01-01

    Nanosized silver have been widely used in many applications, such as catalysis, photonics, sensors, medicine etc. Thus, there is an increasing need to develop high-yield, low cost, non-toxic and eco-friendly procedures for the synthesis of nanoparticles. Herein, we report an efficient, green synthesis of silver nanoparticles utilizing the aqueous extract of Salicornia brachiata, a tropical plant of the Chenopodiaceae family. Silver nanoparticles have been characterized by ultraviolet-visible spectroscopy, scanning electron microscopy and transmission electron microscopy. The morphology of the particles formed consists of highly diversified shapes like spherical, rod-like, prism, triangular, pentagonal and hexagonal pattern. However, addition of sodium hydroxide to the extract produces mostly spherical particles. The stable nanoparticles obtained using this green method show remarkable catalytic activity in the reduction of 4-nitro phenol to 4-amino phenol. The reduction catalyzed by silver nanoparticles followed the first-order kinetics, with a rate constant of, 0.6 × 10-2 s-1. The bactericidal activity of the synthesized silver nanoparticles against the pathogenic bacteria, Staphylococcus aureus, Staphylococcus aureus E, Bacillus subtilis and Escherichia coli, was also explored using REMA. The obtained results showed that the minimum inhibitory concentration required to induce bactericidal effect is lower than the control antibiotic, ciprofloxacin. In addition to these, the biogenic synthesized nanoparticles also exhibited excellent free radical scavenging activity.

  12. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

    PubMed Central

    Li, Kuo-Tseng; Yen, Ruey-Hsiang

    2018-01-01

    Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO2) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of glycerol to diols and alcohols in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) were used to characterize these nanoparticles. Effects of Ru/Si atomic ratio, Re addition, glycerol and catalyst concentrations, reaction time, temperature, and hydrogen pressure were investigated. Re addition retarded the reduction of ruthenium oxide, but increased the catalyst reactivity for glycerol hydrogenolysis. Due to its greater Ru content, Re-Ru@ SiO2 showed much better activity (reacted at much lower temperature) and more yields of 1,2-propanediol and overall liquid-phase products than Re-Ru/SiO2 (prepared by conventional impregnation method) reported before. The rate of glycerol disappearance exhibited first-order dependence on glycerol concentration and hydrogen pressure, with an activation energy of 107.8 kJ/mol. The rate constant increased linearly with increasing Ru/Si atomic ratio and catalyst amount. The yield of overall liquid-phase products correlated well with glycerol conversion. PMID:29522432

  13. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    NASA Astrophysics Data System (ADS)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  14. Study of simultaneous reduction and nitrogen doping of graphene oxide Langmuir-Blodgett monolayer sheets by ammonia plasma treatment

    NASA Astrophysics Data System (ADS)

    Singh, Gulbagh; Sutar, D. S.; Divakar Botcha, V.; Narayanam, Pavan K.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S.

    2013-09-01

    Graphene oxide (GO) monolayer sheets, transferred onto Si by the Langmuir-Blodgett technique, were subjected to ammonia plasma treatment at room temperature with the objective of simultaneous reduction and doping. Scanning electron microscopy and atomic force microscopy studies show that plasma treatment at a relatively low power (˜10 W) for up to 15 min does not affect the morphological stability and monolayer character of GO sheets. X-ray photoelectron spectroscopy has been used to study de-oxygenation of GO monolayers and the incorporation of nitrogen in graphitic-N, pyrrolic-N and pyridinic-N forms due to the plasma treatment. The corresponding changes in the valence band electronic structure, density of states at the Fermi level and work function have been investigated by ultraviolet photoelectron spectroscopy. These studies, supported by Raman spectroscopy and electrical conductivity measurements, have shown that a short duration plasma treatment of up to 5 min results in an increase of sp2-C content along with a substantial incorporation of the graphitic-N form, leading to the formation of n-type reduced GO. Prolonged plasma treatment for longer durations results in a decrease of electrical conductivity, which is accompanied by a substantial decrease of sp2-C and an increase in defects and disorder, primarily attributed to the increase in pyridinic-N content.

  15. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor.

    PubMed

    Lin, Shu Min; Geng, Shuo; Li, Na; Li, Nian Bing; Luo, Hong Qun

    2016-05-01

    Mercury ion is one of the most hazardous metal pollutants that can cause deleterious effects on human health and the environment even at low concentrations. It is necessary to develop new mercury detection methods with high sensitivity, specificity and rapidity. In this study, a novel and green strategy for synthesizing D-penicillamine-capped copper nanoparticles (DPA-CuNPs) was successfully established by a chemical reduction method, in which D-penicillamine and ascorbic acid were used as stabilizing agent and reducing agent, respectively. The as-prepared DPA-CuNPs showed strong red fluorescence and had a large Stoke's shift (270nm). Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, fluorescence spectroscopy, and ultraviolet-visible spectrophotometry were utilized to elucidate the possible fluorescence mechanism, which could be aggregation-induced emission effect. Based on the phenomenon that trace mercury ion can disperse the aggregated DPA-CuNPs, resulting in great fluorescence quench of the system, a sensitive and selective assay for mercury ion in aqueous solution with the DPA-CuNPs was developed. Under optimum conditions, this assay can be applied to the quantification of Hg(2+) in the 1.0-30μM concentration range and the detection limit (3σ/slope) is 32nM. The method was successfully applied to determine Hg(2+) in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    PubMed

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  17. Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Gómez-Polo, C.

    2012-05-01

    NiFe2O4 and NiFe2O4-SiO2 nanoparticles were synthesized by a sol-gel method using citric acid as fuel, giving rise its combustion to the crystallization of the spinel phase. Different synthesis conditions were analyzed with the aim of obtaining stoichiometric NiFe2O4 nanoparticles. The spinel structure in the calcined nanoparticles (400 °C, 2 h) was evaluated by x-ray diffraction. Their nanometer size (mean diameters around 10-15 nm) was confirmed through electron microscopy (field emission scanning electron microscopy and transmission electron microscopy). Rietveld refinement indicates the existence of a small percentage of NiO and Fe3O4 phases and a certain degree of structural disorder. The main effect of the silica coating is to enhance the disorder effects and prevent the crystalline growth after post-annealing treatments. Due to the small particle size, the nanoparticles display characteristic superparamagnetic behaviour and surface effects associated to a spin-glass like state: i.e., reduction in the saturation magnetization values and splitting of the zero field cooled (ZFC)-field cooled (FC) high field magnetization curves. The fitting of the field dependence of the ZFC-FC irreversibility temperatures to the Almeida—Thouless equation confirms the spin-glass nature of the detected magnetic phenomena. Exchange bias effects (shifts in the FC hysteresis loops) detected below the estimated freezing temperature support the spin-glass nature of the spin disorder effects.

  18. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method.

    PubMed

    Suárez-Cerda, Javier; Nuñez, Gabriel Alonso; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2014-10-01

    This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). SEM-EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ~0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process

    NASA Astrophysics Data System (ADS)

    Hoseini-Athar, M. M.; Tolaminejad, B.

    2016-07-01

    Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.

  20. Demonstration of transmission high energy electron microscopy

    DOE PAGES

    Merrill, F. E.; Goett, J.; Gibbs, J. W.; ...

    2018-04-06

    High energy electrons have been used to investigate an extension of transmission electron microscopy. This technique, transmission high energy electron microscopy (THEEM), provides two additional capabilities to electron microscopy. First, high energy electrons are more penetrating than low energy electrons, and thus, they are able to image through thicker samples. Second, the accelerating mode of a radio-frequency linear accelerator provides fast exposures, down to 1 ps, which are ideal for flash radiography, making THEEM well suited to study the evolution of fast material processes under dynamic conditions. Lastly, initial investigations with static objects and during material processing have been performedmore » to investigate the capabilities of this technique.« less

  1. Introduction: A Symposium in Honor of Professor Sir John Meurig Thomas

    NASA Astrophysics Data System (ADS)

    Gai, P. L.; Saka, H.; Tomokiyo, Y.; Boyes, E. D.

    2002-02-01

    This issue is dedicated to Professor Sir John Meurig Thomas for his renowned contributions to electron microscopy in the chemical sciences. It is a collection of peer-reviewed leading articles in electron microscopy, based on the presentations at the Microscopy and Microanalysis (M&M) 2000 symposium, which was held to honor Professor Thomas's exceptional scientific leadership and wide-ranging fundamental contributions in the chemical applications of electron microscopy.The issue contains key papers by leading international researchers on the recent developments and applications of electron microscopy in the solid state and liquid state sciences. They include synthesis and characterization of silicon nitride nanorods, nanostructures of amorphous silica, electron microscopy studies of nanoscale structure and chemistry of Pt-Ru electrocatalysts of interest in direct methanol fuel cells, development of in situ wet-environmental transmission electron microscopy for the first nanoscale studies of dynamic liquid-catalyst reactions, strain analysis of silicon by finite element method and energy filtering convergent beam electron diffraction, applications of chemistry with electron microscopy, bismuth nanowires for applications in nanoelectronics technology, synthesis and characterization of quantum dots for superlattices and in situ electron microscopy at very high temperatures to study the motion of W5Si3 on [alpha][beta]-SiN3 substrates.We thank all the participants, including the invited speakers, contributors, and session chairs, who made the symposium successful. We also thank the authors and reviewers of the papers who worked assiduously towards the publication of this issue.We are very grateful to the Microscopy Society of America (MSA) for providing the opportunity to honor Professor Sir John Meurig Thomas. Organizational support from the MSA is also gratefully acknowledged.We thank Charles E. Lyman, editor in chief of Microscopy and Microanalysis for coordinating the publication of this issue and the entire journal staff for their efforts.

  2. Superlattice assembly of graphene oxide (GO) and titania nanosheets: fabrication, in situ photocatalytic reduction of GO and highly improved carrier transport

    NASA Astrophysics Data System (ADS)

    Cai, Xingke; Ma, Renzhi; Ozawa, Tadashi C.; Sakai, Nobuyuki; Funatsu, Asami; Sasaki, Takayoshi

    2014-11-01

    Two different kinds of two-dimensional (2D) materials, graphene oxide (GO) and titanium oxide nanosheets (Ti0.87O20.52-), were self-assembled layer-by-layer using a polycation as a linker into a superlattice film. Successful construction of an alternate molecular assembly was confirmed by atomic force microscopy and UV-visible absorption spectroscopy as well as X-ray diffraction analysis. Exposure of the resulting film to UV light effectively promoted photocatalytic reduction of GO as well as decomposition of the polycation, which are due to their intimate molecular-level contact. The reduction completed within 3 hours, bringing about a decrease of the sheet resistance by ~106. This process provides a clean and mild route to reduced graphene oxide (rGO), showing advantages over other chemical and thermal reduction processes. A field-effect-transistor device was fabricated using the resulting superlattice assembly of rGO/Ti0.87O20.52- as a channel material. The rGO in the film was found to work as a unipolar n-type conductor, which is in contrast to ambipolar or unipolar p-type behavior mostly reported for rGO films. This unique property may be associated with the electron doping effect from Ti0.87O20.52- nanosheets. A significant improvement in the conductance and electron carrier mobility by more than one order of magnitude was revealed, which may be accounted for by the heteroassembly with Ti0.87O20.52- nanosheets with a high dielectric constant as well as the better 2D structure of rGO produced via the soft photocatalytic reduction.Two different kinds of two-dimensional (2D) materials, graphene oxide (GO) and titanium oxide nanosheets (Ti0.87O20.52-), were self-assembled layer-by-layer using a polycation as a linker into a superlattice film. Successful construction of an alternate molecular assembly was confirmed by atomic force microscopy and UV-visible absorption spectroscopy as well as X-ray diffraction analysis. Exposure of the resulting film to UV light effectively promoted photocatalytic reduction of GO as well as decomposition of the polycation, which are due to their intimate molecular-level contact. The reduction completed within 3 hours, bringing about a decrease of the sheet resistance by ~106. This process provides a clean and mild route to reduced graphene oxide (rGO), showing advantages over other chemical and thermal reduction processes. A field-effect-transistor device was fabricated using the resulting superlattice assembly of rGO/Ti0.87O20.52- as a channel material. The rGO in the film was found to work as a unipolar n-type conductor, which is in contrast to ambipolar or unipolar p-type behavior mostly reported for rGO films. This unique property may be associated with the electron doping effect from Ti0.87O20.52- nanosheets. A significant improvement in the conductance and electron carrier mobility by more than one order of magnitude was revealed, which may be accounted for by the heteroassembly with Ti0.87O20.52- nanosheets with a high dielectric constant as well as the better 2D structure of rGO produced via the soft photocatalytic reduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04830j

  3. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    PubMed

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  4. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction

    NASA Technical Reports Server (NTRS)

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2002-01-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  5. Dynamical backaction cooling with free electrons

    PubMed Central

    Niguès, A.; Siria, A.; Verlot, P.

    2015-01-01

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms. PMID:26381454

  6. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  7. Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.

    PubMed

    Amouzadeh Tabrizi, Mahmoud; Jalilzadeh Azar, Somayeh; Nadali Varkani, Javad

    2014-09-01

    In this paper, we report a green and eco-friendly approach to synthesize reduced graphene oxide (rGO) via a mild hydrothermal process using malt as a reduced agent. The proposed method is based on the reduction of graphene oxide (GO) in malt solution by making use of the reducing capability of phenolic compounds contained in malt solution. The obtained rGO was characterized by atomic force microscopy (AFM), ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction spectroscopy (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy analysis revealed that the charge transfer resistance of rGO modified glassy carbon (GC) electrode was much lower than that of the GC electrode. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) on rGO modified GC electrode was investigated by cyclic voltammetry and amperometry. Electrochemical experiments indicated that rGO/GC electrode exhibited excellent electrocatalytic activity toward the NADH, which can be attributed to excellent electrical conductivity and high specific surface area of the rGO composite. The resulting biosensor showed highly sensitive amperometric response to NADH with a low detection limit (0.33μM). Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes.

    PubMed

    Nicholas, R; Dunton, P; Tatham, A; Fielding, L

    2013-08-01

    The effects of gaseous ozone and open air factor (OAF) on environmental Listeria monocytogenes attached to three common food contact surfaces were investigated. Listeria monocytogenes on different food contact surfaces was treated with ozone and OAF. Microbiological counts, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. Ozone at 10 ppm gave <1-log reduction when L. monocytogenes was attached to stainless steel, while 45 ppm gave a log reduction of 3.41. OAF gave better log reductions than 10 ppm ozone, but lower log reductions than 45 ppm. Significant differences were found between surfaces. Biofilm organisms were significantly more resistant than those surface attached on stainless steel. SEM and AFM demonstrated different membrane and cell surface modifications following ozone or OAF treatment. The strain used demonstrated higher resistance to ozone than previous studies. This may be due to the fact that it was isolated from a food manufacturing premises that used oxidizing disinfectants. OAF was more effective at reducing the levels of the organism than an ozone concentration of 10 ppm. Pathogen management strategies must account for resistance of environmental strains when validating cleaning and disinfection. OAF has shown potential for surface decontamination compared with ozone. SEM and AFM are valuable tools for determining mechanisms of action of antimicrobial agents. © 2013 The Society for Applied Microbiology.

  9. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  11. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  12. Reduction mechanism of surface oxide films and characterization of formations on pulse electric-current sintered Al Mg alloy powders

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Ohashi, Osamu; Song, Minghui; Mitsuishi, Kazutaka; Furuya, Kazuo

    2005-02-01

    The microstructure of interfaces between powder particles in Al-Mg alloy specimens sintered by pulse electric-current sintering (PECS) process was characterized using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS). The crystalline precipitates with nano-size in the interface were observed in all of Al-Mg alloy specimens. The composition was determined to be MgAl 2O 4 or MgO, or both of them, which depended on Mg content in alloy powder and sintering temperature. The precipitates were suggested to contribute to reduction reaction of Mg with oxide films originally covered at powder particles surface.

  13. Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol

    PubMed Central

    2014-01-01

    A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol. PMID:25177220

  14. Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Das, Dipanwita; Raut, Vrushali; Kireeti, Kota V. M. K.; Jha, Neetu

    2018-04-01

    We developed two non-precious Metal Organic Framework (MOF) based electrocatalysts, MOF-5 and MOF-i using solvothermal and refluxing methods. The MOFs prepared has been characterized by powder X-ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for structural and morphological insights. SEM images reveal cubic shape for solvothermally synthesized MOF-5, whereas refluxing method leads to platelet morphology of MOF-i. The synthesized MOFs has been investigated for Oxygen Reduction Reaction (ORR) studies using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), with MOF modified Glassy Carbon (GC) as working electrode. The electrochemical data suggests higher activity of MOF-5 towards ORR compared to MOF-i.

  15. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral properties, in particular the influence of solubility, in the kinetics of microbial iron reduction. We used the facultative anaerobic gram-positive bacterium Shewanella putrefaciens as model iron reducing bacterium, with several ferrihydrite, hematite, goethite or lepidocrocite as electron acceptor, and lactate as electron donor. Maximum microbial Fe(III) reduction rates and solubility of Fe(III) phases were found to positively correlated in a Linear Free Energy Relationship suggesting a rate limitation by the electron transfer between iron reductases and a Fe(III) center, or by the subsequent desorption of Fe2+ from the iron oxide mineral surface.

  16. The growth of strontium titanate and lutetium ferrite thin films by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brooks, Charles M.

    Included in this work is a range of studies on films of homoeptaxial and heteroepitaxial films of SrTiO3 and the first reported phase-pure films of LuFe2O4. We report the structural properties of homoepitaxial (100) SrTiO3 films grown by reactive molecular-beam epitaxy (MBE). The lattice spacing and x-ray diffraction (XRD) rocking curves of stoichiometric MBEgrown SrTiO3 films are indistinguishable from the underlying SrTiO3 substrates. The effect of off-stoichiometry for both strontium-rich and strontium-poor compositions results in lattice expansion with significant changes to the shuttered reflection high-energy electron diffraction oscillations, XRD, film microstructure, and thermal conductivity. Up to an 80% reduction in Sr(1+x)TiO3 film thermal conductivity is measured for x = -0.1 to 0.5. Significant reduction, from 11.5 to ˜2 W˙m-1K-1, occurs through the formation of Ruddlesden-Popper planar faults. The ability to deposit films with a reduction in thermal conductivity is applicable to thermal barrier coatings and thermoelectrics. Scanning transmission electron microscopy is used to examine the formation of Ruddlesden-Popper planar faults in films with strontium excess. We also show that the band gap of SrTiO3 can be altered by >10% (0.3 eV) by using experimentally realizable biaxial strains providing a new means to accomplish band gap engineering of SrTiO3 and related perovskites. Such band gap manipulation is relevant to applications in solar cells water splitting, transparent conducting oxides, superconductivity, two-dimensional electron liquids, and other emerging oxide electronics. This work also presents the adsorption-controlled growth of single-phase (0001)-oriented epitaxial films of charge ordered multiferroic, LuFe2O4, on (111) MgAl2O4, (111) MgO, and (0001) 6H-SiC substrates in an iron-rich environment at pressures and temperatures where excess iron desorbs from the film surface during growth. Scanning transmission electron microscopy reveals reaction-free film-substrate interfaces. The magnetization increases rapidly below 240 K, consistent with the paramagnetic-to-ferrimagnetic phase transition of bulk LuFe2O4.

  17. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  18. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  19. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  20. Nanostructure of and structural defects in a Mo2BC hard coating investigated by transmission electron microscopy and atom probe tomography

    NASA Astrophysics Data System (ADS)

    Gleich, Stephan; Fager, Hanna; Bolvardi, Hamid; Achenbach, Jan-Ole; Soler, Rafael; Pradeep, Konda Gokuldoss; Schneider, Jochen M.; Dehm, Gerhard; Scheu, Christina

    2017-08-01

    In this work, the nanostructure of a Mo2BC hard coating was determined by several transmission electron microscopy methods and correlated with the mechanical properties. The coating was deposited on a Si (100) wafer by bipolar pulsed direct current magnetron sputtering from a Mo2BC compound target in Ar at a substrate temperature of 630 °C. Transmission electron microscopy investigations revealed structural features at various length scales: bundles (30 nm to networks of several micrometers) consisting of columnar grains (˜10 nm in diameter), grain boundary regions with a less ordered atomic arrangement, and defects including disordered clusters (˜1.5 nm in diameter) as well as stacking faults within the grains. The most prominent defect with a volume fraction of ˜0.5% is the disordered clusters, which were investigated in detail by electron energy loss spectroscopy and atom probe tomography. The results provide conclusive evidence that Ar is incorporated into the Mo2BC film as disordered Ar-rich Mo-B-C clusters of approximately 1.5 nm in diameter. Hardness values of 28 ± 1 GPa were obtained by nanoindentation tests. The Young's modulus of the Mo2BC coating exhibits a value of 462 ± 9 GPa, which is consistent with ab initio calculations for crystalline and defect free Mo2BC and measurements of combinatorically deposited Mo2BC thin films at a substrate temperature of 900 °C. We conclude that a reduction of the substrate temperature of 270 °C has no significant influence on hardness and Young's modulus of the Mo2BC hard coating, even if its nanostructure exhibits defects.

  1. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4.

    PubMed

    Wang, Guangyu; Zhang, Baogang; Li, Shuang; Yang, Meng; Yin, Changcheng

    2017-03-01

    Toxic vanadium (V) and chromium (VI) often co-exist in wastewater from vanadium ore smelting and their reductions by bacterial strain Shewanella loihica PV-4 is realized simultaneously. After 27-d operation, 71.3% of V(V) and 91.2% of Cr(VI) were removed respectively, with citrate as organic carbon source. Enhancement of Cr(VI) bioreduction was observed with the suppressed V(V) reduction. V(IV) and Cr(III), the main reduction products, precipitated inside the organisms and attached on cell surfaces. Both membrane components containing cytochrome c and cytoplasmic fractions containing soluble proteins as well as NADH may contribute to these microbial reductions. Most Cr(VI) were reduced extracellularly and V(V) tended to be reduced through intracellular process, as revealed by mapping the microbial surface and a line scan across the cell, performed by scanning transmission electron microscopy. This study provides an efficient alternative for controlling combined pollution caused by these two metals based on microbial technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  3. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    PubMed

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  4. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  5. Dynamic Recrystallization Behavior of Zr-1Sn-0.3Nb Alloy During Hot Rolling Process

    NASA Astrophysics Data System (ADS)

    Zhao, Siyu; Liu, Huiqun; Lin, Gaoyong; Jiang, Yilan; Xun, Jian

    2017-11-01

    Zirconium alloys are advanced materials with properties that are greatly affected by their crystalline structure. To investigate this, sheets of Zr-1Sn-0.3Nb alloy were hot rolled with different reductions (10%, 30%, 50%, and 60%) at 1023 K and 1073 K to investigate the alloy's dynamic recrystallization behavior. Recrystallization kinetics was observed via electron backscattering diffraction and transmission electron microscopy, and the results were compared with estimates based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The values of the JMAK exponent n and k increased with the rolling temperature. The estimates and microstructural observations of dynamic recrystallization (DRX) kinetics were in good agreement.

  6. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  7. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  8. Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.

    2014-09-01

    Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.

  9. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  10. Preparation and characterization of bismuth oxichloride (BiOCl) nanoparticles and nano zerovalent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Sarwan, Bhawna; Pare, Brijesh; Deep Acharya, Aman

    2017-05-01

    In this work, we have synthesized nano scale zerovalent iron (nZVI) particles by borohydride reduction method and bismuth oxichloride (BiOCl) by a hydrolysis method. X-ray powder diffraction (XRD) was used for the structural and chemical characterization, while scanning/transmission electron microscopy (SEM/TEM) were employed to determine the physical properties of the nanoparticles. The reactivity of synthesized nanoparticles was compared by decolorization of nile blue (NB) dye under visible irradiation.

  11. Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode

    NASA Technical Reports Server (NTRS)

    Butler, E. A.; Blackham, A. U.

    1971-01-01

    Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.

  12. Transport properties of bismuth telluride compound prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharya, Shovit; Rayaprol, Sudhindra; Sahu, Ashok K.; Shelke, Vilas

    2017-05-01

    We have synthesized bismuth telluride compound using mechanical alloying and hot press sintering method. The phase formation, crystal structure was evaluated by X-ray diffraction and Raman spectroscopy. The scanning electron microscopy images indicated sub-micron sized grains. We observed low value of thermal conductivity 0.39 W/mK at room temperature as a result of grain size reduction by increasing deformation. The performance of the samples can be improved by reducing the grain size, which increases the grain boundary scattering.

  13. Nanotransition Materials (NTMs): Photocatalysis, Validated High Effective Sorbent Models Study for Organic Dye Degradation and Precise Mathematical Data’s at Standardized Level

    PubMed Central

    Khan, Farheen; Wahab, Rizwan; Hagar, Mohamed; Alnoman, Rua; Lutfullah; Rashid, Mohd

    2018-01-01

    The present work describes the synthesis of copper oxide nanoparticles (CuONPs) via a solution process with the aim of applying the nano-adsorbent for the reduction of methylene blue (MB) dye in alkaline media. These NPs were characterized via Field emission scanning electron microscopy (FE-SEM), X-ray diffraction, high-resolution Transmission electron microscopy (TEM), and ultra violet UV-visible spectroscopy to confirm their morphology and crystalline and optical properties in order to design an adsorption-degradation process. The photocatalytic CuONPs exhibited dynamic properties, great adsorption affinity during the chemisorption process, and operated at various modes with a strong interaction between the adsorbent and the adsorptive species, and equilibrium isotherm, kinetic isotherm, and thermodynamic activities in the presence of UV light. All basic quantities, such as concentration, pH, adsorbent dose, time, and temperature, were determined by an optimization process. The best-fitted adsorption Langmuir model (R2 = 0.9988) and performance, including adsorption capacity (350.87 mg/g), photocatalytic efficiency (90.74%), and degradation rate constant (Ks = 2.23 ×10−2 min−1), illustrate good feasibility with respect to sorption-reduction reactions but followed a pseudo-second-order kinetic on the adsorbent surface, reaching an equilibrium point in 80 min. The thermodynamic analysis suggests that the adsorption reaction is spontaneous and endothermic in nature. The thermodynamic parameters such as enthalpy (∆H°), entropy (∆S°), and Gibbs free energy (∆G°) give effective results to support a chemical reduction reaction at 303 K temperature. The equilibrium isotherm and kinetic and thermodynamic models with error function analysis explore the potential, acceptability, accuracy, access to adsorbents, and novelty of an unrivaled-sorption system. PMID:29495511

  14. Inactivation and removal of Zika virus during manufacture of plasma-derived medicinal products.

    PubMed

    Blümel, Johannes; Musso, Didier; Teitz, Sebastian; Miyabayashi, Tomoyuki; Boller, Klaus; Schnierle, Barbara S; Baylis, Sally A

    2017-03-01

    Zika virus (ZIKV) is an emerging mosquito-borne Flavivirus of major public health concern. The potential for ZIKV transmission by blood transfusion has been demonstrated; however, inactivation or removal of ZIKV during the manufacture of plasma-derived medicinal products has not been specifically investigated. Inactivation of ZIKV by pasteurization and solvent/detergent (S/D) treatment was investigated by spiking high-titer ZIKV stocks into human serum albumin and applying either heat or adding different mixtures of S/D reagents and assaying for infectious virus particles. Removal of ZIKV was evaluated using filters of differing pore sizes (75, 40, 35, and 19 nm), assaying for infectious virus and RNA. Electron microscopy was performed to determine the size of ZIKV particles. Neutralization of virus infectivity by immunoglobulins was investigated. ZIKV was effectively and rapidly inactivated by liquid heat treatment as well as by various mixtures of S/D reagents with reduction factors more than 4 log, in each case. Effective reduction of ZIKV infectivity was demonstrated for virus filtration for filters with average pore sizes of not more than 40 nm, although a significant proportion of virus RNA was detected in the 40- to 35-nm filtrates likely due to the presence of subviral particles observed by electron microscopy. None of the immunoglobulin preparations investigated neutralized ZIKV infectivity. Pasteurization and S/D treatment very rapidly inactivated ZIKV and filters with a pore size of not more than 40 nm removed all infectious ZIKV, demonstrating the effectiveness of these virus reduction strategies used during the manufacture of plasma-derived medicinal products. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  15. Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO₂/graphene oxide decorated with Ag nanoparticles.

    PubMed

    Cincotto, Fernando H; Canevari, Thiago C; Campos, Anderson M; Landers, Richard; Machado, Sérgio A S

    2014-09-21

    This paper describes the synthesis, characterization and applications of a new hybrid material composed of mesoporous silica (SiO2) modified with graphene oxide (GO), SiO2/GO, obtained by the sol-gel process using HF as the catalyst. The hybrid material, SiO2/GO, was decorated with silver nanoparticles (AgNPs) with a size of less than 20 nanometres, prepared directly on the surface of the material using N,N-dimethylformamide (DMF) as the reducing agent. The resulting material was designated as AgNP/SiO2/GO. The Ag/SiO2/GO material was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and high-resolution transmission electron microscopy (HR-TEM). A glassy carbon electrode modified with AgNP/SiO2/GO was used in the development of a sensitive electrochemical sensor for the simultaneous determination of epinephrine and dopamine employing electrocatalytic reduction using squarewave voltammetry. Well-defined and separate reduction peaks were observed in PBS buffer at pH 7. No significant interference was seen for primarily biological interferents such as uric acid and ascorbic acid in the detection of dopamine and epinephrine. Our study demonstrated that the resultant AgNP/SiO2/GO-modified electrode is highly sensitive for the simultaneous determination of dopamine and epinephrine, with the limits of detection being 0.26 and 0.27 μmol L(-1), respectively. The AgNP/SiO2/GO-modified electrode is highly selective and can be used to detect dopamine and epinephrine in a human urine sample.

  16. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  18. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  19. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    NASA Astrophysics Data System (ADS)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2015-10-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  20. On the manufacturing of a gas turbine engine part through metal spinning process

    NASA Astrophysics Data System (ADS)

    Hassanin, A. El; Astarita, A.; Scherillo, F.; Velotti, C.; Squillace, A.; Liguori, A.

    2018-05-01

    Metal spinning processes represents an interesting alternative to traditional sheet metal forming processes in several industrial contexts, such as automotive and aerospace. In this work, the production of a combustion chamber liner top prototype using AISI 304L stainless steel is proposed, in order to evaluate the process feasibility for the required part geometry. The prototypes production was carried out using a two-stage semiautomatic spinning process. The effects in terms of wall thickness reduction were investigated. Using optical microscopy and Scanning Electron Microscopy (SEM) techniques, the microstructural behavior of the metal subjected to the forming process was investigated, while for an evaluation of the influence on the mechanical properties Vickers micro-indentation tests were performed. The main result of the process, as observed from all the investigation techniques adopted, is the formation of strain induced martensite due to the severe plastic deformation and cold reduction of the material, ranging in this case from 30% to 50%. In some areas of the part section, some rips indicating an excessive tensile stress were also detected.

  1. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  2. Microscopy and microRaman study of periodically poled domains in deeply thinned lithium niobate wafers

    NASA Astrophysics Data System (ADS)

    Bullen, P. S.; Huang, H.-C.; Yang, H.; Dadap, J. I.; Kymissis, I.; Osgood, R. M.

    2016-07-01

    The domain structure of poled deeply thinned lithium niobate is investigated as a function of sample thickness. Free-standing samples of thickness from 25 to 500 μm are prepared by a multiple-cycle polish and annealing procedure and then periodically poled. Using these samples and employing micro-Raman scattering and scanning electron, atomic force, and optical microscopy together, the domain broadening and poling voltage are found to vary in a regular and significant manner. The poled domains show a reduction in width spreading of 38% as the sample thickness is reduced from 500 to 25 μm. Micro-Raman probe measurements verify the quality and the uniformity of the poled domains and provide insight into their thickness-dependent poling contrast.

  3. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation

    NASA Astrophysics Data System (ADS)

    Aideo, Swati N.; Mohanta, Dambarudhar

    2016-10-01

    In this work, microstructural and optical characteristics nanoparticles of wings of Tailed Jay (Graphium Agamemnon) butterfly were studied before and after treating it in a precursor solution of zinc acetate and ethanol. We speculate that the butterfly scales are infiltrated with ZnO nanoparticles owing to reduction of Zinc hydroxide under ambient condition. The ZnO butterfly scales so produced were characterised using optical microscopy, UV-Vis reflectance spectroscopy, and electron microscopy etc. From the reflectance spectra, we could see that after treating it in the solution, optical properties vary. We anticipate that this change may be due to the formation of ZnO nanoparticles as well as the loss in periodicity due to the chemical treatments, which could be assessed from the SEM micrographs.

  4. High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA.

    PubMed

    Xin, Baoping; Huang, Qun; Chen, Shi; Tang, Xuemei

    2008-01-01

    High-purity nanoparticles ZnS has been successfully synthesized using a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA referred to as the CRBRCP-EDTA process. This research investigated the optimum conditions of the transformation of SO(4) (2-) into S(2-) by SRB, and the production of ZnS in the CRBRCP-EDTA process. The results showed that the molar ratio of Zn(2+) to EDTA = 1:1 was crucial for SRB growth and ZnS synthesis. At the ratio(n) (Zn2+)/n) (EDTA) = 1:1, lower Zn(2+) concentration enhanced both the growth of SRB and the reduction of SO(4) (2-), leading to higher ZnS production. Although increase in Na(2)SO(4) concentration resulted in decrease in both SRB growth and SO(4) (2-) reduction, it improved the S(2-) and ZnS production. Under the optimum conditions (0.05 mol L(-1) ZnCl(2), 0.05 mol L(-1) EDTA, and 0.1 mol L(-1) Na(2)SO(4)), the synthesized ZnS was characterized by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that the obtained ZnS were high-purity and well-distributed solid spheres with diameters of about 15 nm for primary particles and around 400 nm for secondary particles. When polyacrylamide (PAM) was incorporated in the CRBRCP-EDTA process, the secondary particle's diameters were reduced to less than 100 nm. The photoluminescence (PL) spectra of produced ZnS centered at 396 nm, the spectrum with PAM added showed the gradual increase in absorption and stronger intensity in PL property. The present simple, low-cost, and safe method may be extended to prepare other metal-sulfide nanocomposites.

  5. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  6. A novel green approach for reduction of free standing graphene oxide: electrical and electronic structural investigations.

    PubMed

    Saravanan, K; Panigrahi, B K; Suresh, K; Sundaravel, B; Magudapathy, P; Gupta, Mukul

    2018-08-24

    Ion beam irradiation technique has been proposed, for efficient, fast and eco-friendly reduction of graphene oxide (GO), as an alternative to the conventional methods. 5 MeV, Au + ion beam has been used to reduce the free standing GO flake. Both electronic and nuclear energy loss mechanisms of the irradiation process play a major role in removal of oxygen moieties and recovery of graphene network. Atomic resolution scanning tunnelling microscopy analysis of the irradiated GO flake shows the characteristic honeycomb structure of graphene. X-ray absorption near edge structure analysis at C K-edge reveals that the features of the irradiated GO flake resemble the few layer graphene. Resonant Rutherford backscattering spectrometry analysis evidenced an enhanced C/O ratio of ∼23 in the irradiated GO. In situ sheet resistance measurements exhibit a sharp decrease of resistance (few 100 s of Ω) at a fluence of 6.5 × 10 14 ions cm -2 . Photoluminescence spectroscopic analysis of irradiated GO shows a sharp blue emission, while pristine GO exhibits a broad emission in the visible-near IR region. Region selective reduction, tunable electrical and optical properties by controlling C/O ratio makes ion irradiation as a versatile tool for the green reduction of GO for diverse applications.

  7. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors.

    PubMed

    Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng

    2014-05-21

    Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.

  8. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    PubMed

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  9. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  10. Microstructure of milk

    USDA-ARS?s Scientific Manuscript database

    The fat and protein in milk may be examined by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy, and any bacteria present may be viewed by light microscopy. The fat exists as globules, the bulk of the protein is in the form of casein micelles, a...

  11. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  12. Towards native-state imaging in biological context in the electron microscope

    PubMed Central

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  13. An overview of state-of-the-art image restoration in electron microscopy.

    PubMed

    Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W

    2018-06-08

    In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    PubMed

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and electrochemical properties of olivine LiFePO 4 prepared by a carbothermal reduction method

    NASA Astrophysics Data System (ADS)

    Liu, Hui-ping; Wang, Zhi-xing; Li, Xin-hai; Guo, Hua-jun; Peng, Wen-jie; Zhang, Yun-he; Hu, Qi-yang

    LiFePO 4/C composite cathode material was prepared by carbothermal reduction method, which uses NH 4H 2PO 4, Li 2CO 3 and cheap Fe 2O 3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO 4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO 4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO 4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO 4 composites showed a high electrochemical capacity of 159.3 mAh g -1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.

  16. Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong

    2018-04-01

    Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.

  17. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  18. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  19. Design of PdAg Hollow Nanoflowers through Galvanic Replacement and Their Application for Ethanol Electrooxidation.

    PubMed

    Bin, Duan; Yang, Beibei; Zhang, Ke; Wang, Caiqin; Wang, Jin; Zhong, Jiatai; Feng, Yue; Guo, Jun; Du, Yukou

    2016-11-07

    In this study, galvanic replacement provides a simple route for the synthesis of PdAg hollow nanoflower structures by using the Ag-seeds as sacrificial templates in the presence of l-ascorbic acid (reductant) and CTAC (capping agent). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and EDS mapping were used to characterize the as-prepared PdAg hollow nanoflower catalysts, where they were alloyed nanoflower structures with hollow interiors. By maneuvering the Pd/Ag ratio, we found that the as-prepared Pd 1 Ag 3 hollow nanoflower catalysts had the optimized performance for catalytic activity toward ethanol oxidation reaction. Moreover, these as-prepared PdAg hollow nanoflower catalysts exhibited noticeably higher electrocatalytic activity as compared to pure Pd and commercial Pd/C catalysts due to the alloyed Ag-Pd composition as well as the hollow nanoflower structures. It is anticipated that this work provides a rational design of other architecturally controlled bimetallic nanocrystals for application in fuel cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical, thermal and combustion properties of self-colored polyamide nanocomposites reinforced with azo dye surface modified ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hajibeygi, Mohsen; Shabanian, Meisam; Omidi-Ghallemohamadi, Mehrdad; Khonakdar, Hossein Ali

    2017-09-01

    New self-colored aromatic-polyamide (PA) nanocomposites containing azo and naphthalene chromophores were prepared with azo-dye surface-modified ZnO nanoparticles (SMZnO) using solution method in dimethylformamide. The X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results showed the uniform distribution for ZnO nanoparticles in the PA matrix. The UV-vis spectra of PA/ZnO nanocomposites (PANC) showed a blue shift as well as reduction in absorbance intensities and the photoluminescence studies revealed that the increasing intensities of the violet emission in SMZnO loading. From thermo gravimetric analysis (TGA), the temperature at 10% mass loss (T10) increased from 291.8 °C to 387.6 °C for PANC containing 8 mass% of SMZnO, as well as the char yield enhanced significantly, which was about 23.5% higher than the neat PA. The peak heat release rate resulted from microscale combustion calorimeter (MCC), by 8 mass% loading of SMZnO, decreased about 56.9% lower than the neat PA.

  1. High-Temperature Deformation Behavior of MnS in 1215MS Steel

    NASA Astrophysics Data System (ADS)

    Huang, Fei-Ya; Su, Yen-Hao Frank; Kuo, Jui-Chao

    2018-06-01

    The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were ( {\\bar{1}0\\bar{1}} )[ {\\bar{1}01} ],( {10\\bar{1}} )[ {101} ],( {011} )[ {01\\bar{1}} ] , and ( {110} )[ {1\\bar{1}0} ] . Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.

  2. Electroless Nickel Deposition for Front Side Metallization of Silicon Solar Cells

    PubMed Central

    Hsieh, Shu Huei; Hsieh, Jhong Min; Chen, Wen Jauh; Chuang, Chia Chih

    2017-01-01

    In this work, nickel thin films were deposited on texture silicon by electroless plated deposition. The electroless-deposited Ni layers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and sheet resistance measurement. The results indicate that the dominant phase was Ni2Si and NiSi in samples annealed at 300–800 °C. Sheet resistance values were found to correlate well with the surface morphology obtained by SEM and the results of XRD diffraction. The Cu/Ni contact system was used to fabricate solar cells by using two different activating baths. The open circuit voltage (Voc) of the Cu/Ni samples, before and after annealing, was measured under air mass (AM) 1.5 conditions to determine solar cell properties. The results show that open circuit voltage of a solar cell can be enhanced when the activation solution incorporated hydrofluoric acid (HF). This is mainly attributed to the native silicon oxide layer that can be decreased and/or removed by HF with the corresponding reduction of series resistance. PMID:28805724

  3. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  4. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modesmore » at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.« less

  5. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    NASA Astrophysics Data System (ADS)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  6. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  7. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  8. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties

    NASA Astrophysics Data System (ADS)

    Annamalai, Jayshree; Nallamuthu, Thangaraju

    2015-06-01

    In this study, biosynthesis of self-assembled gold nanoparticles (GNPs) was accomplished using an aqueous extract of green microalga, Chlorella vulgaris. The optical, physical, chemical and bactericidal properties of the GNPs were investigated to identify their average shape and size, crystal nature, surface chemistry and toxicity, via UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and antimicrobial activity. The sizes of the spherical self-assembled cores of the synthesized GNPs ranged from 2 to 10 nm. The XRD patterns showed a (111) preferential orientation and the crystalline nature of the GNPs. The results of the FTIR analysis suggested that the peptides, proteins, phenol and flavonoid carried out the dual function of effective Au III reduction and successful capping of the GNPs. Human pathogen Candida albicans and Staphylococcus aureus were susceptible to synthesized aqueous GNPs. Thus, biosynthesis, stabilization and self-assembly of the GNPs by Chlorella vulgaris extract can be an example of green chemistry and effective drug in the medicinal field.

  9. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Optimized Deconvolution for Maximum Axial Resolution in Three-Dimensional Aberration-Corrected Scanning Transmission Electron Microscopy

    PubMed Central

    Ramachandra, Ranjan; de Jonge, Niels

    2012-01-01

    Three-dimensional (3D) data sets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). The deconvolution of the 3D datasets was optimized to obtain the highest possible axial resolution. The deconvolution involved two different point spread function (PSF)s, each calculated iteratively via blind deconvolution.. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but at the cost of a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only. PMID:22152090

  11. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    PubMed

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Dongge; Han Xue; Chu Wei

    Co-B flowers with mesoporous structure were first prepared via reduction of cobalt acetate by potassium borohydride in the presence of complexing agent ethylenediamine. The as-prepared Co-B flowers were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, N{sub 2} adsorption-desorption, and magnetic performance test. The Co-B flowers exhibited enhanced coercivity, and weakened saturation magnetization and remanet magnetization as compared with the regular Co-B. During the hydrolysis of KBH{sub 4}, the Co-B flowers exhibited higher catalytic activity than the regular Co-B. It is attributed to themore » larger specific surface area and mesoporous channels. During the successive reactions, the conversion of KBH{sub 4} over Co-B flowers was about 97%. The average H{sub 2} generation rate of Co-B flowers was 4620 mL/min/g-catalyst in 1.5 wt% NaOH + 15 wt% KBH{sub 4} solution, which may give a successive H{sub 2} supply for a 748 W polymer electrolyte membrane fuel cell (PEMFC) at 100% H{sub 2} utilization.« less

  13. Stimuli-responsive one-dimensional copolymer nanostructures fabricated by metallogel template polymerization and their adsorption of aspirin.

    PubMed

    Wen, Xing; Tang, Liming; Qiang, Lu

    2014-06-14

    pH responsive poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (P(MBA-4VP)) one dimensional (1D) nanostructures have been prepared by metallogel template copolymerization, which was carried out in an Ag(i)-coordinated organogel with benzoyl peroxide (BPO) as the initiator. The product has been characterized using infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The experimental results reveal that the gel fiber is a crucial template for polymerization. Due to the degradation of the template in copolymerization, nanofibers of metallogel were transcribed to copolymer nanowires. The introduction of co-monomer 4-vinylpyridine (4VP) imparts to the 1D copolymer nanostructures pH sensitivity and the possible use as an adsorption material of aspirin. Adsorbed 1D copolymer nanostructures could be regenerated using proton solvent, acid medium and salt solution. In addition, silver nanoparticle loaded copolymer nanowires have been produced from the reduction of silver ions instead of template removal, where silver ions act both as the template and as the nanoparticle growth substrate.

  14. Template-Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type.

    PubMed

    Ning, Xin; Lu, Yiyuan; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-06-07

    Supported Ni catalysts on three mesoporous SiO 2 supports (i.e., SBA-15, MCM-41, and HMS) were prepared using a solid-state reaction between Ni(NO 3 ) 2 and organic template-occluded mesoporous SiO 2 . For comparison, supported Ni catalysts on mesoporous SiO 2 synthesized by the conventional impregnation method were also included. The catalysts were characterized by scanning electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, N 2 adsorption, X-ray photoelectron spectroscopy, H 2 temperature-programmed reduction, transmission electron microscopy, and transmission electron microscopy-energy-dispersive X-ray. The catalytic properties of the catalysts were evaluated using gas-phase catalytic hydrodechlorination of 1,2-dichloroethane. The results showed that upon grinding Ni(NO 3 ) 2 with template-occluded mesoporous SiO 2 , strong coordination between Ni 2+ and dodecylamine was identified in the Ni(NO 3 ) 2 -HMS system. Additionally, the results of H 2 temperature-programmed reduction revealed that NiO in calcined NiO/HMS was reduced at higher temperature than those in calcined NiO/SBA-15 and NiO/MCM-41, reflecting the presence of a strong interaction between NiO and mesoporous SiO 2 in NiO/HMS. Consistently, the average particle sizes of metallic Ni were found to be 2.7, 3.4, and 9.6 nm in H 2 -reduced Ni/HMS, Ni/SBA-15, and Ni/MCM-41, respectively, indicative of a much higher Ni dispersion in Ni/HMS. For the catalytic hydrodechlorination of 1,2-dichloroethane, Ni/MCM-41 synthesized by the solid-state reaction method exhibited a catalytic activity similar to that prepared by the impregnation method, while higher catalytic activities were observed on Ni/HMS and Ni/SBA-15 than on their counterparts prepared by the impregnation method. Furthermore, a higher conversion was identified on Ni/HMS than on Ni/SBA-15 and Ni/MCM-41, highlighting the importance of template type for the preparation of highly dispersed metal catalysts on mesoporous SiO 2 .

  15. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    PubMed

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  17. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  18. Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS.

    PubMed

    Carlström, Charlotte I; Loutey, Dana E; Wang, Ouwei; Engelbrektson, Anna; Clark, Iain; Lucas, Lauren N; Somasekhar, Pranav Y; Coates, John D

    2015-04-01

    Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30 °C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42 °C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes.

    PubMed

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Burov, Andrey M; Dykman, Lev A; Nikitina, Valentina E

    2014-07-20

    We report for the first time that the medicinal basidiomycete Lentinus edodes can reduce Au(III) from chloroauric acid (HAuCl4) to elemental Au [Au(0)], forming nanoparticles. Several methods, including transmission electron microscopy, electron energy loss spectroscopy, X-ray fluorescence, and dynamic light scattering, were used to show that when the fungus was grown submerged, colloidal gold accumulated on the surface of and inside the mycelial hyphae as electron-dense particles mostly spherical in shape, with sizes ranging from 5 to 50nm. Homogeneous proteins (the fungal enzymes laccase, tyrosinase, and Mn-peroxidase) were found for the first time to be involved in the reduction of Au(III) to Au(0) from HAuCl4. A possible mechanism forming Au nanoparticles is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    PubMed Central

    Perez, Alex J.; Seyedhosseini, Mojtaba; Deerinck, Thomas J.; Bushong, Eric A.; Panda, Satchidananda; Tasdizen, Tolga; Ellisman, Mark H.

    2014-01-01

    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime. PMID:25426032

  1. Chemistry Viewed through the Eyes of High-Resolution Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael; And Others

    1981-01-01

    This special report, prepared by several chemists working in the field of electron microscopy, provides information regarding the most recent developments in transmission and scanning electron microscopy that have chemical significance. (CS)

  2. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope.

    PubMed

    Abellan, Patricia; Parent, Lucas R; Al Hasan, Naila; Park, Chiwoo; Arslan, Ilke; Karim, Ayman M; Evans, James E; Browning, Nigel D

    2016-02-16

    Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.

  3. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  4. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  5. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics

    NASA Astrophysics Data System (ADS)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10 nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  6. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    PubMed Central

    2011-01-01

    This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), CO-chemisorption, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM-EDX) and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low), 650°C (medium) and 731°C (high). The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1%) while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%). PMID:22047220

  7. Catalysts based on PdO_ZrO2 in the hydrodechlorination reaction of chlorobenzene

    NASA Astrophysics Data System (ADS)

    Otroshchenko, T. P.; Turakulova, A. O.; Lokteva, E. S.; Golubina, E. V.; Lunin, V. V.

    2015-07-01

    The possibility of using mixed oxides of palladium and zirconium obtained with biotemplates (cellulose and wood pulp) as the precursor of catalysts for the hydrodechlorination of chlorobenzene is analyzed. The properties of the samples are studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer-Emmet-Teller (BET) method, and temperature-programmed reduction (TPR). They are then compared to the properties of a supported analogue. The biomorphic precursors are characterized by high porosity and include micropores, mesopores, and macropores; the results from TPR reveal the presence in the precursors of several forms of PdO that differ by reduction temperature. It is shown that the distribution of palladium in the catalysts obtained by reducing the precursors with hydrogen depends on the method used in synthesizing the precursor. It is shown that the studied catalysts ensure 100% conversion of chlorobenzene at temperatures of 100 to 250°C. It is established that cyclohexane is the principal product in the presence of the supported catalyst across the range of temperatures, while cyclohexane and benzene are detected among the products in the presence of biomorphous samples at temperatures above 130°C. The effect the presence of an admixture of alkaline and alkaline-earth metals in the catalyst has on the selectivity of the process is noted. It is established that the catalysts operate in a stable manner for at least 27 h of use under experimental conditions.

  8. Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films

    NASA Astrophysics Data System (ADS)

    Hamran, Noramirah; Rashid, Azura A.

    2017-07-01

    Commercial fillers such as silica and carbon black generally impart the reinforcing effects in dry rubber compound, but have an adverse effect on Natural rubber (NR) latex compounds. The addition of commercial fillers in NR latex has reduced the mechanical properties of NR latex films due to the destabilization effect in the NR latex compounds which govern by the dispersion quality, particle size and also the pH of the dispersion itself. The ball milling process is the conventional meth od of preparation of dispersions and ultrasonic has successfully used in preparation of nano fillers such as carbon nanotube (CNT). In this study the combination between the conventional methods; ball milling together the ultrasonic method were used to prepare the silica and carbon black dispersions. The different duration of ball milling (24, 48 and 72 hours) was compared with the ultrasonic method (30, 60, 90 and 120 minutes). The combination of ball milling and ultrasonic from the optimum individual technique was used to investigate the reduction of particle size of the fillers. The particle size analyzer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) test were carried out to investigate the obtained particle size and the tensile and tear test were carried out to investigate the mechanical properties of the NR latex films. The reduction of filler particle size is expected to impart the properties of NR latex films.

  9. Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Lifeng; Zhao, Di; Yang, Yang

    Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stabilitymore » with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.« less

  10. Novel method for synthesis of silver nanoparticles and their application on wool

    NASA Astrophysics Data System (ADS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-08-01

    In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.

  11. Writing silica structures in liquid with scanning transmission electron microscopy.

    PubMed

    van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M

    2015-02-04

    Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, K. X.; Wang, J. J.; Yuan, Z.

    The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. Themore » results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.« less

  13. Kinetics of microbial reduction of Solid phase U(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K

    2006-10-15

    Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.

  14. Specific detection of membrane-toxic substances with a conductivity assay.

    PubMed

    Eich, J; Dürholt, H; Steger-Hartmann, T; Wagner, E

    2000-03-01

    A conductivity assay that represents a new biotest able to detect the effects of membrane-toxic compounds, e.g., detergents, organic solvents, and radical formers, on various organisms was previously described and developed. The conductivity assay measures ion leakage from cells, tissues, or whole plant and animal organisms whose membrane systems have been damaged by membrane-toxic compounds. In this study the specificity of the conductivity assay for membrane-toxic compounds was tested by comparing the electrolyte efflux from Elodea canadensis leaves during incubation with a well-known detergent (benzalkonium chloride) using different plant physiological and biochemical techniques (photochemical efficiency, plasmolysis capacity, NBT reduction, and electron microscopy of membranes of E. canadensis leaves). The comparison of the different methods proved that the electrolyte loss during benzalkonium chloride incubation determined in the conductivity assay is due to membrane impairment. The observed electrolyte loss correlated with a reduction of photochemical efficiency and a decrease in both plasmolysis and NBT reduction capacity. Furthermore, a disintegration of the plasmalemma could be seen in the electron micrographs. These results indicate that the measured electrolyte loss in the conductivity assay is a specific effect of membrane-toxic compounds. Copyright 2000 Academic Press.

  15. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  16. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  17. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  18. Vapor-Redissolution Technique for Reduction of POLYMER/Si Arrayed Waveguide Grating Loss

    NASA Astrophysics Data System (ADS)

    Zhang, Haiming; Zhang, Daming; Qin, Zhenkun; Ma, Chunsheng

    An efficient vapor-redissolution technique is used to greatly reduce sidewall scattering loss in the polymer arrayed waveguide grating (AWG) fabricated on a silicon substrate. Smoother sidewalls are achieved and verified by scanning electron microscopy. Reduction of sidewall scattering loss is further measured for the loss measurement of both straight waveguides and AWG devices. The sidewall loss in straight polymer waveguide is decreased by 2.1 dB/cm, the insertion loss of our AWG device is reduced by about 5.5 dB for the central channel and 6.7 dB for the edge channels, the crosstalk is reduced by 2.5 dB, and 3-dB bandwidth is narrowed by 0.05 nm after the vapor-redissoluton treatment.

  19. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.

    PubMed

    Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun

    2015-12-01

    Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.

  20. Electrodeposition of CuZn Alloys from the Non-Cyanide Alkaline Baths

    NASA Astrophysics Data System (ADS)

    Li, Minggang; Wei, Guoying; Hu, Shuangshuang; Xu, Shuhan; Yang, Yejiong; Miao, Qinfang

    2015-10-01

    Effect of copper sulfate on CuZn alloys electroplating from non-cyanide baths are investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements are used to characterize the CuZn alloys electroplating system in order to analyze the nucleation and growth mechanism. The reduction of Cu and CuZn alloy on sheet iron substrates shows an instantaneous nucleation process. However, the reduction of Zn on sheet iron substrates shows a progressive nucleation process. The structure and surface morphology of CuZn alloys are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of CuZn alloys obtained with 50 g L-1 copper sulfate presents a smooth and compact deposit and the size of crystal particle is uniform.

  1. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials

    PubMed Central

    Sharma, Nilesh C.; Nath, Sudip; Parsons, Jason G.; Gardea- Torresdey, Jorge L.; Pal, Tarasankar

    2008-01-01

    Growth of Sesbania seedlings in chloroaurate solution resulted in the accumulation of gold with the formation of stable gold nanoparticles in plant tissues. Transmission electron microscopy revealed the intracellular distribution of monodisperse nanospheres, possibly due to reduction of the metal ions by secondary metabolites present in cells. X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrated a high degree of efficiency for the biotransformation of Au(III) into Au(0) by plant tissues. The catalytic function of the nanoparticle-rich biomass was substantiated by the reduction of aqueous 4-nitrophenol (4-NP). This is the first report of gold nanoparticle-bearing biomatrix directly reducing a toxic pollutant, 4-NP. PMID:17711235

  2. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  3. Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets.

    PubMed

    Shen, Yue; Wang, Ying; Zhou, Yuan; Hai, Chunxi; Hu, Jun; Zhang, Yi

    2018-01-01

    Electrostatic force spectroscopy (EFS) is a method for monitoring the electrostatic force microscopy (EFM) phase with high resolution as a function of the electrical direct current bias applied either to the probe or sample. Based on the dielectric constant difference of graphene oxide (GO) sheets (reduced using various methods), EFS can be used to characterize the degree of reduction of uniformly reduced one-atom-thick GO sheets at the nanoscale. In this paper, using thermally or chemically reduced individual GO sheets on mica substrates as examples, we characterize their degree of reduction at the nanoscale using EFS. For the reduced graphene oxide (rGO) sheets with a given degree of reduction (sample n), the EFS curve is very close to a parabola within a restricted area. We found that the change in parabola opening direction (or sign the parabola opening value) indicates the onset of reduction on GO sheets. Moreover, the parabola opening value, the peak bias value (tip bias leads to the peak or valley EFM phases) and the EFM phase contrast at a certain tip bias less than the peak value can all indicate the degree of reduction of rGO samples, which is positively correlated with the dielectric constant. In addition, we gave the ranking of degree for reduction on thermally or chemically reduced GO sheets and evaluated the effects of the reducing conditions. The identification of the degree of reduction of GO sheets using EFS is important for reduction strategy optimization and mass application of GO, which is highly desired owing to its mechanical, thermal, optical and electronic applications. Furthermore, as a general and quantitative technique for evaluating the small differences in the dielectric properties of nanomaterials, the EFS technique will extend and facilitate its nanoscale electronic devices applications in the future.

  4. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Cancer.gov

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  5. Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com

    Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.

  6. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  7. Growth and Surface Modification of LaFeO3 Thin Films Induced By Reductive Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Zhang, Hongliang; Shutthanandan, V.

    2015-03-01

    The electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS)more » demonstrated that the film is highly oriented and stoichiometric. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved x-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of perovskite materials for catalysts.« less

  8. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    PubMed

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  10. Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO

    NASA Astrophysics Data System (ADS)

    Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam

    2016-05-01

    The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02572b

  11. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy

    PubMed Central

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263

  12. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    PubMed

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  13. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  14. Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells.

    PubMed

    Baskaran, Balraj; Muthukumarasamy, Arulmozhi; Chidambaram, Siva; Sugumaran, Abimanyu; Ramachandran, Krithikadevi; Rasu Manimuthu, Thaneswari

    2017-04-01

    Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time . The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20-50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC 50 ) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.

  15. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.

    PubMed

    Gallarato, L A; Mulko, L E; Dardanelli, M S; Barbero, C A; Acevedo, D F; Yslas, E I

    2017-02-01

    Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2018-01-01

    The paper "Using the Medipix3 detector for direct electron imaging in the range 60keV to 200keV in electron microscopy" by J.A. Mir, R. Plackett, I. Shipsey and J.M.F. dos Santos has been retracted following the authors' request on the basis of the existence of a disagreement about the ownership of the data, to prevent conflict between collaborators.

  17. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  18. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  19. The Effect of Electron Beam Irradiation in Environmental Scanning Transmission Electron Microscopy of Whole Cells in Liquid.

    PubMed

    Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels

    2016-06-01

    Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels.

  20. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electronmore » donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.« less

  1. High Catalytic Efficiency of Nanostructured β-CoMoO₄ in the Reduction of the Ortho-, Meta- and Para-Nitrophenol Isomers.

    PubMed

    Al-Wadaani, Fahd; Omer, Ahmed; Abboudi, Mostafa; Oudghiri Hassani, Hicham; Rakass, Souad; Messali, Mouslim; Benaissa, Mohammed

    2018-02-09

    Nanostructured β-CoMoO₄ catalysts have been prepared via the thermal decomposition of an oxalate precursor. The catalyst was characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The efficiency of these nanoparticles in the reduction of ortho - and meta -nitrophenol isomers (2-NP, 3-NP, and 4-NP) to their corresponding aminophenols was tested using UV-visible spectroscopy measurements. It was found that, with a β-CoMoO₄ catalyst, NaBH₄ reduces 3-NP instantaneously, whilst the reduction of 2-NP and 4-NP is slower at 8 min. This difference is thought to arise from the lower acidity of 3-NP, where the negative charge of the phenolate could not be delocalized onto the oxygen atoms of the meta-nitro group.

  2. Use of glucose as reductant to recover Co from spent lithium ions batteries.

    PubMed

    Meng, Qi; Zhang, Yingjie; Dong, Peng

    2017-06-01

    A hydrometallurgical leaching process has been developed for recovery of Co and Li from cathode material (LiCoO 2 ) collected from spent LIBs using a mix solution of glucose and phosphoric acid. The spent LiCoO 2 before and after leaching process are analyzed by scanning electron microscopy. A leaching rate of about 98% Co and nearly 100% Li is presented with 1.5mol/L phosphoric acid and 0.02mol/L glucose at 80°C in about 2h. During leaching process, glucose was oxidized into monocarboxylic acid with reduction of Co(III) to Co(II). Co in solution was recovered as Co-oxalate after leaching process. Using glucose as reductant to dissolve LiCoO 2 with chelating agent of phosphoric acid is achieved here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  4. Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele

    2018-01-01

    Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.

  5. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  6. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    PubMed Central

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall. Images PMID:3954340

  7. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    PubMed

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall.

  8. Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis.

    PubMed

    Thomas, D; Newcomb, W W; Brown, J C; Wall, J S; Hainfeld, J F; Trus, B L; Steven, A C

    1985-05-01

    Dark-field scanning transmission electron microscopy was used to perform mass analyses of purified vesicular stomatitis virions, pronase-treated virions, and nucleocapsids, leading to a complete self-consistent account of the molecular composition of vesicular stomatitis virus. The masses obtained were 265.6 +/- 13.3 megadaltons (MDa) for the native virion, 197.5 +/- 8.4 MDa for the pronase-treated virion, and 69.4 +/- 4.9 MDa for the nucleocapsid. The reduction in mass effected by pronase treatment, which corresponds to excision of the external domains (spikes) of G protein, leads to an average of 1,205 molecules of G protein per virion. The nucleocapsid mass, after compensation for the RNA (3.7 MDa) and residual amounts of other proteins, yielded a complement of 1,258 copies of N protein. Calibration of the amounts of M, NS, and L proteins relative to N protein by biochemical quantitation yielded values of 1,826, 466, and 50 molecules, respectively, per virion. Assuming that the remaining virion mass is contributed by lipids in the viral envelope, we obtained a value of 56.1 MDa for its lipid content. In addition, four different electron microscopy procedures were applied to determine the nucleocapsid length, which we conclude to be 3.5 to 3.7 micron. The nucleocapsid comprises a strand of repeating units which have a center-to-center spacing of 3.3 nm as measured along the middle of the strand. We show that these repeating units represent monomers of N protein, each of which is associated with 9 +/- 1 bases of single-stranded RNA. From scanning transmission electron microscopy images of negatively stained nucleocapsids, we inferred that N protein has a wedge-shaped, bilobed structure with dimensions of approximately 9.0 nm (length), approximately 5.0 nm (depth), and approximately 3.3 nm (width, at the midpoint of its long axis). In the coiled configuration of the in situ nucleocapsid, the long axis of N protein is directed radially, and its depth corresponds to the pitch of the nucleocapsid helix.

  9. Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis.

    PubMed Central

    Thomas, D; Newcomb, W W; Brown, J C; Wall, J S; Hainfeld, J F; Trus, B L; Steven, A C

    1985-01-01

    Dark-field scanning transmission electron microscopy was used to perform mass analyses of purified vesicular stomatitis virions, pronase-treated virions, and nucleocapsids, leading to a complete self-consistent account of the molecular composition of vesicular stomatitis virus. The masses obtained were 265.6 +/- 13.3 megadaltons (MDa) for the native virion, 197.5 +/- 8.4 MDa for the pronase-treated virion, and 69.4 +/- 4.9 MDa for the nucleocapsid. The reduction in mass effected by pronase treatment, which corresponds to excision of the external domains (spikes) of G protein, leads to an average of 1,205 molecules of G protein per virion. The nucleocapsid mass, after compensation for the RNA (3.7 MDa) and residual amounts of other proteins, yielded a complement of 1,258 copies of N protein. Calibration of the amounts of M, NS, and L proteins relative to N protein by biochemical quantitation yielded values of 1,826, 466, and 50 molecules, respectively, per virion. Assuming that the remaining virion mass is contributed by lipids in the viral envelope, we obtained a value of 56.1 MDa for its lipid content. In addition, four different electron microscopy procedures were applied to determine the nucleocapsid length, which we conclude to be 3.5 to 3.7 micron. The nucleocapsid comprises a strand of repeating units which have a center-to-center spacing of 3.3 nm as measured along the middle of the strand. We show that these repeating units represent monomers of N protein, each of which is associated with 9 +/- 1 bases of single-stranded RNA. From scanning transmission electron microscopy images of negatively stained nucleocapsids, we inferred that N protein has a wedge-shaped, bilobed structure with dimensions of approximately 9.0 nm (length), approximately 5.0 nm (depth), and approximately 3.3 nm (width, at the midpoint of its long axis). In the coiled configuration of the in situ nucleocapsid, the long axis of N protein is directed radially, and its depth corresponds to the pitch of the nucleocapsid helix. Images PMID:2985822

  10. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  11. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  12. A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    NASA Technical Reports Server (NTRS)

    Ware, Jacqueline; Hammond, Ernest C., Jr.

    1989-01-01

    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.

  13. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  14. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium.

    PubMed

    Neethu, Sahadevan; Midhun, Sebastian Jose; Sunil, M A; Soumya, Soman; Radhakrishnan, E K; Jyothis, Mathew

    2018-03-01

    The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO 3 , fungal biomass, ratio of cell filtrate and AgNO 3 , pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    PubMed

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  16. Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.

    2017-11-01

    The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.

  17. Unique isothermal crystallization behavior of novel polyphenylene sulfide/inorganic fullerene-like WS2 nanocomposites.

    PubMed

    Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio

    2008-11-27

    The isothermal crystallization of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) has been studied from a thermal and morphological point of view, using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction. All the analyses revealed that the incorporation of the IF-WS2 altered significantly the crystallization behavior of PPS, in a way strongly dependent with the nanocomposite composition. The addition of IF-WS2 in 0.1 wt % proportion retarded the crystallization of PPS by increasing its fold surface free energy in a 10%. However, addition of the nanoparticles in excess of 1 wt % results in a promotion of the crystallization rate with reduction of the fold surface free energy to half the value of pure PPS.

  18. Tissue and cellular localization of tannins in Tunisian dates (Phoenix dactylifera L.) by light and transmission electron microscopy.

    PubMed

    Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain

    2014-07-16

    A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.

  19. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05060f

  20. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  1. Operando Synchrotron XRD Investigation of Silver Metal Formation upon Electrochemical Reduction of Silver Iron Pyrophosphate (Ag 7Fe 3(P 2O 7) 4)

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2017-05-11

    The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag 7Fe 3(P 2O 7) 4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag + ions are reduced during the first 3ee, followed by simultaneous reduction of Ag + and Fe 3+ reduction for the next 5ee (3ee tomore » 8ee), culminating in reduction of the remaining Ag +. Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag 7Fe 3(P 2O 7) 4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both R ct and Ohmic resistance, which facilitates the high power output of the cell.« less

  2. Operando Synchrotron XRD Investigation of Silver Metal Formation upon Electrochemical Reduction of Silver Iron Pyrophosphate (Ag 7Fe 3(P 2O 7) 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.

    The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag 7Fe 3(P 2O 7) 4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag + ions are reduced during the first 3ee, followed by simultaneous reduction of Ag + and Fe 3+ reduction for the next 5ee (3ee tomore » 8ee), culminating in reduction of the remaining Ag +. Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag 7Fe 3(P 2O 7) 4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both R ct and Ohmic resistance, which facilitates the high power output of the cell.« less

  3. Size reduction of submicron magnesium particles prepared by pulsed wire discharge

    NASA Astrophysics Data System (ADS)

    Duy Hieu, Nguyen; Tokoi, Yoshinori; Tanaka, Kenta; Sasaki, Toru; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    In this study, the submicron magnesium particle size was reduced by adjusting ambient gas pressure and input energy. The mean diameter of the prepared particles was determined from transmission electron microscopy images. The geometric mean particle diameter decreased with increasing relative energy, which was defined as the charging energy divided by the evaporation energy of a wire. By this method, Mg particles with a geometric mean diameter of 41.9 nm were prepared. To our knowledge, they are the smallest passivated Mg particles prepared by any method.

  4. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.

    PubMed

    Richter, Hanno; Lanthier, Martin; Nevin, Kelly P; Lovley, Derek R

    2007-08-01

    The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.

  5. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    DTIC Science & Technology

    2014-02-27

    Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices

  6. New modes of electron microscopy for materials science enabled by fast direct electron detectors

    NASA Astrophysics Data System (ADS)

    Minor, Andrew

    There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.

  7. Quaternary Chalcogenide-Based Misfit Nanotubes LnS(Se)-TaS(Se)2 (Ln = La, Ce, Nd, and Ho): Synthesis and Atomic Structural Studies.

    PubMed

    Lajaunie, Luc; Radovsky, Gal; Tenne, Reshef; Arenal, Raul

    2018-01-16

    We have synthesized quaternary chalcogenide-based misfit nanotubes LnS(Se)-TaS 2 (Se) (Ln = La, Ce, Nd, and Ho). None of the compounds described here were reported in the literature as a bulk compound. The characterization of these nanotubes, at the atomic level, has been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy-loss spectroscopy. In particular, quantification at sub-nanometer scale was achieved by acquiring high-quality electron energy-loss spectra at high energy (∼between 1000 and 2500 eV). Remarkably, the sulfur was found to reside primarily in the distorted rocksalt LnS lattice, while the Se is associated with the hexagonal TaSe 2 site. Consequently, these quaternary misfit layered compounds in the form of nanostructures possess a double superstructure of La/Ta and S/Se with the same periodicity. In addition, the interlayer spacing between the layers and the interatomic distances within the layer vary systematically in the nanotubes, showing clear reduction when going from the lightest (La atom) to the heaviest (Ho) atom. Amorphous layers, of different nature, were observed at the surface of the nanotubes. For La-based NTs, the thin external amorphous layer (inferior to 10 nm) can be ascribed to a Se deficiency. Contrarily, for Ho-based NTs, the thick amorphous layer (between 10 and 20 nm) is clearly ascribed to oxidation. All of these findings helped us to understand the atomic structure of these new compounds and nanotubes thereof.

  8. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  9. Scanning Transmission Electron Microscopy | Materials Science | NREL

    Science.gov Websites

    mode by collecting the EDS and EELS signals point-by-point as one scans the electron probe across the . Examples of Scanning Transmission Electron Microscopy Capabilities Z-contrast image microphoto taken by

  10. Vectorization with SIMD extensions speeds up reconstruction in electron tomography.

    PubMed

    Agulleiro, J I; Garzón, E M; García, I; Fernández, J J

    2010-06-01

    Electron tomography allows structural studies of cellular structures at molecular detail. Large 3D reconstructions are needed to meet the resolution requirements. The processing time to compute these large volumes may be considerable and so, high performance computing techniques have been used traditionally. This work presents a vector approach to tomographic reconstruction that relies on the exploitation of the SIMD extensions available in modern processors in combination to other single processor optimization techniques. This approach succeeds in producing full resolution tomograms with an important reduction in processing time, as evaluated with the most common reconstruction algorithms, namely WBP and SIRT. The main advantage stems from the fact that this approach is to be run on standard computers without the need of specialized hardware, which facilitates the development, use and management of programs. Future trends in processor design open excellent opportunities for vector processing with processor's SIMD extensions in the field of 3D electron microscopy.

  11. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  12. Hierarchical porous silver metal using Pluronic F-127 and graphene oxide as reinforcing agents for the reduction of o-nitroaniline to 1, 2-benzenediamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bano, Mustri; Ahirwar, Devendra; Thomas, Molly

    An elegant method is used to prepare silver monoliths with Pluronic F-127(F-127) as sacrificial template by modified sol-gel method. Si nanoparticles (SiNPs) and graphene oxide (GO) are added in situ to Ag/F-127 hydrogel for the reduction of ο-nitroaniline (ο-NA) to 1, 2-benzenediamine. Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Raman Spectroscopy, Powder X-Ray Diffraction (PXRD) analysis and Brunauer-Emmett-Teller (BET) Nitrogen adsorption techniques were used for characterization of monoliths. An epoch-making catalytic activity of Ag/F-127/GO monoliths is observed in the reduction of ο-NA to 1, 2-benzenediamine in presence of NaBH{sub 4} inmore » aqueous media. The catalyst Ag/F-127/GO took only 2 min which is the minimum time reported so far with significant rate constant claimed itself a leading catalyst for the reduction of ο-NA to 1,2-benzenediamine. Pseudo first order rate constant (k) and Turn over frequency (TOF) values are 0.231 min{sup −1} and 30.053×10{sup 19} molecules min{sup −1} respectively suggest that the catalyst has industrial importance. Recyclability and stability of Ag/F-127/GO catalyst are studied successfully up to 10 cycles. Energy of activation (E{sub a}), and thermodynamic parameters viz. activation enthalpy (ΔH{sup ≠}), activation Gibbs free energy (ΔG{sup ≠}), and entropy of activation (ΔS{sup ≠}) were also ascertained. Catalytic activities of Ag/F-127, Ag/F-127/Dextran, Ag/F-127/Trimethylbenzene (TMB), Ag/F-127/SiNPs, and Ag/F-127/Si/GO monoliths were also studied. - Graphical abstract: Significant catalytic activities of silver monoliths against the reduction of ο-NA to 1,2 benzenediamine. - Highlights: • A new catalyst synthesized Ag/F-127/GO for the reduction of ο- NA to 1, 2- benzenediamine took only 2 min. • Turn over frequency of as synthesized catalyst was 30.053×10{sup 19} molecules min{sup −1} claimed itself a leading catalyst. • Recyclability of the catalyst was up to 10 cycles. • The synthesis is non toxic, economically viable and environmentally benign.« less

  13. Diagnostic electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  14. HALE STAIN FOR SIALIC ACID-CONTAINING MUCINS. ADAPTATION TO ELECTRON MICROSCOPY.

    PubMed

    GASIC, G; BERWICK, L

    1963-10-01

    The feasibility of using the Hale stain to identify cellular sialic acid-containing mucins by electron microscopy was investigated. Three kinds of mouse ascites tumor cells were fixed in neutral buffered formalin, exposed to fresh colloidal ferric oxide, treated with potassium ferrocyanide, imbedded in Selectron, and sectioned for electron microscopy. Additional staining with uranyl acetate and potassium permanganate was done after sectioning in order to increase contrast. Those cells known to be coated with sialomucin showed deposits of electron-opaque ferric ferrocyanide crystals in the areas where sialomucin concentrations were expected. When these cells were treated with neuraminidase beforehand, these deposits did not appear. It was concluded that, with the precautions and modifications described, the Hale stain can be successfully combined with electron microscopy to identify sialomucin.

  15. Perspectives on in situ electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haimei; Zhu, Yimei

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  16. Perspectives on in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei

    2017-03-29

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  17. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  18. High-Pressure Study of Bio-inspired Multi-Functional Nanocomposites Using Atomic Force Microscopy Methods

    NASA Astrophysics Data System (ADS)

    Diaz Gonzalez, Alfredo J.

    Bioinspired design has been crucial in the development of new types of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties as well as gas barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has been designed to serve as sensing devices. Here we expand the multi-functionality of nacre-mimetics by designing an optically transparent and electron conductive coating that reacts to high-pressure based on PEDOT:PSS and nanoclay. The main objectives of this project are: (i) to develop a multifunctional nanocomposite and evaluate the effect of high-pressure applied at the surface and (ii) to establish protocols for the morphological and structural characterization, and electro-mechanical testing of the nanocomposites based on a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmittance spectroscopy. The synthesis of the nanocomposite, containing PEDOT:PSS (conductive polymer) and nanoclay, was achieved using the self-assembly of core/shell platelets. Two different types of nanoclay, Cloisite Na+ and Laponite RD, are used and their properties compared. The reduction of thickness in PEDOT:PSS has been shown to increase the light transmittance across a film. Similarly, the thickness of the nanocomposite was reduced and compared to PEDOT:PSS. The measured optical transmittance for both nanocomposites is comparable to the bare polymer, demonstrating that the addition of the nanoclay does not affect the transparency of PEDOT:PSS significantly. The layered structure of the nanocomposites is investigated by imaging the fracture surface with SEM. The fracture surface of the Laponite RD based nanocomposite is much flatter than the Cloisite Na+ nanocomposite, since the particle size in Cloisite Na+ is about 10 times larger than Laponite RD. The characterization of electro-mechanical properties of the nanocomposites was performed using the correlation of conductive atomic force microscopy and contact resonance force microscopy to measure the local variations. The analysis shows that in thin and transparent films, there is segregation in the response of Cloisite Na+ based nanocomposites compared to the bare polymer or Laponite RD nanocomposite, hence the investigation focuses on Laponite RD. For Laponite RD, we investigate the 3-D distribution of nanoclay in the coating. The distribution of nanoclay at the surface is elucidated by mapping the dissipative and conservative interactions between tip and sample in bimodal AFM. Measuring the strain produced by the tip, the 3-D structure is inferred using models for mechanical properties of nanocomposites. Single platelet measurements are used to infer the inter-platelet distance. It is known that the free amplitude of the higher eigenmode can be modulated to produce large forces in bimodal AFM. The pressure estimated for the typical cantilever parameters used are in the range 1.2-3.3 GPa, which is used to apply high-pressure to the subsurface structure of the nanocomposite. We show that the tip-surface interaction modifies the subsurface morphology of the nanocomposite and results in changes of the out-of-plane current. Also, the structural modification caused by the bimodal AFM treatment results in local changes in mechanical properties. This behavior is obtained for the Laponite RD nanocomposite, but it is not observed for the Cloisite Na+ nanocomposite or the bare polymer. Laponite RD has a platelet size similar to the tip, while Cloisite Na+ is much larger leading to a reduction in pressure. By modelling the transmission probability of electrons, geometrical changes in the structure are examined and shown to modify the tunneling of the electrons through the coating. Specifically, parallel compression of the nanoclay (modelled as barriers for electrons) leads to a change in the transmission probability of the electrons. Depending on the kinetic energy of the electrons, the transmission probability could either increase or decrease.

  19. Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41.

    PubMed

    Lee, Ji-Hoon; Han, Jaehong; Choi, Heechul; Hur, Hor-Gil

    2007-08-01

    Facultative anaerobic Shewanella sp. strain HN-41 was able to utilize selenite (Se(IV)) as a sole electron acceptor for respiration in anaerobic condition, resulting in reduction of Se(IV) and then precipitation of elemental Se nano-sized spherical particles, which were identified using energy-dispersive X-ray spectroscopy and X-ray absorption near-edge structure spectroscopy. When the effects on Se(IV) reduction to elemental Se were studied by varying incubation temperatures and dissolved oxygen contents, Se(IV) reduction occurred more actively with higher removal rate of Se(IV) in aqueous phase and well-shaped spherical Se(0) nanoparticles were formed from the incubations under N(2) (100%) or N(2):O(2) (80%:20%) at 30 degrees C with average diameter values of 181+/-40 nm and 164+/-24 nm, respectively, while relatively less amounts of irregular-shaped Se(0) nanoparticles were produced with negligible amount of Se(IV) reduction and removal under 100% of O(2). The Se particle size distributions based on scanning electron microscopy also showed a general tendency towards decreased Se particle size as oxygen content increased, whereas the particle size seemed uncorrelated to the change in the incubation temperature. These results also suggest that the size-controlled biological Se(0) nanospheres production may be achieved simply by changing the culture conditions.

  20. Focused electron beam based direct-write fabrication of graphene and amorphous carbon from oxo-functionalized graphene on silicon dioxide.

    PubMed

    Schindler, Severin; Vollnhals, Florian; Halbig, Christian E; Marbach, Hubertus; Steinrück, Hans-Peter; Papp, Christian; Eigler, Siegfried

    2017-01-25

    Controlled patterning of graphene is an important task towards device fabrication and thus is the focus of current research activities. Graphene oxide (GO) is a solution-processible precursor of graphene. It can be patterned by thermal processing. However, thermal processing of GO leads to decomposition and CO 2 formation. Alternatively, focused electron beam induced processing (FEBIP) techniques can be used to pattern graphene with high spatial resolution. Based on this approach, we explore FEBIP of GO deposited on SiO 2 . Using oxo-functionalized graphene (oxo-G) with an in-plane lattice defect density of 1% we are able to image the electron beam-induced effects by scanning Raman microscopy for the first time. Depending on electron energy (2-30 keV) and doses (50-800 mC m -2 ) either reduction of GO or formation of permanent lattice defects occurs. This result reflects a step towards controlled FEBIP processing of oxo-G.

  1. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.

    PubMed

    Deng, Shengyuan; Jian, Guoqiang; Lei, Jianping; Hu, Zheng; Ju, Huangxian

    2009-10-15

    A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O(2) due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GOx, leading to the direct electrochemistry of GOx. The biofunctional surface showed good biocompatibility, excellent electron-conductive network and large surface-to-volume ratio, which were characterized by scanning electron microscopy, contact angle and electrochemical impedance technique. The direct electron transfer of immobilized GOx led to stable amperometric biosensing for glucose with a linear range from 0.02 to 1.02 mM and a detection limit of 0.01 mM (S/N=3). These results indicated that CNx-MWNTs are good candidate material for construction of the third-generation enzyme biosensors based on the direct electrochemistry of immobilized enzymes.

  2. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  3. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.

    PubMed

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.

  4. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

    PubMed Central

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885

  5. Effect of Solvent Dielectric Constant on the Formation of Large Flat Bilayer Stacks in a Lecithin/Hexadecanol Hydrogel.

    PubMed

    Nakagawa, Yasuharu; Nakazawa, Hiromitsu; Kato, Satoru

    2016-07-12

    We investigated the effect of dielectric properties of the aqueous medium on the novel type of hydrogel composed of a crude lecithin mixture (PC70) and hexadecanol (HD), in which charged sheet-like bilayers are kept far apart due to interbilayer repulsive interaction. We used dipropylene glycol (DPG) as a modifier of the dielectric properties and examined its effect on the hydrogel by synchrotron X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and freeze-fracture electron microscopy. We found that at a DPG weight fraction in the aqueous medium WDPG ≈ 0.4, the bilayer organization is transformed into unusually large flat bilayer stacks with a regular lamellar spacing of 6.25 nm and consequently disintegration of the hydrogel takes place. Semiquantitative calculation of the interbilayer interaction energy based on the Deyaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the reduction of the aqueous medium dielectric constant ε by DPG may lower the energy barrier preventing flat bilayers from coming closer together. We inferred that the size of the bilayer sheet increases because the reduction of ε promotes protonation of acidic lipids that work as edge-capping molecules.

  6. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    PubMed Central

    Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

  7. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus.

    PubMed

    de Moraes, Ana Carolina Mazarin; Lima, Bruna Araujo; de Faria, Andreia Fonseca; Brocchi, Marcelo; Alves, Oswaldo Luiz

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for serious hospital infections worldwide. Nanomaterials are an alternative to conventional antibiotic compounds, because bacteria are unlikely to develop microbial resistance against nanomaterials. In the past decade, graphene oxide (GO) has emerged as a material that is often used to support and stabilize silver nanoparticles (AgNPs) for the preparation of novel antibacterial nanocomposites. In this work, we report the synthesis of the graphene-oxide silver nanocomposite (GO-Ag) and its antibacterial activity against relevant microorganisms in medicine. GO-Ag nanocomposite was synthesized through the reduction of silver ions (Ag(+)) by sodium citrate in an aqueous GO dispersion, and was extensively characterized using ultraviolet-visible absorption spectroscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. The antibacterial activity was evaluated by microdilution assays and time-kill experiments. The morphology of bacterial cells treated with GO-Ag was investigated via transmission electron microscopy. AgNPs were well distributed throughout GO sheets, with an average size of 9.4±2.8 nm. The GO-Ag nanocomposite exhibited an excellent antibacterial activity against methicillin-resistant S. aureus, Acinetobacter baumannii, Enterococcus faecalis, and Escherichia coli. All (100%) MRSA cells were inactivated after 4 hours of exposure to GO-Ag sheets. In addition, no toxicity was found for either pristine GO or bare AgNPs within the tested concentration range. Transmission electronic microscopy images offered insights into how GO-Ag nanosheets interacted with bacterial cells. Our results indicate that the GO-Ag nanocomposite is a promising antibacterial agent against common nosocomial bacteria, particularly antibiotic-resistant MRSA. Morphological injuries on MRSA cells revealed a likely loss of viability as a result of the direct contact between bacteria and the GO-Ag sheets.

  8. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  9. Janus graphene oxide nanosheet: A promising additive for enhancement of polymeric membranes performance prepared via phase inversion.

    PubMed

    Akbari, Mahdi; Shariaty-Niassar, Mojtaba; Matsuura, Takeshi; Ismail, Ahmad Fauzi

    2018-10-01

    Although polymeric membranes find important role in water and waste water treatment in recent years, their fouling is still an important problem. Application of hydrophilic nanoparticles (NPs) is one of the proposed methods for reducing fouling of membranes but their dispersion and stability in hydrophobic polymer matrix is challenging. In this study Janus functionalization of the NPs was introduced as a promising technique toward achieving this goal. Polysulfone (PSf) membranes containing various concentrations of graphene oxide (GO) nanosheets and Janus graphene oxide (Janus GO) nanosheets (as additives) were fabricated via phase inversion. The synthesized nanosheets were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and dynamic light scattering (DLS). The prepared membranes also were then characterized by scanning electron microscopy (SEM), contact angle (CA), water uptake, porosity, mean pore size and casting solution viscosity. The membrane performance was also tested by determining pure water flux (PWF), bovine serum albumin (BSA) separation, flux reduction by fouling and flux recovery. CA reduced from 85° to 68° and PWF increased from 23.15 L/m 2  h to 230.61 L/m 2  h for PSF and Janus GO nanosheets containing membrane, respectively. Also investigation of antifouling performance of membranes revealed that membrane with the 1 wt.% of Janus GO nanosheets had higher water flux recovery ratio (FRR) and lower irreversible fouling (R ir ) of 84% and 16%, respectively. These improvements were attributed to the better dispersion and stability of Janus GO nanosheets in the prepared mixed matrix membranes. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  11. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.

    PubMed

    Chu, Ming-Wen; Chen, Cheng Hsuan

    2013-06-25

    With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.

  12. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  13. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  14. Consecutive light microscopy, scanning-transmission electron microscopy and transmission electron microscopy of traumatic human brain oedema and ischaemic brain damage.

    PubMed

    Castejon, O J; Castejon, H V; Diaz, M; Castellano, A

    2001-10-01

    Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.

  15. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  16. Alkali reduction of graphene oxide in molten halide salts: production of corrugated graphene derivatives for high-performance supercapacitors.

    PubMed

    Abdelkader, Amr M; Vallés, Cristina; Cooper, Adam J; Kinloch, Ian A; Dryfe, Robert A W

    2014-11-25

    Herein we present a green and facile approach to the successful reduction of graphene oxide (GO) materials using molten halide flux at 370 °C. GO materials have been synthesized using a modified Hummers method and subsequently reduced for periods of up to 8 h. Reduced GO (rGO) flakes have been characterized using X-ray-diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), all indicating a significantly reduced amount of oxygen-containing functionalities on the rGO materials. Furthermore, impressive electrical conductivities and electrochemical capacitances have been measured for the rGO flakes, which, along with the morphology determined from scanning electron microscopy, highlight the role of surface corrugation in these rGO materials.

  17. Green conversion of graphene oxide to graphene nanosheets and its biosafety study

    PubMed Central

    Dasgupta, Adhiraj; Sarkar, Joy; Ghosh, Manosij; Bhattacharya, Amartya; Mukherjee, Anita; Chattopadhyay, Dipankar

    2017-01-01

    Chemical reduction of graphene oxide (GO) to graphene employs the use of toxic and environmentally harmful reducing agents, hindering mass production of graphene which is of tremendous technological importance. In this study we report a green approach to the synthesis of graphene, bio-reduced by crude polysaccharide. The polysaccharide reduces exfoliated GO to graphene at room temperature in an aqueous medium. Transmission electron microscopy image provides clear evidence for the formation of few layer graphene. Characterization of the resulting polysaccharide reduced GO by Raman spectroscopy, Fourier transform infrared spectroscopy and Energy dispersive X-ray analysis confirms reduction of GO to graphene. We also investigated the degree of biosafety of the reduced GO and found it to be safe under 100 μg/ml. PMID:28158272

  18. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  19. Synthesis and characterization of graphene quantum dots and their size reduction using swift heavy ion beam

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen; Bhat, Badekai Ramchandra

    2018-04-01

    Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.

  20. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top