Sample records for electron microscopy small

  1. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  2. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  3. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  4. A simple method for maintaining relative positions of separate tissue elements during processing for electron microscopy.

    PubMed

    Stirling, C A

    1978-09-01

    Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.

  5. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    PubMed

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  6. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  7. Nanodiamonds as multi-purpose labels for microscopy.

    PubMed

    Hemelaar, S R; de Boer, P; Chipaux, M; Zuidema, W; Hamoh, T; Martinez, F Perona; Nagl, A; Hoogenboom, J P; Giepmans, B N G; Schirhagl, R

    2017-04-07

    Nanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.

  8. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  9. Microscopy image segmentation tool: Robust image data analysis

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  10. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  11. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  12. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE PAGES

    Sun, Cheng; Sprouster, David J.; Hattar, K.; ...

    2018-02-09

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  13. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng; Sprouster, David J.; Hattar, K.

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  14. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  15. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2018-02-13

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  16. Reflective small angle electron scattering to characterize nanostructures on opaque substrates

    NASA Astrophysics Data System (ADS)

    Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  17. Reflective Small Angle Electron Scattering to Characterize Nanostructures on Opaque Substrates.

    PubMed

    Friedman, Lawrence H; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Features sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering and of course the electron and scanning probe microscopy techniques. Each of these techniques have their advantages and limitations. Here the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  18. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications.

    PubMed

    Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John

    2005-10-01

    Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  19. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.

    PubMed

    Ariotti, Nicholas; Hall, Thomas E; Parton, Robert G

    2017-01-01

    The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Small round structured virus associated with an outbreak of acute gastroenteritis in Chiba, Japan.

    PubMed

    Kasuga, K; Tokieda, M; Ohtawara, M; Utagawa, E; Yamazaki, S

    1990-08-01

    In an outbreak of acute gastroenteritis which originated in a restaurant in Chiba, Japan, in December, 1987, small round structured virus (SRSV) particles were observed by electron microscopy in 14 of 16 stool specimens from patients. The particles were 30 to 35 nm in diameter, possessed amorphous surface structure surrounded by fine projections and had a buoyant density of 1.36 to 1.37 g/ml in cesium chloride. Serological responses to the SRSV were found by immune electron microscopy and Western blot (WB) assay in paired sera of 12 of 19 patients. Furthermore, WB analysis revealed that the antibody against SRSV was cross-reactive to other SRSV, Tokyo 86/510.

  2. New frontiers in water purification: highly stable amphopolycarboxyglycinate-stabilized Ag-AgCl nanocomposite and its newly discovered potential

    NASA Astrophysics Data System (ADS)

    Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.

    2016-09-01

    A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.

  3. Oscheius wisconsinensis n. sp. (Nematoda: Rhabditidae), a potential entomopathogenic nematode from the marshlands of Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Oscheius wisconsinensis n. sp. (Rhabditidae) was recovered through the Galleria bait method from a wild cranberry marsh in Jackson County, Wisconsin, USA. Morphological studies with light microscopy and scanning electron microscopy, as well as molecular analyses of the near-full-length small subunit...

  4. Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles.

    PubMed Central

    Carmona-Ribeiro, A M; Chaimovich, H

    1986-01-01

    Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002

  5. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  6. Characterisation of Oscheius onirici (Nematoda: Rhabditidae), a hermaphroditic nematode from the marshlands of Wisconsin

    USDA-ARS?s Scientific Manuscript database

    An Oscheius (Rhabditidae) was recovered through the Galleria bait method from a wild cranberry marsh in Jackson County, Wisconsin, USA. Morphological studies with light microscopy and scanning electron microscopy, as well as molecular analyses of the near-full-length small subunit rDNA gene (SSU), D...

  7. Scanning electron microscopy of tinea nigra.

    PubMed

    Guarenti, Isabelle Maffei; Almeida, Hiram Larangeira de; Leitão, Aline Hatzenberger; Rocha, Nara Moreira; Silva, Ricardo Marques E

    2014-01-01

    Tinea nigra is a rare superficial mycosis caused by Hortaea werneckii. This infection presents as asymptomatic brown to black maculae mostly in palmo-plantar regions. We performed scanning electron microscopy of a superficial shaving of a tinea nigra lesion. The examination of the outer surface of the sample showed the epidermis with corneocytes and hyphae and elimination of fungal filaments. The inner surface of the sample showed important aggregation of hyphae among keratinocytes, which formed small fungal colonies. The ultrastructural findings correlated with those of dermoscopic examination - the small fungal aggregations may be the dark spicules seen on dermoscopy - and also allowed to document the mode of dissemination of tinea nigra, showing how hyphae are eliminated on the surface of the lesion.

  8. Scanning electron microscopy of tinea nigra*

    PubMed Central

    Guarenti, Isabelle Maffei; de Almeida, Hiram Larangeira; Leitão, Aline Hatzenberger; Rocha, Nara Moreira; Silva, Ricardo Marques e

    2014-01-01

    Tinea nigra is a rare superficial mycosis caused by Hortaea werneckii. This infection presents as asymptomatic brown to black maculae mostly in palmo-plantar regions. We performed scanning electron microscopy of a superficial shaving of a tinea nigra lesion. The examination of the outer surface of the sample showed the epidermis with corneocytes and hyphae and elimination of fungal filaments. The inner surface of the sample showed important aggregation of hyphae among keratinocytes, which formed small fungal colonies. The ultrastructural findings correlated with those of dermoscopic examination - the small fungal aggregations may be the dark spicules seen on dermoscopy - and also allowed to document the mode of dissemination of tinea nigra, showing how hyphae are eliminated on the surface of the lesion. PMID:24770516

  9. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.

    PubMed

    Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald

    2014-01-01

    Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.

  10. Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy

    USDA-ARS?s Scientific Manuscript database

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...

  11. High resolution electron microscopy of a small crack at the superficial layer of enamel.

    PubMed

    Hayashi, Y

    1994-12-01

    A small enamel crack was investigated using a high resolution electron microscope. The inside of the crack was filled with aggregates of irregularly oriented plate-like crystals. Amorphous mineral deposits were observed among these aggregates at a low magnification. Selected area electron diffractions indicated that the plate-like crystals consisted of hydroxyapatite (OH-AP), and that the amorphous mineral deposits were a mixture of OH-AP and whitlockite. These findings indicate that this crack may have been formed by occlusal and/or masticatory stress, and that a natural occlusion might occur through mineral deposition at the small crack such as in this case.

  12. Morphological classification of bioaerosols from composting using scanning electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less

  13. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene

    NASA Astrophysics Data System (ADS)

    Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin

    2018-01-01

    Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.

  14. Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy

    DOE PAGES

    Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; ...

    2017-01-03

    Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. We show that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distributionmore » determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. Lastly, the absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.« less

  15. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  16. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  17. Time-lapse cinemicrography and scanning electron microscopy of platelet formation by megakaryocytes.

    PubMed

    Haller, C J; Radley, J M

    1983-01-01

    The surface architecture of megakaryocytes undergoing platelet formation in vitro has been examined by time-lapse cinemicrography and scanning electron microscopy. Fragments of mouse bone marrow were placed in culture medium and incubated at 37 degrees C. After several hours mature megakaryocytes migrated out of the marrow and some underwent shape changes so that they eventually appeared as a relatively small central body, housing the nucleus, from which emerged a number of thin processes which resembled platelet chains. Scanning electron microscopy showed that initially the megakaryocyte surface was ruffled but with development of processes it became smoother. Circumferential folds of small amplitude were found on the surface of developing constrictions which separated putative platelets. It is thought they may be associated with the mechanism of extension, but could have a role in establishing the topography of membrane components. Rupture of the chains and release of platelets was not observed; this permits the number of putative platelets formed by individual megakaryocytes to be determined. The putative platelets exhibited features common to circulating platelets when exposed to a glass surface including the development of pseudopodia and, eventually, flattening on to the surface.

  18. Nanopore fabrication and characterization by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J. C.; Kotakoski, J.; Gölzhäuser, A.

    2016-04-01

    The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes, and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores' growth behavior allows inferring on the profile of the helium ion beam.

  19. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  20. Large-scale synthesis of monodisperse magnesium ferrite via an environmentally friendly molten salt route.

    PubMed

    Lou, Zhengsong; He, Minglong; Wang, Ruikun; Qin, Weiwei; Zhao, Dejian; Chen, Changle

    2014-02-17

    Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.

  1. Conduction at domain walls in oxide multiferroics

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  2. Conduction at domain walls in oxide multiferroics.

    PubMed

    Seidel, J; Martin, L W; He, Q; Zhan, Q; Chu, Y-H; Rother, A; Hawkridge, M E; Maksymovych, P; Yu, P; Gajek, M; Balke, N; Kalinin, S V; Gemming, S; Wang, F; Catalan, G; Scott, J F; Spaldin, N A; Orenstein, J; Ramesh, R

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  3. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy

    PubMed Central

    Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.

    2016-01-01

    ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357

  4. Scanning and transmission electron microscopy of the damage to small intestinal mucosa following X irradiation or hyperthermia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, K.E.; Hume, S.P.; Marigold, J.C.

    Scanning and transmission electron microscopy (S.E.M. and T.E.M.) and resin histology have been used to investigate the effects on mouse small intestinal villi of heating at 43 degrees C for 20 minutes and of irradiation with 10 Gy X-rays. Damage after irradiation included conical villi and giant cells. Damage after heating included the production of conical and rudimentary villi and the stacking of enterocytes. Individual cells showed signs of abnormalities in their cell membranes, nuclei and cytoplasmic components. The differences in the response after irradiation and hyperthermia are linked to the fact that heating has a primary effect on villousmore » structure, whereas irradiation mainly affects the proliferative pool of crypt cells.« less

  5. Gold nanoparticle uptake in whole cells in liquid examined by environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-02-01

    The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.

  6. Micro-CT scouting for transmission electron microscopy of human tissue specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, A. G.; Stempinski, E. S.; XIAO, X.

    Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less

  7. Micro-CT scouting for transmission electron microscopy of human tissue specimens

    DOE PAGES

    Morales, A. G.; Stempinski, E. S.; XIAO, X.; ...

    2016-02-08

    Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less

  8. Microscopic and ultrastructural changes of Müller's muscle in patients with simple congenital ptosis.

    PubMed

    Alshehri, Mohammed D; Al-Fakey, Yasser H; Alkhalidi, Hisham M; Mubark, Mohamed A; Alsuhaibani, Adel H

    2014-01-01

    To study microscopic and ultrastructural changes of Müller's muscle in patients with isolated congenital ptosis. In this prospective, observational case-control study, Müller's muscle specimens were collected during ptosis surgical correction for 18 consecutive patients. Each specimen was divided into 2 parts. One part was embedded in formalin for light microscopy, and the other one was fixed in 3% glutaraldehyde for electron microscopy. A neuropathologist, serving as a masked evaluator, blindly reviewed all the different features for every case and counted the number of myocytes showing distinct myofilaments in the whole grid for every case. Statistical analysis using compare means and correlation tests was conducted to investigate potential associations and/or differences within and across groups. Twelve Müller's muscle specimens from patients with simple congenital ptosis of various severities and 6 specimens from patients with aponeurotic ptosis (controls) were collected and studied. Under light microscopy, congenital ptosis slides showed a small number of dispersed myocytes in a fibrotic background, whereas acquired ptosis slides showed a greater number of well-defined myocytes. Under electron microscopy, all congenital ptosis specimens had only a very small number of myocytes with clear, distinct myofilaments. Most myocytes in the aponeurotic ptosis group showed clear, distinct myofilaments, indicating a well-preserved muscle. No relationship existed between the number of clear, distinct myofilaments observed in the congenital ptosis group by transmission electron microscopy and patient age or ptosis severity. Substantial Müller's muscle atrophy was observed in patients with different severities of isolated congenital ptosis.

  9. Local texture and strongly linked conduction in spray-pyrolyzed TlBa2Ca2Cu3O(8+x) deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Local texture in polycrystalline TlBa2Ca2 Cu3O(8+x) deposits has been determined from transmission electron microscopy, electron backscatter diffraction patterns and x-ray diffraction. The small-grained deposits had excellent c-axis alignment and contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range conduction utilizes a percolative network of small angle grain boundaries at colony intersections.

  10. [Leiomyoma of the small bowel with hypercalcaemia: presence of a substance with parathormone activity (author's transl)].

    PubMed

    Rathaus, M; Bernheim, J L; Griffel, B; Bernheim, J; Taragan, R; Gutman, A

    1979-10-22

    A leiomyoma of the small bowel produced laboratory features of hyperparathyroidism which disappeared promptly after tumour resection. Hypercalcaemia, hypophosphatemia, hyperchloremia, elevated chloride/phosphorus ratio, increased urinary cyclic AMP, and blood levels of immunoreactive parathormone were present. Electron microscopy showed dense round granules in the tumour cells.

  11. Nanomorphology of P3HT:PCBM-based absorber layers of organic solar cells after different processing conditions analyzed by low-energy scanning transmission electron microscopy.

    PubMed

    Pfaff, Marina; Klein, Michael F G; Müller, Erich; Müller, Philipp; Colsmann, Alexander; Lemmer, Uli; Gerthsen, Dagmar

    2012-12-01

    In this study the nanomorphology of P3HT:PC61BM absorber layers of organic solar cells was studied as a function of the processing parameters and for P3HT with different molecular weight. For this purpose we apply scanning transmission electron microscopy (STEM) at low electron energies in a scanning electron microscope. This method exhibits sensitive material contrast in the high-angle annular dark-field (HAADF) mode, which is well suited to distinguish materials with similar densities and mean atomic numbers. The images taken with low-energy HAADF STEM are compared with conventional transmission electron microscopy and atomic force microscopy images to illustrate the capabilities of the different techniques. For the interpretation of the low-energy HAADF STEM images, a semiempirical equation is used to calculate the image intensities. The experiments show that the nanomorphology of the P3HT:PC61BM blends depends strongly on the molecular weight of the P3HT. Low-molecular-weight P3HT forms rod-like domains during annealing. In contrast, only small globular features are visible in samples containing high-molecular-weight P3HT, which do not change significantly after annealing at 150°C up to 30 min.

  12. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    NASA Astrophysics Data System (ADS)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  13. Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology.

    PubMed

    Sander, Howard W; Golden, Marianna; Danon, Moris J

    2002-10-01

    Areflexic quadriplegia that occurs in the intensive care unit (ICU) is commonly ascribed to critical illness polyneuropathy based upon electrophysiology or muscle light microscopy. However, electron microscopy often documents a selective thick filament loss myopathy. Eight ICU patients who developed areflexic quadriplegia underwent biopsy. Seven patients had received steroids, and 2 had also received paralytic agents. Electrodiagnostic studies revealed absent or low-amplitude motor responses in 7. Sensory responses were normal in 5 of 6 and absent in 1. Initial electromyography revealed absent (n = 3), small (n = 3), or polyphasic (n = 1) motor unit potentials, and diffuse fibrillation potentials (n = 5). In all 8, light microscopy of muscle revealed numerous atrophic-angulated fibers and corelike lesions, and electron microscopy revealed extensive thick filament loss. Morphology of sural and intramuscular nerves, and, in one autopsied case, of the obturator nerve and multiple nerve roots, was normal. Although clinical, electrodiagnostic, and light microscopic features mimicked denervating disease, muscle electron microscopy revealed thick filament loss, and nerve histology was normal. This suggests that areflexic ICU quadriplegia is a primary myopathy and not an axonal polyneuropathy. Copyright 2002 Wiley Periodicals, Inc. Muscle Nerve 26: 499-505, 2002

  14. Gaps analysis for CD metrology beyond the 22nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Germer, Thomas A.; Vartanian, Victor; Cordes, Aaron; Cepler, Aron; Settens, Charles

    2013-04-01

    This paper will examine the future for critical dimension (CD) metrology. First, we will present the extensive list of applications for which CD metrology solutions are needed, showing commonalities and differences among the various applications. We will then report on the expected technical limits of the metrology solutions currently being investigated by SEMATECH and others in the industry to address the metrology challenges of future nodes, including conventional CD scanning electron microscopy (CD-SEM) and optical critical dimension (OCD) metrology and new potential solutions such as He-ion microscopy (HeIM, sometimes elsewhere referred to as HIM), CD atomic force microscopy (CD-AFM), CD small-angle x-ray scattering (CD-SAXS), high-voltage scanning electron microscopy (HV-SEM), and other types. A technical gap analysis matrix will then be demonstrated, showing the current state of understanding of the future of the CD metrology space.

  15. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.

    PubMed

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae

    2013-11-26

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.

  16. Studying the Stoichiometry of Epidermal Growth Factor Receptor in Intact Cells using Correlative Microscopy.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2015-09-11

    This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.

  17. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    PubMed

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  18. Correlative 3D imaging of Whole Mammalian Cells with Light and Electron Microscopy

    PubMed Central

    Murphy, Gavin E.; Narayan, Kedar; Lowekamp, Bradley C.; Hartnell, Lisa M.; Heymann, Jurgen A. W.; Fu, Jing; Subramaniam, Sriram

    2011-01-01

    We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA–SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ~10 to 20 nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA–SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100 nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues. PMID:21907806

  19. Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.

    PubMed

    Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee

    2013-11-01

    Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.

  20. Crystallography of decahedral and icosahedral particles. II - High symmetry orientations

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Yacaman, M. J.; Heinemann, K.

    1979-01-01

    Based on the exact crystal structure of decahedral and icosahedral particles, high energy electron diffraction patterns and image profiles have been derived for various high symmetry orientations of the particles with respect to the incident beam. These results form a basis for the identification of small metal particle structures with advanced methods of transmission electron microscopy.

  1. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  2. [Electron microscopic study of the An-750 strain of Powassan virus isolated in the Soviet Union].

    PubMed

    Sobolev, S G; Shestopalova, N M; Linev, M B; Rubin, S G

    1978-01-01

    Electron microscopic examinations of brains of white mice inoculated with the An 750 strain isolated for the first time from adult mosquitoes and with the prototype LB strain of Powassan virus were carried out. The method of combination of light and electron microscopy used in the study permitted to compare ultrastructural changes in one cell with the results of light microscopy. Sizes of virions and their localizations in the brain cells were determined. Virus particles were found in large and small neurons as well as in glial elements. Subcellular changes in neurons associated with virus multiplication are described. The causes of differences in sizes of virions measured in ultrathin sections are discussed.

  3. Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016).

    PubMed

    Khan, Jafar I; Adhikari, Aniruddha; Sun, Jingya; Priante, Davide; Bose, Riya; Shaheen, Basamat S; Ng, Tien Khee; Zhao, Chao; Bakr, Osman M; Ooi, Boon S; Mohammed, Omar F

    2016-05-01

    Selective mapping of surface charge carrier dynamics of InGaN nanowires before and after surface passivation with octadecylthiol (ODT) is reported by O. F. Mohammed and co-workers on page 2313, using scanning ultrafast electron microscopy. In a typical experiment, the 343 nm output of the laser beam is used to excite the microscope tip to generate pulsed electrons for probing, and the 515 nm output is used as a clocking excitation pulse to initiate dynamics. Time-resolved images demonstrate clearly that carrier recombination is significantly slowed after ODT treatment, which supports the efficient removal of surface trap states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images?

    PubMed

    Alania, M; De Backer, A; Lobato, I; Krause, F F; Van Dyck, D; Rosenauer, A; Van Aert, S

    2017-10-01

    In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384

  6. An endolithic microbial community in dolomite rock in central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy.

    PubMed

    Horath, T; Neu, T R; Bachofen, R

    2006-04-01

    A community of endolithic microorganisms dominated by phototrophs was found as a distinct band a few millimeters below the surface of bare exposed dolomite rocks in the Piora Valley in the Alps. Using in situ reflectance spectroscopy, we detected chlorophyll a (Chl a), phycobilins, carotenoids, and an unknown type of bacteriochlorophyll-like pigment absorbing in vivo at about 720 nm. In cross sections, the data indicated a defined distribution of different groups of organisms perpendicular to the rock surface. High-performance liquid chromatography analyses of pigments extracted with organic solvents confirmed the presence of two types of bacteriochlorophylls besides chlorophylls and various carotenoids. Spherical organisms of varying sizes and small filaments were observed in situ with scanning electron microscopy and confocal laser scanning microscopy (one- and two-photon technique). The latter allowed visualization of the distribution of phototrophic microorganisms by the autofluorescence of their pigments within the rock. Coccoid cyanobacteria of various sizes predominated over filamentous ones. Application of fluorescence-labeled lectins demonstrated that most cyanobacteria were embedded in an exopolymeric matrix. Nucleic acid stains revealed a wide distribution of small heterotrophs. Some biological structures emitting a green autofluorescence remain to be identified.

  7. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast.

    PubMed

    Crimp, Martin A

    2006-05-01

    The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.

  8. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    DOE PAGES

    Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...

    2014-08-21

    Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less

  9. Observations on the antibody-dependent cytotoxic cell by scanning electron microscopy.

    PubMed Central

    Inglis, J R; Penhale, W J; Farmer, A; Irvine, W J; Williams, A E

    1975-01-01

    The cytotoxic effect of human peripheral blood leucocytes on antibody-coated sheep erythrocyte monolayers has been investigated using scanning electron microscopy. Only a small proportion of leucocytes were found to adhere to the monolayers. A progressive destruction was observed beginning as small plaque-like areas of erythrocyte clearing which later became confluent. Three distinct cell types were found to be associated with the areas of lysis. No destruction was observed in control monolayers incubated for a similar period in the absence of either antibody of leucocytes. Surface changes in the erthrocytes adjacent to the leucocytes suggest that mechanical factors may be involved in erythrocyte lysis in this system. It is concluded that more than one leucocyte type may damage antibody-coated erythrocytes, possibly by a mechanism involving attachment to and mechanical disruption of the red cell membrane. Images FIG. 5 FIG. 2 FIG. 3 FIG. 1 FIG. 2 FIG. 4 PMID:1191386

  10. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.

    PubMed

    Huang, Yinjuan; Ding, Shenglong; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinjie; Ding, Bin

    2013-07-25

    This paper is considered as the first report on the investigation of nattokinase (NK) release from anionic starch nanospheres. The ultra-small and anionic starch nanospheres were prepared by the method of reverse micro-emulsion crosslinking in this work. Starch nanospheres were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Effects of preparation conditions on particle size were studied. The cytotoxicity, biodegradable and vitro thrombolytic behaviors of nattokinase (NK) loaded anionic starch nanospheres were also studied. The results showed that the anionic starch nanospheres are non-toxic, biocompatible and biodegradable. Moreover, the anionic starch nanospheres can protect NK from fast biodegradation hence prolongs the circulation in vivo and can reduce the risk of acute hemorrhage complication by decreasing the thrombolysis rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ultra-small rhenium clusters supported on graphene.

    PubMed

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José

    2015-03-28

    The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.

  12. Ultra-small rhenium clusters supported on graphene

    PubMed Central

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  13. Chemical mechanism of the Gram stain and synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain.

    PubMed Central

    Davies, J A; Anderson, G K; Beveridge, T J; Clark, H C

    1983-01-01

    Crystal violet (hexamethyl-para-rosaniline chloride) interacts with aqueous KI-I2 during the Gram stain via a simple metathetical anion exchange to produce a chemical precipitate. There is an apparent 1:1 stoichiometry between anion (I-) and cation (hexamethyl-para-rosaniline+) during the reaction and, since the small chloride anion is replaced by the bulkier iodide, the complex formed becomes insoluble in water. It is this same precipitate which forms in the cellular substance of bacteria (both gram-positive and gram-negative types) and which initiates the Gram reaction. Potassium trichloro(eta 2-ethylene)-platinum(II), as an electronopaque marker for electron microscopy, was chemically synthesized, and it produced an anion in aqueous solution which was compatible with crystal violet for the Gram stain. It interacted with crystal violet in a similar manner as iodide to produce an insoluble complex which was chemically and physically analogous to the dye-iodide precipitate. This platinum anion therefore allows the Gram staining mechanism to be followed by electron microscopy. Images PMID:6195147

  14. [Grape seed extract induces morphological changes of prostate cancer PC-3 cells].

    PubMed

    Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng

    2008-12-01

    To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.

  15. Selected-zone dark-field electron microscopy.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1972-01-01

    Description of a new method which makes it possible to reduce drastically the resolution-limiting influence of chromatic aberration, and thus to obtain high-quality images, by selecting the image-forming electrons that have passed through a small annular zone of an objective lens. In addition, the manufacture of special objective-lens aperture diaphragms that are needed for this method is also described.

  16. Electron beam detection of a Nanotube Scanning Force Microscope.

    PubMed

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  17. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    DOE PAGES

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-08-15

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electronmore » microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol. Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high-resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography. Moreover, OpNS can be a high-throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.« less

  18. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags.

    PubMed

    Müller, Andreas; Neukam, Martin; Ivanova, Anna; Sönmez, Anke; Münster, Carla; Kretschmar, Susanne; Kalaidzidis, Yannis; Kurth, Thomas; Verbavatz, Jean-Marc; Solimena, Michele

    2017-02-02

    Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.

  20. Electron-beam broadening in amorphous carbon films in low-energy scanning transmission electron microscopy.

    PubMed

    Drees, H; Müller, E; Dries, M; Gerthsen, D

    2018-02-01

    Resolution in scanning transmission electron microscopy (STEM) is ultimately limited by the diameter of the electron beam. The electron beam diameter is not only determined by the properties of the condenser lens system but also by electron scattering in the specimen which leads to electron-beam broadening and degradation of the resolution with increasing specimen thickness. In this work we introduce a new method to measure electron-beam broadening which is based on STEM imaging with a multi-segmented STEM detector. We focus on STEM at low electron energies between 10 and 30 keV and use an amorphous carbon film with known thickness as test object. The experimental results are compared with calculated beam diameters using different analytical models and Monte-Carlo simulations. We find excellent agreement of the experimental data with the recently published model by Gauvin and Rudinsky [1] for small t/λ el (thickness to elastic mean free path) values which are considered in our study. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. You can't measure what you can't see - detectors for microscopies

    NASA Astrophysics Data System (ADS)

    Denes, Peter

    For centuries, the human eye has been the imaging detector of choice thanks to its high sensitivity, wide dynamic range, and direct connection to a built-in data recording and analysis system. The eye, however, is limited to visible light, which excludes microscopies with electrons and X-rays, and the built-in recording system stores archival information at very low rates. The former limitation has been overcome by ``indirect'' detectors, which convert probe particles to visible light, and the latter by a variety of recording techniques, from photographic film to semiconductor-based imagers. Semiconductor imagers have been used for decades as ``direct'' detectors in particle physics, and almost as long for hard X-rays. For soft X-ray microscopy, the challenge has been the small signal levels - plus getting the X-rays into the detector itself, given how quickly they are absorbed in inert layers. For electron microscopy, the challenge has been reconciling detector spatial resolution and pixel count with the large multiple scattering of electrons with energies used for microscopy. Further, a high recording rate (``movies'' rather than ``snapshots'') enables time-resolved studies, time-dependent corrections, shot-by-shot experiments and scanning techniques - at the expense of creating large data volumes. This talk will discuss solutions to these challenges, as well as an outlook towards future developments.

  2. [The detection of the influenza virus in the small intestine in diarrhea in piglets].

    PubMed

    Slobodeniuk, V K; Mel'nikova, L A; Kvashnina, G A; Semenchenko, O G; Trofimova, M G; Tatarchuk, A T; Raĭkova, N L

    1990-01-01

    Electron microscopy used for examinations of small intestine suspensions of piglets in the prenatal and postnatal periods allowed influenza virions to be identified in virus population. An attempt was made to preserve the discovered population in alternating animal--cell culture--animal passages. Serological examinations of the swine herd confirmed the circulation of influenza viruses in the herd.

  3. Influence of 20 MeV electron irradiation on the optical properties and phase composition of SiOx thin films

    NASA Astrophysics Data System (ADS)

    Hristova-Vasileva, Temenuga; Petrik, Peter; Nesheva, Diana; Fogarassy, Zsolt; Lábár, János; Kaschieva, Sonia; Dmitriev, Sergei N.; Antonova, Krassimira

    2018-05-01

    Homogeneous films from SiO1.3 (250 nm thick) were deposited on crystalline Si substrates by thermal evaporation of silicon monoxide. A part of the films was further annealed at 700 °C to grow amorphous Si (a-Si) nanoclusters in an oxide matrix, thus producing composite a-Si-SiO1.8 films. Homogeneous as well as composite films were irradiated by 20-MeV electrons at fluences of 7.2 × 1014 and 1.44 × 1015 el/cm2. The film thicknesses and optical constants were explored by spectroscopic ellipsometry. The development of the phase composition of the films caused by the electron-beam irradiation was studied by transmission electron microscopy. The ellipsometric and electron microscopy results have shown that the SiOx films are optically homogeneous and the electron irradiation with a fluence of 7.2 × 1014 el/cm2 has led to small changes in the optical constants and the formation of very small a-Si nanoclusters. The irradiation of the a-Si-SiOx composite films caused a decrease in the effective refractive index and, at the same time, an increase in the refractive index of the oxide matrix. Irradiation induced increase in the optical band gap and decrease in the absorption coefficient of the thermally grown amorphous Si nanoclusters have also been observed. The obtained results are discussed in terms of the formation of small amorphous silicon nanoclusters in the homogeneous layers and electron irradiation induced reduction in the nanocluster size in the composite films. The conclusion for the nanoparticle size reduction is supported by infrared transmittance results.

  4. Nano-siRNA Particles and Combination Therapies for Ovarian Tumor Targeting

    DTIC Science & Technology

    2014-08-01

    products altered in serous OC cell lines was completed using western blot. We decided not to use SKOV3 in our studies due to two recent...Assembly of the Organic and Inorganic Products of Transcription. Small 2014, 10, 1623-1633. 16 Roh, Y. H., Lee, J. B., Shopsowitz, K. E... product was further studied using various microscopy techniques. Scanning electron microscopy (SEM) images showed that the ODN composite microparticles

  5. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  6. Nanoscopic analysis of oxygen segregation at tilt boundaries in silicon ingots using atom probe tomography combined with TEM and ab initio calculations.

    PubMed

    Ohno, Y; Inoue, K; Fujiwara, K; Kutsukake, K; Deura, M; Yonenaga, I; Ebisawa, N; Shimizu, Y; Inoue, K; Nagai, Y; Yoshida, H; Takeda, S; Tanaka, S; Kohyama, M

    2017-12-01

    We have developed an analytical method to determine the segregation levels on the same tilt boundaries (TBs) at the same nanoscopic location by a joint use of atom probe tomography and scanning transmission electron microscopy, and discussed the mechanism of oxygen segregation at TBs in silicon ingots in terms of bond distortions around the TBs. The three-dimensional distribution of oxygen atoms was determined at the typical small- and large-angle TBs by atom probe tomography with a low impurity detection limit (0.01 at.% on a TB plane) simultaneously with high spatial resolution (about 0.4 nm). The three-dimensional distribution was correlated with the atomic stress around the TBs; the stress at large-angle TBs was estimated by ab initio calculations based on atomic resolution scanning transmission electron microscopy data and that at small-angle TBs were calculated with the elastic theory based on dark-field transmission electron microscopy data. Oxygen atoms would segregate at bond-centred sites under tensile stress above about 2 GPa, so as to attain a more stable bonding network by reducing the local stress. The number of oxygen atoms segregating in a unit TB area N GB (in atoms nm -2 ) was determined to be proportional to both the number of the atomic sites under tensile stress in a unit TB area n bc and the average concentration of oxygen atoms around the TB [O i ] (in at.%) with N GB ∼ 50 n bc [O i ]. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  7. The external morphology of adult female Egrasilus labracis as shown using hexamethyldisilazane treated, uncoated specimens for scanning electron microscopy.

    PubMed

    Murray, Harry M; Hill, Stephen J; Ang, Keng P

    2016-07-01

    The description and application of a modified Scanning Electron Microscope preparation technique using hexamethyldisilazane for small parasitic copepods was demonstrated though a high resolution depiction of individuals of Ergasilus labracis sampled from three spined stickleback (Gasterosteus aculeatus) in Bay D'Espoir, Newfoundland during summer 2015 and from archival samples retrieved from Atlantic salmon par (Salmo salar) stored at the Atlantic reference centre, St. Andrews, New Brunswick. The specimens were very well preserved showing high quality detail of important features and verifying those previously described using light microscopy by Hogans. Additionally the technique allowed excellent in situ demonstrations of mouth parts, swimming legs, and unusual and previously undescribed features of the second antenna including prominent striations and pore-like structures found to define the claw. It is thought that this technique will become a quick and efficient tool for describing important taxonomic features of small parasitic copepods like E. labracis or other similar small aquatic organisms. Microsc. Res. Tech. 79:657-663, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Analysis of Peroxisome Biogenesis in Pollen by Confocal Microscopy and Transmission Electron Microscopy.

    PubMed

    Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai

    2017-01-01

    Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).

  9. Insight in the 3D morphology of silica-based nanotubes using electron microscopy.

    PubMed

    Dennenwaldt, Teresa; Wisnet, Andreas; Sedlmaier, Stefan J; Döblinger, Markus; Schnick, Wolfgang; Scheu, Christina

    2016-11-01

    Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH 2 ) 3 , thiophosphoryl triamide, SP(NH 2 ) 3 , and silicon tetrachloride, SiCl 4 , at different temperatures and with varying amount of the starting material SiCl 4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    PubMed

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  11. Microscopic Characterization of the Brazilian Giant Samba Virus.

    PubMed

    Schrad, Jason R; Young, Eric J; Abrahão, Jônatas S; Cortines, Juliana R; Parent, Kristin N

    2017-02-14

    Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses .

  12. Microscopic Characterization of the Brazilian Giant Samba Virus

    PubMed Central

    Schrad, Jason R.; Young, Eric J.; Abrahão, Jônatas S.; Cortines, Juliana R.; Parent, Kristin N.

    2017-01-01

    Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses. PMID:28216551

  13. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy.

    PubMed

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    2017-07-01

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.

  14. Comparison of four methods of surface roughness assessment of corneal stromal bed after lamellar cutting

    PubMed Central

    Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles

    2017-01-01

    Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095

  15. Infiltration of CdTe nano crystals into a ZnO wire vertical matrix by using the isothermal closed space technique

    NASA Astrophysics Data System (ADS)

    Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni

    2017-10-01

    A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuning; Roy, Amitava; Lichtenberg, Henning

    The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into considerationmore » while evaluating the size-dependent visible emission of ZnO nanoparticles.« less

  17. Ecology and life history of an amoebomastigote, Paratetramitus jugosus, from a microbial mat: new evidence for multiple fission

    NASA Technical Reports Server (NTRS)

    Enzien, M.; McKhann, H. I.; Margulis, L.

    1989-01-01

    Five microbial habitats (gypsum crust, gypsum photosynthetic community, Microcoleus mat, Thiocapsa scum, and black mud) were sampled for the presence of the euryhaline, rapidly growing amoebomastigote, Paratetramitus jugosus. Field investigations of microbial mats from Baja California Norte, Mexico, and Salina Bido near Matanzas, Cuba, reveal that P. jugosus is most frequently found in the Thiocapsa layer of microbial mats. Various stages of the life history were studied using phase-contrast, differential-interference, and transmission electron microscopy. Mastigote stages were induced and studied by electron microscopy; mastigotes that actively feed on bacteria bear two or more undulipodia. A three-dimensional drawing of the kinetid ("basal apparatus") based on electron micrographs is presented. Although promitoses were occasionally observed, it is unlikely that they can account for the rapid growth of P. jugosus populations on culture media. Dense, refractile, spherical, and irregular-shaped bodies were seen at all times in all cultures along with small mononucleate (approximately 2-7 micrometers diameter) amoebae. Cytochemical studies employing two different fluorescent stains for DNA (DAPI, mithramycin) verified the presence of DNA in these small bodies. Chromatin-like material seen in electron micrographs within the cytoplasm and blebbing off nuclei were interpreted to the chromatin bodies. Our interpretation, consistent with the data but not proven, is that propagation by multiple fission of released chromatin bodies that become small amoebae may occur in Paratetramitus jugosus. These observations are consistent with descriptions of amoeba propagules in the early literature (Hogue, 1914).

  18. Cytotoxic and antimicrobial effect of biosynthesized silver nanoparticles using the fruit extract of Ribes nigrum

    NASA Astrophysics Data System (ADS)

    Dobrucka, Renata; Kaczmarek, Mariusz; Dlugaszewska, Jolanta

    2018-06-01

    The present study reveals the efficiency of the fruit extract of Ribes nigrum in the green synthesis of silver nanoparticles (Ag-NPs). Biosynthesized Ag-NPs were characterized by UV-vis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The nanoparticles were found to be 5–10 nm. In some places, the particles were agglomerated. The nanoparticles showed strong bactericidal activity and fungicidal activity against dermatophytes Trichophyton rubrum ATCC 28188. Moreover, the A549 and CCD39Lu cells under the influence of the highest concentration of nanoparticles synthesized using the fruit extract of Ribes nigrum showed the maximum mortality. Also, the results indicate that Ag-NPs synthesized using the fruit extract of Ribes nigrum exhibit efficiency in therapy of human non-small cell lung cancer A549.

  19. Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.

    PubMed

    Walther, T; Krysa, A B

    2017-12-01

    Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  1. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    NASA Astrophysics Data System (ADS)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  2. Ultrastructure and Glycoconjugate Pattern of the Foot Epithelium of the Abalone Haliotis tuberculata (Linnaeus, 1758) (Gastropoda, Haliotidae)

    PubMed Central

    Bravo Portela, I.; Martinez-Zorzano, V. S.; Molist- Perez, I.; Molist García, P.

    2012-01-01

    The foot epithelium of the gastropod Haliotis tuberculata is studied by light and electron microscopy in order to contribute to the understanding of the anatomy and functional morphology of the mollusks integument. Study of the external surface by scanning electron microscopy reveals that the side foot epithelium is characterized by a microvillus border with a very scant presence of small ciliary tufts, but the sole foot epithelium bears a dense field of long cilia. Ultrastructural examination by transmission electron microscopy of the side epithelial cells shows deeply pigmented cells with high electron-dense granular content which are not observed in the epithelial sole cells. Along the pedal epithelium, seven types of secretory cells are present; furthermore, two types of subepithelial glands are located just in the sole foot. The presence and composition of glycoconjugates in the secretory cells and subepithelial glands are analyzed by conventional and lectin histochemistry. Subepithelial glands contain mainly N-glycoproteins rich in fucose and mannose whereas secretory cells present mostly acidic sulphated glycoconjugates such as glycosaminoglycans and mucins, which are rich in galactose, N-acetyl-galactosamine, and N-acetyl-glucosamine. No sialic acid is present in the foot epithelium. PMID:22645482

  3. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  4. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    NASA Astrophysics Data System (ADS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  5. MBE growth of GaAs and InAs nanowires using colloidal Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilkiv, I. V.; Reznik, R. R.; Kotlyar, K. P.; Bouravleuv, A. D.; Cirlin, G. E.

    2017-11-01

    Ag colloidal nanoparticles were used as a catalyst for molecular beam epitaxy of GaAs and InAs nanowires on the Si(111) substrates. The scanning electron microscopy measurements revealed that nanowires obtained are uniform and have small size distribution.

  6. Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.

    PubMed

    Wellert, S; Karg, M; Imhof, H; Steppin, A; Altmann, H-J; Dolle, M; Richardt, A; Tiersch, B; Koetz, J; Lapp, A; Hellweg, T

    2008-09-01

    Most toxic industrial chemicals and chemical warfare agents are hydrophobic and can only be solubilized in organic solvents. However, most reagents employed for the degradation of these toxic compounds can only be dissolved in water. Hence, microemulsions are auspicious media for the decontamination of a variety of chemical warfare agents and pesticides. They allow for the solubilization of both the lipophilic toxics and the hydrophilic reagent. Alkyl oligoglucosides and plant derived solvents like rapeseed methyl ester enable the formulation of environmentally compatible bicontinuous microemulsions. In the present article the phase behavior of such a microemulsion is studied and the bicontinuous phase is identified. Small angle neutron scattering (SANS) and freeze fracture electron microscopy (FFEM) measurements are used to characterize the structure of the bicontinuous phase and allow for an estimation of the total internal interface. Moreover, also the influence of the co-surfactant (1-pentanol) on the structural parameters of the bicontinuous phase is studied with SANS.

  7. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.

    PubMed

    Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal

    2009-04-09

    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

  8. Small, round-structured viruses (SRSVs) associated with acute gastroenteritis outbreaks in Gifu, Japan.

    PubMed

    Kawamoto, H; Hasegawa, S; Sawatari, S; Miwa, C; Morita, O; Hosokawa, T; Tanaka, H

    1993-01-01

    Two outbreaks of non-bacterial gastroenteritis occurred in Gifu prefecture in January 1989 and in January 1991. Both outbreaks were closely related to the consumption of raw oysters, and showed similar clinical features. Small, round-structured virus particles were found in patient stools in both outbreaks by electron microscopy. The role of these particles as the causative agents of the outbreaks were strongly suggested by immune electron microscopy and/or western-blotting immunoassay. When compared with SRSV-9 (Tokyo/SRSV/86-510) reported previously (Hayashi et al, J. Clin. Microbiol., 27: 1728-1733, 1989), it was found that these viral particles were antigenically similar to SRSV-9, and had a major structural protein of 63 kilodaltons (kDa). Further, the prevalence of this agent in Gifu area was examined by western blot antibody assay using 67 serum samples collected from the inhabitants in 1991. The results indicated the circulation of the same or antigenically similar agent in this area.

  9. A Cyanobacterium Capable of Swimming Motility

    NASA Astrophysics Data System (ADS)

    Waterbury, John B.; Willey, Joanne M.; Franks, Diana G.; Valois, Frederica W.; Watson, Stanley W.

    1985-10-01

    A novel cyanobacterium capable of swimming motility wass isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.

  10. Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Bowman, Valorie D.; Battisti, Anthony J.

    2007-10-25

    The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc{sup -}Soc{sup -}T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63){sub 7} were attached to the exposedmore » LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.« less

  11. Characterization of new DOPC/DHPC platform for dermal applications.

    PubMed

    Rodríguez, Gelen; Rubio, Laia; Barba, Clara; López-Iglesias, Carmen; de la Maza, Alfons; López, Olga; Cócera, Mercedes

    2013-05-01

    Systems formed by mixtures of the phospholipids dioleoylphosphatidylcholine (DOPC) and dihexanoylphosphatidylcholine (DHPC) were characterized by use of differential scanning calorimetry, small angle X-ray scattering and two electron-microscopy techniques, freeze fracture electron microscopy and cryogenic transmission electron microscopy. These techniques allowed for the determination of the size, morphology, structural topology, self-assembly and thermotropic behavior of the nanostructures present in the mixtures. The interaction between the two phospholipids provides curvatures, irregularities and the increase of thickness and flexibility in the membrane. These effects led to the formation of different aggregates with a differential distribution of both phospholipids. The effect of these systems on the skin in vivo was evaluated by measurement of the biophysical skin parameters. Our results show that the DOPC/DHPC application induces a decrease in the permeability and in the hydration of the tissue. These effects in vivo are related to different microstructural changes promoted by these systems in the skin in vitro, published in a recent work. The fundamental biophysical analyses of DOPC/DHPC systems contribute to our understanding of the mechanisms that govern their interaction with the skin.

  12. Self-assembly approach toward magnetic silica-type nanoparticles of different shapes from reverse block copolymer mesophases.

    PubMed

    Garcia, Carlos B W; Zhang, Yuanming; Mahajan, Surbhi; DiSalvo, Francis; Wiesner, Ulrich

    2003-11-05

    In the present study poly(isoprene-block-ethylene oxide), PI-b-PEO, block copolymers are used to structure iron oxide and silica precursors into reverse mesophases, which upon dissolution of the organic matrix lead to well-defined nanoparticles of spheres, cylinders, and plates based on the original structure of the mesophase prepared. The hybrid mesophases with sphere, cylinder, and lamellar morphologies containing the inorganic components in the minority phases are characterized through a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). After heat treatments the respective nanoparticles on mica surfaces are characterized by scanning force microscopy (SFM). X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) magnetometer measurements are performed to demonstrate that the heat treatment leads to the formation of a magnetic gamma-Fe2O3 crystalline phase within the amorphous aluminosilicate. The results pave the way to functional, i.e., magnetic nanoparticles where the size, shape, and iron oxide concentration can be controlled opening a range of possible applications.

  13. In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy.

    PubMed

    Culver, Kayla S B; Liu, Tingting; Hryn, Alexander J; Fang, Ning; Odom, Teri W

    2018-05-11

    Diffraction-limited optical microscopy lacks the resolution to characterize directly nanoscale features of single nanoparticles. This paper describes how surprisingly rich structural features of small gold nanostars can be identified using differential interference contrast (DIC) microscopy. First, we established a library of structure-property relationships between nanoparticle shape and DIC optical image and then validated the correlation with electrodynamic simulations and electron microscopy. We found that DIC image patterns of single nanostars could be differentiated between 2D and 3D geometries. Also, DIC images could elucidate the symmetry properties and orientation of nanoparticles. Finally, we demonstrated how this wide-field optical technique can be used for in situ characterization of single nanoparticles rotating at a glass-water interface.

  14. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy.

    PubMed

    Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P

    2018-01-01

    We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.

  16. Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Gómez-Polo, C.

    2012-05-01

    NiFe2O4 and NiFe2O4-SiO2 nanoparticles were synthesized by a sol-gel method using citric acid as fuel, giving rise its combustion to the crystallization of the spinel phase. Different synthesis conditions were analyzed with the aim of obtaining stoichiometric NiFe2O4 nanoparticles. The spinel structure in the calcined nanoparticles (400 °C, 2 h) was evaluated by x-ray diffraction. Their nanometer size (mean diameters around 10-15 nm) was confirmed through electron microscopy (field emission scanning electron microscopy and transmission electron microscopy). Rietveld refinement indicates the existence of a small percentage of NiO and Fe3O4 phases and a certain degree of structural disorder. The main effect of the silica coating is to enhance the disorder effects and prevent the crystalline growth after post-annealing treatments. Due to the small particle size, the nanoparticles display characteristic superparamagnetic behaviour and surface effects associated to a spin-glass like state: i.e., reduction in the saturation magnetization values and splitting of the zero field cooled (ZFC)-field cooled (FC) high field magnetization curves. The fitting of the field dependence of the ZFC-FC irreversibility temperatures to the Almeida—Thouless equation confirms the spin-glass nature of the detected magnetic phenomena. Exchange bias effects (shifts in the FC hysteresis loops) detected below the estimated freezing temperature support the spin-glass nature of the spin disorder effects.

  17. Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy.

    PubMed

    Akagi, Jin; Zhu, Feng; Skommer, Joanna; Hall, Chris J; Crosier, Philip S; Cialkowski, Michal; Wlodkowic, Donald

    2015-03-01

    Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Despite a large body of evidence using optical spectroscopy for the characterization of small model organism on chip-based devices, no attempts have been so far made to interface microfabricated technologies with environmental scanning electron microscopy (ESEM). Conventional scanning electron microscopy requires high vacuum environments and biological samples must be, therefore, submitted to many preparative procedures to dehydrate, fix, and subsequently stain the sample with gold-palladium deposition. This process is inherently low-throughput and can introduce many analytical artifacts. This work describes a proof-of-concept microfluidic chip-based system for immobilizing zebrafish larvae for ESEM imaging that is performed in a gaseous atmosphere, under low vacuum mode and without any need for sample staining protocols. The microfabricated technology provides a user-friendly and simple interface to perform ESEM imaging on zebrafish larvae. Presented lab-on-a-chip device was fabricated using a high-speed infrared laser micromachining in a biocompatible poly(methyl methacrylate) thermoplastic. It consisted of a reservoir with multiple semispherical microwells designed to hold the yolk of dechorionated zebrafish larvae. Immobilization of the larvae was achieved by a gentle suction generated during blotting of the medium. Trapping region allowed for multiple specimens to be conveniently positioned on the chip-based device within few minutes for ESEM imaging. © 2014 International Society for Advancement of Cytometry.

  18. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy

    PubMed Central

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047

  19. The Structure, Function and Evolution of a Novel Form of Fluid-feeding Apparatus for Microbivory

    USDA-ARS?s Scientific Manuscript database

    Low temperature scanning electron microscopy (LT-SEM) has revealed anatomical details suggesting that Osperalycus and Gordialycus (Acariformes: Nematalycidae) have an unusual feeding apparatus that appears to be specialized for feeding on the fluid contents of small microorganisms (diameter '5 µm). ...

  20. GUIDELINES FOR THE APPLICATION OF SEM/EDX ANALYTICAL TECHNIQUES FOR FINE AND COARSE PM SAMPLES

    EPA Science Inventory

    Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-ray analysis (EDX) is a powerful tool in the characterization and source apportionment of environmental particulate matter (PM), providing size, chemistry, and morphology of particles as small as a few tenths ...

  1. A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles.

    PubMed

    Kempen, Paul J; Thakor, Avnesh S; Zavaleta, Cristina; Gambhir, Sanjiv S; Sinclair, Robert

    2013-10-01

    The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue, but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work, we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol-coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time-consuming analytical characterization. We utilized this technique to analyze 243,000 mm³ of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail vein accumulated in the liver, whereas those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation.

  2. A Scanning Transmission Electron Microscopy (STEM) Approach to Analyzing Large Volumes of Tissue to Detect Nanoparticles

    PubMed Central

    Kempen, Paul J.; Thakor, Avnesh S.; Zavaleta, Cristina; Gambhir, Sanjiv S.; Sinclair, Robert

    2013-01-01

    The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time consuming analytical characterization. We utilized this technique to analyze 243,000 µm3 of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail-vein accumulated in the liver while those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation. PMID:23803218

  3. Ensemble modeling of very small ZnO nanoparticles.

    PubMed

    Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian

    2011-01-14

    The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.

  4. Structural and optical properties of glancing angle deposited TiO2 nanowires array.

    PubMed

    Chinnamuthu, P; Mondal, A; Singh, N K; Dhar, J C; Das, S K; Chattopadhyay, K K

    2012-08-01

    TiO2 nanowires (NWs) have been synthesized by glancing angle deposition technique using e-beam evaporator. The average length 490 nm and diameter 80 nm of NWs were examined by field emission-scanning electron microscopy. Transmission electron microscopy emphasized that the NWs were widely dispersed at the top. X-ray diffraction has been carried out on the TiO2 thin film (TF) and NW array. A small blue shift of 0.03 eV was observed in Photoluminescence (PL) main band emission for TiO2 NW as compared to TiO2 TF. The high temperature annealing at 980 degrees C partially removed the oxygen vacancy from the sample, which was investigated by PL and optical absorption measurements.

  5. Effects of a common worldwide drink (Beer) on L-Phenylalanine and L-Tyrosine fibrillar assemblies

    NASA Astrophysics Data System (ADS)

    Banik, Debasis; Banerjee, Pavel; Sabeehuddin, Ghazi; Sarkar, Nilmoni

    2017-11-01

    In this letter, small amount of beer [0.42-2.08% (v/v)] is employed to investigate the fibril inhibition kinetics of 1 mM L-Phenylalanine and L-Tyrosine (relevant to disease condition) using Fluorescence Lifetime imaging Microscopy (FLIM), Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopic (HR-TEM) techniques. Our results indicate that 1.67 and 0.42% of beer is sufficient for effective breakdown of L-Phe and L-Tyr assemblies, respectively. Quantitative information about fibril inhibition is obtained from Fluorescence Correlation Spectroscopic (FCS) measurements. We have shown that the morphology of L-Phe changes to L-Tyr in presence of 2,2‧-Bipyridine-3,3‧-diol (BP(OH)2).

  6. Nonformity of the electron density in amorphous silicon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionova, E.N.; Cheremskoi, P.G.; Fedorenko, A.I.

    1985-12-01

    The authors study the nonuniformity of a-Si:H films obtained by the method of vacuum condensation, with the help of x-ray small-angle scattering (SLS) and transmission electron microscopy. Films of hydrogenated amorphous silicon are greatest interest, because the electronic properties of this material can be controlled by doping. As a result of the compensation of the ruptured bonds, and possibly, effects of melting, the properties of such films are analogous to those of singlecrystalline silicon. XLS enables a quantitative determination of the prameters of the regions of low electron density (RLD) in such objects.

  7. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  8. In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces

    NASA Technical Reports Server (NTRS)

    Metois, J. J.; Heinemann, K.; Poppa, H.

    1976-01-01

    The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.

  9. Electron transport in single molecules: from benzene to graphene.

    PubMed

    Chen, F; Tao, N J

    2009-03-17

    Electron movement within and between molecules--that is, electron transfer--is important in many chemical, electrochemical, and biological processes. Recent advances, particularly in scanning electrochemical microscopy (SECM), scanning-tunneling microscopy (STM), and atomic force microscopy (AFM), permit the study of electron movement within single molecules. In this Account, we describe electron transport at the single-molecule level. We begin by examining the distinction between electron transport (from semiconductor physics) and electron transfer (a more general term referring to electron movement between donor and acceptor). The relation between these phenomena allows us to apply our understanding of single-molecule electron transport between electrodes to a broad range of other electron transfer processes. Electron transport is most efficient when the electron transmission probability via a molecule reaches 100%; the corresponding conductance is then 2e(2)/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two electrodes. However, the conductance of a molecule connected to two electrodes is often orders of magnitude less than the ideal and strongly depends on both the intrinsic properties of the molecule and its local environment. Molecular length, means of coupling to the electrodes, the presence of conjugated double bonds, and the inclusion of possible redox centers (for example, ferrocene) within the molecular wire have a pronounced effect on the conductance. This complex behavior is responsible for diverse chemical and biological phenomena and is potentially useful for device applications. Polycyclic aromatic hydrocarbons (PAHs) afford unique insight into electron transport in single molecules. The simplest one, benzene, has a conductance much less than 2e(2)/h due to its large LUMO-HOMO gap. At the other end of the spectrum, graphene sheets and carbon nanotubes--consisting of infinite numbers of aromatic rings--have small or even zero energy gaps between the conduction and valence bands. Between these two limits are intermediate molecules with rich properties, such as perylene derivatives made of seven aromatic rings; the properties of these types of molecules have yet to be fully explored. Studying PAHs is important not only in answering fundamental questions about electron transport but also in the ongoing quest for molecular-scale electronic devices. This line of research also helps bridge the gap between electron transfer phenomena in small redox molecules and electron transport properties in nanostructures.

  10. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane

    PubMed Central

    2005-01-01

    The effects of antimicrobial peptides on artificial membranes have been well-documented; however, reports on the ultrastructural effects on the membranes of micro-organisms are relatively scarce. We compared the effects of histatin 5 and LL-37, two antimicrobial peptides present in human saliva, on the functional and morphological properties of the Candida albicans cell membrane. Fluorescence microscopy and immunogold transmission electron microscopy revealed that LL-37 remained associated with the cell wall and cell membrane, whereas histatin 5 transmigrated over the membrane and accumulated intracellularly. Freeze-fracture electron microscopy revealed that LL-37 severely affected the membrane morphology, resulting in the disintegration of the membrane bilayer into discrete vesicles, and an instantaneous efflux of small molecules such as ATP as well as larger molecules such as proteins with molecular masses up to 40 kDa. The effects of histatin 5 on the membrane morphology were less pronounced, but still resulted in the efflux of nucleotides. As the morphological defects induced by histatin 5 are much smaller than those induced by LL-37, but the efflux of nucleotides is similar at comparable candidacidal concentrations, we suggest that the loss of nucleotides plays an important role in the killing process. PMID:15707390

  11. In situ sputter cleaning of thin film metal substrates for UHV-TEM corrosion studies.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1973-01-01

    A prerequisite for conducting valid corrosion experiments by in situ electron microscopy techniques is not only the achievement of UHV background pressure conditions at the site of the specimen but also the ability to clean the surface of the thin metal substrate specimen before initiation of the corrosive interaction. A miniaturized simple ion gun has been constructed for this purpose. The gun is small enough to be incorporated into an UHV electron microscope specimen chamber with hot stage in such a way as to permit bombardment of the substrate specimen while observing it by transmission electron microscopy TEM. It is shown that the ion beam generated is confined well enough to cause a sputtering removal of substrate material at a rate of approximately 5-10 A/min and to prevent the sputter deposition of contaminating material from the specimen holder.

  12. Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus.

    PubMed

    Robach, J S; Stock, S R; Veis, A

    2005-07-01

    The calcite plates and prisms in Lytechinus variegatus teeth form a complex biocomposite and employ a myriad of strengthening and toughening strategies. These crystal elements have macromolecule-containing internal cavities that may act to prevent cleavage. Transmission electron microscopy employing a small objective aperture was used to quantify several characteristics of these cavities. Cavity diameters ranged from 10 to 225 nm, the mean cavity diameter was between 50 and 60 nm, and cavities comprised approximately 20% of the volume of the crystal. Some cavities exhibited faceting and trace analysis identified these planes as being predominately of {1014} type. Through focus series of micrographs show the cavities were homogeneously distributed throughout the foil. The electron beam decomposed a substance within cavities and this suggests that these cavities are filled with a hydrated organic phase.

  13. Ultrastructure studies on the papillae and the nonciliated sensory receptors of adult Spirometra erinacei (Cestoda, Pseudophyllidea).

    PubMed

    Okino, T; Hatsushika, R

    1994-01-01

    The small numerous papillae on the ventral surface of the gravid proglottid of adult Spirometra erinacei were studied by scanning electron microscopy. The arrangement of clumps of papillae was recognized on the surface of the central portion around the genital atrium, with lateral clumps being located above a pair of longitudinal nerve cords and marginal ones, on both sides of the proglottid. By transmission electron microscopy, two types of nonciliated sensory receptors were observed within the papillae. The type I, single receptor was embedded within a papilla. This dome-like sensory receptor contained two electron-dense collars and four rootlets surrounded by numerous thin filaments. The type II receptor was found arranged in groups in the area between the papillae, and the apical end was exposed to the external environment. This simple, club-like sensory receptor contained electron-lucent vesicles and microtubules. We believe that the papillae play an important role in cross-insemination.

  14. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  15. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGES

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO 2), which serves as a UO 2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO 2 with an energy deposition of 12 and 36 keV/nm show damagemore » consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  16. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  17. Electron microscopy study of antioxidant interaction with bacterial cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  18. Iodine Vapor Staining for Atomic Number Contrast in Backscattered Electron and X-ray Imaging

    PubMed Central

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-01-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2. The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. Microsc. Res. Tech. 77:1044–1051, 2014. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc. PMID:25219801

  19. Intestinal lymphosarcoma in captive African hedgehogs.

    PubMed

    Raymond, J T; Clarke, K A; Schafer, K A

    1998-10-01

    Two captive adult female African hedgehogs (Atelerix albiventris) had inappetance and bloody diarrhea for several days prior to death. Both hedgehogs had ulceration of the small intestine and hepatic lipidosis. Histopathology revealed small intestinal lymphosarcoma with metastasis to the liver. Extracellular particles that had characteristics of retroviruses were observed associated with the surface of some neoplastic lymphoid cells by transmission electron microscopy. These are the first reported cases of intestinal lymphosarcoma in African hedgehogs.

  20. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  1. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)

    NASA Astrophysics Data System (ADS)

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h

  2. Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    An, Lingling; Jing, Min; Xiao, Bo; Bai, Xiao-Yan; Zeng, Qing-Dao; Zhao, Ke-Qing

    2016-09-01

    Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. Project supported by the National Natural Science Foundation of China (Grant Nos. 51273133 and 51443004).

  3. Determination of the five parameter grain boundary character distribution of nanocrystalline alpha-zirconium thin films using transmission electron microscopy

    DOE PAGES

    Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...

    2017-03-24

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  4. Accurate modelling of single-particle cryo-EM images quantifies the benefits expected from using Zernike phase contrast

    PubMed Central

    Hall, R. J.; Nogales, E.; Glaeser, R. M.

    2011-01-01

    The use of a Zernike-type phase plate in biological cryo-electron microscopy allows the imaging, without using defocus, of what are predominantly phase objects. It is thought that such phase-plate implementations might result in higher quality images, free from the problems of CTF correction that occur when images must be recorded at extremely high values of defocus. In single-particle cryo-electron microscopy it is hoped that these improvements in image quality will facilitate work on structures that have proved difficult to study, either because of their relatively small size or because the structures are not completely homogeneous. There is still a need, however, to quantify how much improvement can be gained by using a phase plate for single-particle cryo-electron microscopy. We present a method for quantitatively modelling the images recorded with 200 keV electrons, for single particles embedded in vitreous ice. We then investigate what difference the use of a phase-plate device could have on the processing of single-particle data. We confirm that using a phase plate results in single-particle datasets in which smaller molecules can be detected, particles can be more accurately aligned and problems of heterogeneity can be more easily addressed. PMID:21463690

  5. Restenosis after hot-tip laser-balloon angioplasty: histologic evaluation of the samples removed by Simpson atherectomy

    NASA Astrophysics Data System (ADS)

    Barbieri, Enrico; Tanganelli, Pietro; Taddei, Giuseppe; Perbellini, Antonio; Attino, Vito; Destro, Gianni; Zardini, Piero

    1991-05-01

    Laser balloon angioplasty has been used in recent years to treat peripheral artery disease. Despite a primary success the technique is plagued by a high restenosis rate. Directional atherectomy was performed in a small group of patients affected by primitive stenosis or restenosis after an invasive procedure. Light microscopy, immunohistochemistry, and transmission electron microscopy have identified the cellular component of intimal hyperplasia as smooth muscle cells in an active synthetic phenotype. The arterial healing process after invasive procedures seems to develop similarly independently of the device employed.

  6. [Could isolated mesangial deposits of C3 be responsible of glomerular hematuric nephropathies (author's transl)].

    PubMed

    Saint-Andre, J P; Touzard, D; Houssin, A; Simard, C

    1982-01-01

    This communication presents three cases of prolonged macroscopic hematuria in young subjects. Complementary explorations eliminated urologic or vascular causes. Renal biopsies showed minimal glomerular lesions with light microscopy, normal basement membranes in electron microscopy and mesangial deposits of C3 and properdine in immunofluorescence. Although the mesangial deposits of C3 lack specificity and the number of observations is small, it appears useful to report such cases so as to indicate their frequency and perhaps their autonomy, in glomerular hematuric nephropathies.

  7. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  8. Congenital myopathy associated with the triadin knockout syndrome

    PubMed Central

    Redhage, Keeley R.; Tester, David J.; Ackerman, Michael J.; Selcen, Duygu

    2017-01-01

    Objective: Triadin is a component of the calcium release complex of cardiac and skeletal muscle. Our objective was to analyze the skeletal muscle phenotype of the triadin knockout syndrome. Methods: We performed clinical evaluation, analyzed morphologic features by light and electron microscopy, and immunolocalized triadin in skeletal muscle. Results: A 6-year-old boy with lifelong muscle weakness had a triadin knockout syndrome caused by compound heterozygous null mutations in triadin. Light microscopy of a deltoid muscle specimen shows multiple small abnormal spaces in all muscle fibers. Triadin immunoreactivity is absent from type 1 fibers and barely detectable in type 2 fibers. Electron microscopy reveals focally distributed dilation and degeneration of the lateral cisterns of the sarcoplasmic reticulum and loss of the triadin anchors from the preserved lateral cisterns. Conclusions: Absence of triadin in humans can result in a congenital myopathy associated with profound pathologic alterations in components of the sarcoplasmic reticulum. Why only some triadin-deficient patients develop a skeletal muscle phenotype remains an unsolved question. PMID:28202702

  9. Growth and microstructural investigation of multiwall carbon nanotubes fabricated using electrodeposited nickel nanodeposits and chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Zanganeh, Navid; Rajabi, Armin; Torabi, Morteza; Allahkarami, Masoud; Moghaddas, Arshak; Sadrnezhaad, S. K.

    2014-09-01

    This study proposes a common approach for growing multiwall carbon nanotubes (MWCNTs) on nickel nanodeposits. MWCNT growth was performed in two separate stages. In the first stage, nickel nanodeposits were electrodeposited on n-Si(1 1 1):H substrate in the presence of sulfuric acid. Based on atomic force microscopy (AFM) observations, the nickel deposits had a fairly polygonal morphology and were distributed on the prepared n-Si(1 1 1):H substrate. In the second stage, acetylene gas was decomposed on the surfaces of the nickel nanodeposits using chemical vapor deposition method at 700 °C. When carbon is saturated in a catalyst, it acts as a primary nucleating element for MWCNT growth. The structure of the MWCNTs was also investigated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Results showed that the synthesized MWCNTs had a small wall thickness and were formed under the experimental conditions applied to the system.

  10. Worming Their Way into Shape: Toroidal Formations in Micellar Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardiel Rivera, Joshua J.; Tonggu, Lige; Dohnalkova, Alice

    2013-11-01

    We report the formation of nanostructured toroidal micellar bundles (nTMB) from a semidilute wormlike micellar solution, evidenced by both cryogenicelectron microscopy and transmission electron microscopy images. Our strategy for creating nTMB involves a two-step protocol consisting of a simple prestraining process followed by flow through a microfluidic device containing an array of microposts, producing strain rates in the wormlike micelles on the order of 105 s^1. In combination with microfluidic confinement, these unusually large strain rates allow for the formation of stable nTMB. Electron microscopy images reveal a variety of nTMB morphologies and provide the size distribution of the nTMB.more » Small-angle neutron scattering indicates the underlying microstructural transition from wormlike micelles to nTMB. We also show that other flow-induced approaches such as sonication can induce and control the emergence of onion-like and nTMB structures, which may provide a useful tool for nanotemplating.« less

  11. Focus on membrane differentiation and membrane domains in the prokaryotic cell.

    PubMed

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology. More recently, light microscopy in combination with the use of fluorescent dyes has become an attractive technique for protein localization with the natural membrane. However, the resolution problem in light microscopy remains and overinterpretation of observed phenomena is a pitfall. Thus, light microscopy as a stand-alone technique is not sufficient to prove, for instance, the long-range helical distribution of proteins in membrane such as MinD spirals in Bacillus subtilis. Electron tomography is an emerging electron microscopy technique that can provide three-dimensional reconstructions of small, nonchemically fixed bacteria. It will become a useful tool for studying prokaryotic membranes in more detail and is expected to collect information complementary to those of advanced light microscopy. Together, microscopy techniques can meet the challenge of the coming years: to specify membrane structures in more detail and to bring them to the level of specific protein-protein interactions. Copyright © 2013 S. Karger AG, Basel.

  12. Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    DOE PAGES

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo; ...

    2017-04-10

    We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

  13. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  14. Low-temperature scanning tunneling microscopy of ring-like surface electronic structures around Co islands on InAs(110) surfaces.

    PubMed

    Muzychenko, D A; Schouteden, K; Savinov, S V; Maslova, N S; Panov, V I; Van Haesendonck, C

    2009-08-01

    We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal islands deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are visible in spectroscopic images within a certain range of negative tunneling bias voltages due to the presence of a negative differential conductance in the current-voltage dependence. A theoretical model is introduced, which takes into account non-equilibrium effects in the small tunneling junction area. In the framework of this model the appearance of the ring-like features is explained in terms of interference effects between electrons tunneling directly and indirectly (via a Co island) between the tip and the InAs surface.

  15. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Environmental Asbestos Assessment Manual: Superfund Method for the Determination of Asbestos in Ambient Air, Part 1: Method

    EPA Science Inventory

    This is a sampling and analysis method for the determination of asbestos in air. Samples are analyzed by transmission electron microscopy (TEM). Although a small subset of samples are to be prepared using a direct procedure, the majority of samples analyzed using this method wil...

  17. Charge injection and discharging of Si nanocrystals and arrays by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    Charge injection and storage in dense arrays of silicon nanocrystals in SiO(sub 2) is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few-or single- electron storage in a small number of nanocrystal elements.

  18. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.

    PubMed

    Alania, M; Lobato, I; Van Aert, S

    2018-01-01

    In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens

    NASA Astrophysics Data System (ADS)

    Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.

    2016-07-01

    We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  20. Deep-branching Novel Lineages and High Diversity of Haptophytes in the Skagerrak (Norway) Uncovered by 454 Pyrosequencing

    PubMed Central

    Egge, Elianne S; Eikrem, Wenche; Edvardsen, Bente

    2015-01-01

    Microalgae in the division Haptophyta may be difficult to identify to species by microscopy because they are small and fragile. Here, we used high-throughput sequencing to explore the diversity of haptophytes in outer Oslofjorden, Skagerrak, and supplemented this with electron microscopy. Nano- and picoplanktonic subsurface samples were collected monthly for 2 yr, and the haptophytes were targeted by amplification of RNA/cDNA with Haptophyta-specific 18S ribosomal DNA V4 primers. Pyrosequencing revealed higher species richness of haptophytes than previously observed in the Skagerrak by microscopy. From ca. 400,000 reads we obtained 156 haptophyte operational taxonomic units (OTUs) after rigorous filtering and 99.5% clustering. The majority (84%) of the OTUs matched environmental sequences not linked to a morphological species, most of which were affiliated with the order Prymnesiales. Phylogenetic analyses including Oslofjorden OTUs and available cultured and environmental haptophyte sequences showed that several of the OTUs matched sequences forming deep-branching lineages, potentially representing novel haptophyte classes. Pyrosequencing also retrieved cultured species not previously reported by microscopy in the Skagerrak. Electron microscopy revealed species not yet genetically characterised and some potentially novel taxa. This study contributes to linking genotype to phenotype within this ubiquitous and ecologically important protist group, and reveals great, unknown diversity. PMID:25099994

  1. Identification of Foreign Particles in Human Tissues using Raman Microscopy.

    PubMed

    Campion, Alan; Smith, Kenneth J; Fedulov, Alexey V; Gregory, David; Fan, Yuwei; Godleski, John J

    2018-06-12

    The precise identification of foreign particles in tissue for patient care and research has been studied using polarized light microscopy, electron microscopy with X-ray analysis, and electron diffraction. The goal of this study was to unambiguously identify particles in tissues using a combina-tion of polarized light microscopy and Raman microscopy, which provides chemical composition and microstructural characterization of complex materials with submicron spatial resolution. We designed a model system of stained and unstained cells that contained birefringent talc particles, and systematically investigated the influence of slide and coverslip materials, laser wavelengths, and mounting media on the Raman spectra ob-tained. Hematoxylin and eosin stained slides did not produce useful results because of fluorescence interference from the stains. Unstained cell samples prepared with standard slides and coverslips produce high quality Raman spectra when excited at 532 nm; the spectra are uniquely as-signed to talc. We also obtain high quality Raman spectra specific for talc in unstained tissue samples (pleural tissue following talc pleurodesis and ovarian tissue following long-term perineal talc exposure). Raman microscopy is sufficiently sensitive and compositionally selective to identify particles as small as one micron in diameter. Among commonly used coverslip mounting media, Cytoseal 60 is recommended; Permount was unacceptable due to intense background interference. Raman spectra have been catalogued for thousands of substances, which suggests that this approach is likely to be successful in identifying other particles of interest in tissues, potentially making Raman microscopy a powerful new tool in pathology.

  2. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-03-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.

  3. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc; Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and directmore » current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.« less

  4. Provenance study through analysis of microstructural characteristics using an optical microscope and scanning electron microscopy for Goryeo celadon excavated from the seabed.

    PubMed

    Min-su, Han

    2013-08-01

    This paper aims at identifying the provenance of Goryeo celadons by understanding its microstructural characteristics, such as particles, blisters, forms and amount of pores, and the presence of crystal formation, bodies, and glazes and its boundary, using an optical microscope and scanning electron microscopy (SEM). The analysis of the reproduced samples shows that the glazed layer of the sherd fired at higher temperatures has lower viscosity and therefore it encourages the blisters to be combined together and the layer to become more transparent. In addition, the result showed that the vitrification and melting process of clay minerals such as feldspars and quartzs on the bodies was accelerated for those samples. To factor such characteristics of the microstructure and apply it to the sherds, the samples could be divided into six categories based on status, such as small particles with many small pores or mainly large and small circular pores in the bodies, only a limited number of varied sized blisters in the glazes, and a few blisters and needle-shaped crystals on the boundary surface. In conclusion, the analysis of the microstructural characteristics using an optical microscope and SEM have proven to be useful as a categorizing reference factor in a provenance study on Goryeo celadons.

  5. Silver enhancement of nanogold and undecagold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainfield, J.F.; Furuya, F.R.

    1995-07-01

    A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequentlymore » with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.« less

  6. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  7. Phason space analysis and structure modelling of 100 Å-scale dodecagonal quasicrystal in Mn-based alloy

    NASA Astrophysics Data System (ADS)

    Ishimasa, Tsutomu; Iwami, Shuhei; Sakaguchi, Norihito; Oota, Ryo; Mihalkovič, Marek

    2015-11-01

    The dodecagonal quasicrystal classified into the five-dimensional space group P126/mmc, recently discovered in a Mn-Cr-Ni-Si alloy, has been analysed using atomic-resolution spherical aberration-corrected electron microscopy, i.e. high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and conventional transmission electron microscopy. By observing along the 12-fold axis, non-periodic tiling consisting of an equilateral triangle and a square has been revealed, of which common edge length is a = 4.560 Å. These tiles tend to form a network of dodecagons of which size is ?a ≈ 17 Å in diameter. The tiling was interpreted as an aggregate of 100 Å-scale oriented domains of high- and low-quality quasicrystals with small crystallites appearing at their boundaries. The quasicrystal domains exhibited a densely filled circular acceptance region in the phason space. This is the first observation of the acceptance region in an actual dodecagonal quasicrystal. Atomic structure model consistent with the electron microscopy images is a standard Frank-Kasper decoration of the triangle and square tiles that can be inferred from the crystal structures of Zr4Al3 and Cr3Si. Four kinds of layers located at z = 0, ±1/4 and 1/2 are stacked periodically along the 12-fold axis, and the atoms at z = 0 and 1/2 form hexagonal anti-prisms consistently with the 126-screw axis. The validity of this structure model was examined by means of powder X-ray diffraction.

  8. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  9. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    PubMed Central

    2012-01-01

    Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types. PMID:22967319

  10. Tem Observation of Precipitates in Ag-Added Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Nagai, Takeshi; Matsuda, Kenji; Nakamura, Junya; Kawabata, Tokimasa; Marioara, Calin; Andersen, Sigmund J.; Holmestad, Randi; Hirosawa, Shoichi; Horita, Zenji; Terada, Daisuke; Ikeno, Susumu

    The influence of addition of the small amount of transition metals to Al-Mg-Si alloy had reported by many researchers. In the previous our work, β' phase in alloys Al — 1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) were investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), in order to understand the effect of Ag. In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). One Ag-containing atomic column was observed per β' unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free β'. In this work, the microstructure of G.P. zone and β'' phase was investigated by TEM observation, which were formed before β' phase. The deformed sample by high pressure torsion (HPT) technique before aging was also investigated to understand its effect for aging in this alloy.

  11. Reversible Cryopreservation of Living Cells Using an Electron Microscopy Cryo-Fixation Method.

    PubMed

    Huebinger, Jan; Han, Hong-Mei; Grabenbauer, Markus

    2016-01-01

    Rapid cooling of aqueous solutions is a useful approach for two important biological applications: (I) cryopreservation of cells and tissues for long-term storage, and (II) cryofixation for ultrastructural investigations by electron and cryo-electron microscopy. Usually, both approaches are very different in methodology. Here we show that a novel, fast and easy to use cryofixation technique called self-pressurized rapid freezing (SPRF) is-after some adaptations-also a useful and versatile technique for cryopreservation. Sealed metal tubes with high thermal diffusivity containing the samples are plunged into liquid cryogen. Internal pressure builds up reducing ice crystal formation and therefore supporting reversible cryopreservation through vitrification of cells. After rapid rewarming of pressurized samples, viability rates of > 90% can be reached, comparable to best-performing of the established rapid cooling devices tested. In addition, the small SPRF tubes allow for space-saving sample storage and the sealed containers prevent contamination from or into the cryogen during freezing, storage, or thawing.

  12. Electron tomography and cryo-SEM characterization reveals novel ultrastructural features of host-parasite interaction during Chlamydia abortus infection.

    PubMed

    Wilkat, M; Herdoiza, E; Forsbach-Birk, V; Walther, P; Essig, A

    2014-08-01

    Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.

  13. The influence of C s/C c correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, Nestor J.

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c) which augments those accomplishments. In this study we will review and summarize how the combination of C s/C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy inmore » today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less

  14. The influence of C s/C c correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    DOE PAGES

    Zaluzec, Nestor J.

    2014-11-11

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c) which augments those accomplishments. In this study we will review and summarize how the combination of C s/C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy inmore » today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less

  15. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Fei; Yu, Zhenglei; Yang, Fengling

    Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via highmore » resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.« less

  16. Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications

    NASA Astrophysics Data System (ADS)

    van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.

    2015-02-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.

  17. Leaching behavior and ESEM characterization of water-sensitive mudstone in southwestern Taiwan.

    PubMed

    Chen, Hung-Ta; Lin, Tzong-Tzeng; Chang, Juu-En

    2003-05-01

    This investigation attempts to understand the critical soluble salts in natural mudstone and the leaching, microstructural, and microchemical characteristics in soaked mudstone using scanning electron microscopy (SEM)/energy-dispersive X-ray analysis (EDAX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), conductivity measurement, ion chromatography (IC), and environmental scanning electron microscopy (ESEM)/EDAX techniques. Natural mudstone probably includes soluble salts such as Na2SO4, NaCl, NaCO3, and CaCO3. The dissolution of Na2SO4 controls water-sensitive mudstone very susceptible to slaking and dispersion. ESEM micrographs clearly show evidence of mudstone-slaking during soaking since the visible pores are filled with small aggregative masses. A calcium-bearing precipitate from the soaked mudstone is speculated to be attributable to the decomposition of the hydrated product of the fresh mudstone.

  18. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  19. Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, J.

    1999-11-01

    The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.

  20. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    PubMed

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally

    PubMed Central

    SVITKINA, Tatyana M.

    2017-01-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208

  2. Demonstration of Single-Shot Picosecond Time-Resolved MeV Electron Imaging Using a Compact Permanent Magnet Quadrupole Based Lens.

    PubMed

    Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K

    2016-07-08

    We present the results of an experiment where a short focal length (∼1.3  cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600  T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  3. Silver stain for electron microscopy

    NASA Technical Reports Server (NTRS)

    Corbett, R. L.

    1972-01-01

    Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.

  4. Structure and orientation of small particles of platinum deposited on NaCl and mica

    NASA Technical Reports Server (NTRS)

    Renou, A.; Gillet, M.

    1979-01-01

    The structure of small platinum particles condensed in vacuum onto NaCl (001), NaCl (111) and mica substrates was studied by electron diffraction and electron microscopy. Results show that above a certain substrate temperature decahedral or icosahedral particles are formed. These particles are practically absent with substrates cleaved in high vacuum. They are always much less numerous than in gold films prepared under the same conditions. Assumptions made to explain this phenomenon are: (1) the initial growth of an abnormal structure of the nuclei as opposed by the substrate; (2) the particles disappear before they attain a size which corresponds to the observations; and (3) the particles result from a coalescence mechanism leading to multiple twinned particles.

  5. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  6. Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ

    PubMed Central

    Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.

    2009-01-01

    Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881

  7. Super-resolution optical microscopy study of telomere structure.

    PubMed

    Phipps, Mary Lisa; Goodwin, Peter M; Martinez, Jennifer S; Goodwin, Edwin H

    2016-09-01

    Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5?-TTAGGG-3? in humans) repeated more than a thousand times, a short 3? single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3? overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded “t-loop.” Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.

  8. Cell adhesion on nanotextured slippery superhydrophobic substrates.

    PubMed

    Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto

    2011-04-19

    In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society

  9. High-sensitivity chemical imaging for biomedicine by SRS microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-02-01

    Innovations in spectroscopy principles and microscopy technology have significantly impacted modern biology and medicine. While most of the contemporary bio-imaging modalities harness electronic transition, nuclear spin or radioactivity, vibrational spectroscopy has not been widely used yet. Here we will discuss an emerging chemical imaging platform, stimulated Raman scattering (SRS) microscopy, which can enhance the otherwise feeble spontaneous Raman eight orders of magnitude by virtue of stimulated emission. When coupled with stable isotopes (e.g., deuterium and 13C) or bioorthogonal chemical moieties (e.g., alkynes), SRS microscopy is well suited for probing in vivo metabolic dynamics of small bio-molecules which cannot be labeled by bulky fluorophores. Physical principle of the underlying optical spectroscopy and exciting biomedical applications such as imaging lipid metabolism, protein synthesis, DNA replication, protein degradation, RNA synthesis, glucose uptake, drug trafficking and tumor metabolism will be presented.

  10. Super-resolution optical microscopy study of telomere structure

    NASA Astrophysics Data System (ADS)

    Phipps, Mary Lisa; Goodwin, Peter M.; Martinez, Jennifer S.; Goodwin, Edwin H.

    2016-09-01

    Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5‧-TTAGGG-3‧ in humans) repeated more than a thousand times, a short 3‧ single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3‧ overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded "t-loop." Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.

  11. Types and numbers of sensilla on antennae and maxillary palps of small and large houseflies, Musca domestica (Diptera, Muscidae).

    PubMed

    Smallegange, Renate C; Kelling, Frits J; Den Otter, Cornelis J

    2008-12-01

    Houseflies, Musca domestica, obtained from a high-larval-density culture were significantly (ca. 1.5 times) smaller than those from a low-larval-density culture. The same held true for their antennae and maxillary palps. Structure, number, and distribution of sensilla on antennae and palps of small and large flies were investigated using Scanning electron microscopy and Transmission electron microscopy. In each funiculus three pits were present, two (Type I) consisting of several compartments and one (Type II) of one compartment. Four types of olfactory sensilla were detected: trichoid sensilla on the funiculi, basiconic sensilla on funiculi and palps, grooved sensilla on funiculi and in pits Type I, and clavate sensilla on funiculi and in pits Type II. Type I pits also contained striated sensilla (presumably hygroreceptors). Mechanosensory bristles were present on scapes, pedicels, and palps. Noninnervated microtrichia were found on the palps and all antennal segments. The large houseflies possessed nearly twice as much sensilla as the small flies. So far, we did not observe differences in behavior between small and large flies. We assumed that small flies, being olfactory less equipped than large flies, may be able to compensate for this by, e.g., visual cues or by their olfactory sensilla being more sensitive than those of large flies. To be able to answer these questions careful studies have to be done on the behavioral responses of small and large flies to environmental stimuli. In addition, electrophysiological studies should be performed to reveal whether the responses of individual sensilla of flies reared under different conditions have been changed. 2008 Wiley-Liss, Inc.

  12. Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate-A pilot study in Fox-Hound dogs at 4 and 8 weeks.

    PubMed

    Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis

    2017-01-01

    The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  14. Neural plasticity explored by correlative two-photon and electron/SPIM microscopy

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Silvestri, L.; Costantini, I.; Sacconi, L.; Maco, B.; Knott, G. W.; Pavone, F. S.

    2013-06-01

    Plasticity of the central nervous system is a complex process which involves the remodeling of neuronal processes and synaptic contacts. However, a single imaging technique can reveal only a small part of this complex machinery. To obtain a more complete view, complementary approaches should be combined. Two-photon fluorescence microscopy, combined with multi-photon laser nanosurgery, allow following the real-time dynamics of single neuronal processes in the cerebral cortex of living mice. The structural rearrangement elicited by this highly confined paradigm of injury can be imaged in vivo first, and then the same neuron could be retrieved ex-vivo and characterized in terms of ultrastructural features of the damaged neuronal branch by means of electron microscopy. Afterwards, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, based on the use of major blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from its apical portion, the whole pyramidal neuron can then be segmented and located in the correct cortical layer. With the correlative approach presented here, researchers will be able to place in a three-dimensional anatomic context the neurons whose dynamics have been observed with high detail in vivo.

  15. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    PubMed

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  16. Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples

    PubMed Central

    Kopek, Benjamin G.; Paez-Segala, Maria G.; Shtengel, Gleb; Sochacki, Kem A.; Sun, Mei G.; Wang, Yalin; Xu, C. Shan; van Engelenburg, Schuyler B.; Taraska, Justin W.; Looger, Loren L.; Hess, Harald F.

    2017-01-01

    Our groups have recently developed related approaches for sample preparation for super-resolution imaging within endogenous cellular environments using correlative light and electron microscopy (CLEM). Four distinct techniques for preparing and acquiring super-resolution CLEM datasets on aldehyde-fixed specimens are provided, including Tokuyasu cryosectioning, whole-cell mount, cell unroofing and platinum replication, and resin embedding and sectioning. Choice of the best protocol for a given application depends on a number of criteria that are discussed in detail. Tokuyasu cryosectioning is relatively rapid but is limited to small, delicate specimens. Whole-cell mount has the simplest sample preparation but is restricted to surface structures. Cell unroofing and platinum replica creates high-contrast, 3-dimensional images of the cytoplasmic surface of the plasma membrane, but is more challenging than whole-cell mount. Resin embedding permits serial sectioning of large samples, but is limited to osmium-resistant probes, and is technically difficult. Expected results from these protocols include super-resolution localization (~10–50 nm) of fluorescent targets within the context of electron microscopy ultrastructure, which can help address cell biological questions. These protocols can be completed in 2–7 days, are compatible with a number of super-resolution imaging protocols, and are broadly applicable across biology. PMID:28384138

  17. A fine-structural survey of the pulpal innervation in the rat mandibular incisor.

    PubMed

    Bishop, M A

    1981-02-01

    The innervation of the rat incisor pulp has been studied using transmission electron microscopy and light microscopy. Transverse sections of mandibular incisor pulp (380-460 gm rats) from numerous positions in the long axis of the tooth were examined systematically in the electron microscopy. Quantitative data on total axon populations were obtained. The nerve fibers were found to pass through the lingual half of the pulp from the apical end to within 2 mm of the incisal tip. Although the nerve fibers were seen to lie amongst the connective tissue cells between the blood vessels, the electron microscopic observations showed that the blood vessels are not innervated. Throughout their pulpal course the nerve fibers showed no trace of perineurial investment. Virtually all the axons were unmyelinated. Total numbers of axons were small (233-328) and peak diameters of 0.3-0.4 microM confirmed the observed immature appearance of the nerve supply. Obvious nerve endings were seldom observed and the axons showed no structural association with odontoblasts. The evidence indicates that, although most axons terminate near the incisal end of the tooth, no specific structure is supplied. The qualitative features of the axons do not suggest autonomic function; however, they are consistent with a sensory role.

  18. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng

    2018-04-01

    Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.

  19. Lipoidal labellar secretions in Maxillaria ruiz & pav. (Orchidaceae).

    PubMed

    Davies, K L; Turner, M P; Gregg, A

    2003-03-01

    The labella of Maxillaria acuminata Lindl., M. cerifera Barb. Rodr. and M. notylioglossa Rchb.f., all members of the M. acuminata alliance, produce a viscid wax-like secretion. Histochemical analysis revealed that the chemical composition of the secretion is similar in all three species, consisting largely of lipid and protein. Light microscopy and low-vacuum scanning electron microscopy were used to investigate the secretory process. In a fourth taxon, M. cf. notylioglossa, transmission electron microscopy showed that lipid bodies are associated with smooth endoplasmic reticulum or occur as plastoglobuli within plastids. Lipid bodies vary in appearance and this may reflect differences in chemical composition. They become associated with the plasmalemma and eventually accumulate between the latter and the cell wall. The wall contains no pits or ectodesmata, and it is speculated that lipid passes through the wall as small lipid moieties before eventually reassembling to form lipid globules on the external surface of the cuticle. These globules are able to coalesce forming extensive viscid areas on the labellum. The possible significance of this process to pollination is discussed.

  20. Lipoidal Labellar Secretions in Maxillaria Ruiz & Pav. (Orchidaceae)

    PubMed Central

    DAVIES, K. L.; TURNER, M. P.; GREGG, A.

    2003-01-01

    The labella of Maxillaria acuminata Lindl., M. cerifera Barb. Rodr. and M. notylioglossa Rchb.f., all members of the M. acuminata alliance, produce a viscid wax‐like secretion. Histochemical analysis revealed that the chemical composition of the secretion is similar in all three species, consisting largely of lipid and protein. Light microscopy and low‐vacuum scanning electron microscopy were used to investigate the secretory process. In a fourth taxon, M. cf. notylioglossa, transmission electron microscopy showed that lipid bodies are associated with smooth endoplasmic reticulum or occur as plastoglobuli within plastids. Lipid bodies vary in appearance and this may reflect differences in chemical composition. They become associated with the plasmalemma and eventually accumulate between the latter and the cell wall. The wall contains no pits or ectodesmata, and it is speculated that lipid passes through the wall as small lipid moieties before eventually reassembling to form lipid globules on the external surface of the cuticle. These globules are able to coalesce forming extensive viscid areas on the labellum. The possible significance of this process to pollination is discussed. PMID:12588723

  1. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  2. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  3. Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers

    NASA Astrophysics Data System (ADS)

    Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari

    2018-01-01

    Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.

  4. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    PubMed

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  5. The microstructure of lingual papillae in the Egyptian fruit bat (Rousettus aegyptiacus) as observed by light microscopy and scanning electron microscopy.

    PubMed

    Jackowiak, Hanna; Trzcielińska-Lorych, Joanna; Godynicki, Szymon

    2009-03-01

    The microstructure of lingual papillae on the dorsal surface of the tongue of adult Egyptian fruit bats was examined by light microscopy (LM) and scanning electron microscopy (SEM). This elongated tongue with a rounded apex is approximately 3 cm long -- including the 1.7cm length of the anterior free part of the tongue -- which facilitates considerable freedom of movement. The surface of the tongue has four types of lingual papillae: two types of mechanical papillae -- filiform and conical papillae, and two types of gustatory papillae -- fungiform and vallate papillae. Most numerous are filiform papillae with well developed keratinized processes represented by four morphological subtypes -- small, giant, elongated, and bifid papillae. Our observations showed the small and giant filiform papillae to be present in the anterior part of the tongue and tilted to the back of the tongue. In the posterior part of the tongue, the filiform papillae with elongated processes were arranged on each side of the tongue and oriented perpendicularly to the median line of tongue. This arrangement of filiform papillae is considered to be useful for the efficient uptake of semiliquid food as it can be collected toward the median line of the tongue. Gustatory fungiform papillae were distributed among filiform papillae on the border of the apex and the anterior part of the body of the tongue and also on the posterior part of the tongue, while three vallate papillae surrounded by conical papillae were found on the root of the tongue. There were also taste buds along the ducts of the posterior lingual glands in the posterior-lateral part of the tongue. These morphological features are discussed in relation to adaptation to food uptake in the Egyptian fruit bat.

  6. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  7. Monodisperse mesoporous silica nanoparticles of distinct topology.

    PubMed

    Luo, Leilei; Liang, Yucang; Erichsen, Egil Sev; Anwander, Reiner

    2017-06-01

    Monodisperse and uniform high-quality MCM(Mobil Composition of Matter)-48-type CMSNs (Cubic Mesoporous Silica Nanoparticles) are readily prepared by simply optimizing the molar ratio of ethanol and surfactant in the system TEOS-CTAB-NaOH-H 2 O-EtOH (TEOS=tetraethyl orthosilicate, CTAB=cetyltrimethylammonium bromide, EtOH=ethanol). In the absence of ethanol only hexagonal mesoporous silica with ellipsoidal and spherical morphology are obtained. The presence of ethanol drives a mesophase transformation from hexagonal to mixed hexagonal/cubic, further to purely cubic, and finally to a mixed cubic/lamellar. This is accompanied by a morphology evolution involving a mixture of ellipses/spheres, regular rods, uniform spheres, and finally a mixture of spheres/flakes. Preserving the three-dimensional (3D) cubic MCM-48 structure, use of a small amount of ethanol is beneficial to the improvement of the monodispersity of the CMSNs. Moreover, the quality of the CMSNs can also be controlled by changing the surfactant concentration or adjusting the stirring rate. All MSNs were characterized using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and N 2 physisorption, indicating highly long-range ordered pore arrays, high specific surface areas (max. 1173 m 2 g -1 ) as well as high pore volumes (max. 1.14 cm 3 g -1 ). The monodispersity of the CMSNs was verified by statistical particle size distribution from SEM (scanning electron microscopy)/TEM (transmission electron microscopy) images and DLS (dynamic light scattering). The mesophase transformation can be rationalized on the basis of an ethanol-driven change of the surfactant packing structure and charge matching at the surfactant/silicate interface. The corresponding morphology evolution can be elucidated by an ethanol-controlled hydrolysis rate of TEOS and degree of condensation of oligomeric silicate species via a nucleation and growth process. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  9. Conventions and workflows for using Situs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wriggers, Willy, E-mail: wriggers@biomachina.org

    2012-04-01

    Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs tomore » be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed.« less

  10. Role of Crystallization in the Morphology of Polymer: Non-fullerene Acceptor Bulk Heterojunctions

    DOE PAGES

    O’Hara, Kathryn A.; Ostrowski, David P.; Koldemir, Unsal; ...

    2017-05-22

    Many high efficiency organic photovoltaics use fullerene-based acceptors despite their high production cost, weak optical absorption in the visible range, and limited synthetic variability of electronic and optical properties. To circumvent this deficiency, non-fullerene small-molecule acceptors have been developed that have good synthetic flexibility, allowing for precise tuning of optoelectronic properties, leading to enhanced absorption of the solar spectrum and increased open-circuit voltages ( V OC). We examined the detailed morphology of bulk heterojunctions of poly(3-hexylthiophene) and the small-molecule acceptor HPI-BT to reveal structural changes that lead to improvements in the fill factor of solar cells upon thermal annealing. Themore » kinetics of the phase transformation process of HPI-BT during thermal annealing were investigated through in situ grazing incidence wide-angle X-ray scattering studies, atomic force microscopy, and transmission electron microscopy. The HPI-BT acceptor crystallizes during film formation to form micron-sized domains embedded within the film center and a donor rich capping layer at the cathode interface reducing efficient charge extraction. Thermal annealing changes the surface composition and improves charge extraction. In conclusion, this study reveals the need for complementary methods to investigate the morphology of BHJs.« less

  11. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  12. Antigenic characterization of small, round-structured viruses by immune electron microscopy.

    PubMed

    Okada, S; Sekine, S; Ando, T; Hayashi, Y; Murao, M; Yabuuchi, K; Miki, T; Ohashi, M

    1990-06-01

    Small, round-structured viruses (SRSVs) detected from nonbacterial gastroenteritis outbreaks in Tokyo and Saitama Prefecture, Japan, during the period from 1977 to 1988 were tentatively classified into nine antigenic patterns from SRSV-1 (S-1) to SRSV-9 (S-9) by cross-immune electron microscopy (IEM). S-1 and S-2 appeared pattern specific, while S-3 to S-9, distinguishable from each other in their reactivity, appeared somewhat antigenically related. Their antigenic relatedness to the Norwal, Hawaii, and Otofuke agents was also examined by IEM by using antisera to these agents. S-3 appeared most closely related to the Norwalk agent. S-4 and S-5 were related to the Norwalk agent and, presumably, were distantly related to the Hawaii and Otofuke agents. S-6 and S-7 were related to the Hawaii and Otofuke agents. S-8 and S-9 were related to the Otofuke agent and, presumably, were distantly related to the Hawaii agent. The prevalence of each antigenic pattern in 38 outbreaks was examined: S-8 was implicated in 24% of the outbreaks S-5 in 16%, S-4 in 13%, S-9 in 13%, S-6 in 11%, and others in 5%.

  13. Role of Crystallization in the Morphology of Polymer: Non-fullerene Acceptor Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Kathryn A.; Ostrowski, David P.; Koldemir, Unsal

    Many high efficiency organic photovoltaics use fullerene-based acceptors despite their high production cost, weak optical absorption in the visible range, and limited synthetic variability of electronic and optical properties. To circumvent this deficiency, non-fullerene small-molecule acceptors have been developed that have good synthetic flexibility, allowing for precise tuning of optoelectronic properties, leading to enhanced absorption of the solar spectrum and increased open-circuit voltages ( V OC). We examined the detailed morphology of bulk heterojunctions of poly(3-hexylthiophene) and the small-molecule acceptor HPI-BT to reveal structural changes that lead to improvements in the fill factor of solar cells upon thermal annealing. Themore » kinetics of the phase transformation process of HPI-BT during thermal annealing were investigated through in situ grazing incidence wide-angle X-ray scattering studies, atomic force microscopy, and transmission electron microscopy. The HPI-BT acceptor crystallizes during film formation to form micron-sized domains embedded within the film center and a donor rich capping layer at the cathode interface reducing efficient charge extraction. Thermal annealing changes the surface composition and improves charge extraction. In conclusion, this study reveals the need for complementary methods to investigate the morphology of BHJs.« less

  14. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  15. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  16. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information on inclusion formation.« less

  17. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Prevalence of small round structured virus infections in acute gastroenteritis outbreaks in Tokyo.

    PubMed

    Sekine, S; Okada, S; Hayashi, Y; Ando, T; Terayama, T; Yabuuchi, K; Miki, T; Ohashi, M

    1989-01-01

    During the three-year period from 1984 to 1987, 506 acute gastroenteritis outbreaks involving 14,383 patients were reported to the Bureau of Public Health, Tokyo Metropolitan Government. Eighty (4,324 patients) of 150 outbreaks (4,860 patients) from which etiologic agents were not identified were subjected to virological investigation. Spherical particles of 28-32 nm in diameter with capsomere-like structures on the surface were detected in patients' stool specimens. Buoyant density of the particles appeared to be 1.36 to 1.40 g/ml in CsCl. Seroconversion to the particles was observed in patients by immune electron microscopy. From these observations, we concluded that the detected particles were members of small round structured virus (SRSV), and that they were implicated in the etiologically ill-defined outbreaks encountered. Prevalence of SRSV infections in these outbreaks was examined by electron microscopy. SRSV was positive in 83.8% of the outbreaks, and 96.4% of the cases. SRSV-positive outbreaks usually occurred during winter in contrast to bacterial outbreaks which often occurred in the summer season. Of 80 outbreaks examined, 53 were associated with the ingestion of oysters, and the remaining 27 mostly with food other than oysters. Oyster-associated outbreaks usually occurred on a small scale, while unassociated ones on diverse scales ranged from family clusters to large outbreaks.

  19. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  20. Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells

    PubMed Central

    Chakraborty, Paramita; Bjork, Per; Källberg, Eva; Olsson, Anders; Riva, Matteo; Mörgelin, Matthias; Liberg, David; Ivars, Fredrik; Leanderson, Tomas

    2015-01-01

    We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway. PMID:26661255

  1. Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances

    PubMed Central

    Chen, Liang; Zhang, Yu; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Lu, Daoqiang Daniel; Sun, Rong; Wong, Chingping

    2015-01-01

    Monodisperse Cu2O of different microstructures, such as cubes, flower-like, and microspheres, have been extensively synthesized by a simple polyol reduction method using different copper salts, i.e. (Cu(acac)2, Cu(OH)2, and Cu(Ac)2·H2O). The effects of copper salts on the morphology of Cu2O were investigated in details through various characterization methods, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV-Vis absorption spectra. The effects of morphology on the electrochemical properties were further studied. Among the different structures, Cu2O with the microspheric morphology shows the highest specific capacitance and the best cycling stability compared with those of the other two structures, thus bear larger volume charge during the electrochemical reaction due to the microspheres of small nanoparticles. PMID:25857362

  2. A new FIB fabrication method for micropillar specimens for three-dimensional observation using scanning transmission electron microscopy.

    PubMed

    Fukuda, Muneyuki; Tomimatsu, Satoshi; Nakamura, Kuniyasu; Koguchi, Masanari; Shichi, Hiroyasu; Umemura, Kaoru

    2004-01-01

    A new method to prepare micropillar specimens with a high aspect ratio that is suitable for three-dimensional scanning transmission electron microscopy (3D-STEM) was developed. The key features of the micropillar fabrication are: first, microsampling to extract a small piece including the structure of interest in an IC chip, and second, an ion-beam with an incident direction of 60 degrees to the pillar's axis that enables the parallel sidewalls of the pillar to be produced with a high aspect ratio. A memory-cell structure (length: 6 microm; width: 300 x 500 nm) was fabricated in the micropillar and observed from various directions with a 3D-STEM. A planiform capacitor covered with granular surfaces and a solid crossing gate and metal lines was successfully observed threedimensionally at a resolution of approximately 5 nm.

  3. Reversible sol-to-gel transformation of uracil gelators: specific colorimetric and fluorimetric sensor for fluoride ions.

    PubMed

    Xing, Ling-Bao; Yang, Bing; Wang, Xiao-Jun; Wang, Jiu-Ju; Chen, Bin; Wu, Qianhong; Peng, Hui-Xing; Zhang, Li-Ping; Tung, Chen-Ho; Wu, Li-Zhu

    2013-03-05

    A new type of anthracene organogelator based on uracil was obtained using organic aromatic solvents, cyclohexane, DMSO, ethanol, and ethyl acetate. It was further characterized by field-emission scanning electron microscopy and transmission electron microscopy. Specifically, the resulting organogels were demonstrated to be promising colorimetric and fluorescent sensors toward fluoride ions with high sensitivity and selectivity, accompanying the disruption of the gelators. Spectroscopic study and (1)H NMR titration experiment revealed that the deprotonation of the hydrogen atom on the N position of uracil moiety by fluoride ions is responsible for the recognition events, evidenced by immediate transformation from the sol phase to the gel state upon adding a small amount of a proton solvent, methanol. The process is reversible, with zero loss in sensing activity and sol-to-gel transformation ability even after five runs.

  4. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    PubMed

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  6. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  7. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B., E-mail: pecz.bela@ttk.mta.hu

    2015-02-17

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a secondmore » region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.« less

  8. A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.

    2010-05-01

    Nanoscale multilayered Al-TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al-TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

  9. Electron cryo-microscopy structure of the canonical TRPC4 ion channel

    PubMed Central

    Vinayagam, Deivanayagabarathy; Mager, Thomas; Apelbaum, Amir; Bothe, Arne; Merino, Felipe; Hofnagel, Oliver; Gatsogiannis, Christos

    2018-01-01

    Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology. PMID:29717981

  10. [Changes in the peritoneum of the small intestine and diaphragm in experimental portal hypertension].

    PubMed

    Khoroshaev, V A; Vorozheĭkin, V M; Baĭbekov, I M

    1991-04-01

    Diaphragm and small intestine peritoneum morphology was studied in experimental portal hypertension in rats with the help of luminescent, transmission and scanning electron microscopy techniques. Structural organizations of these peritoneum portions and performance function were different: fluid transudation realized through the small intestine peritoneum and resorption occurred via diaphragm peritoneum. Morphological signs allowed to judge about the increasing of fluid transudation in abdominal cavity and diaphragmatic resorption in early period of portal hypertension. Morphological alterations appeared in peritoneum resorption sites (pumping diaphragmatic hatchs) according to progress of portal hypertension that indicated decompensation process of peritoneal fluid absorption and led to ascites.

  11. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  12. Nanoscale measurements of unoccupied band dispersion in few-layer graphene.

    PubMed

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M; van der Molen, Sense Jan

    2015-11-26

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only.

  13. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    PubMed

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  14. Myofibroblasts in interstitial lung diseases show diverse electron microscopic and invasive features.

    PubMed

    Karvonen, Henna M; Lehtonen, Siri T; Sormunen, Raija T; Harju, Terttu H; Lappi-Blanco, Elisa; Bloigu, Risto S; Kaarteenaho, Riitta L

    2012-09-01

    The characteristic features of myofibroblasts in various lung disorders are poorly understood. We have evaluated the ultrastructure and invasive capacities of myofibroblasts cultured from small volumes of diagnostic bronchoalveolar lavage (BAL) fluid samples from patients with different types of lung diseases. Cells were cultured from samples of BAL fluid collected from 51 patients that had undergone bronchoscopy and BAL for diagnostic purposes. The cells were visualized by transmission electron microscopy and immunoelectron microscopy to achieve ultrastructural localization of alpha-smooth muscle actin (α-SMA) and fibronectin. The levels of α-SMA protein and mRNA and fibronectin mRNA were measured by western blot and quantitative real-time reverse transcriptase polymerase chain reaction. The invasive capacities of the cells were evaluated. The cultured cells were either fibroblasts or myofibroblasts. The structure of the fibronexus, and the amounts of intracellular actin, extracellular fibronectin and cell junctions of myofibroblasts varied in different diseases. In electron and immunoelectron microscopy, cells cultured from interstitial lung diseases (ILDs) expressed more actin filaments and α-SMA than normal lung. The invasive capacity of the cells obtained from patients with idiopathic pulmonary fibrosis was higher than that from patients with other type of ILDs. Cells expressing more actin filaments had a higher invasion capacity. It is concluded that electron and immunoelectron microscopic studies of myofibroblasts can reveal differential features in various diseases. An analysis of myofibroblasts cultured from diagnostic BAL fluid samples may represent a new kind of tool for diagnostics and research into lung diseases.

  15. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall

    2017-03-08

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  16. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  17. Rotational homogeneity in graphene grown on Au(111)

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph; Starodub, Elena; Walter, Andrew; Nie, Shu; Bostwick, Aaron; Bartelt, Norman; Thürmer, Konrad; Rotenberg, Eli; McCarty, Kevin; Dubon, Oscar

    2012-02-01

    The set of properties offered by the (111) surface of gold makes it intriguing as a platform on which to study the fundamental processes that underpin graphene growth on metals. Among these are the low carbon solubility and an interaction strength with graphene that is predicted to be smaller than most transition metals. We have investigated this synthesis process using low-energy electron microscopy and diffraction to monitor the sample surface in real time, and found that the resulting graphene film possesses a remarkable degree of rotational homogeneity. The dominant orientation of the graphene is aligned with the Au lattice, with a small minority rotated by 30 degrees. The origins of this in-plane structuring are puzzling because angularly resolved photo-emission spectroscopy and scanning tunneling microscopy experiments both suggest only a relatively small interaction between the two materials. Finally, the implications of these findings for the growth of high structural-quality graphene films are discussed.

  18. How Hedstrom files fail during clinical use? A retrieval study based on SEM, optical microscopy and micro-XCT analysis.

    PubMed

    Zinelis, Spiros; Al Jabbari, Youssef S

    2018-05-01

    This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).

  19. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  1. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  2. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  3. Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.

    PubMed

    Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C

    2006-01-01

    Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.

  4. Application of environmental scanning electron microscopy to determine biological surface structure.

    PubMed

    Kirk, S E; Skepper, J N; Donald, A M

    2009-02-01

    The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.

  5. Effect of intrinsic electronic defect states on the morphology and optoelectronic properties of Sn-rich SnS particles

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-05-01

    A small variation in the elemental composition of a chemical compound can cause the formation of additional electronic defect states in the material, thereby altering the overall microstructure and thus induced properties. In this work, we observed chemical constitution-induced modification in the morphology and optoelectronic properties of SnS. To this end, SnS particles were prepared using the solution chemical route and were characterized using a wide range of experimental techniques, such as x-ray diffractometry, field emission scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometry, and scanning tunneling spectroscopy (STS). All these SnS particles are found to be Sn-rich and p-type. However, distinctly different morphologies (i.e., flower-like and aggregated ones) are observed. These are then correlated with the electronic defect states, which are induced because of the presence of Sn vacancies, Sn antisites, and/or Sn interstitials. A combination of EDS, XPS, and STS data confirmed the presence of a higher concentration of Sn vacancies along with lower quantities of Sn interstitials and/or antisites in the SnS particles with flower-like morphologies giving rise to higher hole concentration, which subsequently leads to reduced transport, optical band gaps, and barrier heights.

  6. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  7. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo

    We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

  9. Mesoporous CdS via Network of Self-Assembled Nanocrystals: Synthesis, Characterization and Enhanced Photoconducting Property.

    PubMed

    Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim

    2018-01-01

    Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

  10. Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Ugurlu, Ozan; Jiang, Chao; Gleeson, Brian; Chumbley, L. Scott

    2007-02-01

    The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc.

  11. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    PubMed

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  12. Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2015-12-01

    Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06028a

  13. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  14. Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice.

    PubMed

    Huang, S K; Lee, K D; Hong, K; Friend, D S; Papahadjopoulos, D

    1992-10-01

    Using light and electron microscopy, we investigated the in vivo distribution of liposomes sterically stabilized by specific lipids which prolong their circulation in blood. Tissue distribution of sterically stabilized liposomes composed of distearoyl phosphatidylcholine:cholesterol:monosialoganglioside GM1 (10:5:1)-encapsulated 67Ga-Desferal indicates that more than 30% of liposomes still remain in the blood at 24 h after tail vein injection. Moreover, such liposomes accumulated in tumors (C-26 colon carcinoma cells implanted s.c.), reaching almost the same level of uptake as liver (approximately 20% injected dose/g tissue). The microscopic localization of liposomes labeled with encapsulated colloidal gold or rhodamine-labeled dextran coincided well with the tissue distribution. To evaluate circulation parameters, two sizes of gold-containing egg phosphatidylcholine:cholesterol:distearoyl phosphatidylethanolamine (derivatized at its amino position with a 1900 molecular weight segment of polyethylene glycol) (10:5:0.8) liposomes were injected. The plasma was examined by electron microscopy of negative-stained preparations at 0.5, 4, and 24 h after liposome injection. It was found that the ratio of small (less than 100 nm diameter) to large (greater than 100 nm) liposomes increased with time, indicating a much faster clearance of the larger liposomes. To detect the localization of liposomes in various tissues, appropriate samples were fixed 24 h after the injection of gold-containing liposomes (between 80 and 100 nm in diameter) composed of egg phosphatidylcholine:cholesterol:monosialoganglioside GM1 (10:5:1) or egg phosphatidylcholine:cholesterol:derivatized distearoyl phosphatidylethanolamine. The tissues examined for this study included normal liver, bone marrow, and implanted neoplasms. Silver-enhanced colloidal gold was found predominantly within Kupffer cells in the normal liver and within macrophages in the bone marrow. Rarely were any silver-enhanced gold particles detected in hepatocytes. In all preparations, electron microscopy revealed the presence of gold in endosomes and lysosomes of fixed sinusoidal lining macrophages in the liver and bone marrow. Peripheral to the implanted tumors, silver enhancement revealed gold in small blood vessels and focally beyond the vessel boundaries in extracellular spaces around tumor cells. Gold particles were not observed within the tumor cell cytoplasm. At the tumor border, nonenhanced gold was occasionally seen by electron microscopy in cells of the mononuclear phagocyte system. We obtained the same localization pattern as with silver enhancement by using an alternative aqueous content marker, rhodamine B isothiocyanate-dextran. We conclude that liposomes of specific composition, which have the ability to remain in circulation with a half-life of 12-24 h, are also able to transverse the endothelium of small blood vessels, including those in tumors, and extravasate into extracellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    PubMed

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-06

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  16. Plutonium weathering on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.E.; Bates, J.K.; Buck, E.C.

    1995-12-31

    Johnston Atoll was contaminated with transuranic elements, particularly plutonium, by atmospheric nuclear weapons tests and aborted nuclear devices. Initial cleanup operations and and an extensive soil remediation program were performed. However, many areas contained a low-level continuum of activity, and subsurface contamination has been detected. Discrete hot particles and contaminated soil were characterized to determine whether the spread of activity was caused by weathering. Analytical techniques included gamma spectrometry, alpha spectrometry, and inductively coupled plasma-mass spectrometry to determine transuranic elemental and isotopic composition. Ultrafiltration and small-particle handling techniques were employed to isolate individual particles. Optical microscopy, scanning electron microscopy, analyticalmore » transmission electron microscopy, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy were used to characterize individual particles. Analyses of the hot particles showed that they are aborted nuclear warhead fragments that been melted and weathered in the presence of water and CaCO{sub 3}. It was concluded that the formation of aqueous ionic (Pu/Am)-CO{sub 3} coordinated complexes, during environmental exposure to large volumes of rainwater and carbonate-satured seawater, enhanced the solubility of transuranic elements. The (Pu/Am)-CO{sub 3} complexes sorbed onto colloidal CaCO{sub 3} and coral soil surfaces as they were exposed to rain and seawater. This mechanism led to greater dispersal of plutonium and americium than would be expected by physical transport of discrete hot particles alone.« less

  17. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    PubMed Central

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  18. Demonstration of transmission high energy electron microscopy

    DOE PAGES

    Merrill, F. E.; Goett, J.; Gibbs, J. W.; ...

    2018-04-06

    High energy electrons have been used to investigate an extension of transmission electron microscopy. This technique, transmission high energy electron microscopy (THEEM), provides two additional capabilities to electron microscopy. First, high energy electrons are more penetrating than low energy electrons, and thus, they are able to image through thicker samples. Second, the accelerating mode of a radio-frequency linear accelerator provides fast exposures, down to 1 ps, which are ideal for flash radiography, making THEEM well suited to study the evolution of fast material processes under dynamic conditions. Lastly, initial investigations with static objects and during material processing have been performedmore » to investigate the capabilities of this technique.« less

  19. Introduction: A Symposium in Honor of Professor Sir John Meurig Thomas

    NASA Astrophysics Data System (ADS)

    Gai, P. L.; Saka, H.; Tomokiyo, Y.; Boyes, E. D.

    2002-02-01

    This issue is dedicated to Professor Sir John Meurig Thomas for his renowned contributions to electron microscopy in the chemical sciences. It is a collection of peer-reviewed leading articles in electron microscopy, based on the presentations at the Microscopy and Microanalysis (M&M) 2000 symposium, which was held to honor Professor Thomas's exceptional scientific leadership and wide-ranging fundamental contributions in the chemical applications of electron microscopy.The issue contains key papers by leading international researchers on the recent developments and applications of electron microscopy in the solid state and liquid state sciences. They include synthesis and characterization of silicon nitride nanorods, nanostructures of amorphous silica, electron microscopy studies of nanoscale structure and chemistry of Pt-Ru electrocatalysts of interest in direct methanol fuel cells, development of in situ wet-environmental transmission electron microscopy for the first nanoscale studies of dynamic liquid-catalyst reactions, strain analysis of silicon by finite element method and energy filtering convergent beam electron diffraction, applications of chemistry with electron microscopy, bismuth nanowires for applications in nanoelectronics technology, synthesis and characterization of quantum dots for superlattices and in situ electron microscopy at very high temperatures to study the motion of W5Si3 on [alpha][beta]-SiN3 substrates.We thank all the participants, including the invited speakers, contributors, and session chairs, who made the symposium successful. We also thank the authors and reviewers of the papers who worked assiduously towards the publication of this issue.We are very grateful to the Microscopy Society of America (MSA) for providing the opportunity to honor Professor Sir John Meurig Thomas. Organizational support from the MSA is also gratefully acknowledged.We thank Charles E. Lyman, editor in chief of Microscopy and Microanalysis for coordinating the publication of this issue and the entire journal staff for their efforts.

  20. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  1. Solvothermal synthesis and surface chemistry to control the size and morphology of nanoquartz

    DOE PAGES

    Sochalski-Kolbus, Lindsay M.; Wang, Hsiu-Wen; Rondinone, Adam Justin; ...

    2015-09-29

    In this paper, we report a solvothermal synthesis method that allows the crystallization of quartz to occur at a relatively low temperature of 300°C in the form of isolated nanosized euhedral crystals. Transmission electron microscopy (TEM) and small area electron diffraction (SAED) were used to confirm the phases present and their particle sizes, morphologies, and crystallinity of the products. In conclusion, the results show that it is possible to control the size and morphology of the nanoquartz from rough nanospheres to nanorods using fluoride, which templates the nanocrystals and moderates growth.

  2. Light and electron microscope study of the neurotropism of Powassan virus strain P-40.

    PubMed

    Isachkova, L M; Shestopalova, N M; Frolova, M P; Reingold, V N

    1979-01-01

    Brains of adult white mice inoculated with the P-40 strain of Powassan virus isolated in Primorsky Krai (U.S.S.R) from ticks were studied by light and electron microscopy. Accumulations of virus particles were found in neurons and their dendrites and axons, in glial cells, and in intercellular spaces. In the nerve cells, most prevalent were changes of the type of chromatolysis and formation of small vacuoles, associated with the alteration of the endoplasmic reticulum induced by virus morphogenesis. In virus-affected cells, multilayer dense membranes were found.

  3. Fine structure and synaptic organization of the mesencephalic trigeminal nucleus of the cat: a quantitative electron microscopic study.

    PubMed

    Lazarov, N

    1996-01-01

    The ultrastructure and synaptic organization of the mesencephalic trigeminal nucleus (MTN) were studied in adult cats by transmission electron microscopy and more precisely quantified with an automated image analysis system. Two subpopulations of MTN neurons were identified within the nucleus: large spherical or ovoid (pseudo)unipolar cells amounted to about 60% of the total population that resemble typical primary sensory neurons and small multipolar neurons (estimated 40%), some of which are possibly interneurons. By electron microscopy, most neurons in the MTN proved to have a rich cytoplasm in the perikaryon with abundant rough endoplasmic reticulum, a large number of free ribosomes and polysomes, also well-developed Golgi complex, and numerous mitochondria and neurofilaments indicating a high rate of protein synthesis and axonal transport in these cells. Three types of synaptic contacts were observed in the MTN: axodendritic, axosomatic and axospinic of both symmetric and asymmetric morphology. Most of them (almost 90%) were axodendritic and axodendritic spine. Approximately 70% of axon terminals contained small round vesicles (S-type boutons) whereas the other 30% belonged to the P-type boutons filled with a pleomorphic vesicle population. Axosomatic synapses were comparatively rare accounting for 10% of the total. About two-third of them were of S-type and almost 25% of the remaining third were F-type in which flat synaptic vesicles could be seen, and less than 10% were P- and G-types with granular vesicles.

  4. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup

    PubMed Central

    Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter

    2012-01-01

    In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963

  6. Nanoscale measurements of unoccupied band dispersion in few-layer graphene

    PubMed Central

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M.; van der Molen, Sense Jan

    2015-01-01

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only. PMID:26608712

  7. Visualizing buried silicon atoms at the Cd-Si(111)-7 ×7 interface with localized electrons

    NASA Astrophysics Data System (ADS)

    Tao, Min-Long; Xiao, Hua-Fang; Sun, Kai; Tu, Yu-Bing; Yuan, Hong-Kuan; Xiong, Zu-Hong; Wang, Jun-Zhong; Xue, Qi-Kun

    2017-09-01

    We report the atomic-scale imaging of the buried Cd-Si(111)-7 ×7 interface with a low temperature scanning tunneling microscopy (STM). The Cd(0001) films grown on Si(111)-7 ×7 reveal the electronic growth mode, and manifest a series of quantum-well states. In the low-bias STM images, not only the 7 ×7 reconstruction but also individual Si adatoms buried by thick Cd islands are clearly visible. The two successive layers of Cd islands exhibit the distinct contrasts due to the quantum size effect. Moreover, we found a small gap appeared at Fermi level owing to the Anderson localization induced by interface scattering. The perfect transparency of Cd films can be attributed to the anisotropic electron motion, i.e., lateral electron localization and transverse motion like free-electron.

  8. Effect of Scandium on the Interaction of Concurrent Precipitation and Recrystallization in Commercial AA3003 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Tu, Yiyou; Qian, Huan; Zhou, Xuefeng; Jiang, Jianqing

    2014-04-01

    In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).

  9. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  10. The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin.

    PubMed

    Zhang, Hui; Zhang, Hui; Tang, Longcheng; Liu, Gang; Zhang, Daijun; Zhou, Lingyun; Zhang, Zhong

    2010-11-01

    In the past decade extensive studies have been focused on mechanical properties of inorganic nanofiller/epoxy matrices. In this work we systematically investigated the mechanical properties of nano-alumina-filled E-54/4, 4-diaminodiphenylsulphone (DDS) epoxy resins, which were prepared via combining high-speed mixing with three-roll milling. Homogeneous dispersion of nano-alumina with small agglomerates was obtained in epoxy resin, which was confirmed using transmission electron microscopy (TEM). The static/dynamic modulus, tensile strength and fracture toughness of the nanocomposites were found to be simultaneously enhanced with addition of nano-alumina fillers. About 50% and 80% increases of K(IC) and G(IC) were achieved in nanocomposite filled with 18.4 wt% alumina nanofillers, as compared to that of the unfilled epoxy resin. Furthermore, the corresponding fracture surfaces of tensile and compact tension samples were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques in order to identify the relevant fracture mechanisms involved. Various fracture features including cavities/debonding of nanofiller, local plastic deformation as well as crack pinning/deflection were found to be operative in the presence of nano-alumina fillers.

  11. Acetic acid effects on enhancement of growth rate and reduction of amorphous carbon deposition on CNT arrays along a growth window in a floating catalyst reactor

    NASA Astrophysics Data System (ADS)

    Maghrebi, Morteza; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Sane, Ali; Rahimi, Mohsen; Shirazi, Yaser; Tsakadze, Zviad; Mhaisalkar, Subodh

    2009-11-01

    The mm-long carbon nanotube (CNT) arrays were grown in a floating catalyst reactor, using xylene-ferrocene and a small amount of acetic acid as the feed. The CNT arrays deposited on a quartz substrate at several positions along the reactor were extensively characterized using Raman spectroscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and optical microscopy. Various characterization methods consistently reveal that the acetic acid additive to the feed alleviates deposition of amorphous carbon layer, which gradually thickens CNTs along the reactor. The acetic acid also resulted in a higher growth rate along the so-called growth window, where CNT arrays are deposited on the quartz substrate. High-performance liquid chromatography of extracted byproducts (PAHs) confirmed the presence of some polycyclic aromatic hydrocarbons. The solid weight of PAHs decreased upon addition of ferrocene as the catalyst precursor, as well as of acetic acid to xylene feed. The results suggest that primary light products of xylene pyrolysis can be competitive reactants for both catalytic and subsequent pyrolytic reactions. They may also be more efficient feeds for CNT growth than xylene itself.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  13. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  14. Ultrafast studies of coexisting electronic order in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Hinton, James; Thewalt, Eric; Alpichshev, Zhanybek; Sternbach, Aaron; McLeod, Alex; Ji, L.; Veit, Mike; Dorrow, Chelsey; Koralek, Jake; Xhao, Xudong; Barisic, Neven; Kemper, Alexander; Gedik, Nuh; Greven, Martin; Basov, Dimitri; Orenstein, Joe

    The cuprate family of high temperature superconductors displays a variety of electronic phases which emerge when charge carriers are added to the antiferromagnetic parent compound. These electronic phases are characterized by subtle differences in the low energy electronic excitations. Ultrafast time-resolved reflectivity (TRR) provides an ideal tool for investigating the cuprate phase diagram, as small changes in the electronic structure can produce significant contrast in the non-equilibrium reflectivity. Here we present TRR measurements of cuprate superconductors, focusing on the model single-layer cuprate HgBa2CuO4+δ. We observe a cusp-like feature in the quasiparticle lifetime near the superconducting transition temperature Tc. This feature can be understood using a model of coherently-mixed charge-density wave and superconducting pairing. We propose extending this technique to the nanoscale using ultrafast scattering scanning near-field microscopy (u-SNOM). This will allow us to explore how these electronic phases coexist and compete in real-space.

  15. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  16. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  17. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  18. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  19. Effects of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics Evaluated by Modified Small Punch Tests

    NASA Astrophysics Data System (ADS)

    Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan

    2012-01-01

    Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.

  20. Investigation of point and extended defects in electron irradiated silicon—Dependence on the particle energy

    NASA Astrophysics Data System (ADS)

    Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.

    2015-04-01

    This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.

  1. Novel insights into pericarp, protein body globoids of aleurone layer, starchy granules of three cereals gained using atomic force microscopy and environmental scanning electronic microscopy

    PubMed Central

    Antonini, Elena; Zara, Carolina; Valentini, Laura; Gobbi, Pietro; Menotta, Michele

    2018-01-01

    In this study, we applied Environmental Scanning Electron Microscopy-Energy Dispersive Spectroscopy (ESEM-EDS) and Atomic Force Microscopy (AFM) analysis to three different cereal caryopses: barley, oat and einkorn wheat. The morphological structures, chemical elemental composition and surface characteristics of the three cereals were described. Regarding the morphology, barley showed the thickest pericarp, providing a strong barrier to digestion and absorption of nutrients. The aleurone layer of each cereal type contained protein body globoids within its cells. Large type-A and small type-B starchy granules were revealed in the endosperm of barley and einkorn wheat, whereas irregular starchy granules were found in oats. The starchy granule elemental composition, detected by ESEM-EDS, was rather homogenous in the three cereals, whereas the pericarp and protein body globoids showed heterogeneity. In the protein body globoids, oats showed higher P and K concentrations than barley and einkorn wheat. Regarding the topographic profiles, detected by AFM, einkorn wheat starchy granules showed a surface profile that differed significantly from that of oats and barley, which were quite similar to one another. The present work provides insights into the morphological and chemical makeup of the three grains shedding light on the higher bio-accessibility of einkorn wheat nutrients compared to barley and oats, providing important suggestions for human nutrition and technological standpoints. PMID:29569870

  2. Normal and reversed supramolecular chirality of insulin fibrils probed by vibrational circular dichroism at the protofilament level of fibril structure.

    PubMed

    Kurouski, Dmitry; Dukor, Rina K; Lu, Xuefang; Nafie, Laurence A; Lednev, Igor K

    2012-08-08

    Fibrils are β-sheet-rich aggregates that are generally composed of several protofibrils and may adopt variable morphologies, such as twisted ribbons or flat-like sheets. This polymorphism is observed for many different amyloid associated proteins and polypeptides. In a previous study we proposed the existence of another level of amyloid polymorphism, namely, that associated with fibril supramolecular chirality. Two chiral polymorphs of insulin, which can be controllably grown by means of small pH variations, exhibit opposite signs of vibrational circular dichroism (VCD) spectra. Herein, using atomic force microscopy (AFM) and scanning electron microscopy (SEM), we demonstrate that indeed VCD supramolecular chirality is correlated not only by the apparent fibril handedness but also by the sense of supramolecular chirality from a deeper level of chiral organization at the protofilament level of fibril structure. Our microscopic examination indicates that normal VCD fibrils have a left-handed twist, whereas reversed VCD fibrils are flat-like aggregates with no obvious helical twist as imaged by atomic force microscopy or scanning electron microscopy. A scheme is proposed consistent with observed data that features a dynamic equilibrium controlled by pH at the protofilament level between left- and right-twist fibril structures with distinctly different aggregation pathways for left- and right-twisted protofilaments. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Novel insights into pericarp, protein body globoids of aleurone layer, starchy granules of three cereals gained using atomic force microscopy and environmental scanning electronic microscopy.

    PubMed

    Antonini, Elena; Zara, Carolina; Valentini, Laura; Gobbi, Pietro; Ninfali, Paolino; Menotta, Michele

    2018-02-05

    In this study, we applied Environmental Scanning Electron Microscopy-Energy Dispersive Spectroscopy (ESEM-EDS) and Atomic Force Microscopy (AFM) analysis to three different cereal caryopses: barley, oat and einkorn wheat. The morphological structures, chemical elemental composition and surface characteristics of the three cereals were described. Regarding the morphology, barley showed the thickest pericarp, providing a strong barrier digestion and absorption of nutrients. The aleurone layer of each cereal type contained protein body globoids within its cells. Large type-A and small type-B starchy granules were revealed in the endosperm of barley and einkorn wheat, whereas irregular starchy granules were found in oats. The starchy granule elemental composition, detected by ESEM-EDS, was rather homogenous in the three cereals, whereas the pericarp and protein body globoids showed heterogeneity. In the protein body globoids, oats showed higher P and K concentrations than barley and einkorn wheat. Regarding the topographic profiles, detected by AFM, einkorn wheat starchy granules showed a surface profile that differed significantly from that of oats and barley, which were quite similar to one another. The present work provides insights into the morphological and chemical makeup of the three grains shedding light on the higher bio-accessibility of einkorn wheat nutrients compared to barley and oats, providing important suggestions for human nutrition and technological standpoints.

  4. Crystallography of decahedral and icosahedral particles. I - Geometry of twinning

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.

    1979-01-01

    The crystal structure of the tetrahedral twins in multiply-twinned particles with decahedral and icosahedral point group symmetries has been examined and correlated with the face-centered cubic structure. Details on the crystal structure as well as the geometrical relationships among twins in each particle are presented. These crystallographic facts serve as a basis for the interpretation of small particle images obtained with advanced methods of transmission electron microscopy.

  5. Multifunctional Metallosupramolecular Materials

    DTIC Science & Technology

    2011-02-28

    supramolecular polymers based on 16 and Zn(NTf2)2 using small- angle X - ray scattering (SAXS) and transmission electron microscopy (TEM), carried out by...The SAXS data (Figure 13a) show multiple strong Bragg diffraction maxima at integer multiples of the scattering vector of the primary diffraction ...a minor amount of residual double bonds in the poly(ethylene-co-butylene) core. The metallopolymers 16·[Zn(NTf2)2] x exhibit similar traces, but do

  6. A Freeze Substitution Fixation-Based Gold Enlarging Technique for EM Studies of Endocytosed Nanogold-Labeled Molecules

    PubMed Central

    He, Wanzhong; Kivork, Christine; Machinani, Suman; Morphew, Mary K.; Gail, Anna M.; Tesar, Devin B.; Tiangco, Noreen E.; McIntosh, J. Richard; Bjorkman, Pamela J.

    2007-01-01

    We have developed methods to locate individual ligands that can be used for electron microscopy studies of dynamic events during endocytosis and subsequent intracellular trafficking. The methods are based on enlargement of 1.4 nm Nanogold attached to an endocytosed ligand. Nanogold, a small label that does not induce misdirection of ligand-receptor complexes, is ideal for labeling ligands endocytosed by live cells, but is too small to be routinely located in cells by electron microscopy. Traditional pre-embedding enhancement protocols to enlarge Nanogold are not compatible with high pressure freezing/freeze substitution fixation (HPF/FSF), the most accurate method to preserve ultrastructure and dynamic events during trafficking. We have developed an improved enhancement procedure for chemically-fixed samples that reduced autonucleation, and a new pre-embedding gold-enlarging technique for HPF/FSF samples that preserved contrast and ultrastructure and can be used for high-resolution tomography. We evaluated our methods using labeled Fc as a ligand for the neonatal Fc receptor. Attachment of Nanogold to Fc did not interfere with receptor binding or uptake, and gold-labeled Fc could be specifically enlarged to allow identification in 2D projections and in tomograms. These methods should be broadly applicable to many endocytosis and transcytosis studies. PMID:17723309

  7. ELECTRON MICROSCOPY OF ABSORPTION OF TRACER MATERIALS BY TOAD URINARY BLADDER EPITHELIUM

    PubMed Central

    Choi, Jae Kwon

    1965-01-01

    The absorption of Thorotrast and saccharated iron oxide by the epithelium of the toad urinary bladder was studied by electron microscopy. Whether the toads were hydrated, dehydrated, or given Pitressin, no significant differences in transport of colloidal particles by epithelial cells were observed. This implies that these physiological factors had little effect on the transport of the tracer particles. Tracer particles were encountered in three types of epithelial cells which line the bladder lumen, but most frequently in the mitochondria-rich cells. Tracer materials were incorporated into the cytoplasm of epithelial cells after being adsorbed to the coating layer covering the luminal surface of the cells. In the intermediate stage (1 to 3 hours after introducing tracer) particles were present in small vesicles, tubules, and multivesicular bodies. In the later stages (up to 65 hours), the particles were more commonly seen to be densely packed within large membrane-bounded bodies which were often found near the Golgi region. These large bodies probably were formed by the fusion of small vesicles. Irrespective of the stages of absorption, no particles were found in the intercellular spaces or in the submucosa. Particles apparently did not penetrate the intercellular spaces of the epithelium beyond the level of the tight junction. PMID:14287173

  8. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  9. The use of small angle X-ray scattering (SAXS) for the characterisation of lustre surfaces in Renaissance majolica

    NASA Astrophysics Data System (ADS)

    Fermo, P.; Cariati, F.; Cipriani, C.; Canetti, M.; Padeletti, G.; Brunetti, B.; Sgamellotti, A.

    2002-01-01

    In this work some Renaissance lustre decorated ceramics have been examined. Our attention was directed to lustre which is a thin decorative metallic film applied on the surfaces of previously glazed ancient pottery. Some 16th century lustre ceramics shards from Deruta, Umbria (Italy) have been analysed by small angle X-ray scattering (SAXS) in order to characterise the dimension of the metal nanocrystals forming the thin lustre layer. This technique appeared to be a powerful tool to characterise lustre films nanostructure and may be successfully used for this purpose together with transmission electron microscopy (TEM). Furthermore, SAXS measurements are extremely suitable for the determination of polydispersity and average interparticle distance. The lustre surfaces have been also analysed by scanning electron microscopy plus X-ray energy dispersive spectrometry (SEM-EDX) in order to identify the metals present (silver, copper or both of them) and to establish copper/silver ratios. From the comparison between SAXS results and compositional data, it was possible to conclude that copper particles are smaller than the silver ones. We have evidenced how the microtexture as well as the chemical composition of the lustre layers are responsible for the gold or red colour typical of the lustre films.

  10. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Note: Switching crosstalk on and off in Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polak, Leo, E-mail: l.polak@vu.nl; Wijngaarden, Rinke J.; Man, Sven de

    2014-04-15

    In Kelvin Probe Force Microscopy (KPFM) electronic crosstalk can occur between the excitation signal and probe deflection signal. Here, we demonstrate how a small modification to our commercial instrument enables us to literally switch the crosstalk on and off. We study in detail the effect of crosstalk on open-loop KPFM and compare with closed-loop KPFM. We measure the pure crosstalk signal and verify that we can correct for it in the data-processing required for open-loop KPFM. We also demonstrate that open-loop KPFM results are independent of the frequency and amplitude of the excitation signal, provided that the influence of crosstalkmore » has been eliminated.« less

  12. Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: Role of defects and dynamics in the mechanical switching of atoms

    NASA Astrophysics Data System (ADS)

    Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.

    2011-08-01

    We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.

  13. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    PubMed Central

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-01-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523

  14. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  15. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells.

    PubMed

    Toyooka, Kiminori; Sato, Mayuko; Kutsuna, Natsumaro; Higaki, Takumi; Sawaki, Fumie; Wakazaki, Mayumi; Goto, Yumi; Hasezawa, Seiichiro; Nagata, Noriko; Matsuoka, Ken

    2014-09-01

    Rapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified. In this study, we examined these changes at the ultrastructural level in tobacco Bright yellow 2 (BY-2) cells during the log and stationary phases of growth. We analyzed images of the BY-2 cells prepared by the high-pressure freezing/freeze substitution technique with the aid of an auto-acquisition transmission electron microscope system. We quantified the distribution of secretory and endosomal compartments in longitudinal sections of whole cells by using wide-range gigapixel-class images obtained by merging thousands of transmission electron micrographs. During the log phase, all Golgi stacks were composed of several thick cisternae. Approximately 20 vesicle clusters (VCs), including the trans-Golgi network and secretory vesicle cluster, were observed throughout the cell. In the stationary-phase cells, Golgi stacks were thin with small cisternae, and only a few VCs were observed. Nearly the same number of multivesicular body and small high-density vesicles were observed in both the stationary and log phases. Results from electron microscopy and live fluorescence imaging indicate that the morphology and distribution of secretory-related compartments dramatically change when cells transition from log to stationary phases of growth. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  18. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.

    PubMed

    Schröter, M-A; Holschneider, M; Sturm, H

    2012-11-02

    The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.

  20. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  1. Microstructure of milk

    USDA-ARS?s Scientific Manuscript database

    The fat and protein in milk may be examined by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy, and any bacteria present may be viewed by light microscopy. The fat exists as globules, the bulk of the protein is in the form of casein micelles, a...

  2. On mapping subangstrom electron clouds with force microscopy.

    PubMed

    Wright, C Alan; Solares, Santiago D

    2011-11-09

    In 2004 Hembacher et al. (Science 2004, 305, 380-383) reported simultaneous higher-harmonics atomic force mocroscopy (AFM)/scanning tunneling microscopy (STM) images acquired while scanning a graphite surface with a tungsten tip. They interpreted the observed subatomic features in the AFM images as the signature of lobes of increased electron density at the tungsten tip apex. Although these intriguing images have stirred controversy, an in-depth theoretical feasibility study has not yet been produced. Here we report on the development of a method for simulating higher harmonics AFM images and its application to the same system. Our calculations suggest that four lobes of increased electron density are expected to be present at a W(001) tip apex atom and that the corresponding higher harmonics AFM images of graphite can exhibit 4-fold symmetry features. Despite these promising results, open questions remain since the calculated amplitudes of the higher harmonics generated by the short-range forces are on the order of hundredths of picometers, leading to very small corrugations in the theoretical images. Additionally, the complex, intermittent nature of the tip-sample interaction, which causes constant readjustment of the tip and sample orbitals as the tip approaches and retracts from the surface, prevents a direct quantitative connection between the electron density and the AFM image features.

  3. Controlled microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography

    PubMed Central

    Triffo, W. J.; Palsdottir, H.; McDonald, K. L.; Lee, J. K.; Inman, J. L.; Bissell, M. J.; Raphael, R. M.; Auer, M.

    2009-01-01

    Summary High-pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding and final orientation for sectioning and subsequent transmission electron microscopy. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 µm, the tubing protects small and fragile samples within the thickness constraints of high-pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography. PMID:18445158

  4. Combining Electronic and Geometric Effects of ZnO-Promoted Pt Nanocatalysts for Aqueous Phase Reforming of 1-Propanol

    DOE PAGES

    Lei, Yu; Lee, Sungsik; Low, Ke -Bin; ...

    2016-04-26

    Compared with Pt/Al 2O 3, sintering-resistant Pt nanoparticle catalysts promoted by ZnO significantly improved the reactivity and selectivity toward hydrogen formation in the aqueous phase reforming (APR) of 1-propanol. The improved performance was found to benefit from both the electronic and geometric effects of ZnO thin films. In situ small-angle X-ray scattering and scanning transmission electron microscopy showed that ZnO-promoted Pt possessed promising thermal stability under APR reaction conditions. In situ X-ray absorption spectroscopy showed clear charge transfer between ZnO and Pt nanoparticles. The improved reactivity and selectivity seemed to benefit from having both Pt-ZnO and Pt-Al 2O 3 interfaces.

  5. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  6. Towards native-state imaging in biological context in the electron microscope

    PubMed Central

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  7. An overview of state-of-the-art image restoration in electron microscopy.

    PubMed

    Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W

    2018-06-08

    In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  8. Structural and ultrastructural study of rat liver influenced by electromagnetic radiation.

    PubMed

    Holovská, K; Almášiová, V; Cigánková, V; Beňová, K; Račeková, E; Martončíková, M

    2015-01-01

    Mobile communication systems are undoubtedly an environmental source of electromagnetic radiation (EMR). There is an increasing concern regarding the interactions of EMR with the humans. The aim of this study was to examine the effects of EMR on Wistar rat liver. Mature rats were exposed to electromagnetic field of frequency 2.45 GHz and mean power density of 2.8 mW/cm2 for 3 h/d for 3 wk. Samples of the liver were obtained 3 h after the last irradiation and processed histologically for light and transmission electron microscopy. Data demonstrated the presence of moderate hyperemia, dilatation of liver sinusoids, and small inflammatory foci in the center of liver lobules. Structure of hepatocytes was not altered and all described changes were classified as moderate. Electron microscopy of hepatocytes revealed vesicles of different sizes and shapes, lipid droplets, and proliferation of smooth endoplasmic reticulum. Occasionally necrotizing hepatocytes were observed. Our observations demonstrate that EMR exposure produced adverse effects on rat liver.

  9. Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis).

    PubMed

    Yubuki, Naoji; Leander, Brian S; Silberman, Jeffrey D

    2010-04-01

    A novel free free-living phagotrophic flagellate, Rictus lutensis gen. et sp. nov., with two heterodynamic flagella, a permanent cytostome and a cytopharynx was isolated from muddy, low oxygen coastal sediments in Cape Cod, MA, USA. We cultivated and characterized this flagellate with transmission electron microscopy, scanning electron microscopy and molecular phylogenetic analyses inferred from small subunit (SSU) rDNA sequences. These data demonstrated that this organism has the key ultrastructural characters of the Bicosoecida, including similar transitional zones and a similar overall flagellar apparatus consisting of an x fiber and an L-shape microtubular root 2 involved in food capture. Although the molecular phylogenetic analyses were concordant with the ultrastructural data in placing R. lutensis with the bicosoecid clade, the internal position of this relatively divergent sequence within the clade was not resolved. Therefore, we interpret R. lutensis gen. et sp. nov. as a novel bicosoecid incertae sedis. Copyright 2009 Elsevier GmbH. All rights reserved.

  10. Electron microscopy of vesicular-arbuscular mycorrhizae of yellow poplar. III Host-endophyte interactions during arbuscular development.

    PubMed

    Kinden, D A; Brown, M F

    1975-12-01

    Scanning- and transmission-electron microscopy were used to examine developing and mature functional arbuscules in mycorrhizal roots of yellow poplar. Arbuscules developed from intracellular hyphae which branched repeatedly upon penetration into the host cells. Intermediate and late stages of developemnt were characterized by the production of numerous, short, bifurcate hyphae throughout the arbuscule. Mature arbuscules exhibited a coralloid morphology which resulted in a considerable increase in the surface area of the endophyte exposed within the host cells. Distinctive ultrastructural features of arbuscular hyphae included osmiophilic walls, nuclei, abundant cytoplasm, glycogen, and numerous small vacuoles. All arbuscular components were enclosed by host wall material and cytoplasm during development and at maturity. In infected cells, host nuclei were enlarged and the cytoplasm associated with the arbuscular branches typically contained abundant mitochondria, endoplasmic reticulum, and proplastids. Ultrastructural observations suggested that nutrient transfer may be predominantly directed toward the fungal endophyte during arbuscular development and while mature arbuscules remain functional.

  11. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  12. Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms

    DOE PAGES

    Chernyy, Sergey; Kirkensgaard, Jacob Judas Kain; Mahalik, Jyoti P.; ...

    2018-02-02

    DIM miktoarm star copolymers, composed of polydimethylsiloxane [D], poly(1,4-isoprene) [I], and poly(methyl methacrylate) [M], were synthesized using a newly developed linking methodology with 4-allyl-1,1-diphenylethylene as a linking agent. The equilibrium bulk morphologies of the DIM stars were found to range from [6.6.6] tiling patterns to alternating lamellar and alternating cylindrical morphologies, as determined experimentally by small-angle X-ray scattering and transmission electron microscopy and confirmed by dissipative particle dynamics and self-consistent field theory based arguments. The thin film morphologies, which differ from those found in the bulk, were identified by scanning electron microscopy, coupled with oxygen plasma etching. Finally, square arraysmore » of the PDMS nanodots and empty core cylinders were formed on silica after oxygen plasma removal of the poly(1,4-isoprene) and poly(methyl methacrylate) which generated nanostructured substrates decorated with these features readily observable.« less

  13. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  14. Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15

    NASA Astrophysics Data System (ADS)

    Xu, Yun-qiang; Zhou, Guo-wei; Wu, Cui-cui; Li, Tian-duo; Song, Hong-bin

    2011-05-01

    Ordered mesoporous SBA-15 was prepared by hydrothermal process and was functionalized with(3-aminopropyl) triethoxysilane (APTES) by post-synthesis-grafting method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS), small-angle X-ray powder diffraction (SAXRD), N 2 adsorption-desorption and Fourier transform infrared spectroscopy (FT-IR). The results indicated that SBA-15 had a 2-dimensional hexagonal p6 mm mesoscopic structure and the mesoscopic structure was remained after the functionalization procedure. The activities of porcine pancreatic lipase (PPL) immobilized in SBA-15 by physical adsorption and in APTES functionalized SBA-15 by chemical adsorption were studied by hydrolysis of triacetin. Chemically adsorbed PPL showed higher loading amount and catalytic activity comparing with physically adsorbed PPL. The stability of immobilized PPL against thermal and pH of reaction medium was significantly improved. Recycling experiments showed that chemically adsorbed PPL exhibited better reusability than physically adsorbed PPL.

  15. Dual-labeling method for electron microscopy to characterize synaptic connectivity using genetically encoded fluorescent reporters in Drosophila

    PubMed Central

    Tanaka, Nobuaki K.; Dye, Louis; Stopfer, Mark

    2010-01-01

    Light and electron microscopy (LM and EM) both offer important advantages for characterizing neuronal circuitry in intact brains: LM can reveal the general patterns neurons trace between brain areas, and EM can confirm synaptic connections between identified neurons within a small area. In a few species, genetic labeling with fluorescent proteins has been used with LM to visualize many kinds of neurons and to analyze their morphologies and projection patterns. However, combining these large-scale patterns with the fine detail available in EM analysis has been a technical challenge. To analyze the synaptic connectivity of neurons expressing fluorescent markers with EM, we developed a dual-labeling method for use with pre-embedded brains. In Drosophila expressing genetic labels and also injected with markers we visualized synaptic connections among two populations of neurons in the AL, one of which has been shown to mediate a specific function, odor evoked neural oscillation. PMID:21074556

  16. Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyy, Sergey; Kirkensgaard, Jacob Judas Kain; Mahalik, Jyoti P.

    DIM miktoarm star copolymers, composed of polydimethylsiloxane [D], poly(1,4-isoprene) [I], and poly(methyl methacrylate) [M], were synthesized using a newly developed linking methodology with 4-allyl-1,1-diphenylethylene as a linking agent. The equilibrium bulk morphologies of the DIM stars were found to range from [6.6.6] tiling patterns to alternating lamellar and alternating cylindrical morphologies, as determined experimentally by small-angle X-ray scattering and transmission electron microscopy and confirmed by dissipative particle dynamics and self-consistent field theory based arguments. The thin film morphologies, which differ from those found in the bulk, were identified by scanning electron microscopy, coupled with oxygen plasma etching. Finally, square arraysmore » of the PDMS nanodots and empty core cylinders were formed on silica after oxygen plasma removal of the poly(1,4-isoprene) and poly(methyl methacrylate) which generated nanostructured substrates decorated with these features readily observable.« less

  17. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  18. Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.

    PubMed

    Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt

    2017-02-07

    Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  20. Challenges in Resolution for IC Failure Analysis

    NASA Astrophysics Data System (ADS)

    Martinez, Nick

    1999-10-01

    Resolution is becoming more and more of a challenge in the world of Failure Analysis in integrated circuits. This is a result of the ongoing size reduction in microelectronics. Determining the cause of a failure depends upon being able to find the responsible defect. The time it takes to locate a given defect is extremely important so that proper corrective actions can be taken. The limits of current microscopy tools are being pushed. With sub-micron feature sizes and even smaller killing defects, optical microscopes are becoming obsolete. With scanning electron microscopy (SEM), the resolution is high but the voltage involved can make these small defects transparent due to the large mean-free path of incident electrons. In this presentation, I will give an overview of the use of inspection methods in Failure Analysis and show example studies of my work as an Intern student at Texas Instruments. 1. Work at Texas Instruments, Stafford, TX, was supported by TI. 2. Work at Texas Tech University, was supported by NSF Grant DMR9705498.

  1. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  2. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  3. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy

    PubMed Central

    Cardona, Albert; Saalfeld, Stephan; Preibisch, Stephan; Schmid, Benjamin; Cheng, Anchi; Pulokas, Jim; Tomancak, Pavel; Hartenstein, Volker

    2010-01-01

    The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile. PMID:20957184

  4. Experimental Hypervelocity Dust Impact in Olivine: FIB/TEM Characterization of Micron-Scale Craters with Comparison to Natural and Laser-Simulated Small-Scale Impact Effects

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team

    2017-01-01

    The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.

  5. Comparative analysis of Trichuris muris surface using conventional, low vacuum, environmental and field emission scanning electron microscopy.

    PubMed

    Lopes Torres, Eduardo José; de Souza, Wanderley; Miranda, Kildare

    2013-09-23

    The whipworm of the genus Trichuris Roederer, 1791, is a nematode of worldwide distribution and comprises species that parasitize humans and other mammals. Infections caused by Trichuris spp. in mammals can lead to various intestinal diseases of human and veterinary interest. The morphology of Trichuris spp. and other helminths has been mostly studied using conventional scanning electron microscopy of chemically fixed, dried and metal-coated specimens, although this kind of preparation has been shown to introduce a variety of artifacts such as sample shrinking, loss of secreted products and/or hiding of small structures due to sample coating. Low vacuum (LVSEM) and environmental scanning electron microscopy (ESEM) have been applied to a variety of insulator samples, also used in the visualization of hydrated and/or live specimens in their native state. In the present work, we used LVSEM and ESEM to analyze the surface of T. muris and analyze its interaction with the host tissue using freshly fixed or unfixed hydrated samples. Analysis of hydrated samples showed a set of new features on the surface of the parasite and the host tissue, including the presence of the secretory products of the bacillary glands on the surface of the parasite, and the presence of mucous material and eggs on the intestinal surface. Field emission scanning electron microscopy (FESEM) was also applied to reveal the detailed structure of the glandular chambers in fixed, dried and metal coated samples. Taken together, the results show that analysis of hydrated samples may provide new insights in the structural organization of the surface of helminth parasites and its interaction with the infected tissue, suggesting that the application of alternative SEM techniques may open new perspectives for analysis in taxonomy, morphology and host-parasite interaction fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  7. Single Electron Tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, Steven T.

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors thatmore » add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have verified that clusters of down to one, two, and three metal atoms can be identified with single-electron techniques. We have also, extended the regime of single-electron phenomenology through the observation of single-electron effects in metal droplets in the high-conductance regime.« less

  8. In-line three-dimensional holography of nanocrystalline objects at atomic resolution

    PubMed Central

    Chen, F.-R.; Van Dyck, D.; Kisielowski, C.

    2016-01-01

    Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances. PMID:26887849

  9. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Field electron emission from diamond and related films synthesized by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Xianfeng

    The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.

  11. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  12. Degradation product analysis from the photocatalytic oxidation/reduction of 2,4-dichlorophenol in the presence of mesoporous silica encapsulated TiO2 particles and TiO2 dispersions (presentation)

    EPA Science Inventory

    Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...

  13. Morphology and Dynamic Mechanical Properties of Diglycidyl Ether of Bisphenol-A Toughened with Carboxyl-Terminated Butadiene-Acrylonitrile

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Chung, S. Y.; Fedors, R. F.; Moacanin, J.; Gupta, A.

    1984-01-01

    The fracture toughness of an incorporation of a carboxyl-terminated butadiene acrylonitrile (CTBN) elastomer in diglycidyl ether bisphenol A (DGEBA) resin was investigated. Measurements of dynamic mechanical properties, scanning electron microscopy and small-angle X-ray scattering were carried out to characterize the state of cure, morphology and particle size and size distribution of the neat resins and their graphite fiber reinforced composites.

  14. Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.

    2011-01-01

    An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.

  15. Chemistry Viewed through the Eyes of High-Resolution Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael; And Others

    1981-01-01

    This special report, prepared by several chemists working in the field of electron microscopy, provides information regarding the most recent developments in transmission and scanning electron microscopy that have chemical significance. (CS)

  16. [Small-cell anaplastic neuroendocrine carcinoma of the rectum].

    PubMed

    Molas, G; Bougis-de-Brux, M A; Potet, F

    1987-12-01

    A pediculed tumor of the rectum was discovered in a 63 years old man. Within the tumor adenomatous dysplastic proliferation was associated with a neuroendocrine small-cell anaplastic carcinoma. The neuroendocrine nature of the tumor was suspected on conventional optic microscopy and confirmed by a positive Grimelius technique. Specific typical granules were also found on electron microscopy. Immunohistochemical techniques using neurospecific enolase were also positive. Carcinomatous invasion was limited to the submucosa, but the surgical specimen showed that one lymph node was metastatic. Three months later, hepatic metastasis was suspected on physical examination and the patient died of hepatic failure ten months after the discovery of the tumor. Twenty-two similar cases were found in the literature: of these five cases were associated with benign adenomatous lesions. In all cases the patients died of early metastatic diffusion. This tumor raises the problems of diagnosis, terminology, classification and therapy: only aggressive chemotherapy, similar to that applied to the same type of carcinoma in the respiratory tract might improve prognosis.

  17. Coinfection of a bearded dragon, Pogona vitticeps, with adenovirus- and dependovirus-like viruses.

    PubMed

    Jacobson, E R; Kopit, W; Kennedy, F A; Funk, R S

    1996-05-01

    Four neonate bearded dragons, Pogona vitticeps, from two collections became ill and died. Multiple tissues were collected and processed for light microscopy. In hematoxylin and eosin-stained sections of liver of one lizard, numerous basophilic intranuclear inclusions were observed. In three lizards, intranuclear inclusions were primarily seen within enterocytes in the small intestine. A portion of paraffin-embedded liver of one lizard and small intestine of a second lizard were removed, deparaffinized, and examined by electron microscopy. For the most part, inclusions in the liver consisted of nonenveloped viral particles 60-66 nm in diameter. Smaller nonenveloped virions 15-17 nm in diameter were occasionally seen in association with these particles. In the intestine, inclusions consisted only of 60-70 nm particles. Based on morphology and location, the larger particles were consistent with an adenovirus. Based on size and presence within nuclei of host cells coinfected with the adenovirus-like virus, the smaller viral agent was consistent with members of the genus Dependovirus.

  18. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  19. Writing silica structures in liquid with scanning transmission electron microscopy.

    PubMed

    van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M

    2015-02-04

    Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE PAGES

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.; ...

    2018-05-01

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  1. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  2. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy.

    PubMed

    Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo

    2017-01-01

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga 2 O 3 and SrTiO 3 , we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Kinetic precipitation of solution-phase polyoxomolybdate followed by transmission electron microscopy: a window to solution-phase nanostructure.

    PubMed

    Zhu, Yan; Cammers-Goodwin, Arthur; Zhao, Bin; Dozier, Alan; Dickey, Elizabeth C

    2004-05-17

    This study aimed to elucidate the structural nature of the polydisperse, nanoscopic components in the solution and the solid states of partially reduced polyoxomolybdate derived from the [Mo132] keplerate, [(Mo)Mo5]12-[Mo2 acetate]30. Designer tripodal hexamine-tris-crown ethers and nanoscopic molybdate coprecipitated from aqueous solution. These microcrystalline solids distributed particle radii between 2-30 nm as assayed by transmission electron microscopy (TEM). The solid materials and their particle size distributions were snap shots of the solution phase. The mother liquor of the preparation of the [Mo132] keplerate after three days revealed large species (r=20-30 nm) in the coprecipitate, whereas [Mo132] keplerate redissolved in water revealed small species (3-7 nm) in the coprecipitate. Nanoparticles of coprecipitate were more stable than solids derived solely from partially reduced molybdate. The TEM features of all material analyzed lacked facets on the nanometer length scale; however, the structures diffracted electrons and appeared to be defect-free as evidenced by Moiré patterns in the TEM images. Moiré patterns and size-invariant optical densities of the features in the micrographs suggested that the molybdate nanoparticles were vesicular.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamarian, I.; Samani, P.; Rohrer, G. S.

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  5. Scanning Electron Microscopic Hair Shaft Analysis in Ectodermal Dysplasia Syndromes.

    PubMed

    Hirano-Ali, Stefanie A; Reed, Ashley M; Rowan, Brandon J; Sorrells, Timothy; Williams, Judith V; Pariser, David M; Hood, Antoinette F; Salkey, Kimberly

    2015-01-01

    The objective of the current study was to catalog hair shaft abnormalities in individuals with ectodermal dysplasia (ED) syndromes using scanning electron microscopy (SEM) and to compare the findings with those in unaffected controls. This is the second of a two-part study, the first of which used light microscopy as the modality and was previously published. Scanning electron microscopy was performed in a blinded manner on hair shafts from 65 subjects with seven types of ED syndromes and 41 unaffected control subjects. Assessment was performed along the length of the shaft and in cross section. Hair donations were collected at the 28th Annual National Family Conference held by the National Foundation for Ectodermal Dysplasia. Control subjects were recruited from a private dermatology practice and an academic children's hospital outpatient dermatology clinic. SEM identified various pathologic hair shaft abnormalities in each type of ED and in control patients. When hairs with all types of ED were grouped together and compared with those of control patients, the difference in the presence of small diameter and shallow and deep grooves was statistically significant (p < 0.05). When the EDs were separated according to subtype, statistically significant findings were also seen. SEM is a possible adjuvant tool in the diagnosis of ED syndromes. There are significant differences, with high specificity, between the hairs of individuals with ED and those of control subjects and between subtypes. © 2015 Wiley Periodicals, Inc.

  6. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  7. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  8. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  9. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.

  10. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  11. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Cancer.gov

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  12. Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com

    Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.

  13. Pulmonary fibrosis in a carpenter with long-lasting exposure to fiberglass.

    PubMed

    Takahashi, T; Munakata, M; Takekawa, H; Homma, Y; Kawakami, Y

    1996-11-01

    A 56-year-old male carpenter had a history of glass fiber inhalation for 41 years without any protective device. His chest radiograph showed small nodular opacities in lower lung fields and multiple cystic lesions and low attenuation areas in upper lung fields. Light and polarizing microscopic examinations of his transbronchial lung biopsy specimen revealed mild interstitial fibrosis and mononuclear cell infiltration in alveolar walls without birefringent substances. However, widespread depositions of small glass fibers (< 2.5 microns in length and 0.3 micron in diameter) were detected by analytical electron microscopy, which suggested their possible contribution to the development of his pulmonary fibrosis.

  14. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres

    PubMed Central

    Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith

    2013-01-01

    Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388

  15. Morphological Characterization of Silicone Hydrogels

    NASA Astrophysics Data System (ADS)

    Gido, Samuel

    2007-03-01

    Silicone hydrogel materials are used in the latest generation of extended wear soft contact lenses. To ensure comfort and eye health, these materials must simultaneously exhibit high oxygen permeability and high water permeability / hydrophilicity. The materials achieve these opposing requirements based on bicontinuous composite of nanoscale domains of oxygen permeable (silicones) and hydrophilic (water soluble polymer) materials. The microphase separated morphology of silicone hydrogel contact lens materials was imaged using field emission gun scanning transmission electron microscopy (FEGSTEM), and atomic force microscopy (AFM). Additional morphological information was provided by small angle X-ray scattering (SAXS). These results all indicate a nanophase separated structure of silicone rich (oxygen permeable) and carbon rich (water soluble polymer) domains separated on a length scale of about 10 nm.

  16. Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass

    NASA Astrophysics Data System (ADS)

    Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.

    2016-09-01

    The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).

  17. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy

    PubMed Central

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263

  18. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    PubMed

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  19. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  20. Imaging connected porosity of crystalline rock by contrast agent-aided X-ray microtomography and scanning electron microscopy.

    PubMed

    Kuva, J; Sammaljärvi, J; Parkkonen, J; Siitari-Kauppi, M; Lehtonen, M; Turpeinen, T; Timonen, J; Voutilainen, M

    2018-04-01

    We set out to study connected porosity of crystalline rock using X-ray microtomography and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X-ray microtomography and SEM-EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X-ray microtomography and SEM-EDS. The samples were imaged with X-ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X-ray microtomography. CsCl inside the samples was successfully detected with X-ray microtomography and it had completely penetrated all six samples. SEM-EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X-ray microtomography. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2018-01-01

    The paper "Using the Medipix3 detector for direct electron imaging in the range 60keV to 200keV in electron microscopy" by J.A. Mir, R. Plackett, I. Shipsey and J.M.F. dos Santos has been retracted following the authors' request on the basis of the existence of a disagreement about the ownership of the data, to prevent conflict between collaborators.

  2. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  3. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  4. The Effect of Electron Beam Irradiation in Environmental Scanning Transmission Electron Microscopy of Whole Cells in Liquid.

    PubMed

    Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels

    2016-06-01

    Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels.

  5. Morphology-controlled synthesis of Ag{sub 3}PO{sub 4} nano/microcrystals and their antibacterial properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Aiping; Tian, Chungui, E-mail: tianchungui@yahoo.com.cn; Chang, Wei

    Graphical abstract: The Ag{sub 3}PO{sub 4} with rhombic dodecahedral, spherical and small size particles were controllable fabricated just by changing the types of the solvent. The materials possess good antibacterial properties toward different kinds of bacteria. - Highlights: • The Ag{sub 3}PO{sub 4} with three morphologies were controllable fabricated. • The Ag{sub 3}PO{sub 4} as-prepared possess obvious antibacterial properties in the dark. • The antibacterial ability of Ag{sub 3}PO{sub 4} could be greatly improved under the visible light irradiation. - Abstract: We reported the controllable fabrication of Ag{sub 3}PO{sub 4} nano/microcrystals through a simple solution-based precipitation reaction. The samples weremore » characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The results indicated that the Ag{sub 3}PO{sub 4} crystals with three different morphology, including the rhombic dodecahedron of 500 nm, the sphere of 100 nm and the particles with small-size of 20 nm, could be obtained in the solvents of water, ethylene glycol (EG) and dimethyl sulfoxide (DMSO). The antibacterial assay showed that all samples possess obvious antibacterial properties. In addition, the Ag{sub 3}PO{sub 4} with small size of 20 nm showed better activity due to their high specific surface areas. Notably, we have found that the antibacterial ability of Ag{sub 3}PO{sub 4} could be greatly improved under the visible light irradiation, which are superior to that in the dark and commercial streptomycin.« less

  6. Immunocytochemical localization of actin in epithelial cells of rat small intestine by light and electron microscopy.

    PubMed

    Hagen, S J; Trier, J S

    1988-07-01

    We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.

  7. Mice embryology: a microscopic overview.

    PubMed

    Salvadori, Maria Letícia Baptista; Lessa, Thais Borges; Russo, Fabiele Baldino; Fernandes, Renata Avancini; Kfoury, José Roberto; Braga, Patricia Cristina Baleeiro Beltrão; Miglino, Maria Angélica

    2012-10-01

    In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C-shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well-developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Copyright © 2012 Wiley Periodicals, Inc.

  8. Assessing Strain Mapping by Electron Backscatter Diffraction and Confocal Raman Microscopy Using Wedge-indented Si

    PubMed Central

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  9. Voltage control of nanoscale magnetoelastic elements: theory and experiments (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Carman, Gregory P.

    2015-09-01

    Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.

  10. Solvent-assisted in situ synthesis of cysteamine-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Oliva, José M.; Ríos de la Rosa, Julio M.; Sayagués, María J.; Sánchez-Alcázar, José A.; Merkling, Patrick J.; Zaderenko, Ana P.

    2018-03-01

    Silver nanoparticles offer a huge potential for biomedical applications owing to their exceptional properties and small size. Specifically, cysteamine-capped silver nanoparticles could form the basis for new anticancer therapies combining the cytotoxic effect of the silver core with the inherent antitumor activity of cysteamine, which inhibit cancer cell proliferation and suppress invasion and metastasis. In addition, the capability of the cysteamine coating monolayer to couple a variety of active principles and targeting (bio)molecules of interest proves key to the tailoring of this platform in order to exploit the pathophysiology of specific tumor types. Nevertheless, the chain length and conformational flexibility of cysteamine, together with its ability to attach to the surface of silver nanoparticles via both the thiol and the amine group, have made the in situ synthesis of these particles an especially challenging task. Herein we report a solvent-assisted in situ synthesis method that solves this problem. The obtained nanoparticles have been fully characterized by UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, electron diffraction measurement, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive x-ray spectroscopy nanoanalysis, and dynamic light scattering measurement. Our synthesis method achieves extremely high yield and surface coating ratio, and colloidal stability over a wide range of pH values including physiological pH. Additionally, we have demonstrated that cysteamine-capped nanoparticles obtained by this method can be conjugated to an antibody for active targeting of the epidermal growth factor receptor, which plays an important role in the pathogenesis and progression of a wide variety of tumors, and induce cell death in human squamous carcinoma cells. We believe this method can be readily extended to combinations of noble metals and longer chain primary, secondary, ternary or even quaternary aminethiols.

  11. Surface morphology and dislocation characteristics near the surface of 4H-SiC wafer using multi-directional scanning transmission electron microscopy.

    PubMed

    Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T

    2017-10-01

    To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design

    PubMed Central

    Sharp, Thomas H.; Bruning, Marc; Mantell, Judith; Sessions, Richard B.; Thomson, Andrew R.; Zaccai, Nathan R.; Brady, R. Leo; Verkade, Paul; Woolfson, Derek N.

    2012-01-01

    Nature presents various protein fibers that bridge the nanometer to micrometer regimes. These structures provide inspiration for the de novo design of biomimetic assemblies, both to address difficulties in studying and understanding natural systems, and to provide routes to new biomaterials with potential applications in nanotechnology and medicine. We have designed a self-assembling fiber system, the SAFs, in which two small α-helical peptides are programmed to form a dimeric coiled coil and assemble in a controlled manner. The resulting fibers are tens of nm wide and tens of μm long, and, therefore, comprise millions of peptides to give gigadalton supramolecular structures. Here, we describe the structure of the SAFs determined to approximately 8 Å resolution using cryotransmission electron microscopy. Individual micrographs show clear ultrastructure that allowed direct interpretation of the packing of individual α-helices within the fibers, and the construction of a 3D electron density map. Furthermore, a model was derived using the cryotransmission electron microscopy data and side chains taken from a 2.3 Å X-ray crystal structure of a peptide building block incapable of forming fibers. This was validated using single-particle analysis techniques, and was stable in prolonged molecular-dynamics simulation, confirming its structural viability. The level of self-assembly and self-organization in the SAFs is unprecedented for a designed peptide-based material, particularly for a system of considerably reduced complexity compared with natural proteins. This structural insight is a unique high-resolution description of how α-helical fibrils pack into larger protein fibers, and provides a basis for the design and engineering of future biomaterials. PMID:22847414

  13. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  14. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  15. Unconventional Imaging Methods to Capture Transient Structures during Actomyosin Interaction.

    PubMed

    Katayama, Eisaku; Kodera, Noriyuki

    2018-05-08

    Half a century has passed since the cross-bridge structure was recognized as the molecular machine that generates muscle tension. Despite various approaches by a number of scientists, information on the structural changes in the myosin heads, particularly its transient configurations, remains scant even now, in part because of their small size and rapid stochastic movements during the power stroke. Though progress in cryo-electron microscopy is eagerly awaited as the ultimate means to elucidate structural details, the introduction of some unconventional methods that provide high-contrast raw images of the target protein assemblies is quite useful, if available, to break the current impasse. Quick-freeze deep⁻etch⁻replica electron microscopy coupled with dedicated image analysis procedures, and high-speed atomic-force microscopy are two such candidates. We have applied the former to visualize actin-associated myosin heads under in vitro motility assay conditions, and found that they take novel configurations similar to the SH1⁻SH2-crosslinked myosin that we characterized recently. By incorporating biochemical and biophysical results, we have revised the cross-bridge mechanism to involve the new conformer as an important main player. The latter “microscopy” is unique and advantageous enabling continuous observation of various protein assemblies as they function. Direct observation of myosin-V’s movement along actin filaments revealed several unexpected behaviors such as foot-stomping of the leading head and unwinding of the coiled-coil tail. The potential contribution of these methods with intermediate spatial resolution is discussed.

  16. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  17. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  18. A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    NASA Technical Reports Server (NTRS)

    Ware, Jacqueline; Hammond, Ernest C., Jr.

    1989-01-01

    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.

  19. Dynamic behaviour of nanometre-sized defect clusters emitted from an atomic displacement cascade in Au at 50 K

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.

    2017-09-01

    We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.

  20. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  1. Inter-particle interaction dependent evaporation-induced assembly in contact-free micro-colloidal droplets

    NASA Astrophysics Data System (ADS)

    Sen, Debasis; Biswas, Priyanka; Melo, J. S.

    2018-04-01

    Evaporation-induced assembly of constituent particles in tiny dispersion droplet allows an efficient way to realize nano-structured micro-granules with potential for various applications. Morphology of the granules, obtained by such one-step dispersion to granular transformation, is decided by several physicochemical conditions. Here we demonstrate that the inter-particle interaction plays a crucial role in deciding the assembled morphology. Resultant granules are investigated by complementary techniques, Electron microscopy and small-angle scattering.

  2. Getting mitochondria to center stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, Gottfried, E-mail: gottfried.schatz@unibas.ch

    2013-05-10

    The question of how eukaryotic cells assemble their mitochondria was long considered to be inaccessible to biochemical investigation. This attitude changed about fifty years ago when the powerful tools of yeast genetics, electron microscopy and molecular biology were brought to bear on this problem. The rising interest in mitochondrial biogenesis thus paralleled and assisted in the birth of modern biology. This brief recollection recounts the days when research on mitochondrial biogenesis was an exotic effort limited to a small group of outsiders.

  3. Two-Dimensional Animal-Like Fractals in Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Hong-jun; Xue, Zeng-quan; Wu, Quan-de; Pang, Shi-jin

    1996-02-01

    We present a few unique animal-like fractal patterns in ionized-cluster-beam deposited fullerene-tetracyanoquinodimethane thin films. The fractal patterns consisting of animal-like aggregates such as "fishes" and "quasi-seahorses" have been characterized by transmission electron microscopy. The results indicate that the small aggregates of the animal-like body are composed of many single crystals whose crystalline directions are generally different. The formation of the fractal patterns can be attributed to the cluster-diffusion-limited aggregation.

  4. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery.

    PubMed

    Maciel, Vinicius B V; Yoshida, Cristiana M P; Pereira, Susana M S S; Goycoolea, Francisco M; Franco, Telma T

    2017-10-12

    A polyelectrolyte complex system of chitosan-pectin nano- and microparticles was developed to encapsulate the hormone insulin. The aim of this work was to obtain small particles for oral insulin delivery without chemical crosslinkers based on natural and biodegradable polysaccharides. The nano- and microparticles were developed using chitosans (with different degrees of acetylation: 15.0% and 28.8%) and pectin solutions at various charge ratios (n⁺/n - given by the chitosan/pectin mass ratio) and total charge. Nano- and microparticles were characterized regarding particle size, zeta potential, production yield, encapsulation efficiency, stability in different media, transmission electron microscopy and cytotoxicity assays using Caco-2 cells. The insulin release was evaluated in vitro in simulated gastric and intestinal media. Small-sized particles (~240-~1900 nm) with a maximum production yield of ~34.0% were obtained. The highest encapsulation efficiency (~62.0%) of the system was observed at a charge ratio (n⁺/n - ) 5.00. The system was stable in various media, particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for oral administration of bioactive peptides.

  5. Tissue and cellular localization of tannins in Tunisian dates (Phoenix dactylifera L.) by light and transmission electron microscopy.

    PubMed

    Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain

    2014-07-16

    A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.

  6. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    NASA Astrophysics Data System (ADS)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  7. Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata.

    PubMed

    Okumura, Taiga; Suzuki, Michio; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-10-01

    The fine structure of the calcite prism in the outer layer of a pearl oyster, Pinctada fucata, has been investigated using various electron beam techniques, in order to understand its characteristics and growth mechanism including the role of intracrystalline organic substances. As the calcite prismatic layer grows thicker, sinuous boundaries develop to divide the prism into a number of domains. The crystal misorientation between the adjacent domains is several to more than ten degrees. The component of the misorientation is mainly the rotation about the c-axis. There is no continuous organic membrane at the boundaries. Furthermore, the crystal orientation inside the domains changes gradually, as indicated by the electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Transmission electron microscopy (TEM) examination revealed that the domain consists of sub-grains of a few hundred nanometers divided by small-angle grain boundaries, which are probably the origin of the gradual change of the crystal orientation inside the domains. Spherular Fresnel contrasts were often observed at the small-angle grain boundaries, in defocused TEM images. Electron energy-loss spectroscopy (EELS) indicated the spherules are organic macromolecules, suggesting that incorporation of organic macromolecules during the crystal growth forms the sub-grain structure of the calcite prism.

  8. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.

    PubMed

    Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K

    2018-06-04

    The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.

  9. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  10. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    DTIC Science & Technology

    2014-02-27

    Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices

  11. New modes of electron microscopy for materials science enabled by fast direct electron detectors

    NASA Astrophysics Data System (ADS)

    Minor, Andrew

    There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.

  12. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  13. Scanning Transmission Electron Microscopy | Materials Science | NREL

    Science.gov Websites

    mode by collecting the EDS and EELS signals point-by-point as one scans the electron probe across the . Examples of Scanning Transmission Electron Microscopy Capabilities Z-contrast image microphoto taken by

  14. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-05-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature.We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00765h

  15. Diagnostic electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  16. HALE STAIN FOR SIALIC ACID-CONTAINING MUCINS. ADAPTATION TO ELECTRON MICROSCOPY.

    PubMed

    GASIC, G; BERWICK, L

    1963-10-01

    The feasibility of using the Hale stain to identify cellular sialic acid-containing mucins by electron microscopy was investigated. Three kinds of mouse ascites tumor cells were fixed in neutral buffered formalin, exposed to fresh colloidal ferric oxide, treated with potassium ferrocyanide, imbedded in Selectron, and sectioned for electron microscopy. Additional staining with uranyl acetate and potassium permanganate was done after sectioning in order to increase contrast. Those cells known to be coated with sialomucin showed deposits of electron-opaque ferric ferrocyanide crystals in the areas where sialomucin concentrations were expected. When these cells were treated with neuraminidase beforehand, these deposits did not appear. It was concluded that, with the precautions and modifications described, the Hale stain can be successfully combined with electron microscopy to identify sialomucin.

  17. Perspectives on in situ electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haimei; Zhu, Yimei

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  18. Perspectives on in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei

    2017-03-29

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  19. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  20. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI(3-x)Cl(x) perovskite solar cells.

    PubMed

    Edri, Eran; Kirmayer, Saar; Mukhopadhyay, Sabyasachi; Gartsman, Konstantin; Hodes, Gary; Cahen, David

    2014-03-11

    Developments in organic-inorganic lead halide-based perovskite solar cells have been meteoric over the last 2 years, with small-area efficiencies surpassing 15%. We address the fundamental issue of how these cells work by applying a scanning electron microscopy-based technique to cell cross-sections. By mapping the variation in efficiency of charge separation and collection in the cross-sections, we show the presence of two prime high efficiency locations, one at/near the absorber/hole-blocking-layer, and the second at/near the absorber/electron-blocking-layer interfaces, with the former more pronounced. This 'twin-peaks' profile is characteristic of a p-i-n solar cell, with a layer of low-doped, high electronic quality semiconductor, between a p- and an n-layer. If the electron blocker is replaced by a gold contact, only a heterojunction at the absorber/hole-blocking interface remains.

  1. Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.

    2018-03-01

    A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.

  2. A novel permeabilization protocol to obtain intracellular 3D immunolabeling for electron tomography.

    PubMed

    Jiménez, Nuria; Post, Jan A

    2014-01-01

    Electron tomography (ET) is a very important high-resolution tool for 3D imaging in cell biology. By combining the technique with immunolabeling, ET can provide essential insights into both cellular architecture and dynamics. We recently developed a protocol to achieve 3D immunolabeling of intracellular antigens without the need for uncontrolled permeabilization steps that cause random, extensive cell membrane disruption. Here we describe this novel method based on well-controlled permeabilization by targeted laser cell perforation. Mechanical permeabilization of the plasma membrane can be applied at specific sites without affecting other parts of the plasma membrane and intracellular membranes. Despite the relatively small opening created in the plasma membrane, the method allows specific 3D immunolocalization of cytoplasmic antigens in cultured cells by a pre-embedment protocol. The approach is unique and leads to a superior ultrastructural preservation for transmission electron microscopy and electron tomography.

  3. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    PubMed Central

    Casu, Alberto; Lamberti, Andrea

    2018-01-01

    The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope’s high vacuum (p < 10−5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy. PMID:29342894

  4. Effect of Two-Step Metal Organic Chemical Vapor Deposition Growth on Quality, Diameter and Density of InAs Nanowires on Si (111) Substrate

    NASA Astrophysics Data System (ADS)

    Yu, Hung Wei; Anandan, Deepak; Hsu, Ching Yi; Hung, Yu Chih; Su, Chun Jung; Wu, Chien Ting; Kakkerla, Ramesh Kumar; Ha, Minh Thien Huu; Huynh, Sa Hoang; Tu, Yung Yi; Chang, Edward Yi

    2018-02-01

    High-density (˜ 80/um2) vertical InAs nanowires (NWs) with small diameters (˜ 28 nm) were grown on bare Si (111) substrates by means of two-step metal organic chemical vapor deposition. There are two critical factors in the growth process: (1) a critical nucleation temperature for a specific In molar fraction (approximately 1.69 × 10-5 atm) is the key factor to reduce the size of the nuclei and hence the diameter of the InAs NWs, and (2) a critical V/III ratio during the 2nd step growth will greatly increase the density of the InAs NWs (from 45 μm-2 to 80 μm-2) and at the same time keep the diameter small. The high-resolution transmission electron microscopy and selected area diffraction patterns of InAs NWs grown on Si exhibit a Wurtzite structure and no stacking faults. The observed longitudinal optic peaks in the Raman spectra were explained in terms of the small surface charge region width due to the small NW diameter and the increase of the free electron concentration, which was consistent with the TCAD program simulation of small diameter (< 40 nm) InAs NWs.

  5. Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.

    PubMed

    Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien

    2018-06-04

    Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  6. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  7. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.

    PubMed

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.

  8. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

    PubMed Central

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885

  9. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less

  10. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.

    PubMed

    Chu, Ming-Wen; Chen, Cheng Hsuan

    2013-06-25

    With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.

  11. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  12. Consecutive light microscopy, scanning-transmission electron microscopy and transmission electron microscopy of traumatic human brain oedema and ischaemic brain damage.

    PubMed

    Castejon, O J; Castejon, H V; Diaz, M; Castellano, A

    2001-10-01

    Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.

  13. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  14. Structure and morphology of regenerated silk nano-fibers produced by electrospinning

    NASA Astrophysics Data System (ADS)

    Zarkoob, Shahrzad

    The impressive physical and mechanical properties of natural silk fiberssp1 and the possibility of producing these proteins using biotechnology,sp2 have provided the impetus for recent efforts in both the biosynthesissp{3,4} and the spinning of these protein based biopolymers.sp{5,6,7} The question still remains: whether fibers spun from solutions with similar chemical makeup can produce fibers with similar structures and therefore with the possibility of improved properties. Since genetically engineered silk solutions were not readily available, the first objective of this project was to completely dissolve the Bombyx mori cocoon and the Nephila clavipes dragline silk while maintaining the molecular weight integrity of the polymer. The second objective was to develop a system for re-spinning from very small amount of the resulting silk solutions by the process of electrospinning. The third objective was, to produce regenerated silk fibers with diameters that are several orders of magnitude smaller than the original fibers, suitable for direct observation and analysis by transmission electron microscopy and electron diffraction. And finally, to compare these results to structural information obtained from natural (as spun by the organism) fibers to see if the regenerated solutions are able to form the same structure as the original fibers. Both types of silk fibers were successfully dissolved while maintaining the polymer integrity. Small quantities (25-50 mul) of these solutions were used to electrospin fibers with diameters ranging from 8nm-200nm. The fibers were observed by optical, scanning electron, and transmission electron microscopy. These nano fibers showed optical retardation, appeared to have a circular cross-section, and were dimensionally stable at temperatures above 280sp°C. Electron diffraction patterns of annealed electrospun fibers of B. mori and N. clavipes showed reflections, demonstrating orientational and semicrystalline order in the material comparable to natural silk. In addition, electron diffraction was also obtained form extended microtomed single dragline fibers of N. clavipes, and the d-spacings agreed well with thoes obtained from WAXD of dragline fiber bundles.

  15. Bioorthogonal Chemical Imaging for Biomedicine

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-06-01

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because relatively bulky fluorescent labels could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, we have developed a bioorthogonal chemical imaging platform. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes, nitriles and stable isotopes including 2H and 13C), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, multiplicity and biocompatibility for imaging small biomolecules in live systems including tissues and organisms. Exciting biomedical applications such as imaging fatty acid metabolism related to lipotoxicity, glucose uptake and metabolism, drug trafficking, protein synthesis, DNA replication, protein degradation, RNA synthesis and tumor metabolism will be presented. This bioorthogonal chemical imaging platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, further chemical and spectroscopic strategies allow for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species, bringing small molecules under the illumination of modern light microscopy.

  16. Application of a quick-freezing and deep-etching method to pathological diagnosis: a case of elastofibroma.

    PubMed

    Hemmi, Akihiro; Tabata, Masahiko; Homma, Taku; Ohno, Nobuhiko; Terada, Nobuo; Fujii, Yasuhisa; Ohno, Shinichi; Nemoto, Norimichi

    2006-04-01

    A case of elastofibroma in a middle-aged Japanese woman was examined by the quick-freezing and deep-etching (QF-DE) method, as well as by immunohistochemistry and conventional electron microscopy. The slowly growing tumor developed at the right scapular region and was composed of fibrous connective tissue with unique elastic materials called elastofibroma fibers. A normal elastic fiber consists of a central core and peripheral zone, in which the latter has small aggregates of 10 nm microfibrils. By the QF-DE method, globular structures consisting of numerous fibrils (5-20 nm in width) were observed between the collagen bundles. We could confirm that they were microfibril-rich peripheral zones of elastofibroma fibers by comparing the replica membrane and conventional electron microscopy. One of the characteristics of elastofibroma fibers is that they are assumed to contain numerous microfibrils. Immunohistochemically, spindle tumor cells showed positive immunoreaction for vimentin, whereas alpha-smooth muscle actin, desmin, S-100 protein and CD34 showed negative immunoreaction. By conventional electron microscopy, the tumor cell had thin cytoplasmic processes, pinocytotic vesicles and prominent rough endoplasmic reticulum. Abundant intracytoplasmic filaments were observed in some tumor cells. Thick lamina-like structures along with their inner nuclear membrane were often observed in the tumor cell nuclei. The whole image of the tumor cell was considered to be a periosteal-derived cell, which would produce numerous microfibrils in the peripheral zone of elastofibroma fibers. This study indicated that the QF-DE method could be applied to the pathological diagnosis and analysis of pathomechanism, even for surgical specimens obtained from a patient.

  17. Parathelohania iranica sp. nov. (Microsporidia: Amblyosporidae) infecting malaria mosquito Anopheles superpictus (Diptera: Culicidae): Ultrastructure and molecular characterization.

    PubMed

    Omrani, Seyed-Mohammad; Moosavi, Seyedeh-Fatemeh; Farrokhi, Effat

    2017-06-01

    Microsporidia are common pathogens of insects and sometimes are considered as a candidate in the biological control of mosquitoes. Recently a microsporidium infection was discovered in Anopheles superpictus (Diptera: Culicidae) larvae, in Iran. The responsible agent belonged to the genus Parathelohania (Microsporidia: Amblyosporidae). This study has been carried out to identify its identity at the species level. Fresh infected larvae were collected from the type locality, Kiar district, in Chahar Mahal and Bakhtiari province, at the central western of Iran. Superficial and the internal ultrastructure of the recovered spores were explored by scanning and transmission electron microscopy, respectively. Molecular techniques were also employed to amplify parts of its ssu rDNA. The obtained data were compared with the available information of congener species and other closely related microsporidia to elucidate evolutionary relationship. A small apical depression and two posterolateral ridges extending backward from a pear shaped anterior body mass were notable under scanning electron microscopy. Transmission electron microscopy revealed 2 broad and 3-4 narrow coils in the either side of spores, respectively. The sequence of a 1062 nucleotide fragment of ssu rDNA was determined by means of PCR technique. This study indicates that the microsporidium infecting An. superpictus differs from other previously described species in the genus Parathelohania. It means that the microsporidium infecting An. superpictus is a new species and hereby it is called Parathelohania iranica. Further work is necessary to clarify its life cycle and probable value in the biological control of mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Biosynthesis of lead nanoparticles by the aquatic water fern, Salvinia minima Baker, when exposed to high lead concentration.

    PubMed

    Castro-Longoria, E; Trejo-Guillén, K; Vilchis-Nestor, A R; Avalos-Borja, M; Andrade-Canto, S B; Leal-Alvarado, D A; Santamaría, J M

    2014-02-01

    Salvinia minima Baker is a small floating aquatic fern that is efficient for the removal and storage of heavy metals such as lead and cadmium. In this study, we report that lead removal by S. minima causes large accumulation of lead inside the cells in the form of nanoparticles (PbNPs). The accumulation pattern of lead was analyzed in both, submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). Analysis by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) confirmed the biosynthesis of PbNPs by the plant. In both, roots and leaves, PbNPs were found to accumulate almost exclusively at the cell wall and closely associated to the cell membrane. Two types of PbNPs shapes were found in cells of both tissues, those associated to the cell wall were quasi-spherical with 17.2±4.2 nm of diameter, while those associated to the cell membrane/cytoplasm were elongated. Elongated particles were 53.7±29.6 nm in length and 11.1±2.4 nm wide. Infrared spectroscopy (IR) results indicate that cellulose, lignin and pectin are the major components that may be acting as the reducing agents for lead ions; these findings strongly suggest the potential use of this fern to further explore the bio-assisted synthesis of heavy metal nanostructures. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parent, Lucas R.; Bakalis, Evangelos; Ramírez-Hernández, Abelardo

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporalmore » and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.« less

  20. Redescription of Oswaldocruzia chambrieri (Strongylida: Molineidae) from Rhinella margaritifera (Anura: Bufonidae) in Caxiuanã National Forest, Brazil.

    PubMed

    Willkens, Yuri; Maldonado, Arnaldo; Dos Santos, Jeannie Nascimento; Maschio, Gleomar Fabiano; de Vasconcelos Melo, Francisco Tiago

    2016-09-01

    Oswaldocruzia chambrieri Ben Slimane et Durette-Desset, 1993 is redescribed from specimens collected from the small intestine of the South American common toad, Rhinella margaritifera, from Caxiuanã National Forest in Pará, Brazil, using light and scanning microscopy and molecular analysis of Cytochrome Oxidase I (COI) - coding regions of DNA. The discovered nematodes are characterized by a type III caudal bursa with two papillae, rays 4 with a median groove, and spicules divided into a blade, a shoe and a fork. Cervical alae are absent, the cephalic vesicle is divided into two portions, and the synlophe has low ridges without chitinous supports. The present study establishes the Caxiuanã National Forest as a new location for O. chambrieri, which had previously been reported as a parasite of R. margaritifera in Ecuador, uses light microscopy and scanning electron microscopy (SEM) to identify new morphological characters of the species and represents the second molecular sequence deposited for the Oswaldocruzia genus.

  1. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen

    2012-10-01

    Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.

  2. Morphology of poly-p-xylylene crystallized during polymerization.

    NASA Technical Reports Server (NTRS)

    Kubo, S.; Wunderlich, B.

    1971-01-01

    The morphology of as-polymerized poly-p-xylylene grown between -17 and 30 C is found to consist of lame llar alpha crystals oriented with the (010) plane parallel to the support surface. The crystallinity decreases with decreasing polymerization temperature. Spherulitic and nonspherulitic portions of the polymer film consist of folded chain lamellas with the chain axis parallel to the support surface. The results were obtained by small- and wide-angle X-ray measurements, electron and optical microscopy, and differential thermal analysis.

  3. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  4. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  5. Elucidating Complex Surface Reconstructions with Atomic-Resolution Scanning Tunneling Microscopy: Au(100)-Aqueous Electrochemical Interface

    DTIC Science & Technology

    1992-05-01

    that unusually high-quality STM data of this type 5-7can be obtained at ordered gold -aqueous interfaces. Reconstruction is seen 2 to be triggered on...all three low-index gold surfaces by altering the potential to values corresponding to small (10-15 pC cm-2 ) negative surface electronic 5-7 charges...connections. The former was platinum and the latter was a freshly electrooxidized gold wire. All electrode potentials quoted here, however, are

  6. Pitted keratolysis*

    PubMed Central

    de Almeida Jr, Hiram Larangeira; Siqueira, Rodrigo Nunes; Meireles, Renan da Silva; Rampon, Greice; de Castro, Luis Antonio Suita; Silva, Ricardo Marques e

    2016-01-01

    Pitted keratolysis is a skin disorder that affects the stratum corneum of the plantar surface and is caused by Gram-positive bacteria. A 30-year-old male presented with small punched-out lesions on the plantar surface. A superficial shaving was carried out for scanning electron microscopy. Hypokeratosis was noted on the plantar skin and in the acrosyringium, where the normal elimination of corneocytes was not seen. At higher magnification (x 3,500) bacteria were easily found on the surface and the described transversal bacterial septation was observed. PMID:26982791

  7. TEM characterization of the fine scale microstructure of a Roman ferrous nail

    NASA Astrophysics Data System (ADS)

    Douin, J.; Henry, O.; Dabosi, F.; Sciau, P.

    2010-07-01

    This paper describes the microstructure of a Roman ferrous nail through its observation by transmission electron microscopy. The morphologies of pearlitic colonies and ferritic grains are detailed and the relationship between pearlitic colonies and ferrite in Roman nails is explicitly demonstrated for the first time. Observations also confirm the presence of dislocations in ferritic grains and attest to the existence of very small carbide precipitates that have not been pointed out previously in standard archaeometric studies.

  8. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    PubMed

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Evaluation of anterior lenticonus in alport syndrome using tracey wavefront aberrometry and transmission electron microscopy.

    PubMed

    Kim, Kwan Soo; Kim, Mo Sae; Kim, Joon Mo; Choi, Chul Young

    2010-01-01

    To evaluate the efficacy of Tracey wavefront aberrometry (Tracey Technologies, Houston, TX) and transmission electron microscopy for the detection of anterior lenticonus in Alport syndrome. Tracey wavefront aberrometry was used to treat a patient with bilateral anterior lenticonus who had a history of Alport syndrome. For transmission electron microscopic examination, anterior lens capsules were obtained during clear lens phacoemulsification and intraocular lens implantation. Spherical aberrations were the predominant higher-order aberrations in the internal optics of both eyes. The Tracey wavefront aberrometer showed that most of the irregular astigmatism originated from the lenticular portion. Transmission electron microscopy of the specimens showed anterior lens capsules with decreased thickness and multiple dehiscences. Tracey wavefront aberrometry and transmission electron microscopy are effective tools for evaluation of anterior lenticonus in Alport syndrome. Copyright 2010, SLACK Incorporated.

  10. On the state of crystallography at the dawn of the electron microscopy revolution.

    PubMed

    Higgins, Matthew K; Lea, Susan M

    2017-10-01

    While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Reinforcement of poly(amide-imide) containing N-trimellitylimido-L-phenylalanine by using nano α-Al2O3 surface-coupled with bromo-flame retardant under ultrasonic irradiation technique

    NASA Astrophysics Data System (ADS)

    Mallakpour, Shadpour; Khadem, Elham

    2014-10-01

    By the uniform dispersion of nanoparticles into a polymer matrix, a substantial improvement of physicochemical properties can be attained. In this study, a series of poly(amide-imide)/Al2O3 nanocomposites (PANC)s based on various amounts of modified α-Al2O3 nanoparticles (ANP)s were prepared using the ultrasonic irradiation method. In the process of manufacturing the nanocomposites (NC)s, severe agglomeration of ANPs into the polymer matrix can be reduced using 2,3,4,5-tetrabromo-6-[(4-hydroxyphenyl)carbamoyl]benzoic acid as novel coupling agent. The effects of modified ANPs on the morphology and properties of the polymer matrix were studied by means of Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis (TGA). The results obtained by TGA showed that the thermal stability of the NCs was improved with the addition of the small amounts of ANPs as effective thermal degradation resistant reinforcement.

  12. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  13. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    NASA Astrophysics Data System (ADS)

    Likozar, Blaž; Major, Zoltan

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m-3), density (maximally 1.16 g cm-3), and tear strength (11.2 kN m-1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  14. X-ray Reflectivity Study of a Highly Rough Surface: Si Nanowires Grown by Ag Nanoparticle Etching

    NASA Astrophysics Data System (ADS)

    Kremenak, Jesse; Arendse, Christopher; Cummings, Franscious; Chen, Yiyao; Miceli, Paul

    Vertically oriented Si nanowires (SiNWs) formed by Ag-assisted wet chemical etching of a Si(100) substrate was studied by X-ray reflectivity (XRR) in combination with electron microscopy. Si(100) wafers coated with Ag nanoparticles, which serve as a catalyst, were etched for different durations in a HF/H2O2/DI-H2O solution. Because of the extreme roughness of these surfaces, there are challenges for using XRR methods in such systems. Therefore, significant attention is given to the analysis method of the XRR measurements. This sample-average information presents a valuable complement to electron microscopy studies, which focus on small sections of the sample. The present work shows-for the first time-the amount and distribution of Ag during the formation of SiNWs fabricated by Ag-assisted wet chemical etching, which is vital information for understanding the etching mechanisms. Support is gratefully acknowledged from the National Science Foundation (USA) - DGE1069091, the National Research Foundation (RSA) - TTK14052167658, 76568, 92520, and 93212; and the University of Missouri/University of Western Cape Linkage Program.

  15. THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL

    PubMed Central

    Stevens, Barbara J.

    1965-01-01

    The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121

  16. An investigation of the loss of ductility in hydrogen charged beta-Ti alloys

    NASA Technical Reports Server (NTRS)

    Robertson, Ian M.

    1995-01-01

    The high strength, low density, and good corrosion resistance of Ti-based alloys make them candidate materials for a number of applications in the aerospace industry. A major limitation in the use of these alloys in the advanced hypersonic flight vehicle program is their susceptibility to hydrogen embrittlement. This study focuses on the hydrogen sensitivity of TIMETAL 21S beta-Ti alloy. The material received was in the form of grip-ends of failed tensile test samples which had been exposed to different charging conditions (combinations of hydrogen pressure and temperature). The samples received, the charging conditions, and their fracture mode are discussed. It can be seen that the fracture behavior changes from ductile to brittle with increasing hydrogen content, but the transition in behavior occurs for a small increase in hydrogen concentration. The aim of this program was to assess the microstructural differences between the ductile and brittle alloys to ascertain the embrittlement mechanism. A range of tools which included x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used.

  17. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  18. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Cryogenic Fracture Toughness of CSR Modified Epoxy

    NASA Technical Reports Server (NTRS)

    Wang, Jun; Magee, Daniel; Schneider, Judy; Cannon, Seth

    2009-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace(Registered TradeMark) MX130 and Kane Ace(Registered TradeMark) MX960 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles up to 13.8wt%, while at LN2 temperatures, it reached a plateau at much lower CSR concentration.

  19. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena

    2017-06-01

    Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.

  20. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    PubMed

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  1. Phase composition and magnetism of sol-gel synthesized Ga-Fe-O nanograins

    NASA Astrophysics Data System (ADS)

    Rećko, K.; Waliszewski, J.; Klekotka, U.; Soloviov, D.; Ostapczuk, G.; Satuła, D.; Biernacka, M.; Balasoiu, M.; Basa, A.; Kalska-Szostko, B.; Szymański, K.

    2018-02-01

    We have succeeded in synthesizing orthorhombic Ga(1-x)Fe(1+x)O3 (-0.05? x?0.5), hexagonal GayFe(2-y)O3 (0?y?1.8) and cubic Ga(1+z)Fe(2-z)O4 (-0.1?z?0.8) nanograins of gallium ferrites using conventional precursors and an organic environment of Pechini scenario under atmospheric-pressure conditions (SG method). Phase composition and homogeneity were analyzed using X-ray diffraction. Small angle neutron scattering disclosed ellipsoidal particle shapes of gallium iron oxides (GFO) crystallizing in orthorhombic (o-GFO) and hexagonal (h-GFO) symmetry and parallelepiped shapes of Ga(1+y)Fe(2-y)O4 (c-GFO) grains. Despite local agglomeration among the magnetic grains, the scanning electron microscopy and transmission electron microscopy images point to faced-elliptical shapes. The Mössbauer spectroscopy with magnetization measurements was carried out in the temperature range of 5-295 K. The analysis of gallium ferrites magnetism demonstrates that iron atoms locate with various probabilities in crystallographic positions and the spontaneous magnetization preserves up to room temperature (RT).

  2. Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime.

    PubMed

    Chandrabhan, Shende Rashmi; Jayan, Velayudhanpillai; Parihar, Somendra Singh; Ramaprabhu, Sundara

    2017-01-01

    The present paper describes a facile synthesis method for nitrogen-doped reduced graphene oxide (N-rGO) and the application of N-rGO as an effective additive for improving the tribological properties of base oil. N-rGO has been characterized by different characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. N-rGO-based nanolubricants are prepared and their tribological properties are studied using a four-ball tester. The nanolubricants show excellent stability over a period of six months and a significant decrease in coefficient of friction (25%) for small amounts of N-rGO (3 mg/L). The improvement in tribological properties can be attributed to the sliding mechanism of N-rGO accompanied by the high mechanical strength of graphene. Further, the nanolubricant is prepared at large scale (700 liter) and field trials are carried out at one NTPC thermal plant in India. The implementation of the nanolubricant in an induced draft (ID) fan results in the remarkable decrease in the power consumption.

  3. From Bench Top to Market: Growth of Multi-Walled Carbon Nanotubes by Injection CVD Using Fe Organometallics - Production of a Commercial Reactor

    NASA Technical Reports Server (NTRS)

    Rowsell, J.; Hepp, A. F.; Harris, J. D.; Raffaelle, R. P.; Cowen, J. C.; Scheiman, D. A.; Flood, D. M.; Flood, D. J.

    2009-01-01

    Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cyclooctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth (i.e., MWNT orientation) of the nanotubes, as well as the amount of iron in the deposited material. As deposited, the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and a preferred orientation. Subsequently, a small start-up was founded to commercialize the deposition equipment. The contrast between the research and entrepreneurial environments will be discussed.

  4. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  5. Fabrication of single phase p-CuInSe2 nanowire arrays by electrodeposited into anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Song; Lang, Hao-Jan; Houng, Mau-Phon

    2015-10-01

    Single-phase CuInSe2 nanowire (NW) arrays were prepared at various pH values in a heated electrolyte by using pulse electrodeposition techniques and an anodized aluminum oxide template. X-ray diffraction showed that the CuInSe2 NW nucleation mechanism received H+ constraints when the NWs were deposited at pH 1.7 with a (112) orientation and annealed at 550 °C. The CuInSe2 NW band gap was determined to be approximately 1 eV through optical measurements. Transmission electron microscopy showed that at the pH value of 1.7, small particles of the single-phase CuInSe2 NWs aligned along the crystallographic direction are nucleated to form large particles. Scanning electron microscopy revealed that the NW diameter and the length were 80 nm and 2.3 μm, respectively. From Mott-Schottky and Ohmic contact plots, the CuInSe2 NWs were found to be p-type semiconductors, and their work function was estimated to be approximately 4.69 eV.

  6. Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Baker, M. A.; Kench, P. J.; Tsotsos, C.; Gibson, P. N.; Leyland, A.; Matthews, A.

    2005-05-01

    This article presents results on CrCuN nanocomposite coatings grown by physical vapor deposition. The immiscibility of Cr (containing a supersaturation of nitrogen) and Cu offers the potential of depositing a predominantly metallic (and therefore tough) nanocomposite, composed of small Cr(N) metallic and/or β-Cr2N ceramic grains interdispersed in a (minority) Cu matrix. A range of CrCuN compositions have been deposited using a hot-filament enhanced unbalanced magnetron sputtering system. The stoichiometry and nanostructure have been studied by x-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. Hardness, wear resistance, and impact resistance have been determined by nanoindentation, reciprocating-sliding, and ball-on-plate high-cycle impact. Evolution of the nanostructure as a function of composition and correlations of the nanostructure and mechanical properties of the CrCuN coatings are discussed. A nanostructure comprised of 1-3 nm α-Cr(N) and β-Cr2N grains separated by intergranular regions of Cu gives rise to a coating with significantly enhanced resistance to impact wear.

  7. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy.

    PubMed

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-07-15

    The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types. © 2015. Published by The Company of Biologists Ltd.

  8. Characterization of Detonation Soot Produced During Steady and Overdriven Conditions for Three High Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David; Amato, Ronald; Dattelbaum, Dana; Firestone, Millicent; Gustavsen, Richard; Huber, Rachel; Ringstrand, Bryan

    2015-06-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, ``onion-like'' carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Structural studies to glean the features of the solid carbon products have been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and X-Ray Pair Distribution Function measurements (PDF). Bulk soot was also analyzed for elemental and isotopic compositions. We will discuss differences in the structure and composition of the detonation carbon as a function of formulation, detonation conditions, and the surrounding atmosphere.

  9. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Microchemical and microstructural evolution of AISI 304 stainless steel irradiated in EBR-II at PWR-relevant dpa rates

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Sencer, B. H.; Garner, F. A.; Marquis, E. A.

    2015-12-01

    AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10-9 and 3.05 × 10-7 dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.

  11. Fabrication of ZnS nanoparticle chains on a protein template

    PubMed Central

    Hulleman, J.; Kim, S. M.; Tumkur, T.; Rochet, J.-C.; Stach, E.; Stanciu, L.

    2011-01-01

    In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV–Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied. PMID:21804765

  12. Correlation of live-cell imaging with volume scanning electron microscopy.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research.

    PubMed

    Moretti, Elena; Sutera, Gaetano; Collodel, Giulia

    2016-06-01

    This review is aimed at discussing the role of ultrastructural studies on human spermatozoa and evaluating transmission electron microscopy as a diagnostic tool that can complete andrology protocols. It is clear that morphological sperm defects may explain decreased fertilizing potential and acquire particular value in the field of male infertility. Electron microscopy is the best method to identify systematic or monomorphic and non-systematic or polymorphic sperm defects. The systematic defects are characterized by a particular anomaly that affects the vast majority of spermatozoa in a semen sample, whereas a heterogeneous combination of head and tail defects found in variable percentages are typically non-systematic or polymorphic sperm defects. A correct diagnosis of these specific sperm alterations is important for choosing the male infertility's therapy and for deciding to turn to assisted reproduction techniques. Transmission electron microscopy (TEM) also represents a valuable method to explore the in vitro effects of different compounds (for example drugs with potential spermicidal activity) on the morphology of human spermatozoa. Finally, TEM used in combination with immunohistochemical techniques, integrates structural and functional aspects that provide a wide horizon in the understanding of sperm physiology and pathology. transmission electron microscopy: TEM; World Health Organization: WHO; light microscopy: LM; motile sperm organelle morphology examination: MSOME; intracytoplasmic morphologically selected sperm injection: IMSI; intracytoplasmic sperm injection: ICSI; dysplasia of fibrous sheath: DFS; primary ciliary dyskinesia: PCD; outer dense fibers: ODF; assisted reproduction technologies: ART; scanning electron microscopy: SEM; polyvinylpirrolidone: PVP; tert-butylhydroperoxide: TBHP.

  14. Morphology of chimpanzee pinworms, Enterobius (Enterobius) anthropopitheci (Gedoelst, 1916) (Nematoda: Oxyuridae), collected from chimpanzees, Pan troglodytes, on Rubondo Island, Tanzania.

    PubMed

    Hasegawa, Hideo; Ikeda, Yatsukaho; Fujisaki, Akiko; Moscovice, Liza R; Petrzelkova, Klara J; Kaur, Taranjit; Huffman, Michael A

    2005-12-01

    The chimpanzee pinworm, Enterobius (Enterobius) anthropopitheci (Gedoelst, 1916) (Nematoda: Oxyuridae), is redescribed based on light and scanning electron microscopy of both sexes collected from the feces of chimpanzees, Pan troglodytes, of an introduced population on Rubondo Island, Tanzania. Enterobius (E.) anthropopitheci is characterized by having a small body (males 1.13-1.83 mm long, females 3.33-4.73 mm long), a rather straight spicule with a ventral membranous formation in males, double-crested lateral alae in females, small eggs (53-58 by 24-28 microm), and a smooth eggshell with 3 longitudinal thickenings. Morphological comparison is made between the present and previous descriptions.

  15. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  16. Surface topography and ultrastructural changes of mucinous carcinoma breast cells.

    PubMed

    Voloudakis, G E; Baltatzis, G E; Agnantis, N J; Arnogianaki, N; Misitzis, J; Voloudakis-Baltatzis, I

    2007-01-01

    Mucinous carcinoma of the breast (MCB) is histologically classified into 2 groups: (1) pure MCB and (2) mixed MCB. Pure MCB carries a better diagnosis than mixed MCB. This research relates to the cell surface topography and ultrastructure of the cells in the above cases and aims to find the differences between them, by means of two methods: scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For the SEM examination, it was necessary to initially culture the MCB tissues and then proceed with the usual SEM method. In contrast, for the TEM technique, MCB tissues were initially fixed followed by the classic TEM method. The authors found the topography of pure MCB cases to be without nodes. The cell membrane was smooth, with numerous pores and small ruffles that covered the entire cell. The ultrastructural appearance of the same cases was with a normal cell membrane containing abundant collagen fibers. They also had many small vesicles containing mucin as well as secretory droplets. In contrast the mixed MCB had a number of lymph nodes and their cell surface topography showed stronger changes such as microvilli, numerous blebs, ruffles and many long projections. Their ultrastructure showed very long microvilli with large cytoplasmic inclusions and extracellular mucin collections, electron-dense material vacuoles, and many important cytoplasmic organelles. An important fact is that mixed MCB also contains areas of infiltrating ductal carcinoma. These cells of the cytoplasmic organelles are clearly responsible for the synthesis, storage, and secretion of the characteristic mucin of this tumor type. Evidently, this abnormal mucin production and the abundance of secretory granules along with the long projections observed in the topographical structure might be responsible for transferring tumor cells to neighboring organs, thus being responsible for metastatic disease.

  17. The formation of the smallest fullerene-like carbon cages on metal surfaces

    NASA Astrophysics Data System (ADS)

    Ben Romdhane, F.; Rodríguez-Manzo, J. A.; Andrieux-Ledier, A.; Fossard, F.; Hallal, A.; Magaud, L.; Coraux, J.; Loiseau, A.; Banhart, F.

    2016-01-01

    The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08212a

  18. Diffraction and microscopy with attosecond electron pulse trains

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  19. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  20. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  1. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  2. Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Bakalis, Evangelos; Proetto, Maria; Li, Yiwen; Park, Chiwoo; Zerbetto, Francesco; Gianneschi, Nathan C

    2018-01-16

    Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.

  3. Determination of atomic-scale chemical composition at semiconductor heteroepitaxial interfaces by high-resolution transmission electron microscopy.

    PubMed

    Wen, C; Ma, Y J

    2018-03-01

    The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Golden Drachma From Bruttia: Counterfeit Money Revealed By Scanning Electron Microscopy and Cathodoluminescence.

    NASA Astrophysics Data System (ADS)

    Pingitore, Valentino; Barberio, Marianna; Oliva, Antonino; Noce, Nicoletta; Gattuso, Caterina; Davoli, Mariano

    Diagnostic studies performed on an ancient coin are presented in order to find if the coin is authentic or is a coinage proof. Our investigation includes Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) and Cathodoluminescence (CL). The coin is a Drachma representing on the obverse the portrait of Poseidon and, on the reverse the figure of Anfitrite riding a seahorse while Eros is shooting an arrow. The coin is well known in the numismatic studies and originals can also be found in Catanzaro, Naples or Milan museums. The EDX analysis, executed on narrow points of the surface, revealed Pb and Cu as main components of the coin on both sides: 51% of Pb and 35% of Cu their weight and surprisingly on both sides traces of gold was found. The maximum dimensions and the percentage in weight of the small revealed gold spots were respectively on the order of 20 μm and 95%. At the same time luminescence emission induced by electron bombardment (CL) on these spots was executed. This analysis confirmed SEM results, though the presence of Au was more evident than in SEM analysis. In fact CL analysis showed a little presence of Au throughout the sample surface.

  5. Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.

    PubMed

    Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I

    2014-04-01

    There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.

  6. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang

    2016-03-01

    DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.

  7. Effect of Germanium on the TiO2 Photoanode for Dye Sensitized Solar Cell Applications. A Potential Sintering Aid

    NASA Astrophysics Data System (ADS)

    Ahmad, M. S.; Pandey, AK; Rahim, N. A.

    2018-05-01

    Anatase titanium-germanium (TiO2-Ge) nanocomposite has been prepared by using colloidal suspension process and investigated for photoanode to be used in dye sensitized solar cell. Ge possesses lower band gap energy compared to TiO2 and has the capability to absorb infrared region of solar spectrum. Its remarkable absorption and good electron transfer ability due to lower band gap energy makes it a potential candidate material in the field of DSSCs to counter important disadvantages such as high probability of electron recombination reactions and absorption of small region (UV region) of solar spectrum. Another advantage is its low sintering temperature which proved to be an added advantage to increase inter-particle contact which in turn leads to improved electron transfer. Scanning electron microscopy (SEM), uv-vis spectroscopy and electron impedance spectroscopy (EIS) have been employed to evaluate the effect of Ge on TiO2photoanode.

  8. In-line three-dimensional holography of nanocrystalline objects at atomic resolution

    DOE PAGES

    Chen, F. -R.; Van Dyck, D.; Kisielowski, C.

    2016-02-18

    We report that resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we show a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose ratemore » electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. Lastly, we apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances.« less

  9. Effect of small addition of Cr on stability of retained austenite in high carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pah

    High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques,more » the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.« less

  10. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  11. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less

  12. Organic Nanoflowers from a Wide Variety of Molecules Templated by a Hierarchical Supramolecular Scaffold.

    PubMed

    Negrón, Luis M; Díaz, Tanya L; Ortiz-Quiles, Edwin O; Dieppa-Matos, Diómedes; Madera-Soto, Bismark; Rivera, José M

    2016-03-15

    Nanoflowers (NFs) are flowered-shaped particles with overall sizes or features in the nanoscale. Beyond their pleasing aesthetics, NFs have found a number of applications ranging from catalysis, to sensing, to drug delivery. Compared to inorganic based NFs, their organic and hybrid counterparts are relatively underdeveloped mostly because of the lack of a reliable and versatile method for their construction. We report here a method for constructing NFs from a wide variety of biologically relevant molecules (guests), ranging from small molecules, like doxorubicin, to biomacromolecules, like various proteins and plasmid DNA. The method relies on the encapsulation of the guests within a hierarchically structured particle made from supramolecular G-quadruplexes. The size and overall flexibility of the guests dictate the broad morphological features of the resulting NFs, specifically, small and rigid guests favor the formation of NFs with spiky petals, while large and/or flexible guests promote NFs with wide petals. The results from experiments using confocal fluorescence microscopy, and scanning electron microscopy provides the basis for the proposed mechanism for the NF formation.

  13. Electrodeposition of uranium and thorium onto small platinum electrodes

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  14. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    PubMed Central

    Zeng, Ni; Gao, Xiaoling; Hu, Quanyin; Song, Qingxiang; Xia, Huimin; Liu, Zhongyang; Gu, Guangzhi; Jiang, Mengyin; Pang, Zhiqing; Chen, Hongzhuan; Chen, Jun; Fang, Liang

    2012-01-01

    Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents. PMID:22888230

  15. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM.

    PubMed

    Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J

    2016-08-01

    We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.

  16. Unique [Mn 6Bi 5] - Nanowires in KMn 6Bi 5: A Quasi-One-Dimensional Antiferromagnetic Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Jin-Ke; Tang, Zhang-Tu; Jung, Hee Joon

    In this paper, we report a new quasi-one-dimensional compound KMn 6Bi 5 composed of parallel nanowires crystallizing in a monoclinic space group C2/m with a = 22.994(2) Å, b = 4.6128(3) Å, c = 13.3830(13) Å and β = 124.578(6)°. The nanowires are infinite [Mn 6Bi 5] - columns each of which is composed of a nanotube of Bi atoms acting as the cladding with a nanorod of Mn atoms located in the central axis of the nanotubes. The nanorods of Mn atoms inside the Bi cladding are stabilized by Mn–Mn bonding and are defined by distorted Mn-centered cluster icosahedramore » of Mn 13 sharing their vertices along the b axis. The [Mn 6Bi 5] - nanowires are linked with weak internanowire Bi–Bi bonds and charge balanced with K + ions. The [Mn 6Bi 5] - nanowires were directly imaged by high-resolution transmission electron microscopy and scanning transmission electron microscopy. Magnetic susceptibility studies show one-dimensional characteristics with an antiferromagnetic transition at ~75 K and a small average effective magnetic moment (1.56 μ B/Mn for H ∥ b and 1.37 μ B/Mn for H ⊥ b) of Mn from Curie–Weiss fits above 150 K. Specific heat measurements reveal an electronic specific heat coefficient γ of 6.5(2) mJ K –2(mol-Mn) -1 and a small magnetic entropy change ΔS mag ≈ 1.6 J K –1 (mol-Mn) -1 across the antiferromagnetic transition. Finally, in contrast to a metallic resistivity along the column, the resistivity perpendicular to the column shows a change from a semiconducting behavior at high temperatures to a metallic one at low temperatures, indicating an incoherent-to-coherent crossover of the intercolumn tunneling of electrons.« less

  17. Unique [Mn 6Bi 5] - Nanowires in KMn 6Bi 5: A Quasi-One-Dimensional Antiferromagnetic Metal

    DOE PAGES

    Bao, Jin-Ke; Tang, Zhang-Tu; Jung, Hee Joon; ...

    2018-03-01

    In this paper, we report a new quasi-one-dimensional compound KMn 6Bi 5 composed of parallel nanowires crystallizing in a monoclinic space group C2/m with a = 22.994(2) Å, b = 4.6128(3) Å, c = 13.3830(13) Å and β = 124.578(6)°. The nanowires are infinite [Mn 6Bi 5] - columns each of which is composed of a nanotube of Bi atoms acting as the cladding with a nanorod of Mn atoms located in the central axis of the nanotubes. The nanorods of Mn atoms inside the Bi cladding are stabilized by Mn–Mn bonding and are defined by distorted Mn-centered cluster icosahedramore » of Mn 13 sharing their vertices along the b axis. The [Mn 6Bi 5] - nanowires are linked with weak internanowire Bi–Bi bonds and charge balanced with K + ions. The [Mn 6Bi 5] - nanowires were directly imaged by high-resolution transmission electron microscopy and scanning transmission electron microscopy. Magnetic susceptibility studies show one-dimensional characteristics with an antiferromagnetic transition at ~75 K and a small average effective magnetic moment (1.56 μ B/Mn for H ∥ b and 1.37 μ B/Mn for H ⊥ b) of Mn from Curie–Weiss fits above 150 K. Specific heat measurements reveal an electronic specific heat coefficient γ of 6.5(2) mJ K –2(mol-Mn) -1 and a small magnetic entropy change ΔS mag ≈ 1.6 J K –1 (mol-Mn) -1 across the antiferromagnetic transition. Finally, in contrast to a metallic resistivity along the column, the resistivity perpendicular to the column shows a change from a semiconducting behavior at high temperatures to a metallic one at low temperatures, indicating an incoherent-to-coherent crossover of the intercolumn tunneling of electrons.« less

  18. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Integration of a high-NA light microscope in a scanning electron microscope.

    PubMed

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  20. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells.

    PubMed

    Wang, Jin-Liang; Liu, Kai-Kai; Liu, Sha; Liu, Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P

    2017-06-14

    A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC 71 BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.

  1. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    NASA Technical Reports Server (NTRS)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  2. Small molecule PZL318: forming fluorescent nanoparticles capable of tracing their interactions with cancer cells and activated platelets, slowing tumor growth and inhibiting thrombosis

    PubMed Central

    Li, Shan; Wang, Yuji; Wang, Feng; Wang, Yaonan; Zhang, Xiaoyi; Zhao, Ming; Feng, Qiqi; Wu, Jianhui; Zhao, Shurui; Wu, Wei; Peng, Shiqi

    2015-01-01

    Low selectivity of chemotherapy correlates with poor outcomes of cancer patients. To improve this issue, a novel agent, N-(1-[3-methoxycarbonyl-4-hydroxyphenyl]-β-carboline-3-carbonyl)-Trp-Lys-OBzl (PZL318), was reported here. The transmission electron microscopy, scanning electron microscopy, and atomic force microscopy images demonstrated that PZL318 can form nanoparticles. Fluorescent and confocal images visualized that PZL318 formed fluorescent nanoparticles capable of targeting cancer cells and tracing their interactions with cancer cells. In vitro, 40 μM of PZL318 inhibited the proliferation of tumorigenic cells, but not nontumorigenic cells. In vivo, 10 nmol/kg of PZL318 slowed the tumor growth of S180 mice and alleviated the thrombosis of ferric chloride-treated ICR mice, while 100 μmol/kg of PZL318 did not injure healthy mice and they exhibited no liver toxicity. By analyzing Fourier transform–mass spectrometry and rotating-frame Overhauser spectroscopy (ROESY) two-dimensional nuclear magnetic resonance spectra, the chemical mechanism of PZL318-forming trimers and nanoparticles was explored. By using mesoscale simulation, a nanoparticle of 3.01 nm in diameter was predicted containing 13 trimers. Scavenging free radicals, downregulating sP-selectin expression and intercalating toward DNA were correlated with the antitumor mechanism of PZL318. PMID:26345234

  3. Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Luchinin, Viktor V.; Goloudina, Svetlana I.; Pasyuta, Vyacheslav M.; Panov, Mikhail F.; Smirnov, Alexander N.; Kirilenko, Demid A.; Semenova, Tatyana F.; Sklizkova, Valentina P.; Gofman, Iosif V.; Svetlichnyi, Valentin M.; Kudryavtsev, Vladislav V.

    2017-06-01

    High-quality crystalline nano-thin SiC films on Si substrates were prepared by carbonization of polyimide (PI) Langmuir-Blodgett (LB) films. The obtained films were characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Raman spectroscopy, transmission electon microscopy (TEM), transmission electron diffraction (TED), and scanning electron microscopy (SEM). We demonstrated that the carbonization of a PI film on a Si substrate at 1000 °C leads to the formation of a carbon film and SiC nanocrystals on the Si substrate. It was found that five planes in the 3C-SiC(111) film are aligned with four Si(111) planes. As a result of repeated annealing of PI films containing 121 layers at 1200 °C crystalline SiC films were formed on the Si substrate. It was shown that the SiC films (35 nm) grown on Si(111) at 1200 °C have a mainly cubic 3C-SiC structure with small amount of hexagonal polytypes. Only 3C-SiC films (30 nm) were formed on the Si(100) substrate at the same temperature. It was shown that the SiC films (30-35 nm) can cover the voids with size up to 10 µm in the Si substrate. The current-voltage (I-V) characteristics of the n-Si/n-SiC heterostructure were obtained by conductive atomic force microscopy.

  4. Process depending morphology and resulting physical properties of TPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less

  5. Electron microscopy approach for the visualization of the epithelial and endothelial glycocalyx.

    PubMed

    Chevalier, L; Selim, J; Genty, D; Baste, J M; Piton, N; Boukhalfa, I; Hamzaoui, M; Pareige, P; Richard, V

    2017-06-01

    This study presents a methodological approach for the visualization of the glycocalyx by electron microscopy. The glycocalyx is a three dimensional network mainly composed of glycolipids, glycoproteins and proteoglycans associated with the plasma membrane. Since less than a decade, the epithelial and endothelial glycocalyx proved to play an important role in physiology and pathology, increasing its research interest especially in vascular functions. Therefore, visualization of the glycocalyx requires reliable techniques and its preservation remains challenging due to its fragile and dynamic organization, which is highly sensitive to the different process steps for electron microscopy sampling. In this study, chemical fixation was performed by perfusion as a good alternative to conventional fixation. Additional lanthanum nitrate in the fixative enhances staining of the glycocalyx in transmission electron microscopy bright field and improves its visualization by detecting the elastic scattered electrons, thus providing a chemical contrast. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Scanning electron microscopy of cells and tissues under fully hydrated conditions

    PubMed Central

    Thiberge, Stephan; Nechushtan, Amotz; Sprinzak, David; Gileadi, Opher; Behar, Vered; Zik, Ory; Chowers, Yehuda; Michaeli, Shulamit; Schlessinger, Joseph; Moses, Elisha

    2004-01-01

    A capability for scanning electron microscopy of wet biological specimens is presented. A membrane that is transparent to electrons protects the fully hydrated sample from the vacuum. The result is a hybrid technique combining the ease of use and ability to see into cells of optical microscopy with the higher resolution of electron microscopy. The resolution of low-contrast materials is ≈100 nm, whereas in high-contrast materials the resolution can reach 10 nm. Standard immunogold techniques and heavy-metal stains can be applied and viewed in the fluid to improve the contrast. Images present a striking combination of whole-cell morphology with a wealth of internal details. A possibility for direct inspection of tissue slices transpires, imaging only the external layer of cells. Simultaneous imaging with photons excited by the electrons incorporates data on material distribution, indicating a potential for multilabeling and specific scintillating markers. PMID:14988502

  7. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  8. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    DOE PAGES

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; ...

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  9. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  10. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    PubMed Central

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  11. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  12. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    PubMed

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  13. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    PubMed

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong

    2018-04-01

    Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.

  15. Volume change measurements of rice by environmental scanning electron microscopy and stereoscopy.

    PubMed

    Tang, Xiaohu; De Rooij, Mario; De Jong, Liesbeth

    2007-01-01

    The measurement of volume change, which is induced by changing the relative humidity, is performed on rice by using environmental scanning electron microscope (ESEM) and stereoscopy techniques. The typical DeltaV% approximately RH curve of rice in both sorption and desorption can be categorized into three regions: low, intermediate, and high dependence on relative humidity from low- to high-relative humidity. The volume changes faster for rice samples with lower crystallinity, which is because the amorphous component is easier to absorb moisture than the crystalline component. The volume change behavior in various relative humidity environments is comparable with rice isotherm curve in sorption process though discrepancies exist in desorption, which are thought to be the presence of small pores and microstructure changes at high relative humidity. The volume in the desorption branch is less than that in the sorption branch at the same relative humidity, which can be attributed to the collapse of interior structures, existence of small pores, surface topography loss, and amylose leach.

  16. Ultrastructure of antennal sensilla of the peach aphid Myzus persicae Sulzer, 1776.

    PubMed

    Ban, Li-Ping; Sun, Yin-Peng; Wang, Ying; Tu, Xiong-Bing; Zhang, Shan-Gan; Zhang, Yun-Ting; Wu, Yun-Sheng; Zhang, Ze-Hua

    2015-02-01

    The antennal sensilla of alate Myzus persicae were mapped using transmission electron microscopy and the ultrastructure of sensilla trichoidea, coeloconica, and placoidea are described. Trichoid sensilla, located on the tip of the antennae, are innervated by 2-4 neurons, with some outer dendrites reaching the distal end of the hair. Coeloconic sensilla in primary rhinaria are of two morphological types, both equipped with two dendrites. Dendrites of Type II coeloconic sensilla are enveloped in the dendrite sheath, containing the sensillum lymph. In sensilla coeloconica of Type I, instead, dendrites are enclosed by an electron opaque solid cuticle, with no space left for the sensillum lymph. The ultrastructure of big placoid sensillum reveals the presence of three groups of neurons, with 2-3 dendrites in each neuron group, while both small placoid sensilla are equipped with a single group of neurons, consisting of three dendrites. Both large and small placoid sensilla bear multiple pores on the outer cuticle. The function of these sensilla is also discussed. © 2014 Wiley Periodicals, Inc.

  17. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  18. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO{sub 2} adsorption performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargazi, Ghasem, E-mail: g.sargazi@gmail.com; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran; Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com

    2017-06-15

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2{sup k-1} factorial design experiments, and the response surfacemore » optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m{sup 2}/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO{sub 2} adsorption. - Graphical abstract: A facile route was used for fabrication of a new metal -organic framework based on tantalum nanostructures that have high surface area, considerable porosity, homogenous morphology, and small size distribution.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brummett, A.R.; Dumont, J.N.

    A comparative study of the chorions of eggs of northern and southern populations of Fundulus heteroclitus by scanning and transmission electron microscopy reveals striking differences. Chorionic fibrils of eggs of the northern (Woods Hole) population are very long, approx. 1.5 ..mu.. in diameter, and very sparsely distributed; the chorionic surface between attached fibrils is dotted with small protuberances. Most of the fibrils of the eggs of a southern (South Carolina) population are shorter, approx. 0.5 ..mu.. in diameter, and very densely distributed. The South Carolina eggs have a few longer and thicker (approx. 1.0 ..mu..) fibrils in the vicinity ofmore » the micropyle. The fibrils of the Woods Hole eggs are club-shaped at their bases, surrounded by a collar of ''jelly'' at their attachment points, and are seated in an indentation in the chorion. Those of the South Carolina eggs show no such basal modifications and appear to extend from a small chorionic hillock. A surface coat of jelly is present on the ovulated eggs of both populations but appears to be thicker and denser on the eggs of southern origin. Scanning electron microscopy of freeze-fractured preparations of ovarian tissue from the two populations shows that the chorionic fibrils are present and attached to the developing chorion as soon as it is visible. Jelly is not present on the surface on the unovulated eggs. The data are discussed from the standpoint of considerations of the taxonomy and distribution of the species, and questions are raised concerning the possible significance of the structural differences observed.« less

  20. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

Top