Sample records for electron outcoupling scheme

  1. Time-dependent multi-dimensional simulation studies of the electron output scheme for high power FELs

    NASA Astrophysics Data System (ADS)

    Hahn, S. J.; Fawley, W. M.; Kim, K. J.; Edighoffer, J. A.

    1994-12-01

    The authors examine the performance of the so-called electron output scheme recently proposed by the Novosibirsk group. In this scheme, the key role of the FEL oscillator is to induce bunching, while an external undulator, called the radiator, then outcouples the bunched electron beam to optical energy via coherent emission. The level of the intracavity power in the oscillator is kept low by employing a transverse optical klystron (TOK) configuration, thus avoiding excessive thermal loading on the cavity mirrors. Time-dependent effects are important in the operation of the electron output scheme because high gain in the TOK oscillator leads to sideband instabilities and chaotic behavior. The authors have carried out an extensive simulation study by using 1D and 2D time-dependent codes and find that proper control of the oscillator cavity detuning and cavity loss results in high output bunching with a narrow spectral bandwidth. Large cavity detuning in the oscillator and tapering of the radiator undulator is necessary for the optimum output power.

  2. Time-dependent multi-dimensional simulation studies of the electron output scheme for high power FELs

    NASA Astrophysics Data System (ADS)

    Hahn, S. J.; Fawley, W. M.; Kim, K.-J.; Edighoffer, J. A.

    1995-04-01

    We examine the performance of the so-called electron output scheme recently proposed by the Novosibirsk group [G.I. Erg et al., 15th Int. Free Electron Laser Conf., The Hague, The Netherlands, 1993, Book of Abstracts p. 50; Preprint Budker INP 93-75]. In this scheme, the key role of the FEL oscillator is to induce bunching, while an external undulator, called the radiator, then outcouples the bunched electron beam to optical energy via coherent emission. The level of the intracavity power in the oscillator is kept low by employing a transverse optical klystron (TOK) configuration, thus avoiding excessive thermal loading on the cavity mirrors. Time-dependent effects are important in the operation of the electron output scheme because high gain in the TOK oscillator leads to sideband instabilities and chaotic behavior. We have carried out an extensive simulation study by using 1D and 2D time-dependent codes and find that proper control of the oscillator cavity detuning and cavity loss results in high output bunching with a narrow spectral bandwidth. Large cavity detuning in the oscillator and tapering of the radiator undulator is necessary for the optimum output power.

  3. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling.

    PubMed

    Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H

    2016-12-23

    In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.

  4. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    PubMed

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jr., Jie Jerry; Sista, Srinivas Prasad; Shi, Xiaolei

    Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and an electron transporting layer comprising inorganic nanoparticles dispersed in an organic matrix.

  6. Novel Out-Coupling Techniques for Terahertz Free Electron Lasers

    DTIC Science & Technology

    2012-06-01

    4  1.   FEL “ Pendulum ” Equation and Electron Dynamics .......................4  2.   FEL...4 B. FEL THEORY 1. FEL “ Pendulum ” Equation and Electron Dynamics The dynamics of electron motion as it passes through the undulator are governed...I.5, then the FEL “ pendulum equation” is derived , (I.7) where is the dimensionless laser field amplitude[1]. From this, it is shown that changes

  7. Reconfigurable Nano-Plasmonics Holography

    DTIC Science & Technology

    2013-04-01

    conventional copper interconnects will no longer support increased clock speeds and the industry will enter a new regime of electronic interconnect... flotation ; 2) an in- coupler grating on one side of the beams, also in the top layer and also with the in- sulator removed beneath; 3) an out-coupler slit

  8. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.

    2015-01-01

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less

  9. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies.

    PubMed

    Rajamalli, P; Senthilkumar, N; Huang, P-Y; Ren-Wu, C-C; Lin, H-W; Cheng, C-H

    2017-08-16

    Simultaneous enhancement of out-coupling efficiency, internal quantum efficiency, and color purity in thermally activated delayed fluorescence (TADF) emitters is highly desired for the practical application of these materials. We designed and synthesized two isomeric TADF emitters, 2DPyM-mDTC and 3DPyM-pDTC, based on di(pyridinyl)methanone (DPyM) cores as the new electron-accepting units and di(tert-butyl)carbazole (DTC) as the electron-donating units. 3DPyM-pDTC, which is structurally nearly planar with a very small ΔE ST , shows higher color purity, horizontal ratio, and quantum yield than 2DPyM-mDTC, which has a more flexible structure. An electroluminescence device based on 3DPyM-pDTC as the dopant emitter can reach an extremely high external quantum efficiency of 31.9% with a pure blue emission. This work also demonstrates a way to design materials with a high portion of horizontal molecular orientation to realize a highly efficient pure-blue device based on TADF emitters.

  10. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission.

    PubMed

    Bocksrocker, Tobias; Preinfalk, Jan Benedikt; Asche-Tauscher, Julian; Pargner, Andreas; Eschenbaum, Carsten; Maier-Flaig, Florian; Lemme, Uli

    2012-11-05

    White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.

  11. Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array

    NASA Astrophysics Data System (ADS)

    Endo, Kuniaki; Adachi, Chihaya

    2014-03-01

    We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.

  12. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    PubMed

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and consequently enhances light outcoupling from the OLEDs by ~60%, and it increases the PL directed toward the OPD. The multiple functional structures of multicolor microcavity OLED pixels/microporous scattering films/OPDs enable generation of enhanced individually addressable sensor arrays, devoid of interfering issues, for O2 and pH as well as for other analytes and biochemical parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sung, Young Hoon; Jung, Pil-Hoon; Han, Kyung-Hoon; Kim, Yang Doo; Kim, Jang-Joo; Lee, Heon

    2017-10-01

    In order to increase the out-coupling efficiency of organic light emitting diodes, conical Si oxide nanostructures were formed on a glass substrate using nanoimprint lithography with hydrogen silsesquioxane. Then, the substrate was planarized with TiO2 nanoparticles. Since TiO2 nanoparticles have a higher refractive index than Si oxide, the surface of substrate is physically flat, but optically undulated in a manner that enables optical scattering and suppression of total internal reflection. Subsequently, OLEDs formed on a substrate with nanostructured Si oxide and a TiO2 planarization layer exhibit a 25% increase in out-coupling efficiency by suppressing total internal reflection.

  14. Out-coupling membrane for large-size organic light-emitting panels with high efficiency and improved uniformity

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Wang, Lu-Wei; Zhou, Lei; Zhang, Fang-hui

    2016-12-01

    An out-coupling membrane embedded with a scattering film of SiO2 spheres and polyethylene terephthalate (PET) plastic was successfully developed for 150 × 150 mm2 green OLEDs. Comparing with a reference OLED panel, an approximately 1-fold enhancement in the forward emission was obtained with an out-coupling membrane adhered to the surface of the external glass substrate of the panel. Moreover, it was verified that the emission color at different viewing angles can be stabilized without apparent spectral distortion. Particularly, the uniformity of the large-area OLEDs was greatly improved. Theoretical calculation clarified that the improved performance of the lighting panels is primarily attributed to the effect of particle scattering.

  15. Novel fabrication method of microlens arrays with High OLED outcoupling efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Moon, Seong Il; Hwang, Dong Eui; Jeong, Ki Won; Kim, Chang Kyo; Moon, Dae-Gyu; Hong, Chinsoo

    2016-03-01

    We presented a novel fabrication method of pyramidal and hemispherical polymethylmethacrylate (PMMA) microlens arrays to improve the outcoupling efficiency. Pyramidal microlens arrays were fabricated by replica molding processes using concave-pyramidal silicon molds prepared by the wet etching method. Concave-hemispherical PMMA thin film was used as a template for fabrication of the hemispherical microlens array. The concave-hemispherical PMMA template was prepared by blowing a N2 gas stream onto the thin PMMA film suspended on a silicon pedestal. A PMMA microlens arrays with hemispherical structure were fabricated by a replica molding process. The outcoupling efficiency of the hemispherical microlens array was greater than that of the pyramidal microlens array. The outcoupling efficiency of hemispherical microlens arrays with a higher contact angle was larger than that of those with lower contact angle. This indicates that, for the hemispherical microlens with larger contact angle, more light can be extracted from the OLEDs due to the decrease in the incident angle of the light at the interface between an air and a hemispherical microlens arrays. After attaching a hemispherical microlens array with contact angle of 50.4° onto the OLEDs, the luminance was enhanced by approximately 117%.

  16. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  17. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    PubMed

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  18. Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes

    NASA Astrophysics Data System (ADS)

    Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.

    2018-02-01

    We demonstrate second-harmonic generation (SHG) in an x -cut congruent lithium niobate (LN) whispering-gallery mode (WGM) resonator. First, we show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A coupling scheme based on our earlier work [F. Sedlmeir et al., Phys. Rev. Applied 7, 024029 (2017), 10.1103/PhysRevApplied.7.024029] is then implemented experimentally to verify this improvement. Thereby, we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively outcoupling using a LN prism, utilizing the birefringence of it and the resonator in kind. This method is also applicable to other nonlinear processes in WGM resonators.

  19. Recent advances in light outcoupling from white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  20. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  1. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE PAGES

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...

    2017-07-18

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  2. General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.

    2006-09-01

    The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chichak, Kelly Scott; Liu, Jie Jerry; Shiang, Joseph John

    Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and electron transporting layer comprising a fluoro compound of formula I (Ar.sup.2).sub.n--Ar.sup.1--(Ar.sup.2).sub.n I wherein Ar.sup.1 is C.sub.5-C.sub.40 aryl, C.sub.5-C.sub.40 substituted aryl, C.sub.5-C.sub.40 heteroaryl, or C.sub.5-C.sub.40 substituted heteroaryl; Ar.sup.2 is, independently at each occurrence, fluoro- or fluoroalkyl-substituted C.sub.5-40 heteroaryl; and n is 1, 2, or 3.

  4. High Quantum Efficiency OLED Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiang, Joseph

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution processmore » on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.« less

  5. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling

    PubMed Central

    Richter, Johannes M.; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P.H.; Pazos-Outón, Luis M.; Gödel, Karl C.; Price, Michael; Deschler, Felix; Friend, Richard H.

    2016-01-01

    In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. PMID:28008917

  6. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  7. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    PubMed

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. < 2.4 V for onset and < 3 V for 1000 cd/m2, and high efficiency of 32.5 lm/W (13.3%), 58.8 lm/W (14.3%), 55.1 lm/W (14.6%), 24.9 lm/W (13.7%) and 45.1 lm/W (13.5%) for blue, green, yellow, red and white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  8. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.

    2010-10-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  9. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.

    2010-10-15

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. A 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-fieldmore » (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.« less

  10. Observation of a variable sub-THz radiation driven by a low energy electron beam from a thermionic rf electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A. V.; Agustsson, R.; Berg, W. J.

    We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less

  11. Observation of a variable sub-THz radiation driven by a low energy electron beam from a thermionic rf electron gun

    DOE PAGES

    Smirnov, A. V.; Agustsson, R.; Berg, W. J.; ...

    2015-09-29

    We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less

  13. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    PubMed Central

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  14. Maximizing output power of a low-gain laser system.

    PubMed

    Carroll, D L; Sentman, L H

    1993-07-20

    Rigrod theory was used to model outcoupled power from a low-gain laser with good accuracy. For a low-gain overtone cw HF chemical laser, Rigrod theory shows that a higher medium saturation yields a higher overall overtone efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low-absorption-scattering loss overtone mirrors and a 5% penalty in outcoupled power, the intracavity flux and hence the mirror loading may be reduced by more than a factor of 2 when the gain length is long enough to saturate the medium well. For the University of Illinois at Urbana-Champaign overtone laser that has an extensive database with well-characterized mirrors for which the Rigrod parameters g(0) and I(sat) were firmly established, the accuracy to which the reflectivities of high-reflectivity overtone mirrors can be deduced by using measured mirror transmissivities, measured outcoupled power, and Rigrod theory is approximatly ±0.07%. This method of accurately deducing mirror reflectivities may be applicable to other low-gain laser systems that use high-reflectivity mirrors at different wavelengths. The maximum overtone efficiency is estimated to be approximately 80%-100%.

  15. Enhancing surface plasmon leakage at the metal/semiconductor interface: towards increased light outcoupling efficiency in organic optoelectronics.

    PubMed

    Kohl, Jesse; Pantina, Joseph A; O'Carroll, Deirdre M

    2014-04-07

    The light outcoupling efficiency of organic light-emitting optoelectronic devices is severely limited by excitation of tightly bound surface plasmon polaritons at the metal electrodes. We present a theoretical study of an organic semiconductor-silver-SiO(2) waveguide and demonstrate that by simple tuning of metal film thickness and the emission regime of the organic semiconductor, a significant fraction of surface plasmon polariton mode amplitude is leaked into the active semiconductor layer, thereby decreasing the amount of optical energy trapped by the metal. At visible wavelengths, mode leakage increases by factors of up to 3.8 and 88 by tuning metal film thickness and by addition of gain, respectively.

  16. OLED with improved light outcoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen; Sun, Yiru

    2016-11-29

    An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standardmore » OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.« less

  17. White organic light-emitting diodes with fluorescent tube efficiency.

    PubMed

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias

    A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less

  19. POF-yarn weaves: controlling the light out-coupling of wearable phototherapy devices

    PubMed Central

    Quandt, Brit M.; Pfister, Marisa S.; Lübben, Jörn F.; Spano, Fabrizio; Rossi, René M.; Bona, Gian-Luca; Boesel, Luciano F.

    2017-01-01

    Neonatal jaundice (hyperbilirubinaemia) is common in neonates and, often, intensive blue-light phototherapy is required to prevent long-term effects. A photonic textile can overcome three major incubator-related concerns: Insulation of the neonate, human contact, and usage restraints. This paper describes the development of a homogeneous luminous textile from polymer optical fibres to use as a wearable, long-term phototherapy device. The bend out-coupling of light from the POFs was related to the weave production, e.g. weave pattern and yarn densities. Comfort, determined by friction against a skin model and breathability, was investigated additionally. Our textile is the first example of phototherapeutic clothing that is produced sans post-processing allowing for faster commercial production. PMID:29082067

  20. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE PAGES

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...

    2015-08-12

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less

  1. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIRmore » region with over 100 W/cm-1 output.« less

  2. Purely organic electroluminescent material realizing 100% conversion from electricity to light

    PubMed Central

    Kaji, Hironori; Suzuki, Hajime; Fukushima, Tatsuya; Shizu, Katsuyuki; Suzuki, Katsuaki; Kubo, Shosei; Komino, Takeshi; Oiwa, Hajime; Suzuki, Furitsu; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya

    2015-01-01

    Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activated delayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state. The material contains electron-donating diphenylaminocarbazole and electron-accepting triphenyltriazine moieties. The typical trade-off between effective emission and triplet-to-singlet up-conversion is overcome by fine-tuning the highest occupied molecular orbital and lowest unoccupied molecular orbital distributions. The nearly zero singlet–triplet energy gap, smaller than the thermal energy at room temperature, results in an organic light-emitting diode with external quantum efficiency of 29.6%. An external quantum efficiency of 41.5% is obtained when using an out-coupling sheet. The external quantum efficiency is 30.7% even at a high luminance of 3,000 cd m−2. PMID:26477390

  3. OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    van Elsbergen, V.; Boerner, H.; Löbl, H.-P.; Goldmann, C.; Grabowski, S. P.; Young, E.; Gaertner, G.; Greiner, H.

    2008-08-01

    Organic light emitting diodes (OLEDs) provide potential for power-efficient large area light sources that combine revolutionary properties. They are thin and flat and in addition they can be transparent, colour-tuneable, or flexible. We review the state of the art in white OLEDs and present performance data for three-colour hybrid white OLEDs on indexmatched substrates. With improved optical outcoupling 45 lm/W are achieved. Using a half-sphere to collect all the light that is in the substrate results in 80 lm/W. Optical modelling supports the experimental work. For decorative applications features like transparency and colour tuning are very appealing. We show results on transparent white OLEDs and two ways to come to a colour-variable OLED. These are lateral separation of different colours in a striped design and direct vertical stacking of the different emitting layers. For a striped colour tuneable OLED 36 lm/W are achieved in white with improved optical outcoupling.

  4. Cross-ontological analytics for alignment of different classification schemes

    DOEpatents

    Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L

    2010-09-28

    Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.

  5. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  6. Topologically protected refraction of robust kink states in valley photonic crystals

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Xue, Haoran; Yang, Zhaoju; Lai, Kueifu; Yu, Yang; Lin, Xiao; Chong, Yidong; Shvets, Gennady; Zhang, Baile

    2018-02-01

    Recently discovered valley photonic crystals (VPCs) mimic many of the unusual properties of two-dimensional (2D) gapped valleytronic materials. Of the utmost interest to optical communications is their ability to support topologically protected chiral edge (kink) states at the internal domain wall between two VPCs with opposite valley-Chern indices. Here we experimentally demonstrate valley-polarized kink states with polarization multiplexing in VPCs, designed from a spin-compatible four-band model. When the valley pseudospin is conserved, we show that the kink states exhibit nearly perfect out-coupling efficiency into directional beams, through the intersection between the internal domain wall and the external edge separating the VPCs from ambient space. The out-coupling behaviour remains topologically protected even when we break the spin-like polarization degree of freedom (DOF), by introducing an effective spin-orbit coupling in one of the VPC domains. This also constitutes the first realization of spin-valley locking for topological valley transport.

  7. Device characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer.

    PubMed

    Lim, Jong Tae; Kim, Kyung Nam; Yeom, Geun Young

    2009-12-01

    Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)/Ba-doped Alq3 (20 nm, x%: x = 0, 10, 25, and 50)/Al (100 nm), the device with the Alq3 layer doped with 10% Ba showed the highest light out-coupling characteristic. However, as the Ba dopant concentration was increased from 25% to 50%, this device characteristic was largely reduced. The characteristics of these devices were interpreted on the basis of the chemical reaction between Ba and Alq3 and the electron injection property by analyzing the electronic structure of the Ba-doped Alq3 layer. At a low Ba doping of 10%, mainly the Alq3 radical anion species was formed. In addition, the barrier height for electron injection in this layer was decreased to 0.6 eV, when compared to the pristine Alq3 layer. At a high Ba doping of 50%, the Alq3 molecules were severely decomposed. When the Ba dopant concentration was changed, the light-emitting characteristics of the devices were well coincided with the formation mechanism of Alq3 radical anion and Alq3 decomposition species.

  8. Tilt correction for intracavity mirror of laser with an unstable resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Xu, Bing; Yang, Wei

    2005-12-01

    The influence on outcoupled mode by introducing intracavity tilt-perturbation in confocal unstable resonator is analyzed. The intracavity mode properties and Zernike-aberration coefficient of intrcavity mirror's maladjustment are calculated theoretically. The experimental results about the relations of intracavity mirror maladjustment and the properties of mode aberration are presented by adopting Hartmann-Shack wavefront sensor. The results show that the intracavity perturbation of the concave mirror has more remarkable effect on outcoupled beam-quality than that of the convex mirror. For large Fresnel-number resonator, the tilt angle of intracavity mirror has a close linear relationship with extracavity Zernike tilt coefficient. The ratio of tilt aberration coefficient approaches to the magnification of unstable resonator if equivalent perturbation is applied to concave mirror and convex mirror respectively. Furthermore, astigmatism and defocus aberration also increase with the augment of tilt aberration of beam mode. So intracavity phase-corrected elements used in unstable resonator should be close to the concave mirror. Based these results, a set of automatic control system of intracavity tilt aberration is established and the aberration-corrected results are presented and analyzed in detail.

  9. Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring.

    PubMed

    Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-03-21

    We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.

  10. A new semiclassical decoupling scheme for electronic transitions in molecular collisions - Application to vibrational-to-electronic energy transfer

    NASA Technical Reports Server (NTRS)

    Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.

    1980-01-01

    A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.

  11. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  12. Numerical study on electronic and optical properties of organic light emitting diodes.

    PubMed

    Kim, Kwangsik; Hwang, Youngwook; Won, Taeyoung

    2013-08-01

    In this paper, we present a finite element method (FEM) study of space charge effects in organic light emitting diodes. Our model includes a Gaussian density of states to account for the energetic disorder in organic semiconductors and the Fermi-Dirac statistics to account for the charge hopping process between uncorrelated sites. The physical model cover all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillating and thus embodied as excitons and embedded in a stack of multilayer. The out-coupled emission spectrum has been numerically calculated as a function of viewing angle, polarization, and dipole orientation. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution.

  13. Device reflectivity as a simple rule for predicting the suitability of scattering foils for improved OLED light extraction

    NASA Astrophysics Data System (ADS)

    Levell, Jack W.; Harkema, Stephan; Pendyala, Raghu K.; Rensing, Peter A.; Senes, Alessia; Bollen, Dirk; MacKerron, Duncan; Wilson, Joanne S.

    2013-09-01

    A general challenge in Organic Light Emitting Diodes (OLEDs) is to extract the light efficiently from waveguided modes within the device structure. This can be accomplished by applying an additional scattering layer to the substrate which results in outcoupling increases between 0% to <100% in external quantum efficiency. In this work, we aim to address this large variation and show that the reflectivity of the OLED is a simple and useful predictor of the efficiency of substrate scattering techniques without the need for detailed modeling. We show that by optimizing the cathode and anode structure of glass based OLEDs by using silver and an ITO free high conductive Agfa Orgacon™ PEDOT:PSS we are able to increase the external quantum efficiency of OLEDs with the same outcoupling substrates from 2.4% to 5.6%, an increase of 130%. In addition, Holst Centre and partners are developing flexible substrates with integrated light extraction features and roll to roll compatible processing techniques to enable this next step in OLED development both for lighting and display applications. These devices show promise as they are shatterproof substrates and facilitate low cost manufacture.

  14. Influences of thermal deformation of cavity mirrors induced by high energy DF laser to beam quality under the simulated real physical circumstances

    NASA Astrophysics Data System (ADS)

    Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei

    2017-05-01

    The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.

  15. Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring.

    PubMed

    Pynn, Christopher D; Chan, Lesley; Lora Gonzalez, Federico; Berry, Alex; Hwang, David; Wu, Haoyang; Margalith, Tal; Morse, Daniel E; DenBaars, Steven P; Gordon, Michael J

    2017-07-10

    Light extraction from InGaN/GaN-based multiple-quantum-well (MQW) light emitters is enhanced using a simple, scalable, and reproducible method to create hexagonally close-packed conical nano- and micro-scale features on the backside outcoupling surface. Colloidal lithography via Langmuir-Blodgett dip-coating using silica masks (d = 170-2530 nm) and Cl 2 /N 2 -based plasma etching produced features with aspect ratios of 3:1 on devices grown on semipolar GaN substrates. InGaN/GaN MQW structures were optically pumped at 266 nm and light extraction enhancement was quantified using angle-resolved photoluminescence. A 4.8-fold overall enhancement in light extraction (9-fold at normal incidence) relative to a flat outcoupling surface was achieved using a feature pitch of 2530 nm. This performance is on par with current photoelectrochemical (PEC) nitrogen-face roughening methods, which positions the technique as a strong alternative for backside structuring of c-plane devices. Also, because colloidal lithography functions independently of GaN crystal orientation, it is applicable to semipolar and nonpolar GaN devices, for which PEC roughening is ineffective.

  16. A New Proxy Electronic Voting Scheme Achieved by Six-Particle Entangled States

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Ding, Li-Yuan; Jiang, Xiu-Li; Li, Peng-Fei

    2018-03-01

    In this paper, we use quantum proxy signature to construct a new secret electronic voting scheme. In our scheme, six particles entangled states function as quantum channels. The voter Alice, the Vote Management Center Bob, the scrutineer Charlie only perform two particles measurements on the Bell bases to realize the electronic voting process. So the scheme reduces the technical difficulty and increases operation efficiency. We use quantum key distribution and one-time pad to guarantee its unconditional security. The significant advantage of our scheme is that transmitted information capacity is twice as much as the capacity of other schemes.

  17. ITG-TEM turbulence simulation with bounce-averaged kinetic electrons in tokamak geometry

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Min; Qi, Lei; Yi, S.; Hahm, T. S.

    2017-06-01

    We develop a novel numerical scheme to simulate electrostatic turbulence with kinetic electron responses in magnetically confined toroidal plasmas. Focusing on ion gyro-radius scale turbulences with slower frequencies than the time scales for electron parallel motions, we employ and adapt the bounce-averaged kinetic equation to model trapped electrons for nonlinear turbulence simulation with Coulomb collisions. Ions are modeled by employing the gyrokinetic equation. The newly developed scheme is implemented on a global δf particle in cell code gKPSP. By performing linear and nonlinear simulations, it is demonstrated that the new scheme can reproduce key physical properties of Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities, and resulting turbulent transport. The overall computational cost of kinetic electrons using this novel scheme is limited to 200%-300% of the cost for simulations with adiabatic electrons. Therefore the new scheme allows us to perform kinetic simulations with trapped electrons very efficiently in magnetized plasmas.

  18. A simple photoionization scheme for characterizing electron and ion spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  19. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated.

  20. Dispersion-based Fresh-slice Scheme for Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc

    The Fresh-slice technique improved the performance of several Self-Amplified Spontaneous Emission Free-Electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation required a special insertion device to create the beam yaw, called dechirper. We demonstrate a novel scheme to enable Freshslice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.

  1. Novel emission phenomena in organic microcavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-09-01

    Organic light emitting diodes (OLED) are today a mature techology and have reached high efficiency both in monochrome and white devices. One of the main research areas for further improvement is still the optical design which enables many new approaches to enhance efficiency and realize special emission properties. In this talk, I will review our recent work on OLED outcoupling, in particular for devices encapsulated in microcavities and patterned structures.

  2. ITO-free white OLEDs on flexible substrates with enhanced light outcoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Barry

    2017-02-05

    The goal of this research is to further explore and integrate a number of innovative approaches we have developed that can overcome current bottlenecks to realize large-area ITO-free WOLEDs on flexible substrates, with processes and materials that are upscalable and amenable to low-cost production. In doing so, we provide an understanding of various loss mechanisms in OLEDs and how they can be extracted.

  3. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  4. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    NASA Astrophysics Data System (ADS)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  5. Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator.

    PubMed

    Jiang, Deli; Ma, Wanxia; Xiao, Peng; Shao, Leqiang; Li, Di; Chen, Min

    2018-02-15

    All-solid-state Z-scheme heterojunction has attracted much attention in photocatalytic field because of its strong ability in charge separation and transfer. In the present study, all-solid-state ternary Z-scheme heterojunction constructed by graphitic carbon nitride (CN) nanosheet, carbon nanotube (CNT), and Bi 2 WO 6 (BWO) nanosheet, in which CNT was employed as the electron mediator. The CN/CNT/BWO ternary Z-scheme heterojunction shows the enhanced photocatalytic activity towards the degradation of tetracycline hydrochloride (TC) as compared to the pristine g-C 3 N 4 , Bi 2 WO 6 , CNT/BWO, CNT/CN, and CN/BWO. The significantly improved photocatalytic activity can be mainly ascribed to the formed CNT-mediated Z-scheme heterojunction, which facilitates the separation and transfer of photogenerated electron-hole pairs. Our work provides a rational design of all-solid-state Z-scheme heterojunction with CNT as the electron mediator for highly efficient photocatalysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Analysis and design of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  7. Passive and active plasma deceleration for the compact disposal of electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less

  8. A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang

    2015-04-01

    Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  9. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less

  10. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  11. An Efficient Searchable Encryption Against Keyword Guessing Attacks for Sharable Electronic Medical Records in Cloud-based System.

    PubMed

    Wu, Yilun; Lu, Xicheng; Su, Jinshu; Chen, Peixin

    2016-12-01

    Preserving the privacy of electronic medical records (EMRs) is extremely important especially when medical systems adopt cloud services to store patients' electronic medical records. Considering both the privacy and the utilization of EMRs, some medical systems apply searchable encryption to encrypt EMRs and enable authorized users to search over these encrypted records. Since individuals would like to share their EMRs with multiple persons, how to design an efficient searchable encryption for sharable EMRs is still a very challenge work. In this paper, we propose a cost-efficient secure channel free searchable encryption (SCF-PEKS) scheme for sharable EMRs. Comparing with existing SCF-PEKS solutions, our scheme reduces the storage overhead and achieves better computation performance. Moreover, our scheme can guard against keyword guessing attack, which is neglected by most of the existing schemes. Finally, we implement both our scheme and a latest medical-based scheme to evaluate the performance. The evaluation results show that our scheme performs much better performance than the latest one for sharable EMRs.

  12. Top-emitting organic light-emitting diodes.

    PubMed

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  13. Energy Scaling of Nanosecond Gain-Switched Cr2+:ZnSe Lasers

    DTIC Science & Technology

    2011-01-01

    outcoupler or absorption from the lightly-doped active ions. Additionally, the edges of the crystals are cut at the Brewster angle , which raises...experiments we used Brewster cut Cr:ZnSe gain elements with a chromium concentration of 8x1018 cm-3. Under Cr:Tm:Ho:YAG pumping, the first Cr:ZnSe laser...the energy scaling of nanosecond gain-switched Cr:ZnSe lasers is optimization of the gain medium. In this study we used Brewster cut Cr:ZnSe gain

  14. Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants.

    PubMed

    Clament Sagaya Selvam, N; Kim, Yeong Gyeong; Kim, Dong Jin; Hong, Won-Hwa; Kim, Woong; Park, Sung Hyuk; Jo, Wan-Kuen

    2018-09-01

    The efficient photocatalytic degradation of harmful organic pollutants (isoniazid (ISN) and 1,4-dioxane (DX)) via the Z-scheme electron transfer mechanism was accomplished using a photostable composite photocatalyst consisting of BiVO 4 , CdS, and reduced graphene oxide (RGO). Compared to their pristine counterparts, the RGO-mediated Z-scheme CdS/BiVO 4 (CdS/RGO-BiVO 4 ) nanocomposites exhibited superior degradation activities, mainly attributed to the prolonged charge separation. RGO was found to be involved in visible-light harvesting and acted as a solid-state electron mediator at the CdS/BiVO 4 interface to realize an effective Z-scheme electron transfer pathway, avoid photocatalyst self-oxidation, and lengthen the life span of charge carriers. The results of reactive species scavenging experiments, photoluminescence measurements, and transient photocurrent measurements, as well as the calculated band potentials of the synthesized photocatalysts, supported the Z-scheme electron/hole pair separation mechanism. Additionally, the intermediates formed during the degradation of ISN and DX were identified, and a possible fragmentation pattern was proposed. This systematic work aims to develop photostable Z-scheme composites as unique photocatalytic systems for the efficient removal of harmful organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A holographic waveguide based eye tracker

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  16. Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au).

    PubMed

    Li, Houfen; Yu, Hongtao; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-01-27

    Z-scheme photocatalytic system shows superiority in degradation of refractory pollutants and water splitting due to the high redox capacities caused by its unique charge transfer behaviors. As a key component of Z-scheme system, the electron mediator plays an important role in charge carrier migration. According to the energy band theory, we believe the interfacial energy band bendings facilitate the electron transfer via Z-scheme mechanism when the Fermi level of electron mediator is between the Fermi levels of Photosystem II (PS II) and Photosystem I (PS I), whereas charge transfer is inhibited in other cases as energy band barriers would form at the semiconductor-metal interfaces. Here, this inference was verified by the increased hydroxyl radical generation and improved photocurrent on WO3-Cu-gC3N4 (with the desired Fermi level structure), which were not observed on either WO3-Ag-gC3N4 or WO3-Au-gC3N4. Finally, photocatalytic degradation rate of 4-nonylphenol on WO3-Cu-gC3N4 was proved to be as high as 11.6 times than that of WO3-gC3N4, further demonstrating the necessity of a suitable electron mediator in Z-scheme system. This study provides scientific basis for rational construction of Z-scheme photocatalytic system.

  17. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.

    PubMed

    Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J

    2018-04-13

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  18. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    NASA Astrophysics Data System (ADS)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  19. Electron-Nuclear Quantum Information Processing

    DTIC Science & Technology

    2008-11-13

    quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic

  20. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherencemore » of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).« less

  1. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    PubMed

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  2. Manufacturing Process for OLED Integrated Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Cheng-Hung; McCamy, James; Ashtosh, Ganjoo

    2017-01-27

    The primary objective of this project is to demonstrate manufacturing processes for technologies that will enable commercialization of a large-area and low-cost “integrated substrate” product for rigid OLED SSL lighting. The integrated substrate product will consist of a low cost, float glass substrate combined with a transparent conductive anode film layer, and light out-coupling (internal and external extraction layers) structures. In combination, these design elements will enable an integrated substrate meeting or exceeding 2015 performance targets for cost ($60/m2), extraction efficiency (50%) and sheet resistance (<10 ohm/sq).

  3. A wide bandwidth free-electron laser with mode locking using current modulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  4. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2017-02-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  6. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  7. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    NASA Astrophysics Data System (ADS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  8. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, J.; Chen, M.; Wu, W. Y.

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  9. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE PAGES

    Luo, J.; Chen, M.; Wu, W. Y.; ...

    2018-04-10

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  10. A Cu-Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor.

    PubMed

    Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro

    2018-04-17

    Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.

  11. Electromechanical Displacement Detection With an On-Chip High Electron Mobility Transistor Amplifier

    NASA Astrophysics Data System (ADS)

    Oda, Yasuhiko; Onomitsu, Koji; Kometani, Reo; Warisawa, Shin-ichi; Ishihara, Sunao; Yamaguchi, Hiroshi

    2011-06-01

    We developed a highly sensitive displacement detection scheme for a GaAs-based electromechanical resonator using an integrated high electron mobility transistor (HEMT). Piezoelectric voltage generated by the vibration of the resonator is applied to the gate of the HEMT, resulting in the on-chip amplification of the signal voltage. This detection scheme achieves a displacement sensitivity of ˜9 pm·Hz-1/2, which is one of the highest among on-chip purely electrical displacement detection schemes at room temperature.

  12. Stability of the discretization of the electron avalanche phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Andrea, E-mail: andrea.villa@rse-web.it; Barbieri, Luca, E-mail: luca.barbieri@rse-web.it; Gondola, Marco, E-mail: marco.gondola@rse-web.it

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied tomore » this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.« less

  13. Efficient algorithms for the simulation of non-adiabatic electron transfer in complex molecular systems: application to DNA.

    PubMed

    Kubař, Tomáš; Elstner, Marcus

    2013-04-28

    In this work, a fragment-orbital density functional theory-based method is combined with two different non-adiabatic schemes for the propagation of the electronic degrees of freedom. This allows us to perform unbiased simulations of electron transfer processes in complex media, and the computational scheme is applied to the transfer of a hole in solvated DNA. It turns out that the mean-field approach, where the wave function of the hole is driven into a superposition of adiabatic states, leads to over-delocalization of the hole charge. This problem is avoided using a surface hopping scheme, resulting in a smaller rate of hole transfer. The method is highly efficient due to the on-the-fly computation of the coarse-grained DFT Hamiltonian for the nucleobases, which is coupled to the environment using a QM/MM approach. The computational efficiency and partial parallel character of the methodology make it possible to simulate electron transfer in systems of relevant biochemical size on a nanosecond time scale. Since standard non-polarizable force fields are applied in the molecular-mechanics part of the calculation, a simple scaling scheme was introduced into the electrostatic potential in order to simulate the effect of electronic polarization. It is shown that electronic polarization has an important effect on the features of charge transfer. The methodology is applied to two kinds of DNA sequences, illustrating the features of transfer along a flat energy landscape as well as over an energy barrier. The performance and relative merit of the mean-field scheme and the surface hopping for this application are discussed.

  14. Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system.

    PubMed

    Han, Xue; Hu, Shi; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-08-05

    We propose effective fusion schemes for stationary electronic W state and flying photonic W state, respectively, by using the quantum-dot-microcavity coupled system. The present schemes can fuse a n-qubit W state and a m-qubit W state to a (m + n - 1)-qubit W state, that is, these schemes can be used to not only create large W state with small ones, but also to prepare 3-qubit W states with Bell states. The schemes are based on the optical selection rules and the transmission and reflection rules of the cavity and can be achieved with high probability. We evaluate the effect of experimental imperfections and the feasibility of the schemes, which shows that the present schemes can be realized with high fidelity in both the weak coupling and the strong coupling regimes. These schemes may be meaningful for the large-scale solid-state-based quantum computation and the photon-qubit-based quantum communication.

  15. A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Lu, Z. X.

    2018-02-01

    A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.

  16. QM/MM hybrid calculation of biological macromolecules using a new interface program connecting QM and MM engines

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru

    2009-02-01

    An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.

  17. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  18. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    PubMed

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  19. Low-energy effective Hamiltonians for correlated electron systems beyond density functional theory

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Miyake, Takashi; Imada, Masatoshi; Biermann, Silke

    2017-08-01

    We propose a refined scheme of deriving an effective low-energy Hamiltonian for materials with strong electronic Coulomb correlations beyond density functional theory (DFT). By tracing out the electronic states away from the target degrees of freedom in a controlled way by a perturbative scheme, we construct an effective Hamiltonian for a restricted low-energy target space incorporating the effects of high-energy degrees of freedom in an effective manner. The resulting effective Hamiltonian can afterwards be solved by accurate many-body solvers. We improve this "multiscale ab initio scheme for correlated electrons" (MACE) primarily in two directions by elaborating and combining two frameworks developed by Hirayama et al. [M. Hirayama, T. Miyake, and M. Imada, Phys. Rev. B 87, 195144 (2013), 10.1103/PhysRevB.87.195144] and Casula et al. [M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T. Miyake, A. J. Millis, and S. Biermann, Phys. Rev. Lett. 109, 126408 (2012), 10.1103/PhysRevLett.109.126408]: (1) Double counting of electronic correlations between the DFT and the low-energy solver is avoided by using the constrained G W scheme; and (2) the frequency dependent interactions emerging from the partial trace summation are successfully separated into a nonlocal part that is treated following ideas by Hirayama et al. and a local part treated nonperturbatively in the spirit of Casula et al. and are incorporated into the renormalization of the low-energy dispersion. The scheme is favorably tested on the example of SrVO3.

  20. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution.

    PubMed

    Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-07-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  1. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    PubMed Central

    Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-01-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841

  2. Magnetometer Based on the Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Strekalov, Dmitry; Maleki, Lute

    2005-01-01

    We theoretically propose and discuss properties of two schemes of an all-optical self-oscillating magnetometer based on an opto-electronic oscillator stabilized with an atomic vapor cell. Proof of the principle DC magnetic field measurements characterized with 2 x 10(exp -7) G sensitivity and 1 - 1000 mG dynamic range in one of the schemes are demonstrated.

  3. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  4. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.

    2004-12-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [

    JETP Lett. 74, 371 (2001)JTPLA20021-364010.1134/1.1427124
    ;
    Phys. Rev. E 65, 046504 (2002)PLEEE81063-651X10.1103/PhysRevE.65.046504
    ]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1 μm long or a few femtoseconds in duration) relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  5. An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Cheng, Lan

    2018-04-01

    An atomic mean-field (AMF) spin-orbit (SO) approach within exact two-component theory (X2C) is reported, thereby exploiting the exact decoupling scheme of X2C, the one-electron approximation for the scalar-relativistic contributions, the mean-field approximation for the treatment of the two-electron SO contribution, and the local nature of the SO interactions. The Hamiltonian of the proposed SOX2CAMF scheme comprises the one-electron X2C Hamiltonian, the instantaneous two-electron Coulomb interaction, and an AMF SO term derived from spherically averaged Dirac-Coulomb Hartree-Fock calculations of atoms; no molecular relativistic two-electron integrals are required. Benchmark calculations for bond lengths, harmonic frequencies, dipole moments, and electric-field gradients for a set of diatomic molecules containing elements across the periodic table show that the SOX2CAMF scheme offers a balanced treatment for SO and scalar-relativistic effects and appears to be a promising candidate for applications to heavy-element containing systems. SOX2CAMF coupled-cluster calculations of molecular properties for bismuth compounds (BiN, BiP, BiF, BiCl, and BiI) are also presented and compared with experimental results to further demonstrate the accuracy and applicability of the SOX2CAMF scheme.

  6. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less

  7. Privacy preserving index for encrypted electronic medical records.

    PubMed

    Chen, Yu-Chi; Horng, Gwoboa; Lin, Yi-Jheng; Chen, Kuo-Chang

    2013-12-01

    With the development of electronic systems, privacy has become an important security issue in real-life. In medical systems, privacy of patients' electronic medical records (EMRs) must be fully protected. However, to combine the efficiency and privacy, privacy preserving index is introduced to preserve the privacy, where the EMR can be efficiently accessed by this patient or specific doctor. In the literature, Goh first proposed a secure index scheme with keyword search over encrypted data based on a well-known primitive, Bloom filter. In this paper, we propose a new privacy preserving index scheme, called position index (P-index), with keyword search over the encrypted data. The proposed index scheme is semantically secure against the adaptive chosen keyword attack, and it also provides flexible space, lower false positive rate, and search privacy. Moreover, it does not rely on pairing, a complicate computation, and thus can search over encrypted electronic medical records from the cloud server efficiently.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peer, Akshit; Biswas, Rana; Park, Joong -Mok

    Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.

  9. Improvements of phosphorescent white OLEDs performance for lighting application.

    PubMed

    Lee, Jonghee; Chu, Hye Yong; Lee, Jeong-Ik; Song, Ki-Im; Lee, Su Jin

    2008-10-01

    We developed white OLED device with high power efficiency, in which blue and orange phosphorescent emitters were used. By introduction of multi-functional interlayer which has partial doping of orange dopant inside EBL, we report WOLEDs with peak external efficiencies up to (14.1% EQE, 31.3 Im/W) without light out-coupling technique. At 1000 cd/m2, the performance achieved was 11.9% EQE, 18.7 Im/W with CIE = (0.39, 0.44). We also found that WOLED performances are related with doping ratio of the orange dopant that was inserted inside EBL.

  10. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  11. Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer.

    PubMed

    Lee, Hyungjin; Lee, Donghwa; Ahn, Yumi; Lee, Eun-Woo; Park, Lee Soon; Lee, Youngu

    2014-08-07

    Highly flexible and efficient silver nanowire-based organic light-emitting diodes (OLEDs) have been successfully fabricated by employing a n-type hole injection layer (HIL). The silver nanowire-based OLEDs without light outcoupling structures exhibited excellent device characteristics such as extremely low turn-on voltage (3.6 V) and high current and power efficiencies (44.5 cd A(-1) and 35.8 lm W(-1)). In addition, flexible OLEDs with the silver nanowire transparent conducting electrode (TCE) and n-type HIL fabricated on plastic substrates showed remarkable mechanical flexibility as well as device performance.

  12. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  13. Storage and retrieval of quantum information with a hybrid optomechanics-spin system

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang

    2016-08-01

    We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.

  14. Attack and improvements of fair quantum blind signature schemes

    NASA Astrophysics Data System (ADS)

    Zou, Xiangfu; Qiu, Daowen

    2013-06-01

    Blind signature schemes allow users to obtain the signature of a message while the signer learns neither the message nor the resulting signature. Therefore, blind signatures have been used to realize cryptographic protocols providing the anonymity of some participants, such as: secure electronic payment systems and electronic voting systems. A fair blind signature is a form of blind signature which the anonymity could be removed with the help of a trusted entity, when this is required for legal reasons. Recently, a fair quantum blind signature scheme was proposed and thought to be safe. In this paper, we first point out that there exists a new attack on fair quantum blind signature schemes. The attack shows that, if any sender has intercepted any valid signature, he (she) can counterfeit a valid signature for any message and can not be traced by the counterfeited blind signature. Then, we construct a fair quantum blind signature scheme by improved the existed one. The proposed fair quantum blind signature scheme can resist the preceding attack. Furthermore, we demonstrate the security of the proposed fair quantum blind signature scheme and compare it with the other one.

  15. A general range-separated double-hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Kalai, Cairedine; Toulouse, Julien

    2018-04-01

    A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.

  16. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  17. An Improved and Secure Anonymous Biometric-Based User Authentication with Key Agreement Scheme for the Integrated EPR Information System.

    PubMed

    Jung, Jaewook; Kang, Dongwoo; Lee, Donghoon; Won, Dongho

    2017-01-01

    Nowadays, many hospitals and medical institutes employ an authentication protocol within electronic patient records (EPR) services in order to provide protected electronic transactions in e-medicine systems. In order to establish efficient and robust health care services, numerous studies have been carried out on authentication protocols. Recently, Li et al. proposed a user authenticated key agreement scheme according to EPR information systems, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent off-line password guessing attacks and server spoofing attack, and cannot preserve user identity. Second, there is no password verification process with the failure to identify the correct password at the beginning of the login phase. Third, the mechanism of password change is incompetent, in that it induces inefficient communication in communicating with the server to change a user password. Therefore, we suggest an upgraded version of the user authenticated key agreement scheme that provides enhanced security. Our security and performance analysis shows that compared to other related schemes, our scheme not only improves the security level, but also ensures efficiency.

  18. An Improved and Secure Anonymous Biometric-Based User Authentication with Key Agreement Scheme for the Integrated EPR Information System

    PubMed Central

    Kang, Dongwoo; Lee, Donghoon; Won, Dongho

    2017-01-01

    Nowadays, many hospitals and medical institutes employ an authentication protocol within electronic patient records (EPR) services in order to provide protected electronic transactions in e-medicine systems. In order to establish efficient and robust health care services, numerous studies have been carried out on authentication protocols. Recently, Li et al. proposed a user authenticated key agreement scheme according to EPR information systems, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent off-line password guessing attacks and server spoofing attack, and cannot preserve user identity. Second, there is no password verification process with the failure to identify the correct password at the beginning of the login phase. Third, the mechanism of password change is incompetent, in that it induces inefficient communication in communicating with the server to change a user password. Therefore, we suggest an upgraded version of the user authenticated key agreement scheme that provides enhanced security. Our security and performance analysis shows that compared to other related schemes, our scheme not only improves the security level, but also ensures efficiency. PMID:28046075

  19. CEPC booster design study

    DOE PAGES

    Bian, Tianjian; Gao, Jie; Zhang, Chuang; ...

    2017-12-10

    In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less

  20. CEPC booster design study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Tianjian; Gao, Jie; Zhang, Chuang

    In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less

  1. Beam debunching due to ISR-induced energy diffusion

    DOE PAGES

    Yampolsky, Nikolai A.; Carlsten, Bruce E.

    2017-06-20

    One of the options for increasing longitudinal coherency of X-ray free electron lasers (XFELs) is seeding with a microbunched electron beam. Several schemes leading to significant amplitude of the beam bunching at X-ray wavelengths were recently proposed. All these schemes rely on beam optics having several magnetic dipoles. While the beam passes through a dipole, its energy spread increases due to quantum effects of synchrotron radiation. As a result, the bunching factor at small wavelengths reduces since electrons having different energies follow different trajectories in the bend. We rigorously calculate the reduction in the bunching factor due to incoherent synchrotronmore » the radiation while the beam travels in an arbitrary beamline. Lastly, we apply general results to estimate reduction of harmonic current in common schemes proposed for XFEL seeding.« less

  2. On the security of a novel probabilistic signature based on bilinear square Diffie-Hellman problem and its extension.

    PubMed

    Zhao, Zhenguo; Shi, Wenbo

    2014-01-01

    Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications.

  3. Methodological Aspects of Strategic Development of Regional Socio-Economic System (Following the Example of Radio-Electronic Industry Enterprises in the Republic of Tatarstan)

    ERIC Educational Resources Information Center

    Uraev, Nikolay N.; Mingaleev, Gaziz F.; Kushimov, Aleksandr T.; Kolesov, Nikolay A.

    2016-01-01

    This paper considers the methodological aspects of forming a development strategy for the regional socioeconomic system (by the example of radio-electronic enterprises in the Republic of Tatarstan). The paper suggests a conceptual scheme of the macro- and micro-factors' influence on the regional socioeconomic system. This scheme is based on the…

  4. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  5. Comparative study of nonideal beam effects in high gain harmonic generation and self-seeded free electron lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, Agostino; Pellegrini, Claudio; Giannessi, Luca; Reiche, Sven

    2010-07-01

    In this paper we investigate and compare the properties of two narrow-bandwidth free-electron laser (FEL) schemes, one using self-seeding and the other high gain harmonic generation (HGHG). The two systems have been thoroughly studied analytically and numerically in the past. The aim of this work is to compare their performances when the FEL is driven by an electron beam with nonideal properties, thus including effects such as shot-to-shot energy fluctuations and nonlinear energy chirp. In both cases nonlinearities produce a bandwidth larger than the Fourier transform limited value. However, our analysis indicates that, for approximately the same output power levels, the self-seeding scheme is less affected than the HGHG scheme by quadratic energy chirps in the electron beam longitudinal phase space. This is confirmed by a specific numerical example corresponding to SPARX parameters where the electron beam was optimized to minimize the FEL gain length. The work has been carried out with the aid of the time dependent FEL codes GENESIS 1.3 (3D) and PERSEO (1D).

  6. Density functional theory for d- and f-electron materials and compounds

    DOE PAGES

    Mattson, Ann E.; Wills, John M.

    2016-02-12

    Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less

  7. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities

    PubMed Central

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781

  8. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities.

    PubMed

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-07-30

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.

  9. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode

    NASA Astrophysics Data System (ADS)

    Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao

    2017-11-01

    In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

  10. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojanmore » Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.« less

  11. Verifier-based three-party authentication schemes using extended chaotic maps for data exchange in telecare medicine information systems.

    PubMed

    Lee, Tian-Fu

    2014-12-01

    Telecare medicine information systems provide a communicating platform for accessing remote medical resources through public networks, and help health care workers and medical personnel to rapidly making correct clinical decisions and treatments. An authentication scheme for data exchange in telecare medicine information systems enables legal users in hospitals and medical institutes to establish a secure channel and exchange electronic medical records or electronic health records securely and efficiently. This investigation develops an efficient and secure verified-based three-party authentication scheme by using extended chaotic maps for data exchange in telecare medicine information systems. The proposed scheme does not require server's public keys and avoids time-consuming modular exponential computations and scalar multiplications on elliptic curve used in previous related approaches. Additionally, the proposed scheme is proven secure in the random oracle model, and realizes the lower bounds of messages and rounds in communications. Compared to related verified-based approaches, the proposed scheme not only possesses higher security, but also has lower computational cost and fewer transmissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  13. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  14. On the Security of a Novel Probabilistic Signature Based on Bilinear Square Diffie-Hellman Problem and Its Extension

    PubMed Central

    Zhao, Zhenguo; Shi, Wenbo

    2014-01-01

    Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications. PMID:25025083

  15. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2018-02-01

    Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.

  16. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    PubMed

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  17. Design of a high-power Nd:YAG Q-switched laser cavity

    NASA Astrophysics Data System (ADS)

    Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.

    1995-06-01

    An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.

  18. Light management in perovskite solar cells and organic LEDs with microlens arrays

    DOE PAGES

    Peer, Akshit; Biswas, Rana; Park, Joong -Mok; ...

    2017-04-28

    Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.

  19. Fiber-coupled dielectric-loaded plasmonic waveguides.

    PubMed

    Gosciniak, Jacek; Volkov, Valentyn S; Bozhevolnyi, Sergey I; Markey, Laurent; Massenot, Sébastien; Dereux, Alain

    2010-03-01

    Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagation over the 100-microm-long distance.

  20. Numerical applications of the advective-diffusive codes for the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.

    2016-11-01

    In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.

  1. Phonon limited electronic transport in Pb

    NASA Astrophysics Data System (ADS)

    Rittweger, F.; Hinsche, N. F.; Mertig, I.

    2017-09-01

    We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \

  2. 76 FR 35181 - Wireless Backhaul; Further Inquiry Into Fixed Service Sharing of the 6875-7125 and 12700-13200...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... continuation of electronic newsgathering operations, and the appropriate channelization scheme, coordination... also sought comment on alternative channelization schemes. Several commenters, including FWCC and...

  3. Structural Characterization of Vapor-deposited Organic Glasses

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit

    Physical vapor deposition, a common route of thin film fabrication for organic electronic devices, has recently been shown to produce organic glassy films with enhanced kinetic stability and anisotropic structure. Anisotropic structures are of interest in the organic electronics community as it has been shown that certain structures lead to enhanced device performance, such as higher carrier mobility and better light outcoupling. A mechanism proposed to explain the origin of the stability and anisotropy of vapor-deposited glasses relies on two parameters: 1) enhanced molecular mobility at the free surface (vacuum interface) of a glass, and 2) anisotropic molecular packing at the free surface of the supercooled liquid of the glass-forming system. By vapor-depositing onto a substrate maintained at Tsubstrate < Tg (where Tg is the glass transition temperature), the enhanced molecular mobility at the free surface allows every molecule that lands on the surface to at least partially equilibrate to the preferred anisotropic molecular packing motifs before being buried by further deposition. The extent of equilibration depends on the mobility at the surface, controlled by Tsubstrate, and the residence time on the free surface, controlled by the rate of deposition. This body of work deals with the optimization of deposition conditions and system chemistry to prepare and characterize films with functional anisotropic structures. Here, we show that structural anisotropy can be attained for a variety of molecular systems including a rod-shaped non-mesogen, TPD, a rod-shaped smectic mesogen, itraconazole, two discotic mesogens, phenanthroperylene-ester and triphenylene-ester, and a disc-shaped non-mesogen, m-MTDATA. Experimental evidence is also provided of the anisotropic molecular packing at the free surface (vacuum interface) for the disc-shaped systems that are consistent with the expectations of the proposed mechanism and the final bulk state of the vapor-deposited glasses.

  4. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOEpatents

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  5. Subdecoherence time generation and detection of orbital entanglement in quantum dots.

    PubMed

    Brange, F; Malkoc, O; Samuelsson, P

    2015-05-01

    Recent experiments have demonstrated subdecoherence time control of individual single-electron orbital qubits. Here we propose a quantum-dot-based scheme for generation and detection of pairs of orbitally entangled electrons on a time scale much shorter than the decoherence time. The electrons are entangled, via two-particle interference, and transferred to the detectors during a single cotunneling event, making the scheme insensitive to charge noise. For sufficiently long detector dot lifetimes, cross-correlation detection of the dot charges can be performed with real-time counting techniques, providing for an unambiguous short-time Bell inequality test of orbital entanglement.

  6. Approximate treatment of semicore states in GW calculations with application to Au clusters.

    PubMed

    Xian, Jiawei; Baroni, Stefano; Umari, P

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  7. Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

    NASA Astrophysics Data System (ADS)

    Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb

    2018-01-01

    A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.

  8. Approximate treatment of semicore states in GW calculations with application to Au clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Jiawei; Baroni, Stefano; CNR-IOM Democritos, Theory-Elettra group, Trieste

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore statesmore » are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.« less

  9. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-01

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  10. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    PubMed

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  11. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  12. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    NASA Astrophysics Data System (ADS)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  13. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging.

    PubMed

    Hagen, Wim J H; Wan, William; Briggs, John A G

    2017-02-01

    Cryo-electron tomography (cryoET) allows 3D structural information to be obtained from cells and other biological samples in their close-to-native state. In combination with subtomogram averaging, detailed structures of repeating features can be resolved. CryoET data is collected as a series of images of the sample from different tilt angles; this is performed by physically rotating the sample in the microscope between each image. The angles at which the images are collected, and the order in which they are collected, together are called the tilt-scheme. Here we describe a "dose-symmetric tilt-scheme" that begins at low tilt and then alternates between increasingly positive and negative tilts. This tilt-scheme maximizes the amount of high-resolution information maintained in the tomogram for subsequent subtomogram averaging, and may also be advantageous for other applications. We describe implementation of the tilt-scheme in combination with further data-collection refinements including setting thresholds on acceptable drift and improving focus accuracy. Requirements for microscope set-up are introduced, and a macro is provided which automates the application of the tilt-scheme within SerialEM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Narrowing the error in electron correlation calculations by basis set re-hierarchization and use of the unified singlet and triplet electron-pair extrapolation scheme: Application to a test set of 106 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varandas, A. J. C., E-mail: varandas@uc.pt; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória; Pansini, F. N. N.

    2014-12-14

    A method previously suggested to calculate the correlation energy at the complete one-electron basis set limit by reassignment of the basis hierarchical numbers and use of the unified singlet- and triplet-pair extrapolation scheme is applied to a test set of 106 systems, some with up to 48 electrons. The approach is utilized to obtain extrapolated correlation energies from raw values calculated with second-order Møller-Plesset perturbation theory and the coupled-cluster singles and doubles excitations method, some of the latter also with the perturbative triples corrections. The calculated correlation energies have also been used to predict atomization energies within an additive scheme.more » Good agreement is obtained with the best available estimates even when the (d, t) pair of hierarchical numbers is utilized to perform the extrapolations. This conceivably justifies that there is no strong reason to exclude double-zeta energies in extrapolations, especially if the basis is calibrated to comply with the theoretical model.« less

  15. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  16. Mulliken's populations and electron momentum densities of transition metal tungstates using LCAO scheme

    NASA Astrophysics Data System (ADS)

    Meena, B. S.; Heda, N. L.; Ahuja, B. L.

    2018-05-01

    We have computed the Mulliken's populations (MP) and electron momentum densities (EMDs) for TMWO4 (TM=Co, Ni, Cu and Zn) using linear combination of atomic orbitals (LCAO) scheme. The latest hybridization of Hartree-Fock (HF) and density functional theory (DFT) under the framework of LCAO approximations (so called WC1LYP and B1WC) have been employed. The theoretical EMDs have been compared with the available experimental data which show that WC1LYP scheme gives slightly better agreement with the experimental data for all the reported tungstates. Such trend shows the applicability of Lee-Yang-Parr (LYP) correlation energies within hybrid approximations in predicting the electronic properties of these compounds. Further, the MP data show the charge transfer from Co/Ni/Cu/Zn and W to O atoms. In addition, we have plotted the total EMDs at the same normalized area which show almost similar type of localization of 3d electrons (in real space) of Cu and Zn, which is lower than that of Ni and Co atoms in their tungstates environment.

  17. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    DOE PAGES

    Liu, Tao; Qin, Weilun; Wang, Dong; ...

    2017-08-02

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less

  18. Scanning probe microscopy and field emission schemes for studying electron emission from polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.

    2016-09-01

    The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.

  19. Efficient two-component relativistic method for large systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakai, Hiromi; Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and longmore » contractions.« less

  20. Uniform laser-driven relativistic electron layer for coherent Thomson scattering.

    PubMed

    Wu, H-C; Meyer-ter-Vehn, J; Fernández, J; Hegelich, B M

    2010-06-11

    A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.

  1. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation.

    PubMed

    Zhang, Jin; Yan, Ming; Yuan, Xingzhong; Si, Mengying; Jiang, Longbo; Wu, Zhibin; Wang, Hou; Zeng, Guangming

    2018-05-31

    A novel nitrogen doped carbon quantum dots (N-CQDs) mediated Ag 3 PO 4 /BiVO 4 Z-scheme photocatalyst was synthesized through a solvothermal-precipitation method. The as-prepared photocatalysts were comprehensive characterized by X-ray diffraction, X-ray photo-electron spectroscopy, scanning electron microscopy, transmission electron micrograph, UV-vis diffuse reflection spectroscopy, vis photoluminescence and electron spin resonance analysis. The photocatalytic performances of as-prepared photocatalysts were used for degradation of tetracycline (TC) under visible-light illumination. Results exhibited the increased photocatalytic efficiency of BiVO 4 /N-CQDs/Ag 3 PO 4 -10 (Ag 3 PO 4 with the mass ratio of BiVO 4 /N-CQDs/Ag 3 PO 4  = 10%) to photodegrade TC is up to 88.9% in 30 min and 59.8% mineralization in 90 min. The degradation reaction coefficient (k) is about 6.00, 2.78 and 1.80 times higher than that of BiVO 4, N-CQDs/BiVO 4 and Ag 3 PO 4 /BiVO 4 , respectively. The excellent photocatalytic performance of the Z-scheme BiVO 4 /N-CQDs/Ag 3 PO 4 was attributed to the construction of Z-scheme system, increased light harvesting capacity and improved molecular oxygen activation ability. Moreover, the photocatalytic activity of BiVO 4 /N-CQDs/Ag 3 PO 4 remained 79.9% after five cycling runs, indicating the high stability and reusability of the as-prepared photocatalyst. Additionally, a possible photocatalytic mechanism of the novel Z-scheme BiVO 4 /N-CQDs/Ag 3 PO 4 was proposed. Copyright © 2018. Published by Elsevier Inc.

  2. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  3. Aluminum-nanodisc-induced collective lattice resonances: Controlling the light extraction in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.

    2017-10-01

    We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.

  4. High ambient contrast ratio OLED and QLED without a circular polarizer

    NASA Astrophysics Data System (ADS)

    Tan, Guanjun; Zhu, Ruidong; Tsai, Yi-Shou; Lee, Kuo-Chang; Luo, Zhenyue; Lee, Yuh-Zheng; Wu, Shin-Tson

    2016-08-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized.

  5. High efficiency yellow organic light-emitting diodes with optimized barrier layers

    NASA Astrophysics Data System (ADS)

    Mu, Ye; Zhang, Shiming; Yue, Shouzhen; Wu, Qingyang; Zhao, Yi

    2015-12-01

    High efficiency Iridium (III) bis (4-phenylthieno [3,2-c] pyridinato-N,C2‧) acetylacetonate (PO-01) based yellow organic light-emitting devices are fabricated by employing multiple emission layers. The efficiency of the device using 4,4‧,4″-tris(N-carbazolyl) triphenylamine (TCTA) as potential barrier layer (PBL) outperforms those devices based on other PBLs and detailed analysis is carried out to reveal the mechanisms. A forward-viewing current efficiency (CE) of 65.21 cd/A, which corresponds to a maximum total CE of 110.85 cd/A is achieved at 335.8 cd/m2 in the optimized device without any outcoupling enhancement structures.

  6. Continuous wave room temperature external ring cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  7. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivlin, Lev A

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  8. Controlling front-end electronics boards using commercial solutions

    NASA Astrophysics Data System (ADS)

    Beneyton, R.; Gaspar, C.; Jost, B.; Schmeling, S.

    2002-04-01

    LHCb is a dedicated B-physics experiment under construction at CERN's large hadron collider (LHC) accelerator. This paper will describe the novel approach LHCb is taking toward controlling and monitoring of electronics boards. Instead of using the bus in a crate to exercise control over the boards, we use credit-card sized personal computers (CCPCs) connected via Ethernet to cheap control PCs. The CCPCs will provide a simple parallel, I2C, and JTAG buses toward the electronics board. Each board will be equipped with a CCPC and, hence, will be completely independently controlled. The advantages of this scheme versus the traditional bus-based scheme will be described. Also, the integration of the controls of the electronics boards into a commercial supervisory control and data acquisition (SCADA) system will be shown.

  9. Reducing medical claims cost to Ghana's National Health Insurance scheme: a cross-sectional comparative assessment of the paper- and electronic-based claims reviews.

    PubMed

    Nsiah-Boateng, Eric; Asenso-Boadi, Francis; Dsane-Selby, Lydia; Andoh-Adjei, Francis-Xavier; Otoo, Nathaniel; Akweongo, Patricia; Aikins, Moses

    2017-02-06

    A robust medical claims review system is crucial for addressing fraud and abuse and ensuring financial viability of health insurance organisations. This paper assesses claims adjustment rate of the paper- and electronic-based claims reviews of the National Health Insurance Scheme (NHIS) in Ghana. The study was a cross-sectional comparative assessment of paper- and electronic-based claims reviews of the NHIS. Medical claims of subscribers for the year, 2014 were requested from the claims directorate and analysed. Proportions of claims adjusted by the paper- and electronic-based claims reviews were determined for each type of healthcare facility. Bivariate analyses were also conducted to test for differences in claims adjustments between healthcare facility types, and between the two claims reviews. The electronic-based review made overall adjustment of 17.0% from GHS10.09 million (USD2.64 m) claims cost whilst the paper-based review adjusted 4.9% from a total of GHS57.50 million (USD15.09 m) claims cost received, and the difference was significant (p < 0.001). However, there were no significant differences in claims cost adjustment rate between healthcare facility types by the electronic-based (p = 0.0656) and by the paper-based reviews (p = 0.6484). The electronic-based review adjusted significantly higher claims cost than the paper-based claims review. Scaling up the electronic-based review to cover claims from all accredited care providers could reduce spurious claims cost to the scheme and ensure long term financial sustainability.

  10. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing

    2017-03-01

    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  11. A Scheme for the Evaluation of Electron Delocalization and Conjugation Efficiency in Linearly π-Conjugated Systems.

    PubMed

    Bruschi, Maurizio; Limacher, Peter A; Hutter, Jürg; Lüthi, Hans Peter

    2009-03-10

    In this study, we present a scheme for the evaluation of electron delocalization and conjugation efficiency in lineraly π-conjugated systems. The scheme, based on the natural bond orbital theory, allows monitoring the evolution of electron delocalization along an extended conjugation path as well as its response to chemical modification. The scheme presented is evaluated and illustrated by means of a computational investigation of π-conjugation in all-trans polyacetylene [PA; H(-CH═CH)n-H], polydiacetylene [PDA, H(-C≡C-CH═CH)n-H], and polytriacetylene [PTA, H(-C≡C-CH═CH-C≡C)n-H] with up to 180 carbon atoms, all related by the number of ethynyl units incorporated in the chain. We are able to show that for short oligomers the incorporation of ethynyl spacers into the PA chain increases the π-delocalization energy, but, on the other hand, reduces the efficiency with which π-electron delocalization is promoted along the backbone. This explains the generally shorter effective conjugation lengths observed for the properties of the polyeneynes (PDA and PTA) relative to the polyenes (PA). It will also be shown that the reduced conjugation efficiency, within the NBO-based model presented in this work, can be related to the orbital interaction pattern along the π-conjugated chain. We will show that the orbital interaction energy pattern is characteristic for the type and the length of the backbone and may therefore serve as a descriptor for linearly π-conjugated chains.

  12. Many-particle-effects in the theory of the extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Tran Thoai, D. B.; Ekardt, W.

    1981-10-01

    The Lee-Beni-procedure for the calculation of the extended X-ray absorption fine structure (EXAFS) is extended so as to include the effects of the electronic charge density outside the localized muffin-tin potentials. In our scheme EXAFS is caused by back-scattering of an elementary excitation of a homogeneous electron gas by localized energy dependent many-particle muffin-tin potentials. The difference between the two schemes is negligible at large k's, as expected from physical grounds. However, at small and intermediate k-values the difference is quite large. The effect of the outer electrons as compared to the Lee-Beni-model is twofold. First, they renormalize the scattered electron in the usual way. Second, they are missing within the scattering muffin-tins. Hence, we avoid to count some of the electrons twice. Results are presented for Cu as an example.

  13. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  14. Asymmetric molecular-orbital tomography by manipulating electron trajectories

    NASA Astrophysics Data System (ADS)

    Wang, Bincheng; Zhang, Qingbin; Zhu, Xiaosong; Lan, Pengfei; Rezvani, Seyed Ali; Lu, Peixiang

    2017-11-01

    We present a scheme for tomographic imaging of asymmetric molecular orbital based on high-order harmonic generation with a two-color orthogonally polarized multicycle laser field. With the two-dimensional manipulation of the electron trajectories, the electrons can recollide with the target molecule from two noncollinear directions, and then the dipole moment generated from the single direction can be obtained to reconstructed the asymmetric molecular orbital. The recollision is independent from the molecular structure and the angular dependence of the ionization rate in the external field. For this reason, this scheme can avoid the negative effects arising from the modification of the angle-dependent ionization rate induced by Stark shift and be applied to various molecules.

  15. Correlated electron-nuclear dynamics with conditional wave functions.

    PubMed

    Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel

    2014-08-22

    The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.

  16. An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows

    NASA Astrophysics Data System (ADS)

    Garicano-Mena, Jesús; Lani, Andrea; Degrez, Gérard

    2018-06-01

    In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum-energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions.

  17. Laser control of electronic transitions of wave packet by using quadratically chirped pulses.

    PubMed

    Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-22

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.

  18. Laser control of electronic transitions of wave packet by using quadratically chirped pulses

    NASA Astrophysics Data System (ADS)

    Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-01

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H2O) as examples.

  19. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.

  20. Acceleration of electron bunches by intense laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.

    2003-08-01

    This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.

  1. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

    PubMed

    Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas

    2013-09-10

    A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

  2. Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  3. Dynamic Restarting Schemes for Eigenvalue Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Simon, Horst D.

    1999-03-10

    In studies of restarted Davidson method, a dynamic thick-restart scheme was found to be excellent in improving the overall effectiveness of the eigen value method. This paper extends the study of the dynamic thick-restart scheme to the Lanczos method for symmetric eigen value problems and systematically explore a range of heuristics and strategies. We conduct a series of numerical tests to determine their relative strength and weakness on a class of electronic structure calculation problems.

  4. Harmonic generation with multiple wiggler schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonifacio, R.; De Salvo, L.; Pierini, P.

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  5. Robust anonymous authentication scheme for telecare medical information systems.

    PubMed

    Xie, Qi; Zhang, Jun; Dong, Na

    2013-04-01

    Patient can obtain sorts of health-care delivery services via Telecare Medical Information Systems (TMIS). Authentication, security, patient's privacy protection and data confidentiality are important for patient or doctor accessing to Electronic Medical Records (EMR). In 2012, Chen et al. showed that Khan et al.'s dynamic ID-based authentication scheme has some weaknesses and proposed an improved scheme, and they claimed that their scheme is more suitable for TMIS. However, we show that Chen et al.'s scheme also has some weaknesses. In particular, Chen et al.'s scheme does not provide user's privacy protection and perfect forward secrecy, is vulnerable to off-line password guessing attack and impersonation attack once user's smart card is compromised. Further, we propose a secure anonymity authentication scheme to overcome their weaknesses even an adversary can know all information stored in smart card.

  6. A Hash Based Remote User Authentication and Authenticated Key Agreement Scheme for the Integrated EPR Information System.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng

    2015-11-01

    To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.

  7. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  8. A study on agent-based secure scheme for electronic medical record system.

    PubMed

    Chen, Tzer-Long; Chung, Yu-Fang; Lin, Frank Y S

    2012-06-01

    Patient records, including doctors' diagnoses of diseases, trace of treatments and patients' conditions, nursing actions, and examination results from allied health profession departments, are the most important medical records of patients in medical systems. With patient records, medical staff can instantly understand the entire medical information of a patient so that, according to the patient's conditions, more accurate diagnoses and more appropriate in-depth treatments can be provided. Nevertheless, in such a modern society with booming information technologies, traditional paper-based patient records have faced a lot of problems, such as lack of uniform formats, low data mobility, slow data transfer, illegible handwritings, enormous and insufficient storage space, difficulty of conservation, being easily damaged, and low transferability. To improve such drawbacks, reduce medical costs, and advance medical quality, paper-based patient records are modified into electronic medical records and reformed into electronic patient records. However, since electronic patient records used in various hospitals are diverse and different, in consideration of cost, it is rather difficult to establish a compatible and complete integrated electronic patient records system to unify patient records from heterogeneous systems in hospitals. Moreover, as the booming of the Internet, it is no longer necessary to build an integrated system. Instead, doctors can instantly look up patients' complete information through the Internet access to electronic patient records as well as avoid the above difficulties. Nonetheless, the major problem of accessing to electronic patient records cross-hospital systems exists in the security of transmitting and accessing to the records in case of unauthorized medical personnels intercepting or stealing the information. This study applies the Mobile Agent scheme to cope with the problem. Since a Mobile Agent is a program, which can move among hosts and automatically disperse arithmetic processes, and moves from one host to another in heterogeneous network systems with the characteristics of autonomy and mobility, decreasing network traffic, reducing transfer lag, encapsulating protocol, availability on heterogeneous platforms, fault-tolerance, high flexibility, and personalization. However, since a Mobile Agent contacts and exchanges information with other hosts or agents on the Internet for rapid exchange and access to medical information, the security is threatened. In order to solve the problem, this study proposes a key management scheme based on Lagrange interpolation formulas and hierarchical management structure to make Mobile Agents a more secure and efficient access control scheme for electronic patient record systems when applied to the access of patients' personal electronic patient records cross hospitals. Meanwhile, with the comparison of security and efficacy analyses being the feasibility of validation scheme and the basis of better efficiency, the security of Mobile Agents in the process of operation can be guaranteed, key management efficacy can be advanced, and the security of the Mobile Agent system can be protected.

  9. ONU Power Saving Scheme for EPON System

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  10. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

    PubMed Central

    2018-01-01

    We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1−5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities. PMID:29594185

  11. 76 FR 82279 - Electronic Delivery of Search Results From the United States Patent and Trademark Office to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... 141 EPC and new Rule 70b EPC--utilisation scheme, OJ EPO 2010, 410. To assist U.S. applicants who... exemption under Rule 141(2) EPC from filing a copy of the search results--utilisation scheme, OJ EPO 2011...

  12. Lattice design for the CEPC double ring scheme

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie

    2018-01-01

    A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.

  13. Performance evaluation of multi-material electronic cleansing for ultra-low-dose dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki

    2016-03-01

    Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.

  14. Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants

    NASA Astrophysics Data System (ADS)

    Liu, Xingqi; Cai, Li

    2018-07-01

    Mimicking the natural photosynthesis, artificial Z-scheme photocatalysis enables more efficient utilization of solar energy for degradation of organic pollutants. Herein, an indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole (PPy) co-modified BiOBr was rationally designed and successfully synthesized via a combination of hydrothermal technique, in-situ photo-reduction and oxidative polymerization method. Dramatically, BiOBr-Ag-PPy system showed superior photocatalytic performance and excellent stability in degradation of both the typical triphenylmethane dye (malachite green) and colorless organic compound (phenol). Especially for BAP-0.4, its degradation conversion of malachite green was 6.4, 2.4 and 1.6 times of those of pure BiOBr, BiOBr-Ag and BiOBr-PPy, respectively, and can still maintain more than 91% even after fifth cycle experiment. The trapping experiments of reactive species and electron spin resonance (ESR) tests confirmed that the radO2- and h+ were main active species in photocatalytic degradation. Through experimental investigations and theoretical analyses, the possible charge carriers transfer process over BiOBr-Ag-PPy ternary Z-scheme photocatalyst was proposed. In the indirect all-solid-state Z-scheme BiOBr-Ag-PPy heterojunction structure, by quenching the photo-generated electrons and holes with weaker redox ability in metal Ag nanoparticles, the electrons in the lowest unoccupied molecular orbital (LUMO) of PPy and holes in the valence band (VB) of BiOBr can survive and then have the opportunity to participate in the surface reaction, thus showing an increased photocatalytic activity.

  15. Analysis for maladjustment properties of passive confocal unstable resonator by using Hartmann-Shack wavefront sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Xiang, Anping

    2007-12-01

    The effect of intracavity aberration perturbation on output mode structure properties of passive confocal unstable resonator is been experimentally researched by adopting Hartmann-Shack method on the basis of numerical simulation. The results show that intracavity tilt aberration affects the outcoupled intensity distribution, but only a small intracavity tilt perturbation will not obviously augment the high-order aberrations of beam phase properties. The tilt aberration, coma aberration and astigmatism will all be brought, and also tilt aberration is the main component when intracavity mirrors have a vertical movement along the direction of optic axis. When adaptive optical elements such as deformable mirrors are adopted for intracavity aberration correction, the correction for tilt aberration should be considered at first.

  16. Compact low-cost detection electronics for optical coherence imaging

    PubMed Central

    Akcay, A. C.; Lee, K. S.; Furenlid, L. R.; Costa, M. A.; Rolland, J. P.

    2015-01-01

    A compact and low-cost detection electronics scheme for optical coherence imaging is demonstrated. The performance of the designed electronics is analyzed in comparison to a commercial lock-in amplifier of equal bandwidth. Images of a fresh-onion sample are presented for each detection configuration. PMID:26617422

  17. DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting

    NASA Astrophysics Data System (ADS)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Huang, Baibiao

    2018-03-01

    Recently, extensive attention has been paid to the direct Z-scheme systems for photocatalytic water splitting where carriers migrate directly between the two semiconductors without a redox mediator. In the present work, the electronic structure and related properties of two-dimensional (2D) van de Waals (vdW) GeS/WX2 (X = O, S, Se, Te) heterojunction are systematically investigated by first-principles calculations. Our results demonstrate that, the GeS/WS2 heterojunction could form a direct Z-scheme system for photocatalytic water splitting, whereas the GeS/WX2 (X = O, Se, Te) can't, because of their respective unsuitable electronic structures. For the GeS/WS2 heterojunction, the GeS and WS2 monolayers serve as photocatalysts for the hydrogen evolution reactionand oxygen evolution reaction, respectively. The internal electric field induced by the electron transfer at the interface can promote the separation of photo-generated charge carriers and formation of the interface Z-scheme electron transfer. Remarkably, the designed GeS/WS2 heterojunction not only enhances the hydrogen production activity of GeS and the oxygen production ability of WS2 but also improves the light absorption of the two monolayers by reducing the band gaps. Moreover, it is found that narrowing the interlayer distance could enhance the internal electric field, improving the photocatalytic ability of the vdW heterojunction. This work provides fundamental insights for further design and preparation of emergent metal dichalcogenide catalysts, beneficial for the development in clean energy.

  18. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.

    2009-12-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less

  19. Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L.

    First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting themore » electronic properties of ZrFe{sub 2}.« less

  20. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    DOE PAGES

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-09-06

    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes andmore » examine the parasitic loss mechanisms. As a result, this work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling.« less

  1. An Under-frequency Load Shedding Scheme with Continuous Load Control Proportional to Frequency Deviation

    NASA Astrophysics Data System (ADS)

    Li, Changgang; Sun, Yanli; Yu, Yawei

    2017-05-01

    Under frequency load shedding (UFLS) is an important measure to tackle with frequency drop caused by load-generation imbalance. In existing schemes, loads are shed by relays in a discontinuous way, which is the major reason leading to under-shedding and over-shedding problems. With the application of power electronics technology, some loads can be controlled continuously, and it is possible to improve the UFSL with continuous loads. This paper proposes an UFLS scheme by shedding loads continuously. The load shedding amount is proportional to frequency deviation before frequency reaches its minimum during transient process. The feasibility of the proposed scheme is analysed with analytical system frequency response model. The impacts of governor droop, system inertia, and frequency threshold on the performance of the proposed UFLS scheme are discussed. Cases are demonstrated to validate the proposed scheme by comparing it with conventional UFLS schemes.

  2. A more secure anonymous user authentication scheme for the integrated EPR information system.

    PubMed

    Wen, Fengtong

    2014-05-01

    Secure and efficient user mutual authentication is an essential task for integrated electronic patient record (EPR) information system. Recently, several authentication schemes have been proposed to meet this requirement. In a recent paper, Lee et al. proposed an efficient and secure password-based authentication scheme used smart cards for the integrated EPR information system. This scheme is believed to have many abilities to resist a range of network attacks. Especially, they claimed that their scheme could resist lost smart card attack. However, we reanalyze the security of Lee et al.'s scheme, and show that it fails to protect off-line password guessing attack if the secret information stored in the smart card is compromised. This also renders that their scheme is insecure against user impersonation attacks. Then, we propose a new user authentication scheme for integrated EPR information systems based on the quadratic residues. The new scheme not only resists a range of network attacks but also provides user anonymity. We show that our proposed scheme can provide stronger security.

  3. Construction of an all-solid-state artificial Z-scheme system consisting of Bi2WO6/Au/CdS nanostructure for photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Wang, Meng; Han, Qiutong; Li, Liang; Tang, Lanqin; Li, Haijin; Zhou, Yong; Zou, Zhigang

    2017-07-07

    An all-solid-state Bi 2 WO 6 /Au/CdS Z-scheme system was constructed for the photocatalytic reduction of CO 2 into methane in the presence of water vapor. This Z-scheme consists of ultrathin Bi 2 WO 6 nanoplates and CdS nanoparticles as photocatalysts, and a Au nanoparticle as a solid electron mediator offering a high speed charge transfer channel and leading to more efficient spatial separation of electron-hole pairs. The photo-generated electrons from the conduction band (CB) of Bi 2 WO 6 transfer to the Au, and then release to the valence band (VB) of CdS to recombine with the holes of CdS. It allows the electrons remaining in the CB of CdS and holes in the VB of Bi 2 WO 6 to possess strong reduction and oxidation powers, respectively, leading the Bi 2 WO 6 /Au/CdS to exhibit high photocatalytic reduction of CO 2 , relative to bare Bi 2 WO 6 , Bi 2 WO 6 /Au, and Bi 2 WO 6 /CdS. The depressed hole density on CdS also enhances the stability of the CdS against photocorrosion.

  4. Stockholder projector analysis: A Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel

    2012-01-01

    A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.

  5. The refractive index in electron microscopy and the errors of its approximations.

    PubMed

    Lentzen, M

    2017-05-01

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mean-field theory for multipole ordering in f-electron systems on the basis of a j-j coupling scheme

    NASA Astrophysics Data System (ADS)

    Yamamura, Ryosuke; Hotta, Takashi

    2018-05-01

    We develop a microscopic theory for multipole ordering, applicable to the system with plural numbers of f electrons per ion, from an itinerant picture on the basis of a j-j coupling scheme. For the purpose, by introducing the Γ8 Hubbard Hamiltonian as the minimum model to discuss the multipole ordering in f-electron systems, we describe the mean-field approximation in terms of the multipole operators. For the case of n = 2 , where n denotes the average f-electron number per ion, we analyze the model on a simple cubic lattice to obtain the multipole phase diagram. In particular, we find the order of non-Kramers Γ3 quadrupoles, O20 and O22 , with different ordering vectors. We attempt to explain the phase diagram from the discussion on the interaction energy.

  7. Demonstration of Cascaded Modulator-Chicane Microbunching of a Relativistic Electron Beam

    DOE PAGES

    Sudar, N.; Musumeci, P.; Gadjev, I.; ...

    2018-03-15

    Here, we present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared tomore » the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.« less

  8. Teleportation-based quantum information processing with Majorana zero modes

    DOE PAGES

    Vijay, Sagar; Fu, Liang

    2016-12-29

    In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.

  9. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    NASA Astrophysics Data System (ADS)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  10. Characterization and optimization of an optical and electronic architecture for photon counting

    NASA Astrophysics Data System (ADS)

    Correa, M. del M.; Pérez, F. R.

    2018-04-01

    This work shows a time-domain method for the discrimination and digitization of pulses coming from optical detectors, considering the presence of electronic noise and afterpulsing. The developed signal processing scheme is based on a time-to-digital converter (TDC) and a voltage discriminator. After setting appropriate parameters for taking spectra, acquisition data was corrected by wavelength, intensity response function, and noise suppression. The performance of this scheme is discussed by its characterization as well as the comparison of its spectra to those obtained by an Ocean Optics HR4000 commercial reference.

  11. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  12. Teleportation-based quantum information processing with Majorana zero modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay, Sagar; Fu, Liang

    In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.

  13. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].

    PubMed

    Shchurova, L Yu; Namiot, V A; Sarkisyan, D R

    2015-01-01

    Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.

  14. An Interactive Multimedia Learning Environment for VLSI Built with COSMOS

    ERIC Educational Resources Information Center

    Angelides, Marios C.; Agius, Harry W.

    2002-01-01

    This paper presents Bigger Bits, an interactive multimedia learning environment that teaches students about VLSI within the context of computer electronics. The system was built with COSMOS (Content Oriented semantic Modelling Overlay Scheme), which is a modelling scheme that we developed for enabling the semantic content of multimedia to be used…

  15. A probabilistic quantum communication protocol using mixed entangled channel

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-05-01

    Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ- like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.

  16. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  17. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    DTIC Science & Technology

    1988-07-01

    DIP!; ilLE-CWPj AD-A 799 638 The University of Texas at DallasCenter for Quantlin, Electronics The Gamma-Ray Laser Project Quarterly Report April...AND INCOHERENT SCHEMES FOR PUMPING A GAMMA-RAY LASER Principal Investigator: Carl B. Collins The University of Texas at Dallas Center for Quantum...FEASIBILITY OF Quarterly Technical Progress COHERENT AND INCOHERENT SCHEMES /I/RR - 61WARA FOR PUMPING A GAMMA-RAY LASER 6.PERFORMINO ORG. REPORT NUMBER

  18. Self-consistent Green's function embedding for advanced electronic structure methods based on a dynamical mean-field concept

    NASA Astrophysics Data System (ADS)

    Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick

    2016-04-01

    We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.

  19. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    Control of Power Electronics in AC Systems and Microgrids. These courses will be part of a Professional Master's Program in Power Electronics offered through the university. Get more information on the program Scheme for the Voltage Control of a DFIG-Based Wind Power Plant, IEEE Transactions on Power Electronics

  20. On the security of two remote user authentication schemes for telecare medical information systems.

    PubMed

    Kim, Kee-Won; Lee, Jae-Dong

    2014-05-01

    The telecare medical information systems (TMISs) support convenient and rapid health-care services. A secure and efficient authentication scheme for TMIS provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Kumari et al. proposed a password based user authentication scheme using smart cards for TMIS, and claimed that the proposed scheme could resist various malicious attacks. However, we point out that their scheme is still vulnerable to lost smart card and cannot provide forward secrecy. Subsequently, Das and Goswami proposed a secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. They simulated their scheme for the formal security verification using the widely-accepted automated validation of Internet security protocols and applications (AVISPA) tool to ensure that their scheme is secure against passive and active attacks. However, we show that their scheme is still vulnerable to smart card loss attacks and cannot provide forward secrecy property. The proposed cryptanalysis discourages any use of the two schemes under investigation in practice and reveals some subtleties and challenges in designing this type of schemes.

  1. Identity-Based Verifiably Encrypted Signatures without Random Oracles

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Qianhong; Qin, Bo

    Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and the resulting encrypted signature consists of only four group elements. Based on the computational Diffie-Hellman assumption, our scheme is proven secure without using random oracles. To the best of our knowledge, this is the first identity-based verifiably encrypted signature scheme provably secure in the standard model.

  2. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection

    NASA Astrophysics Data System (ADS)

    Irman, A.; Couperus, J. P.; Debus, A.; Köhler, A.; Krämer, J. M.; Pausch, R.; Zarini, O.; Schramm, U.

    2018-04-01

    We report on tailoring ionization-induced injection in laser wakefield acceleration so that the electron injection process is self-truncating following the evolution of the plasma bubble. Robust generation of high-quality electron beams with shot-to-shot fluctuations of the beam parameters better than 10% is presented in detail. As a novelty, the scheme was found to enable well-controlled yet simple tuning of the injected charge while preserving acceleration conditions and beam quality. Quasi-monoenergetic electron beams at several 100 MeV energy and 15% relative energy spread were routinely demonstrated with a total charge of the monoenergetic feature reaching 0.5 nC. Finally these unique beam parameters, suggesting unprecedented peak currents of several 10 kA, are systematically related to published data on alternative injection schemes.

  3. Electron dynamics characteristics in high-intensity laser fields

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Ho, Y. K.; Cao, N.; Pang, J.; Wang, P. X.; Shao, L.

    This paper addresses the conditions under which the vacuum laser acceleration scheme CAS (capture and acceleration scenario), newly proposed by the authors (see, e.g., P.X. Wang et al., Appl. Phys. Lett. 78, 2253 (2001)), can be observed. Specifically, the laser intensity threshold (a0)th and the range of the electron incident momentum for the CAS scheme to emerge are examined. We found that (a0)th is critically dependent on the laser beam width w0. At kw0=60, (a0)th=8, which is an intensity obtainable using present laser systems. The required energy of the incident electron is in the range 5-15 MeV. This study is of significance in designing an experimental setup to test CAS and helpful in understanding the basic physics of CAS.

  4. Using time-dependent density functional theory in real time for calculating electronic transport

    NASA Astrophysics Data System (ADS)

    Schaffhauser, Philipp; Kümmel, Stephan

    2016-01-01

    We present a scheme for calculating electronic transport within the propagation approach to time-dependent density functional theory. Our scheme is based on solving the time-dependent Kohn-Sham equations on grids in real space and real time for a finite system. We use absorbing and antiabsorbing boundaries for simulating the coupling to a source and a drain. The boundaries are designed to minimize the effects of quantum-mechanical reflections and electrical polarization build-up, which are the major obstacles when calculating transport by applying an external bias to a finite system. We show that the scheme can readily be applied to real molecules by calculating the current through a conjugated molecule as a function of time. By comparing to literature results for the conjugated molecule and to analytic results for a one-dimensional model system we demonstrate the reliability of the concept.

  5. Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities.

    PubMed

    Heo, Jino; Hong, Chang-Ho; Kang, Min-Sung; Yang, Hyeon; Yang, Hyung-Jin; Hong, Jong-Phil; Choi, Seong-Gon

    2017-11-02

    We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.

  6. Encoding Schemes For A Digital Optical Multiplier Using The Modified Signed-Digit Number Representation

    NASA Astrophysics Data System (ADS)

    Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.

    1986-09-01

    The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.

  7. Realization of Quantum Digital Signatures without the Requirement of Quantum Memory

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Donaldson, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2014-07-01

    Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.

  8. A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction.

    PubMed

    Zhang, Zhenyi; Huang, Jindou; Fang, Yurui; Zhang, Mingyi; Liu, Kuichao; Dong, Bin

    2017-05-01

    Ultrabroad-spectrum absorption and highly efficient generation of available charge carriers are two essential requirements for promising semiconductor-based photocatalysts, towards achieving the ultimate goal of solar-to-fuel conversion. Here, a fascinating nonmetal plasmonic Z-scheme photocatalyst with the W 18 O 49 /g-C 3 N 4 heterostructure is reported, which can effectively harvest photon energies spanning from the UV to the nearinfrared region and simultaneously possesses improved charge-carrier dynamics to boost the generation of long-lived active electrons for the photocatalytic reduction of protons into H 2 . By combining with theoretical simulations, a unique synergistic photocatalysis effect between the semiconductive Z-scheme charge-carrier separation and metal-like localized-surface-plasmon-resonance-induced "hot electrons" injection process is demonstrated within this binary heterostructure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification.

    PubMed

    Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod

    2015-11-01

    The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Realization of quantum digital signatures without the requirement of quantum memory.

    PubMed

    Collins, Robert J; Donaldson, Ross J; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J; Andersson, Erika; Jeffers, John; Buller, Gerald S

    2014-07-25

    Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.

  11. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    NASA Astrophysics Data System (ADS)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  12. A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.

    PubMed

    Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa

    2015-12-01

    Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    NASA Astrophysics Data System (ADS)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  14. Facile Synthesis of Novel Redox-Mediator-free Direct Z-Scheme CaIn2S4 Marigold-Flower-like/TiO2 Photocatalysts with Superior Photocatalytic Efficiency.

    PubMed

    Jo, Wan-Kuen; Sivakumar Natarajan, Thillai

    2015-08-12

    Novel redox-mediator-free direct Z-scheme CaIn2S4 marigold-flower-like/TiO2 (CIS/TNP) photocatalysts with different CaIn2S4 weight percentages were synthesized using a facile wet-impregnation method. Uniform hierarchical marigold-flower-like CaIn2S4 (CIS) microspheres were synthesized using a hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy analyses suggested that the formation and aggregation of nanoparticles, followed by the growth of petals or sheets and their subsequent self-assembly, led to the formation of the uniform hierarchical marigold-flower-like CIS structures. The photocatalytic degradation efficiency of the direct Z-scheme CIS/TNP photocatalysts was evaluated through the degradation of the pharmaceutical compounds isoniazid (ISN) and metronidazole (MTZ). The direct Z-scheme CaIn2S4 marigold-flower-like/TiO2 (1%-CIS/TNP) photocatalyst showed enhanced performance in the ISN (71.9%) and MTZ (86.5%) photocatalytic degradations as compared to composites with different CaIn2S4 contents or the individual TiO2 and CaIn2S4. A possible enhancement mechanism based on the Z-scheme formed between the CIS and TNP for the improved photocatalytic efficiency was also proposed. The recombination rate of the photoinduced charge carriers was significantly suppressed for the direct Z-scheme CIS/TNP photocatalyst, which was confirmed by photoluminescence analysis. Radical-trapping studies revealed that photogenerated holes (h+), •OH, and O2•- are the primary active species, and suggested that the enhanced photocatalytic efficiency of the 1%-CIS/TNP follows the Z-scheme mechanism for transferring the charge carriers. It was further confirmed by hydroxyl (•OH) radical determination via fluorescence techniques revealed that higher concentration of •OH radical were formed over 1%-CIS/TNP than over bare CIS and TNP. The separation of the charge carriers was further confirmed using photocurrent and electron spin resonance measurements. Kinetic and chemical oxygen demand analyses were performed to confirm the ISN and MTZ degradation. The results demonstrated that the direct Z-scheme CIS/TNP photocatalyst shows superior decomposition efficiency for the degradation of these pharmaceuticals under the given reaction conditions.

  15. Electron Beam Transport in Advanced Plasma Wave Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less

  16. Hewlett-Packard's Approaches to Full Color Reflective Displays

    NASA Astrophysics Data System (ADS)

    Gibson, Gary

    2012-02-01

    Reflective displays are desirable in applications requiring low power or daylight readability. However, commercial reflective displays are currently either monochrome or capable of only dim color gamuts. Low cost, high-quality color technology would be rapidly adopted in existing reflective display markets and would enable new solutions in areas such as retail pricing and outdoor digital signage. Technical breakthroughs are required to enable bright color gamuts at reasonable cost. Pixel architectures that rely on pure reflection from a single layer of side-by-side primary-color sub-pixels use only a fraction of the display area to reflect incident light of a given color and are, therefore, unacceptably dark. Reflective devices employing stacked color primaries offer the possibility of a somewhat brighter color gamut but can be more complex to manufacture. In this talk, we describe HP's successes in addressing these fundamental challenges and creating both high performance stacked-primary reflective color displays as well as inexpensive single layer prototypes that provide good color. Our stacked displays utilize a combination of careful light management techniques, proprietary high-contrast electro-optic shutters, and highly transparent active-matrix TFT arrays based on transparent metal oxides. They also offer the possibility of relatively low cost manufacturing through roll-to-roll processing on plastic webs. To create even lower cost color displays with acceptable brightness, we have developed means for utilizing photoluminescence to make more efficient use of ambient light in a single layer device. Existing reflective displays create a desired color by reflecting a portion of the incident spectrum while absorbing undesired wavelengths. We have developed methods for converting the otherwise-wasted absorbed light to desired wavelengths via tailored photoluminescent composites. Here we describe a single active layer prototype display that utilizes these materials along with an innovative optical out-coupling scheme. Further benefits of our approach include means for highly power-efficient back-lighting under low ambient light conditions and the possibility of video rate operation.

  17. Low-cost CWDM transmitter package

    NASA Astrophysics Data System (ADS)

    Bhandarkar, Navin; Castillega, Jaime

    2005-03-01

    A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.

  18. On-chip tunable optofluidic dye laser

    NASA Astrophysics Data System (ADS)

    Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng

    2016-11-01

    We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.

  19. About the role of phase matching between a coated microsphere and a tapered fiber: experimental study.

    PubMed

    Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio

    2013-09-09

    Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.

  20. Fluctuation of the electronic coupling in DNA: Multistate versus two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2007-05-01

    The electronic coupling for hole transfer between guanine bases G in the DNA duplex (GT) 6GTG(TG) 6 is studied using a QM/MD approach. The coupling V is calculated for 10 thousand snapshots within the two- and multistate state Generalized Mulliken-Hush model. We find that the two-state scheme considerably underestimates the rate of the hole transfer within the π stack. Moreover, the probability distributions computed with the two- and multistate schemes are quite different. It has been found that large fluctuations of V2, which are at least an order of magnitude larger than its average value, occur roughly every 1 ps.

  1. Hiding Electronic Patient Record (EPR) in medical images: A high capacity and computationally efficient technique for e-healthcare applications.

    PubMed

    Loan, Nazir A; Parah, Shabir A; Sheikh, Javaid A; Akhoon, Jahangir A; Bhat, Ghulam M

    2017-09-01

    A high capacity and semi-reversible data hiding scheme based on Pixel Repetition Method (PRM) and hybrid edge detection for scalable medical images has been proposed in this paper. PRM has been used to scale up the small sized image (seed image) and hybrid edge detection ensures that no important edge information is missed. The scaled up version of seed image has been divided into 2×2 non overlapping blocks. In each block there is one seed pixel whose status decides the number of bits to be embedded in the remaining three pixels of that block. The Electronic Patient Record (EPR)/data have been embedded by using Least Significant and Intermediate Significant Bit Substitution (ISBS). The RC4 encryption has been used to add an additional security layer for embedded EPR/data. The proposed scheme has been tested for various medical and general images and compared with some state of art techniques in the field. The experimental results reveal that the proposed scheme besides being semi-reversible and computationally efficient is capable of handling high payload and as such can be used effectively for electronic healthcare applications. Copyright © 2017. Published by Elsevier Inc.

  2. Realization of improved metallization-Ti/Al/Ti/W/Au ohmic contacts to n-GaN for high temperature application

    NASA Astrophysics Data System (ADS)

    Motayed, A.; Davydov, A. V.; Boettinger, W. J.; Josell, D.; Shapiro, A. J.; Levin, I.; Zheleva, T.; Harris, G. L.

    2005-05-01

    Tungsten metal layer was used for the first time as an effective diffusion barrier for the standard Ti/Al/Ti/Au ohmic metallization scheme to obtain thermally stable ohmic contact suitable for high temperature applications. Comparative studies were performed on three distinct metallization schemes: 1) standard GaN/Ti/Al/Ti/Au, 2) GaN/Ti/Al/W/Au, and 3) GaN/Ti/Al/Ti/W/Au. For the GaN with doping level of 5 × 1017 cm-3, the lowest specific contact resistance for the Ti/Al/Ti/W/Au metallization scheme annealed in argon at 750 °C for 30 sec was 5 × 10-6 .cm2, which is comparable to the standard Ti/Al/Ti/Au scheme. X-ray diffractions (XRD), auger electron spectroscopy (AES) depth profiling, field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) revealed that the Ti/Al/Ti/W/Au metallization has superior morphology and microstructural properties compared to standard Ti/Al/Ti/Au metallizations. Remarkably, this metallization was able to withstand thermal aging at 500 °C for 50 hrs with only marginal morphological and electrical deterioration. These studies revealed that the utilization of a compound diffusion barrier stack, as in the Ti/Al/Ti/W/Au metallization, yields electrically, structurally, and morphologically superior metallizations with exceptional thermal stability.

  3. Super-radiant effects in electron oscillators with near-cutoff operating waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandurkin, I. V.; Savilov, A. V.; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod

    2015-06-15

    Super-radiant regimes in electron oscillators can be attractive for applications requiring powerful and relatively short pulses of microwave radiation, since the peak power of the super-radiant pulse can exceed the power of the operating electron beam. In this paper, possibilities for realization of the super-radiant regimes are studied in various schemes of electron oscillators based on excitation of near-cutoff operating waves (gyrotron and orotron)

  4. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Miguel M. C.; Marini, Andrea

    2016-04-01

    We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.

  5. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less

  6. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed atmore » an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.« less

  7. Numerical analysis of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Plyasheshnikov, A. V.; Vorobyev, K. V.

    1985-01-01

    A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed.

  8. Importance biasing scheme implemented in the PRIZMA code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandiev, I.Z.; Malyshkin, G.N.

    1997-12-31

    PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities.

  9. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  10. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state

    PubMed Central

    Lukoyanov, Dmitriy; Barney, Brett M.; Dean, Dennis R.; Seefeldt, Lance C.; Hoffman, Brian M.

    2007-01-01

    A major obstacle to understanding the reduction of N2 to NH3 by nitrogenase has been the impossibility of synchronizing electron delivery to the MoFe protein for generation of specific enzymatic intermediates. When an intermediate is trapped without synchronous electron delivery, the number of electrons, n, it has accumulated is unknown. Consequently, the intermediate is untethered from kinetic schemes for reduction, which are indexed by n. We show that a trapped intermediate itself provides a “synchronously prepared” initial state, and its relaxation to the resting state at 253 K, conditions that prevent electron delivery to MoFe protein, can be analyzed to reveal n and the nature of the relaxation reactions. The approach is applied to the “H+/H− intermediate” (A) that appears during turnover both in the presence and absence of N2 substrate. A exhibits an S = ½ EPR signal from the active-site iron–molybdenum cofactor (FeMo-co) to which are bound at least two hydrides/protons. A undergoes two-step relaxation to the resting state (C): A → B → C, where B has an S = 3/2 FeMo-co. Both steps show large solvent kinetic isotope effects: KIE ≈ 3–4 (85% D2O). In the context of the Lowe–Thorneley kinetic scheme for N2 reduction, these results provide powerful evidence that H2 is formed in both relaxation steps, that A is the catalytically central state that is activated for N2 binding by the accumulation of n = 4 electrons, and that B has accumulated n = 2 electrons. PMID:17251348

  11. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  12. Coherent control of the formation of cold heteronuclear molecules by photoassociation

    NASA Astrophysics Data System (ADS)

    de Lima, Emanuel F.

    2017-01-01

    We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.

  13. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  14. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less

  15. Infrared Atmospheric Emission. I.

    DTIC Science & Technology

    1982-03-01

    work efitrely in the I-i coupling scheme. Since the electrostatic energies are usually given in a coupling scheme resulting in total orbital angular...For heteronuclear diatomic molecules, the case either molecule or atom. The energy lor sufered IR emission does not necessitate the electronic...apparently to work sufficiently pood in many cases, they are not ccurate enough . .. . . .. . . . . . .... . .1 6 S for the computation of the

  16. Magnetism in (Semi)Conducting Macrocycles of pi conjugated Polymers

    DTIC Science & Technology

    2016-12-09

    wise and avoiding a break in the continuity of the macrocycle. As a first criterion we tested the continuity of the electron orbitals over the...magnesium chloride) and post polymerization functionalization by a Sonogashira coupling reaction is required (scheme 2). Scheme 2: Synthetic...Sonogashira post - polymerization chain end functionalization and B isotopic model of the different population present in the final batch

  17. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2012-10-14

    The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.

  18. Effect of heating scheme on SOL width in DIII-D and EAST

    DOE PAGES

    Wang, L.; Makowski, M. A.; Guo, H. Y.; ...

    2017-03-10

    Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less

  19. Effect of heating scheme on SOL width in DIII-D and EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Makowski, M. A.; Guo, H. Y.

    Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less

  20. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies.

    PubMed

    Sodt, Alexander J; Mei, Ye; König, Gerhard; Tao, Peng; Steele, Ryan P; Brooks, Bernard R; Shao, Yihan

    2015-03-05

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton-Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin-luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.

  1. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    PubMed

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  2. Molecular interferometer to decode attosecond electron-nuclear dynamics.

    PubMed

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-03-18

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.

  3. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  4. Electronic structure studies of La2CuO4

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Jean, Y. C.; Wetzler, K. H.; Howell, R. H.; Fluss, M. J.; Harshman, D. R.; Remeika, J. P.; Cooper, A. S.; Fleming, R. M.

    1988-07-01

    We report results of positron-electron momentum-distribution measurements of single-crystal La2CuO4 using two-dimensional angular correlation of positron-annihilation-radiation techniques. The data contain two components: a large (~85%), isotropic corelike electron contribution and a remaining, anisotropic valence-electron contribution modeled using a linear combination of atomic orbitals-molecular orbital method and a localized ion scheme, within the independent-particle model approximation. This work suggests a ligand-field Hamiltonian to be justified for describing the electronic properties of perovskite materials.

  5. On the security of a dynamic ID-based authentication scheme for telecare medical information systems.

    PubMed

    Lin, Han-Yu

    2013-04-01

    Telecare medical information systems (TMISs) are increasingly popular technologies for healthcare applications. Using TMISs, physicians and caregivers can monitor the vital signs of patients remotely. Since the database of TMISs stores patients' electronic medical records (EMRs), only authorized users should be granted the access to this information for the privacy concern. To keep the user anonymity, recently, Chen et al. proposed a dynamic ID-based authentication scheme for telecare medical information system. They claimed that their scheme is more secure and robust for use in a TMIS. However, we will demonstrate that their scheme fails to satisfy the user anonymity due to the dictionary attacks. It is also possible to derive a user password in case of smart card loss attacks. Additionally, an improved scheme eliminating these weaknesses is also presented.

  6. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  7. A Hierarchical Z-Scheme α-Fe2 O3 /g-C3 N4 Hybrid for Enhanced Photocatalytic CO2 Reduction.

    PubMed

    Jiang, Zhifeng; Wan, Weiming; Li, Huaming; Yuan, Shouqi; Zhao, Huijun; Wong, Po Keung

    2018-03-01

    The challenge in the artificial photosynthesis of fossil resources from CO 2 by utilizing solar energy is to achieve stable photocatalysts with effective CO 2 adsorption capacity and high charge-separation efficiency. A hierarchical direct Z-scheme system consisting of urchin-like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO 2 to CO, yielding a CO evolution rate of 27.2 µmol g -1 h -1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g-C 3 N 4 alone (10.3 µmol g -1 h -1 ). The enhanced photocatalytic activity of the Z-scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin-like hematite and preferable basic sites which promotes the CO 2 adsorption, and (ii) the unique Z-scheme feature efficiently promotes the separation of the electron-hole pairs and enhances the reducibility of electrons in the conduction band of the g-C 3 N 4 . The origin of such an obvious advantage of the hierarchical Z-scheme is not only explained based on the experimental data but also investigated by modeling CO 2 adsorption and CO adsorption on the three different atomic-scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal-oxide-based Z-scheme system for solar fuel generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lessons on electronic decoherence in molecules from exact modeling

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  9. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  10. On the Effective Mass of the Electron Neutrino in Beta Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-20

    In the presence of mixing between massive neutrino states, the distortion of the electron spectrum in beta decay is, in general, a function of several masses and mixing angles. For 3{nu}-schemes which describe the solar and atmospheric neutrino data, this distortion can be described by a single effective mass, under certain conditions. In the literature, two different definitions for the effective mass have been suggested. We show that for quasi-degenerate mass schemes (with an overall mass scale m and splitting {Delta}m{sup 2}) the two definitions coincide up to ({Delta}m{sup 2}){sup 2}/m{sup 4} corrections. We consider the impact of different effectivemore » masses on the integral energy spectrum. We show that the spectrum with a single mass can be used also to fit the data in the case of 4{nu}-schemes motivated, in particular, by the LSND results. In this case the accuracy of the mass determination turns out to be better than (10-15)%.« less

  11. Preserving anonymity in e-voting system using voter non-repudiation oriented scheme

    NASA Astrophysics Data System (ADS)

    Hamid, Isredza Rahmi A.; Radzi, Siti Nafishah Md; Rahman, Nurul Hidayah Ab; Wen, Chuah Chai; Abdullah, Nurul Azma

    2017-10-01

    The voting system has been developed from traditional paper ballot to electronic voting (e-voting). The e-voting system has high potential to be widely used in election event. However, the e-voting system still does not meet the most important security properties which are voter's authenticity and non-repudiation. This is because voters can simply vote again by entering other people's identification number. In this project, an electronic voting using voter non-repudiation oriented scheme will be developed. This system contains ten modules which are log in, vote session, voter, candidate, open session, voting results, user account, initial score, logs and reset vote count. In order to ensure there would be no non-repudiation issue, a voter non-repudiation oriented scheme concept will be adapted and implemented in the system. This system will be built using Microsoft Visual Studio 2013 which only can be accessed using personal computers at the voting center. This project will be beneficial for future use in order to overcome non-repudiation issue.

  12. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    NASA Technical Reports Server (NTRS)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  13. On the physical interpretation of the nuclear molecular orbital energy.

    PubMed

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  14. Microscopic Approach to Magnetism and Superconductivity of f-Electron Systems with Filled Skutterudite Structure

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2005-04-01

    In order to gain a deep insight into f-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. First we examine the local f-electron state in detail in comparison with the results of LS and j-j coupling schemes. For each case of n=1--13, where n is the number of f electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of f electron. In particular, for the f 2-electron system corresponding to the Pr-based filled skutterudite, it is found that magnetic fluctuations significantly remain at low temperatures, even when the ground state is Γ1 singlet, if Γ_4(2) triplet is the excited state with small excitation energy. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the j-j coupling scheme by using the NRG method. It is clearly observed that the magnetic properties are quite similar to those of the original Anderson model. Then, we construct an orbital degenerate Hubbard model based on the j-j coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of n=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged. We envision a scenario that unconventional superconductivity induced by magnetic fluctuations may occur in the f 2-electron system with Γ1 ground state such as Pr-based filled skutterudite compounds.

  15. A privacy authentication scheme based on cloud for medical environment.

    PubMed

    Chen, Chin-Ling; Yang, Tsai-Tung; Chiang, Mao-Lun; Shih, Tzay-Farn

    2014-11-01

    With the rapid development of the information technology, the health care technologies already became matured. Such as electronic medical records that can be easily stored. However, how to get medical resources more convenient is currently concerning issue. In spite of many literatures discussed about medical systems, these literatures should face many security challenges. The most important issue is patients' privacy. Therefore, we propose a privacy authentication scheme based on cloud environment. In our scheme, we use mobile device's characteristics, allowing peoples to use medical resources on the cloud environment to find medical advice conveniently. The digital signature is used to ensure the security of the medical information that is certified by the medical department in our proposed scheme.

  16. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  17. Solar flare ionization in the mesosphere observed by coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Parker, J. W.; Bowhill, S. A.

    1986-01-01

    The coherent-scatter technique, as used with the Urbana radar, is able to measure relative changes in electron density at one altitude during the progress of a solar flare when that altitude contains a statistically steady turbulent layer. This work describes the analysis of Urbana coherent-scatter data from the times of 13 solar flares in the period from 1978 to 1983. Previous methods of measuring electron density changes in the D-region are summarized. Models of X-ray spectra, photoionization rates, and ion-recombination reaction schemes are reviewed. The coherent-scatter technique is briefly described, and a model is developed which relates changes in scattered power to changes in electron density. An analysis technique is developed using X-ray flux data from geostationary satellites and coherent scatter data from the Urbana radar which empirically distinguishes between proposed D-region ion-chemical schemes, and estimates the nonflare ion-pair production rate.

  18. Communication: Charge-population based dispersion interactions for molecules and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stöhr, Martin; Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching; Michelitsch, Georg S.

    2016-04-21

    We introduce a system-independent method to derive effective atomic C{sub 6} coefficients and polarizabilities in molecules and materials purely from charge population analysis. This enables the use of dispersion-correction schemes in electronic structure calculations without recourse to electron-density partitioning schemes and expands their applicability to semi-empirical methods and tight-binding Hamiltonians. We show that the accuracy of our method is en par with established electron-density partitioning based approaches in describing intermolecular C{sub 6} coefficients as well as dispersion energies of weakly bound molecular dimers, organic crystals, and supramolecular complexes. We showcase the utility of our approach by incorporation of the recentlymore » developed many-body dispersion method [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012)] into the semi-empirical density functional tight-binding method and propose the latter as a viable technique to study hybrid organic-inorganic interfaces.« less

  19. Magnetometer based on the opto-electronic microwave oscillator

    NASA Astrophysics Data System (ADS)

    Matsko, Andrey B.; Strekalov, Dmitry; Maleki, Lute

    2005-03-01

    We present a scheme for an all-optical self-oscillating magnetometer based on the opto-electronic oscillator stabilized with an atomic vapor cell. We demonstrate a proof of the principle with DC magnetic field measurements characterized by 2 × 10-7 G sensitivity and 1-1000 mG dynamic range.

  20. The New Publishing: Technology's Impact on the Publishing Industry over the Next Decade.

    ERIC Educational Resources Information Center

    Rawlins, Gregory J. E.

    1992-01-01

    Discusses technology's impact on the products, revenue sources, and distribution channels of the publishing industry over the next decade. Highlights include electronic books and copy protection; copyright; advantages of electronic books to users, libraries, and publishers; retailing schemes; changes in education; subscription publishing;…

  1. Security enhanced multi-factor biometric authentication scheme using bio-hash function.

    PubMed

    Choi, Younsung; Lee, Youngsook; Moon, Jongho; Won, Dongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An's scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user's ID during login. Cao and Ge improved upon Younghwa An's scheme, but various security problems remained. This study demonstrates that Cao and Ge's scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge's scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost.

  2. Self-consistent field for fragmented quantum mechanical model of large molecular systems.

    PubMed

    Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao

    2016-01-30

    Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.

  3. Design of an extensive information representation scheme for clinical narratives.

    PubMed

    Deléger, Louise; Campillos, Leonardo; Ligozat, Anne-Laure; Névéol, Aurélie

    2017-09-11

    Knowledge representation frameworks are essential to the understanding of complex biomedical processes, and to the analysis of biomedical texts that describe them. Combined with natural language processing (NLP), they have the potential to contribute to retrospective studies by unlocking important phenotyping information contained in the narrative content of electronic health records (EHRs). This work aims to develop an extensive information representation scheme for clinical information contained in EHR narratives, and to support secondary use of EHR narrative data to answer clinical questions. We review recent work that proposed information representation schemes and applied them to the analysis of clinical narratives. We then propose a unifying scheme that supports the extraction of information to address a large variety of clinical questions. We devised a new information representation scheme for clinical narratives that comprises 13 entities, 11 attributes and 37 relations. The associated annotation guidelines can be used to consistently apply the scheme to clinical narratives and are https://cabernet.limsi.fr/annotation_guide_for_the_merlot_french_clinical_corpus-Sept2016.pdf . The information scheme includes many elements of the major schemes described in the clinical natural language processing literature, as well as a uniquely detailed set of relations.

  4. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirablemore » to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.« less

  5. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation.

    PubMed

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-02-14

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.

  6. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    NASA Astrophysics Data System (ADS)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  7. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires.

    PubMed

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-28

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  8. Intermolecular electron-transfer mechanisms via quantitative structures and ion-pair equilibria for self-exchange of anionic (dinitrobenzenide) donors.

    PubMed

    Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K

    2005-05-25

    Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.

  9. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohsen, O.; Gonin, I.; Kephart, R.

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less

  10. Interfacial coupling induced direct Z scheme water splitting in metal-free photocatalyst: C3N/g-C3N4 heterojunctions.

    PubMed

    Wang, Jiajun; Li, Xiaoting; You, Ya; Xintong, Yang; Wang, Ying; Li, Qunxiang

    2018-06-21

    Mimicking the natural photosynthesis in green plants, artificial Z-scheme photocatalysis enables more efficient utilization of solar energy for photocatalytic water splitting. Most currently designed g-C3N4-based Z-scheme heterojunctions are usually based on metal-containing semiconductor photocatalysts, thus exploiting metal-free photocatalysts for Z-scheme water splitting is of huge interest. Herein, we propose two metal-free C3N/g-C3N4 heterojunctions with the C3N monolayer covering g-C3N4 sheet (monolayer or bilayer) and systematically explore their electronic structures, charge distributions and photocatalytic properties by performing extensive hybrid density functional calculations. We clearly reveal that the relative strong built-in electric fields around their respective interface regions, caused by the charge transfer from C3N monolayer to g-C3N4 monolayer or bilayer, result in the bands bending, renders the transfer of photogenerated carriers in these two heterojunctions following the Z-scheme instead of the type-II pathway. Moreover, the photogenerated electrons and holes in these two C3N/g-C3N4 heterojunctions not only can be efficiently separated, but also have strong redox abilities for water oxidation and reduction. Compared with the isolated g-C3N4 sheets, the light absorption in visible to near-infrared region are significantly enhanced in these proposed heterojunctions. These theoretical findings suggest that these proposed metal-free C3N/g-C3N4 heterojunctions are promising direct Z-scheme photocatalysts for solar water splitting. © 2018 IOP Publishing Ltd.

  11. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  12. A Review of Advanced Vehicular Diesel Research and Development Programs Which Have Potential Application to Stationary Diesel Power Plants.

    DTIC Science & Technology

    1980-03-01

    throttle torque capability. Various schemes are under development to reduce this disadvantage. These schemes include reducing compressor and turbine rotor...inertia, using a pelton wheel or burners, electronic feedback systems, and variable area turbocharging. Other turbocharging disadvantages include...around the turbine ) and using exhaust augmenters or combustors (wasteful of fuel, costly, and complex), and the variable area turbocharger (VAT). An

  13. Degradable Polymers and Block Copolymers from Electron-deficient Carbonyl Compounds (STIR) (7.3 Polymer Chemistry - Synthesis: Architecture and Composition)

    DTIC Science & Technology

    2015-04-23

    polymerization results Illustrations: Scheme 1. Polymerization of aldehydes and depolymerization of polyacetals. Scheme 2. Optimized methods for...oligomers) to the pure aldehyde monomer requires several distillations and transfer of the monomer at reflux directly to the polymerization vessel. Low...the controlled organocatalytic chain polymerization of ethyl glyoxylate and other reactive aldehydes , which will enable the preparation of

  14. Multiple Environment Single System Quantum Mechanical/Molecular Mechanical (MESS-QM/MM) Calculations. 1. Estimation of Polarization Energies

    PubMed Central

    2015-01-01

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy. PMID:25321186

  15. An in fiber experimental approach to photonic quantum digital signatures that does not require quantum memory

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2014-10-01

    Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.

  16. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies

    DOE PAGES

    Sodt, Alexander J.; Mei, Ye; Konig, Gerhard; ...

    2014-10-16

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completelymore » avoided at each configuration. Here, they produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.« less

  17. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  18. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  19. Analysis on IGBT and Diode Failures in Distribution Electronic Power Transformers

    NASA Astrophysics Data System (ADS)

    Wang, Si-cong; Sang, Zi-xia; Yan, Jiong; Du, Zhi; Huang, Jia-qi; Chen, Zhu

    2018-02-01

    Fault characteristics of power electronic components are of great importance for a power electronic device, and are of extraordinary importance for those applied in power system. The topology structures and control method of Distribution Electronic Power Transformer (D-EPT) are introduced, and an exploration on fault types and fault characteristics for the IGBT and diode failures is presented. The analysis and simulation of different fault types for the fault characteristics lead to the D-EPT fault location scheme.

  20. Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunietz, Barry D

    2016-08-09

    The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.

  1. A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111)

    NASA Astrophysics Data System (ADS)

    Lahav, D.; Klüner, T.

    2007-06-01

    We derive a variant of a density based embedded cluster approach as an improvement to a recently proposed embedding theory for metallic substrates (Govind et al 1999 J. Chem. Phys. 110 7677; Klüner et al 2001 Phys. Rev. Lett. 86 5954). In this scheme, a local region in space is represented by a small cluster which is treated by accurate quantum chemical methodology. The interaction of the cluster with the infinite solid is taken into account by an effective one-electron embedding operator representing the surrounding region. We propose a self-consistent embedding scheme which resolves intrinsic problems of the former theory, in particular a violation of strict density conservation. The proposed scheme is applied to the well-known benchmark system CO/Pd(111).

  2. Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage.

    PubMed

    Guo, Lifeng; Yau, Wei-Chuen

    2015-02-01

    Searchable encryption is an important cryptographic primitive that enables privacy-preserving keyword search on encrypted electronic medical records (EMRs) in cloud storage. Efficiency of such searchable encryption in a medical cloud storage system is very crucial as it involves client platforms such as smartphones or tablets that only have constrained computing power and resources. In this paper, we propose an efficient secure-channel free public key encryption with keyword search (SCF-PEKS) scheme that is proven secure in the standard model. We show that our SCF-PEKS scheme is not only secure against chosen keyword and ciphertext attacks (IND-SCF-CKCA), but also secure against keyword guessing attacks (IND-KGA). Furthermore, our proposed scheme is more efficient than other recent SCF-PEKS schemes in the literature.

  3. Unfolding energy spectra of double-periodicity two-dimensional systems: Twisted bilayer graphene and MoS2 on graphene

    NASA Astrophysics Data System (ADS)

    Matsushita, Yu-ichiro; Nishi, Hirofumi; Iwata, Jun-ichi; Kosugi, Taichi; Oshiyama, Atsushi

    2018-01-01

    We propose an unfolding scheme to analyze energy spectra of complex large-scale systems which are inherently of double periodicity on the basis of the density-functional theory. Applying our method to a twisted bilayer graphene (tBLG) and a stack of monolayer MoS2 on graphene (MoS2/graphene) as examples, we first show that the conventional unfolding scheme in the past using a single primitive-cell representation causes serious problems in analyses of the energy spectra. We then introduce our multispace representation scheme in the unfolding method and clarify its validity. Velocity renormalization of Dirac electrons in tBLG and mini gaps of Dirac cones in MoS2/graphene are elucidated in the present unfolding scheme.

  4. 78 FR 38240 - Authentication of Electronic Signatures on Electronically Filed Statements of Account

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... up by any trick, scheme, or device a material fact; (2) makes any materially false, fictitious, or fraudulent statement or representation; or (3) makes or uses any false writing or document knowing the same to contain any materially false, fictitious, or fraudulent statement or entry; shall be fined under...

  5. High brightness fully coherent x-ray amplifier seeded by a free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yan, Jiawei; Feng, Chao; Zhang, Meng; Deng, Haixiao

    2018-04-01

    X-ray free-electron laser oscillator (XFELO) is expected to be a cutting-edge tool for fully coherent x-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current, as well as residual energy chirp from chicane compressor, are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent x-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.

  6. Molecular alignment effect on the photoassociation process via a pump-dump scheme.

    PubMed

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-07

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  7. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    NASA Astrophysics Data System (ADS)

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-01

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  8. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  9. Design and Implementation of Improved Electronic Load Controller for Self-Excited Induction Generator for Rural Electrification

    PubMed Central

    Kathirvel, C.; Porkumaran, K.; Jaganathan, S.

    2015-01-01

    This paper offers an alternative technique, namely, Improved Electronic Load Controller (IELC), which is proposal to improve power quality, maintaining voltage at frequency desired level for rural electrification. The design and development of IELC are considered as microhydroenergy system. The proposed work aims to concentrate on the new schemes for rural electrification with the help of different kinds of hybrid energy systems. The objective of the proposed scheme is to maintain the speed of generation against fluctuating rural demand. The Electronic Load Controller (ELC) is used to connect and disconnect the dump load during the operation of the system, and which absorbs the load when consumer are not in active will enhance the lifestyle of the rural population and improve the living standards. Hydroelectricity is a promising option for electrification of remote villages in India. The conventional methods are not suitable to act as standalone system. Hence, the designing of a proper ELC is essential. The improved electronic load control performance tested with simulation at validated through hardware setup. PMID:26783553

  10. Design and Implementation of Improved Electronic Load Controller for Self-Excited Induction Generator for Rural Electrification.

    PubMed

    Kathirvel, C; Porkumaran, K; Jaganathan, S

    2015-01-01

    This paper offers an alternative technique, namely, Improved Electronic Load Controller (IELC), which is proposal to improve power quality, maintaining voltage at frequency desired level for rural electrification. The design and development of IELC are considered as microhydroenergy system. The proposed work aims to concentrate on the new schemes for rural electrification with the help of different kinds of hybrid energy systems. The objective of the proposed scheme is to maintain the speed of generation against fluctuating rural demand. The Electronic Load Controller (ELC) is used to connect and disconnect the dump load during the operation of the system, and which absorbs the load when consumer are not in active will enhance the lifestyle of the rural population and improve the living standards. Hydroelectricity is a promising option for electrification of remote villages in India. The conventional methods are not suitable to act as standalone system. Hence, the designing of a proper ELC is essential. The improved electronic load control performance tested with simulation at validated through hardware setup.

  11. Generation of coherent two-color pulses at two adjacent harmonics in a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhao, Zhouyu; Li, Heting; Jia, Qika

    2018-02-01

    The growing requirements of pump-probe techniques and nonlinear optics experiments greatly promote the studies of two-color free-electron lasers (FELs). We propose a new method to generate coherent two-color pulses in a high-gain harmonic generation (HGHG) FEL. In this scheme, an initial tilted electron beam is sent though the modulator and dispersive section of an HGHG FEL to generate the bunching at harmonics of the seed laser. Then a transverse gradient undulator (TGU) is adopted as the radiator and in such radiator, only two separated fractions of the tilted beam will resonate at two adjacent harmonics of the seed laser and are enabled to emit the coherent two-color pulses simultaneously. The time separation between the two pulses are on the order of hundreds of femtoseconds, and can be precisely controlled by varying the tilted amplitude of the electron beam and/or the transverse gradient of the TGU radiator. Numerical simulations confirm the validity and feasibility of this scheme in the extreme ultraviolet waveband.

  12. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    NASA Astrophysics Data System (ADS)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  13. Design and Hardware Implementation of a New Chaotic Secure Communication Technique

    PubMed Central

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385

  14. Development of optical-electronic system for the separation of cullet

    NASA Astrophysics Data System (ADS)

    Solovey, Alexey A.; Alekhin, Artem A.

    2017-06-01

    Broken glass being the waste in many fields of production is usually used as a raw material in the production of construction materials. The purity level of collected and processed glass cullet, as a rule, is quite low. Direct usage of these materials without preliminary processing leads to the emergence of defects in the end product or sometimes even to technological downtime. That's why purity control of cullet should be strictly verified. The study shows the method of construction and requirements for an optical-electronic system designed for cullet separation. Moreover, the author proposes a registration channel scheme and shows a scheme of control exposure area. Also the issues of image processing for the implementation of a typical system are examined.

  15. Design and Hardware Implementation of a New Chaotic Secure Communication Technique.

    PubMed

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.

  16. Variational and robust density fitting of four-center two-electron integrals in local metrics

    NASA Astrophysics Data System (ADS)

    Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł

    2008-09-01

    Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.

  17. Variational and robust density fitting of four-center two-electron integrals in local metrics.

    PubMed

    Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł

    2008-09-14

    Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.

  18. Security enhanced multi-factor biometric authentication scheme using bio-hash function

    PubMed Central

    Lee, Youngsook; Moon, Jongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An’s scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user’s ID during login. Cao and Ge improved upon Younghwa An’s scheme, but various security problems remained. This study demonstrates that Cao and Ge’s scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge’s scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost. PMID:28459867

  19. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  20. Analyzing the effect of slotted foil on radiation pulse profile in a mode locked afterburner X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Hur, Min Sup; Chung, Moses

    2017-06-01

    Extremely short X-ray pulses in the attosecond (as) range are important tools for ultrafast dynamics, high resolution microscopy, and nuclear dynamics study. In this paper, we numerically examine the generation of gigawatt (GW) mode-locked (ML) multichromatic X-rays using the parameters of the Pohang Accelerator Laboratory (PAL)-X-ray free electron laser (XFEL), the Korean XFEL. In this vein, we analyze the ML-FEL [Thompson and McNeil, Phys. Rev. Lett. 100, 203901 (2008)] and mode-locked afterburner (MLAB) FEL [Dunning et al., Phys. Rev. Lett. 110, 104801 (2013)] schemes on the hard X-ray beamline of the PAL-XFEL. Using the ML scheme, we numerically demonstrate a train of radiation pulses in the hard X-ray (photon energy ˜12.4 keV) with 3.5 GW power and 16 as full-width half maximum (FWHM) pulse duration. On the other hand, using the MLAB scheme, a train of radiation pulses with 3 GW power and 1 as FWHM (900 zs in RMS) pulse duration has been obtained at 12.4 keV photon energy. Both schemes generate broadband, discrete, and coherent spectrum compared to the XFEL's narrowband spectrum. Furthermore, the effect of slotted foil is also studied first time on the MLAB-FEL output. Numerical comparisons show that the temporal structure of the MLAB-FEL output can be improved significantly by the use of the slotted foil. Such short X-ray pulses at XFEL facilities will allow the studies of electron-nuclear and nuclear dynamics in atoms or molecules, and the broadband radiation will substantially improve the efficiency of the experimental techniques such as X-ray crystallography and spectroscopy, paving the way for outstanding progress in biology and material science.

  1. Propensity for distinguishing two free electrons with equal energies in electron-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Senftleben, Arne; Pflüger, Thomas; Bartschat, Klaus; Zatsarinny, Oleg; Berakdar, Jamal; Colgan, James; Pindzola, Michael S.; Bray, Igor; Fursa, Dmitry V.; Dorn, Alexander

    2015-11-01

    We report a combined experimental and theoretical study on the electron-impact ionization of helium at E0=70.6 eV and equal energy sharing of the two outgoing electrons (E1=E2=23 eV ), where a double-peak or dip structure in the binary region of the triple differential cross section is observed. The experimental cross sections are compared with results from convergent close-coupling (CCC), B -spline R-matrix-with-pseudostates (BSR), and time-dependent close-coupling (TDCC) calculations, as well as predictions from the dynamic screening three-Coulomb (DS3C) theory. Excellent agreement is obtained between experiment and the nonperturbative CCC, BSR, and TDCC theories, and good agreement is also found for the DS3C model. The data are further analyzed regarding contributions in particular coupling schemes for the spins of either the two outgoing electrons or one of the outgoing electrons and the 1 s electron remaining in the residual ion. While both coupling schemes can be used to explain the observed double-peak structure in the cross section, the second one allows for the isolation of the exchange contribution between the incident projectile and the target. For different observation angles of the two outgoing electrons, we interpret the results as a propensity for distinguishing these two electrons—one being more likely the incident projectile and the other one being more likely ejected from the target.

  2. Microfocus computed tomography in medicine

    NASA Astrophysics Data System (ADS)

    Obodovskiy, A. V.

    2018-02-01

    Recent advances in the field of high-frequency power schemes for X-ray devices allow the creation of high-resolution instruments. At the department of electronic devices and Equipment of the St. Petersburg State Electrotechnical University, a model of a microfocus computer tomograph was developed. Used equipment allows to receive projection data with an increase up to 100 times. A distinctive feature of the device is the possibility of implementing various schemes for obtaining projection data.

  3. Photophysical Properties on Functional Pi-Electronic Molecular Systems

    DTIC Science & Technology

    2012-08-01

    the aromaticity; i) it is possible to control the number of conjugated π-electrons by changing the number of connected pyrrole rings, ii) by...flexibilities, and facile capture and release of two pyrrolic protons upon two-electron oxidation and reduction, respectively. Scheme 2. (a...nitrogen atoms of pyrrole A, B, C and D, and the ortho-carbon atom of meso-pentafluorophenyl group in a trigonal bipyramidal manner. The 1 H NMR spectrum

  4. A phase contrast imaging–interferometer system for detection of multiscale electron density fluctuations on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E. M.; Rost, J. C.; Porkolab, M.

    2016-11-15

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI–interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz

  5. Security Analysis and Improvement of 'a More Secure Anonymous User Authentication Scheme for the Integrated EPR Information System'.

    PubMed

    Islam, S K Hafizul; Khan, Muhammad Khurram; Li, Xiong

    2015-01-01

    Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.'s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen's scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature.

  6. Security Analysis and Improvement of ‘a More Secure Anonymous User Authentication Scheme for the Integrated EPR Information System’

    PubMed Central

    Islam, SK Hafizul; Khan, Muhammad Khurram; Li, Xiong

    2015-01-01

    Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.’s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen’s scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature. PMID:26263401

  7. A secure and robust password-based remote user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Das, Ashok Kumar

    2015-03-01

    An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.

  8. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhijun; Li, Wentao; Wang, Wentao

    2016-05-15

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, themore » e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.« less

  9. The Unlimited Potential of the Electronic Library (Except Where Prohibited by the Copyright Law).

    ERIC Educational Resources Information Center

    Schmidt, Steven; Lewis, David

    This paper describes the creation of a new library facility for Indiana University-Purdue University at Indianapolis, one designed ready to accommodate an infrastructure that would support the new technologies of the electronic information environment. Wiring and fiber-optic schemes are outlined briefly. The document is formatted as a script for…

  10. In situ polymerization synthesis of Z-scheme tungsten trioxide/polyimide photocatalyst with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Meng, Pengcheng; Heng, Huimin; Sun, Yanhong; Liu, Xia

    2018-01-01

    A novel direct Z-scheme P-containing tungsten trioxide/polyimide (PWO/PI) photocatalyst was synthesized by an in-situ solid-state polymerization strategy to enhance the visible-light photocatalytic oxidation capacity of PI. The effects of polymerization temperature and PWO content on the physicochemical properties of PWO/PI composites and photocatalytic degradation efficiency of imidacloprid were investigated. The photocatalysts were characterized by X-ray powder diffraction, Fourier transformed infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-vis diffused reflection spectra and N2 adsorption-desorption isothermals. The results showed that the photocatalysts with visible-light photocatalytic activity can already be prepared at 300 °C. The PWO/PI composites exhibited a lamellar structure and PWO was wrapped by PI. After PWO was introduced, there was a significant interaction between PWO and PI, and the visible light response of photocatalysts was also improved. The visible-light photocatalytic degradation efficiency of imidacloprid on 3% PWO/PI-300 composite was about 3.2 times of commercial P25, and the corresponding pseudo-first-order rate constant was about 2.9 times of pristine PI. The Z-scheme photocatalytic system of PWO/PI composites was confirmed by the electron spin resonance technology, terephthalic acid photoluminescence probing technique, reactive species trapping experiments, X-ray photoelectron spectroscopy and photoluminescence of PWO/PI composites and pristine photocatalysts.

  11. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination

    NASA Astrophysics Data System (ADS)

    Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan

    2018-06-01

    Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.

  12. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  13. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    PubMed

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  14. Pseudospin Electronics in Phosphorene Nanoribbons

    DOE PAGES

    Soleimanikahnoj, S.; Knezevic, I.

    2017-12-19

    Zigzag phosphorene nanoribbons are metallic owing to the edge states, whose energies are inside the gap and far from the bulk bands. We show that -- through electrical manipulation of edge states -- electron propagation can be restricted to one of the ribbon edges or, in case of bilayer phosphorene nanoribbons, to one of the layers. This finding implies that edge and layer can be regarded as tunable equivalents of the spin-one-half degree of freedom, i.e., the pseudospin. In both layer- and edge-pseudospin schemes, we propose and characterize a pseudospin field-effect transistor, which can generate pseudospin-polarized current. Also, we proposemore » edge- and layer-pseudospin valves that operate analogously to conventional spin valves. The performance of valves in each pseudospin scheme is benchmarked by the pseudomagnetoresistance (PMR) ratio. The edge-pseudospin valve shows a nearly perfect PMR, with remarkable robustness against device parameters and disorder. Furthermore, these results may initiate new developments in pseudospin electronics.« less

  15. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-planemore » electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.« less

  16. Watching excitons move: the time-dependent transition density matrix

    NASA Astrophysics Data System (ADS)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  17. Magneto-electronic properties and spin-resolved I-V curves of a Co/GeSe heterojunction diode: an ab initio study

    NASA Astrophysics Data System (ADS)

    Makinistian, Leonardo; Albanesi, Eduardo A.

    2013-06-01

    We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.

  18. Effect of a skin-deep surface zone on the formation of a two-dimensional electron gas at a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Olszowska, Natalia; Lis, Jakub; Ciochon, Piotr; Walczak, Łukasz; Michel, Enrique G.; Kolodziej, Jacek J.

    2016-09-01

    Two-dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a one-dimensional (1D) self-consistent Poisson-Schrödinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schrödinger scheme predicts the 2DEG band energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wave functions.

  19. Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jing; Yun, Peter; Tian, Yuan

    2014-03-07

    A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less

  20. Mobile phone collection, reuse and recycling in the UK.

    PubMed

    Ongondo, F O; Williams, I D

    2011-06-01

    Mobile phones are the most ubiquitous electronic product on the globe. They have relatively short lifecycles and because of their (perceived) in-built obsolescence, discarded mobile phones represent a significant and growing problem with respect to waste electrical and electronic equipment (WEEE). An emerging and increasingly important issue for industry is the shortage of key metals, especially the types of metals found in mobile phones, and hence the primary aim of this timely study was to assess and evaluate the voluntary mobile phone takeback network in the UK. The study has characterised the information, product and incentives flows in the voluntary UK mobile phone takeback network and reviewed the merits and demerits of the incentives offered. A survey of the activities of the voluntary mobile phone takeback schemes was undertaken in 2008 to: identify and evaluate the takeback schemes operating in the UK; determine the target groups from whom handsets are collected; and assess the collection, promotion and advertising methods used by the schemes. In addition, the survey sought to identify and critically evaluate the incentives offered by the takeback schemes, evaluate their ease and convenience of use; and determine the types, qualities and quantities of mobile phones they collect. The study has established that the UK voluntary mobile phone takeback network can be characterised as three distinctive flows: information flow; product flow (handsets and related accessories); and incentives flow. Over 100 voluntary schemes offering online takeback of mobile phone handsets were identified. The schemes are operated by manufacturers, retailers, mobile phone network service operators, charities and by mobile phone reuse, recycling and refurbishing companies. The latter two scheme categories offer the highest level of convenience and ease of use to their customers. Approximately 83% of the schemes are either for-profit/commercial-oriented and/or operate to raise funds for charities. The voluntary schemes use various methods to collect mobile phones from consumers, including postal services, courier and in-store. The majority of schemes utilise and finance pre-paid postage to collect handsets. Incentives offered by the takeback schemes include monetary payments, donation to charity and entry into prize draws. Consumers from whom handsets and related equipment are collected include individuals, businesses, schools, colleges, universities, charities and clubs with some schemes specialising on collecting handsets from one target group. The majority (84.3%) of voluntary schemes did not provide information on their websites about the quantities of mobile phones they collect. The operations of UK takeback schemes are decentralised in nature. Comparisons are made between the UK's decentralised collection system versus Australia's centralised network for collection of mobile phones. The significant principal conclusions from the study are: there has been a significant rise in the number of takeback schemes operating in the UK since the initial scheme was launched in 1997; the majority of returned handsets seem to be of low quality; and there is very little available information on the quantities of mobile phones collected by the various schemes. Irrespective of their financial motives, UK takeback schemes increasingly play an important role in sustainable waste management by diverting EoL mobile phones from landfills and encouraging reuse and recycling. Recommendations for future actions to improve the management of end-of-life mobile phone handsets and related accessories are made. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Light emitting device having peripheral emissive region

    DOEpatents

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  2. Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films.

    PubMed

    Geldmeier, Jeffrey; Rile, Lexy; Yoon, Young Jun; Jung, Jaehan; Lin, Zhiqun; Tsukruk, Vladimir V

    2017-12-19

    A new method for enhancing photoluminescence from quantum dot (QD)/polymer nanocomposite films is proposed. Poly(lauryl methacrylate) (PLMA) thin films containing embedded QDs are intentionally allowed to undergo dewetting on substrates by exposure to a nonsolvent vapor. After controlled dewetting, films exhibited typical dewetting morphologies with increased amounts of scattering that served to outcouple photoluminescence from the film and reduce internal light propagation within the film. Up to a 5-fold enhancement of the film emission was achieved depending on material factors such as the initial film thickness and QD concentration within the film. An increase in initial film thickness was shown to increase the dewetted maximum feature size and its characteristic length until a critical thickness was reached where dewetting became inhibited. A unique light exposure-based photopatterning method is also presented for the creation of high contrast emissive patterns as guided by spatially controlled dewetting.

  3. Steering and filtering white light with resonant waveguide gratings

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin

    2017-08-01

    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  4. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  5. Self-homodyne measurement of a dynamic Mollow triplet in the solid state

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-03-01

    The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.

  6. Development of a luminous textile for reflective pulse oximetry measurements

    PubMed Central

    Krehel, Marek; Wolf, Martin; Boesel, Luciano F.; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.

    2014-01-01

    In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The “light-in light-out” properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation. PMID:25136484

  7. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.

    PubMed

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-02-09

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

  8. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms

    PubMed Central

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-01-01

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207

  9. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    PubMed

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

  10. Development of a luminous textile for reflective pulse oximetry measurements.

    PubMed

    Krehel, Marek; Wolf, Martin; Boesel, Luciano F; Rossi, René M; Bona, Gian-Luca; Scherer, Lukas J

    2014-08-01

    In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The "light-in light-out" properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation.

  11. Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture.

    PubMed

    Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan

    2014-08-22

    Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.

  12. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield.

    PubMed

    Hammond, T J; Mills, Arthur K; Jones, David J

    2011-12-05

    We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30-100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.

  13. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  14. Dictionary-learning-based reconstruction method for electron tomography.

    PubMed

    Liu, Baodong; Yu, Hengyong; Verbridge, Scott S; Sun, Lizhi; Wang, Ge

    2014-01-01

    Electron tomography usually suffers from so-called “missing wedge” artifacts caused by limited tilt angle range. An equally sloped tomography (EST) acquisition scheme (which should be called the linogram sampling scheme) was recently applied to achieve 2.4-angstrom resolution. On the other hand, a compressive sensing inspired reconstruction algorithm, known as adaptive dictionary based statistical iterative reconstruction (ADSIR), has been reported for X-ray computed tomography. In this paper, we evaluate the EST, ADSIR, and an ordered-subset simultaneous algebraic reconstruction technique (OS-SART), and compare the ES and equally angled (EA) data acquisition modes. Our results show that OS-SART is comparable to EST, and the ADSIR outperforms EST and OS-SART. Furthermore, the equally sloped projection data acquisition mode has no advantage over the conventional equally angled mode in this context.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn; College of Engineering, Peking University, Beijing 100871

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures ofmore » plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.« less

  16. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    PubMed

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  17. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    PubMed Central

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723

  18. Second derivatives for approximate spin projection methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less

  19. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  20. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation

    NASA Astrophysics Data System (ADS)

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-01-01

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06547f

  1. In vivo continuous glucose monitoring using a chip based near infrared sensor

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Sigloch, S.; Frese, I.; Welzel, K.; Göddel, M.; Klotzbücher, T.

    2014-05-01

    Diabetes is a serious health condition considered to be one of the major healthcare epidemics of modern era. An effective treatment of this disease can be only achieved by reliable continuous information on blood glucose levels. In this work we present a minimally invasive, chip-based near infrared (NIR) sensor, combined with microdialysis, for continuous glucose monitoring (CGM). The sensor principle is based on difference absorption spectroscopy in the 1st overtone band of the near infrared spectrum. The device features a multi-emitter LED and InGaAs-Photodiodes, which are located on a single electronic board (non-disposable part), connected to a personal computer via Bluetooth. The disposable part consists of a chip containing the fluidic connections for microdialysis, two fluidic channels acting as optical transmission cells and total internally reflecting mirrors for in- and out-coupling of the LED light to the chip and to the detectors. The sensor is combined with an intraveneous microdialysis to separate the glucose from the cells and proteins in the blood and operates without any chemical consumption. In vitro measurements showed a linear relationship between glucose concentration and the integrated difference signal with a coefficient of determination of 99 % in the relevant physiological concentration range from 0 to 400 mg/dl. In vivo measurements on 10 patients showed that the NIR-CGM sensor data reflects the blood reference values adequately, if a proper calibration and signal drift compensation is applied. The MARE (mean absolute relative error) value taken over all patient data is 13.8 %. The best achieved MARE value is at 4.8 %, whereas the worst is 25.8 %, with a standard deviation of 5.5 %.

  2. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE PAGES

    Fischer, W.; Gu, X.; Altinbas, Z.; ...

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  3. Fullerene Derived Molecular Electronic Devices

    NASA Technical Reports Server (NTRS)

    Menon, Madhu; Srivastava, Deepak; Saini, Subbash

    1998-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.

  4. Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters

    NASA Astrophysics Data System (ADS)

    Domps, A.; Reinhard, P.-G.; Suraud, E.

    1998-06-01

    We propose a time-dependent Thomas-Fermi approach to the (nonlinear) dynamics of many-fermion systems. The approach relies on a hydrodynamical picture describing the system in terms of collective flow. We investigate in particular an application to electron dynamics in metal clusters. We make extensive comparisons with fully fledged quantal dynamical calculations and find overall good agreement. The approach thus provides a reliable and inexpensive scheme to study the electronic response of large metal clusters.

  5. Global properties in an experimental realization of time-delayed feedback control with an unstable control loop.

    PubMed

    Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram

    2007-05-25

    We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.

  6. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  7. A potent approach for the development of FPGA based DAQ system for HEP experiments

    NASA Astrophysics Data System (ADS)

    Khan, Shuaib Ahmad; Mitra, Jubin; David, Erno; Kiss, Tivadar; Nayak, Tapan Kumar

    2017-10-01

    With ever increasing particle beam energies and interaction rates in modern High Energy Physics (HEP) experiments in the present and future accelerator facilities, there has always been the demand for robust Data Acquisition (DAQ) schemes which perform in the harsh radiation environment and handle high data volume. The scheme is required to be flexible enough to adapt to the demands of future detector and electronics upgrades, and at the same time keeping the cost factor in mind. To address these challenges, in the present work, we discuss an efficient DAQ scheme for error resilient, high speed data communication on commercially available state-of-the-art FPGA with optical links. The scheme utilises GigaBit Transceiver (GBT) protocol to establish radiation tolerant communication link between on-detector front-end electronics situated in harsh radiation environment to the back-end Data Processing Unit (DPU) placed in a low radiation zone. The acquired data are reconstructed in DPU which reduces the data volume significantly, and then transmitted to the computing farms through high speed optical links using 10 Gigabit Ethernet (10GbE). In this study, we focus on implementation and testing of GBT protocol and 10GbE links on an Intel FPGA. Results of the measurements of resource utilisation, critical path delays, signal integrity, eye diagram and Bit Error Rate (BER) are presented, which are the indicators for efficient system performance.

  8. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Shengyao; Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin; Dai, Ke; Chen, Hao

    2017-01-01

    In this study, a direct Z-scheme heterojunction BiOBr-Bi2MoO6 with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi2MoO6 through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi2MoO6 occurred mainly on the (001) facets of BiOBr and (001) facets of Bi2MoO6. The photocatalytic activity of the BiOBr-Bi2MoO6 was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi2MoO6 could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  9. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE PAGES

    Hong, A. J.; Li, L.; He, R.; ...

    2016-03-07

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  10. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, A. J.; Li, L.; He, R.

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  11. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  12. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  13. Development of an electron-ion coincidence apparatus for molecular-frame electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko

    2018-04-01

    We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.

  14. The real-time SEP forecasting tools of the 'HESPERIA' HORIZON 2020 project

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga E.; Nunez, Marlon; Heber, Bernd; Labrenz, Johannes; Posner, Arik; Milas, Nick; Tsiropoula, Georgia; Pavlos, Evgenios; Sarlanis, Christos

    2017-04-01

    In this study, we describe the two real-time prediction tools, that have been developed in the framework of the HESPERIA project based upon the proven concepts UMASEP and REleASE. A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. The fact that near-relativistic electrons (1 MeV electrons have 95% of the speed of light) travel faster than ions (30 MeV protons have 25% of the speed of light) and are always present in Solar Energetic Particle (SEP) events can be used to forecast the arrival of protons from SEP events with real-time measurements of near relativistic electrons. The faster electrons arrive at L1 30 to 90 minutes before the slower protons. The Relativistic Electron Alert System for Exploration (REleASE) forecasting scheme (Posner, 2007) uses this effect to predict the proton flux by utilizing the actual electron flux and the increase of the electron flux in the last 60 minutes. In the framework of the HESPERIA project, a clone of the REleASE system was built in the open source programming language PYTHON. The same forecasting principle with use of the same forecasting matrices were in addition adapted to real-time electron flux measurements from the Electron, Proton & Alpha Monitor (EPAM) onboard the Advanced Composition Explorer (ACE). It is shown, that the REleASE forecasting scheme can be adapted to work with any near relativistic electron flux measurements. Solar energetic particles (SEPs) are sometimes energetic enough and the flux is high enough to cause air showers in the stratosphere and in the troposphere, which are an important ionization source in the atmosphere. >500 MeV solar protons are so energetic that they usually have effects on the ground, producing what is called a Ground Level Enhancement (GLE) event. Within the HESPERIA project a predictor of >500 SEP proton events at the near-earth (e.g. at geostationary orbit) has been developed. In order to predict these events, the UMASEP scheme (Núñez, 2011, 2015) has been used. UMASEP makes a lag-correlation of solar electromagnetic (EM) flux with the particle flux at near-earth. If the correlation is high, the model infers that there is a magnetic connection through which particles are arriving. If, additionally, the intensity of the flux of the associated solar event is also high, then the UMASEP scheme issues a SEP prediction. In the case of the prediction of >500 MeV SEP events, the implemented system, called UMASEP-500, correlates X-ray flux with each of the differential proton fluxes measured by the GOES satellites, and with each of the neutron density fluxes collected by neutron monitor stations around the world. When the correlation estimation surpasses a threshold, and the associated flare is greater than a specific X-ray peak flux, a >500 MeV SEP forecast is issued. Both forecasting tools are operational under the HESPERIA server maintained at the National Observatory of Athens. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA project).

  15. The band systems of alkali vapors

    NASA Technical Reports Server (NTRS)

    Weizel, W.; Kulp, M.

    1988-01-01

    A number of band edges of the molecules, Na2, K2, NaK, NaCs, LiK, LiRb, LiCs, and NaRb are arranged in edge schemes. The vibrational quanta of the base terms and the upper terms can be approximately determined. Viewpoints are produced for interpreting electron terms. The terms Na2 are interpreted as terms of a photo-electron.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, W.; Gu, X.; Altinbas, Z.

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  17. Massive parallel 3D PIC simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  18. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin-Bin; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Cong, Shu-Lin

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na{sub 2}) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X{sup 1}Σ{sup +}) is associated into the molecule in the bound states of the excited state (A{sup 1}Σ{sup +}) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found thatmore » the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.« less

  19. Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films

    NASA Astrophysics Data System (ADS)

    Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi

    2015-04-01

    To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.

  20. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  1. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.

    PubMed

    Kalantzis, Georgios; Tachibana, Hidenobu

    2014-01-01

    For microdosimetric calculations event-by-event Monte Carlo (MC) methods are considered the most accurate. The main shortcoming of those methods is the extensive requirement for computational time. In this work we present an event-by-event MC code of low projectile energy electron and proton tracks for accelerated microdosimetric MC simulations on a graphic processing unit (GPU). Additionally, a hybrid implementation scheme was realized by employing OpenMP and CUDA in such a way that both GPU and multi-core CPU were utilized simultaneously. The two implementation schemes have been tested and compared with the sequential single threaded MC code on the CPU. Performance comparison was established on the speed-up for a set of benchmarking cases of electron and proton tracks. A maximum speedup of 67.2 was achieved for the GPU-based MC code, while a further improvement of the speedup up to 20% was achieved for the hybrid approach. The results indicate the capability of our CPU-GPU implementation for accelerated MC microdosimetric calculations of both electron and proton tracks without loss of accuracy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, G.; Shevchuk, I.; Walter, P.

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. Anmore » also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.« less

  3. Electronic Polarizability and the Effective Pair Potentials of Water

    PubMed Central

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  4. Teaching the Z-Scheme of electron transport in photosynthesis: a perspective.

    PubMed

    Mohapatra, Pradipta Kumar; Singh, Nihar Ranjan

    2015-01-01

    This paper deals with how Govindjee taught the Z-Scheme of electron transport in oxygenic photosynthesis at Ravenshaw University, Cuttack, Odisha, India, in 2014, in a unique and highly effective fashion-using students to act as molecules, representing the entire electron transport chain from water to nicotinamide adenine dinucleotide phosphate (NADP(+)). It culminated in a show by B.Sc. students in the garden of the Department of Botany, Ravenshaw University. The first author (PKM) personally acted as Ferredoxin NADP Reductase (FNR) catalyzing the reduction of NADP(+) to NADPH, taking electrons from reduced ferredoxin at the end of Photosystem I. On the other hand, the Q-cycle was played by M.Sc. students, who acted as molecules running this ingenious cycle that produces extra protons. An interesting event was when a student, acting as a herbicide, who was dressed like a devil (fierce looking, in black clothes with a sword; "Yamaraj: The God of Death", as he called himself), stopped all reactions by throwing out QB, the second plastoquinone molecule of Photosystem II, and that too aggressively, taking its position instead. The second author was the major organizer of the Z-scheme show. We provide here a basic background on the process, a bit on Govindjee's teaching, and some selected pictures from the drama played in March, 2014 at Ravenshaw University. Here, we also recognize the teacher Govindjee for his ingenious and fun-filled teaching methods that touched the hearts and the souls of the students as well as the teachers of Ravenshaw University. He was rated as one of the most-admired teachers of plant biology at our university.

  5. Protection of autonomous microgrids using agent-based distributed communication

    DOE PAGES

    Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.

    2016-04-06

    This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less

  6. Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation

    NASA Astrophysics Data System (ADS)

    Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.

    2017-08-01

    A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.

  7. Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation.

    PubMed

    Xie, Ying Peng; Yang, Yongqiang; Wang, Guosheng; Liu, Gang

    2017-10-01

    The solid-state Z-scheme trinary/binary heterostructures show the advantage of utilizing the high-energy photogenerated charge carriers in photocatalysis. However, the key factors controlling such Z-scheme in the binary heterostructures are still unclear. In this paper, we showed that oxygen vacancies could act as an interface electron transfer mediator to promote the direct Z-scheme charge transfer process in binary semiconductor heterostructures of CdS/ZnS. Increasing the concentration of surface oxygen vacancies of ZnO crystal can greatly enhance photocatalytic hydrogen generation of CdS/ZnO heterostructure. This was attributed to the strengthened direct Z-scheme charge transfer process in CdS/ZnO, as evidenced by steady-state/time-resolved photoluminescence spectroscopy and selective photodeposition of metal particles on the heterostructure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A privacy-strengthened scheme for E-Healthcare monitoring system.

    PubMed

    Huang, Chanying; Lee, Hwaseong; Lee, Dong Hoon

    2012-10-01

    Recent Advances in Wireless Body Area Networks (WBANs) offer unprecedented opportunities and challenges to the development of pervasive electronic healthcare (E-Healthcare) monitoring system. In E-Healthcare system, the processed data are patients' sensitive health data that are directly related to individuals' privacy. For this reason, privacy concern is of great importance for E-Healthcare system. Current existing systems for E-Healthcare services, however, have not yet provided sufficient privacy protection for patients. In order to offer adequate security and privacy, in this paper, we propose a privacy-enhanced scheme for patients' physical condition monitoring, which achieves dual effects: (1) providing unlinkability of health records and individual identity, and (2) supporting anonymous authentication and authorized data access. We also conduct a simulation experiment to evaluate the performance of the proposed scheme. The experimental results demonstrate that the proposed scheme achieves better performance in terms of computational complexity, communication overheads and querying efficiency compared with previous results.

  9. Protection of autonomous microgrids using agent-based distributed communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.

    This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less

  10. A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy.

    PubMed

    Hongo, Kenta; Maezono, Ryo

    2017-11-14

    We propose a computational scheme to evaluate Hamaker constants, A, of molecules with practical sizes and anisotropies. Upon the increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves for such molecules to extract the constants, we discussed how to treat the averaging over anisotropy and how to correct the bias due to the nonadditivity. We have developed a computational procedure for dealing with the anisotropy and reducing statistical errors and biases in DMC evaluations, based on possible validations on predicted A. We applied the scheme to cyclohexasilane molecule, Si 6 H 12 , used in "printed electronics" fabrications, getting A ≈ 105 ± 2 zJ, being in plausible range supported even by other possible extrapolations. The scheme provided here would open a way to use handy ab initio evaluations to predict wettabilities as in the form of materials informatics over broader molecules.

  11. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...

    2015-09-10

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  12. Ilmenite exsolution schemes in Apollo-17 high-Ti basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaniman, D.; Heiken, G.; Muhich, T.

    1990-01-01

    Combined electron microprobe and scanning electron microscope (SEM) x-ray image analyses are used to obtain semiquantitative data on the relations between ilmenite grains and their exsolved chromite and rutile. Comparisons of these data for ilmenites in four Apollo-17 high-Ti basalts with a database of electron microprobe analyses from the literature indicates that Cr expulsion from ilmenite can be as important as Fe{sup 2+} reduction in causing subsolidus exsolution of chromite and rutile from ilmenite. 12 refs., 4 figs., 5 tabs.

  13. Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results

    NASA Astrophysics Data System (ADS)

    Devaux, F.; Mougin-Sisini, J.; Moreau, P. A.; Lantz, E.

    2012-07-01

    We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons produced by spontaneous down conversion, from measurement of purely spatial correlations of photon positions both in the near- and in the far-field. Experimentally, quantum correlations have been measured in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the photon counting regime with an electron-multiplying CCD (EMCCD) camera.

  14. Efficient method for computing the electronic transport properties of a multiterminal system

    NASA Astrophysics Data System (ADS)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  15. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.

    PubMed

    Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  16. Multichannel temperature controller for hot air solar house

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1979-01-01

    This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.

  17. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor; Trócsányi, Zoltán

    2008-08-01

    In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.

  18. Gyrotron collector systems: Types and capabilities

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Morozkin, M. V.; Luksha, O. I.; Glyavin, M. Yu

    2018-06-01

    A classification and a comparative analysis of the collector systems of gyrotrons of different frequency ranges and power levels are presented. Both the classical schemes of gyrotron collectors with an adiabatic magnetic field and new ones, including the systems with dynamic scanning of the electron beam, collectors with a highly nonuniform field, as well as multistage recovery schemes, are considered. Recommendations on the use of this or that type of collectors, depending on the output power of the device and the pulse width, are given.

  19. Effects of Laser Frequency and Multiple Beams on Hot Electron Generation in Fast Ignition

    NASA Astrophysics Data System (ADS)

    Royle, Ryan B.

    Inertial confinement fusion (ICF) is one approach to harnessing fusion power for the purpose of energy production in which a small deuterium-tritium capsule is imploded to about a thousand times solid density with ultra-intense lasers. In the fast ignition (FI) scheme, a picosecond petawatt laser pulse is used to deposit ˜10 kJ of energy in ˜10 ps into a small hot-spot at the periphery of the compressed core, igniting a fusion burn wave. FI promises a much higher energy gain over the conventional central hot-spot ignition scheme in which ignition is achieved through compression alone. Sufficient energy coupling between ignition laser and implosion core is critical for the feasibility of the FI scheme. Laser-core energy coupling is mediated by hot electrons which absorb laser energy near the critical density and propagate to the dense core, depositing their energy primarily through collisions. The hot electron energy distribution plays a large role in achieving efficient energy coupling since electrons with energy much greater than a few MeV will only deposit a small fraction of their energy into the hot-spot region due to reduced collisional cross section. It is understood that it may be necessary to use the second or third harmonic of the 1.05 mum Nd glass laser to reduce the average hot electron energy closer to the few-MeV range. Also, it is likely that multiple ignition beams will be used to achieve the required intensities. In this study, 2D particle-in-cell simulations are used to examine the effects of frequency doubling and tripling of a 1 mum laser as well as effects of using various dual-beam configurations. While the hot-electron energy spectrum is indeed shifted closer to the few-MeV range for higher frequency beams, the overall energy absorption is reduced, canceling the gain from higher efficiency. For a fixed total laser input energy, we find that the amount of hot electron energy able to be deposited into the core hot-spot is fairly insensitive to the laser configuration used. Our results hint that the more important issue at hand may be divergence and transport of the hot electrons, which tend to spray into 2pi radians due to instabilities and current filamentation present in the laser-plasma interaction region.

  20. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.

    PubMed

    Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J

    2017-09-01

    We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.

  1. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  2. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  3. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  4. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Graves, J. P.; Sauter, O.; Zucca, C.; Asunta, O.; Buttery, R. J.; Coda, S.; Goodman, T.; Igochine, V.; Johnson, T.; Jucker, M.; La Haye, R. J.; Lennholm, M.; Contributors, JET-EFDA

    2013-06-01

    13 MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced α particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion gain. The power requirements for the necessary degree of sawtooth control using either destabilization or stabilization schemes are expected to be within the specification of anticipated ICRH and ECRH heating in ITER, provided the requisite power can be dedicated to sawtooth control.

  5. TH-EF-207A-03: Photon Counting Implementation Challenges Using An Electron Multiplying Charged-Coupled Device Based Micro-CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podgorsak, A; Bednarek, D; Rudin, S

    2016-06-15

    Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less

  6. Enhancing visible light photocatalytic activity of direct Z-scheme SnS{sub 2}/Ag{sub 3}PO{sub 4} heterojunction photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin

    Highlights: • Novel direct Z-scheme SnS{sub 2}/Ag{sub 3}PO{sub 4} heterojunction photocatalysts are synthesized. • SnS{sub 2}/Ag{sub 3}PO{sub 4} exhibits much higher photocatalytic activity than pure SnS{sub 2} and Ag{sub 3}PO{sub 4}. • A possible photocatalytic mechanism was discussed in detail. - Abstract: Novel direct Z-scheme SnS{sub 2}/Ag{sub 3}PO{sub 4} heterojunction photocatalysts were successfully fabricated with SnS{sub 2} nanoplates hybridized by Ag{sub 3}PO{sub 4} nanoparticals via a facile hydrothermal and precipitation method and applied for the photocatalytic degradation of methyl orange in aqueous solution under visible light irradiation (λ > 420 nm). It was found that the photocatalytic performance of themore » SnS{sub 2} (2.0 wt%)/Ag{sub 3}PO{sub 4} heterojunction photocatalyst with 2.0 wt% SnS{sub 2} content was much higher than that of individual SnS{sub 2} and Ag{sub 3}PO{sub 4}. The enhanced photocatalytic activity could be ascribed to the efficient separation of photogenerated electrons and holes through the formation of direct Z-scheme system composed of SnS{sub 2} and Ag{sub 3}PO{sub 4}. Furthermore, the recycling experiments revealed that the photocorrosion behavior of Ag{sub 3}PO{sub 4} was strongly inhibited by SnS{sub 2}, it may be due to the photogenerated electrons of Ag{sub 3}PO{sub 4} would be quickly combined with the photogenerated holes of SnS{sub 2}. This work will be useful for the design of other direct Z-scheme visible-light-driven photocatalytic systems for application in energy conversion and environmental remediation.« less

  7. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  8. The Proposed 2 MeV Electron Cooler for COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Juergen; Parkhomchuk, Vasily V.; Reva, Vladimir B.

    2006-03-20

    The design, construction and installation of a 2 MeV electron cooling system for COSY is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first generalmore » scheme of the 2 MeV electron cooler are described.« less

  9. Mobile phone collection, reuse and recycling in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongondo, F.O.; Williams, I.D., E-mail: idw@soton.ac.uk

    Highlights: > We characterized the key features of the voluntary UK mobile phone takeback network via a survey. > We identified 3 flows: information; product (handsets and accessories); and incentives. > There has been a significant rise in the number of UK takeback schemes since 1997. > Most returned handsets are low quality; little data exists on quantities of mobile phones collected. > Takeback schemes increasingly divert EoL mobile phones from landfill and enable reuse/recycling. - Abstract: Mobile phones are the most ubiquitous electronic product on the globe. They have relatively short lifecycles and because of their (perceived) in-built obsolescence,more » discarded mobile phones represent a significant and growing problem with respect to waste electrical and electronic equipment (WEEE). An emerging and increasingly important issue for industry is the shortage of key metals, especially the types of metals found in mobile phones, and hence the primary aim of this timely study was to assess and evaluate the voluntary mobile phone takeback network in the UK. The study has characterised the information, product and incentives flows in the voluntary UK mobile phone takeback network and reviewed the merits and demerits of the incentives offered. A survey of the activities of the voluntary mobile phone takeback schemes was undertaken in 2008 to: identify and evaluate the takeback schemes operating in the UK; determine the target groups from whom handsets are collected; and assess the collection, promotion and advertising methods used by the schemes. In addition, the survey sought to identify and critically evaluate the incentives offered by the takeback schemes, evaluate their ease and convenience of use; and determine the types, qualities and quantities of mobile phones they collect. The study has established that the UK voluntary mobile phone takeback network can be characterised as three distinctive flows: information flow; product flow (handsets and related accessories); and incentives flow. Over 100 voluntary schemes offering online takeback of mobile phone handsets were identified. The schemes are operated by manufacturers, retailers, mobile phone network service operators, charities and by mobile phone reuse, recycling and refurbishing companies. The latter two scheme categories offer the highest level of convenience and ease of use to their customers. Approximately 83% of the schemes are either for-profit/commercial-oriented and/or operate to raise funds for charities. The voluntary schemes use various methods to collect mobile phones from consumers, including postal services, courier and in-store. The majority of schemes utilise and finance pre-paid postage to collect handsets. Incentives offered by the takeback schemes include monetary payments, donation to charity and entry into prize draws. Consumers from whom handsets and related equipment are collected include individuals, businesses, schools, colleges, universities, charities and clubs with some schemes specialising on collecting handsets from one target group. The majority (84.3%) of voluntary schemes did not provide information on their websites about the quantities of mobile phones they collect. The operations of UK takeback schemes are decentralised in nature. Comparisons are made between the UK's decentralised collection system versus Australia's centralised network for collection of mobile phones. The significant principal conclusions from the study are: there has been a significant rise in the number of takeback schemes operating in the UK since the initial scheme was launched in 1997; the majority of returned handsets seem to be of low quality; and there is very little available information on the quantities of mobile phones collected by the various schemes. Irrespective of their financial motives, UK takeback schemes increasingly play an important role in sustainable waste management by diverting EoL mobile phones from landfills and encouraging reuse and recycling. Recommendations for future actions to improve the management of end-of-life mobile phone handsets and related accessories are made.« less

  10. Computational method for the correction of proximity effect in electron-beam lithography (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas

    1992-07-01

    Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.

  11. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  12. Range-Separated Brueckner Coupled Cluster Doubles Theory

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-04-01

    We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.

  13. Impact of finite temperatures on the transport properties of Gd from first principles

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Mankovsky, S.; Minár, J.; Ebert, H.

    2017-03-01

    Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.

  14. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  15. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less

  16. Plasma heating and current drive using intense, pulsed microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less

  17. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  18. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  19. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    NASA Astrophysics Data System (ADS)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  20. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  1. Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3.

    PubMed

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J; Pantelides, Sokrates T

    2007-07-20

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  2. Orbital-Occupancy versus Charge Ordering and the Strength of Electron Correlations in Electron-Doped CaMnO3

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2007-07-01

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO3. We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  3. Role of relativity in high-pressure phase transitions of thallium.

    PubMed

    Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev

    2017-02-20

    We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.

  4. Comment on 'Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin

    2006-12-15

    K. P. Singh [Phys. Rev. E 69, 056410 (2004)] put forward a scheme of vacuum laser acceleration in a static magnetic field. We point out that one of the assumptions used in their model does not stand on a solid physical ground and that it seriously influences electrons to obtain net energy gains from the laser field.

  5. Coherent manipulation of an NV center and one carbon nuclear spin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharfenberger, Burkhard; Nemoto, Kae; Munro, William J.

    2014-12-04

    We study a three-qubit system formed by the NV center’s electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.

  6. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  7. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

    PubMed

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-09-19

    Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

  8. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  9. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGES

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  10. Z-Scheme NiTiO 3 /g-C 3 N 4 Heterojunctions with Enhanced Photoelectrochemical and Photocatalytic Performances under Visible LED Light Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Zeng, Xiaoqiao; Li, Kai

    Direct Z-scheme NiTiO3/g-C3N4 heterojunctions were successfully assembled by using simple calcination method and the photoelectrochemical and photocatalytic performance were investigated by light emitting diode (LED). The photoanode composed by the heterojunction with about 50 wt% NiTiO3 content exhibits the best photoelectrochemical activity with photoconversion efficiency up to 0.066%, which is 4.4 and 3.13 times larger than NiTiO3 or g-C3N4. The remarkably enhanced photoelectrochemical and photocatalytic activity of the heterojunction can be due to the efficiently photogenerated electron-hole separation by a Z-scheme mechanism.

  11. Cambridge community Optometry Glaucoma Scheme.

    PubMed

    Keenan, Jonathan; Shahid, Humma; Bourne, Rupert R; White, Andrew J; Martin, Keith R

    2015-04-01

    With a higher life expectancy, there is an increased demand for hospital glaucoma services in the United Kingdom. The Cambridge community Optometry Glaucoma Scheme (COGS) was initiated in 2010, where new referrals for suspected glaucoma are evaluated by community optometrists with a special interest in glaucoma, with virtual electronic review and validation by a consultant ophthalmologist with special interest in glaucoma. 1733 patients were evaluated by this scheme between 2010 and 2013. Clinical assessment is performed by the optometrist at a remote site. Goldmann applanation tonometry, pachymetry, monoscopic colour optic disc photographs and automated Humphrey visual field testing are performed. A clinical decision is made as to whether a patient has glaucoma or is a suspect, and referred on or discharged as a false positive referral. The clinical findings, optic disc photographs and visual field test results are transmitted electronically for virtual review by a consultant ophthalmologist. The number of false positive referrals from initial referral into the scheme. Of the patients, 46.6% were discharged at assessment and a further 5.7% were discharged following virtual review. Of the patients initially discharged, 2.8% were recalled following virtual review. Following assessment at the hospital, a further 10.5% were discharged after a single visit. The COGS community-based glaucoma screening programme is a safe and effective way of evaluating glaucoma referrals in the community and reducing false-positive referrals for glaucoma into the hospital system. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  12. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari

    We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in othermore » OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.« less

  14. The linearly scaling 3D fragment method for large scale electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less

  15. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less

  16. Particle-In-Cell simulations of electron beam microbunching instability in three dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.

    2013-10-01

    Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  17. Performance of 3D-space-based atoms-in-molecules methods for electronic delocalization aromaticity indices.

    PubMed

    Heyndrickx, Wouter; Salvador, Pedro; Bultinck, Patrick; Solà, Miquel; Matito, Eduard

    2011-02-01

    Several definitions of an atom in a molecule (AIM) in three-dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, I(ring) and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C-C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space. Copyright © 2010 Wiley Periodicals, Inc.

  18. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  19. Oxidative and Photosynthetic Phosphorylation Mechanisms

    ERIC Educational Resources Information Center

    Wang, Jui H.

    1970-01-01

    Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)

  20. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  1. Study of Electron Polarization Dynamics in the JLEIC at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Morozov, Vasiliy

    The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry ofmore » the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring.« less

  2. Kinetics of relativistic runaway electrons

    NASA Astrophysics Data System (ADS)

    Breizman, B. N.; Aleynikov, P. B.

    2017-12-01

    This overview covers recent developments in the theory of runaway electrons in tokamaks. Its main purpose is to outline the intuitive basis for first-principle advancements in runaway electron physics. The overview highlights the following physics aspects of the runaway evolution: (1) survival and acceleration of initially hot electrons during thermal quench, (2) effect of magnetic perturbations on runaway confinement, (3) multiplication of the runaways via knock-on collisions with the bulk electrons, (4) slow decay of the runaway current, and (5) runaway-driven micro-instabilities. The scope of the reported studies is governed by the need to understand the behavior of runaway electrons as an essential physics element of the disruption events in ITER in order to develop an effective runaway mitigation scheme. ).

  3. Measurements of Auger Electron Diffraction Using a 180° Deflection Toroidal Analyzer

    NASA Astrophysics Data System (ADS)

    Shiraki, Susumu; Ishii, Hideshi; Nihei, Yoshimasa; Owari, Masanori

    A 180° deflection toroidal analyzer is a novel electron spectrometer, which allows the simultaneous registration of the wide range of polar angles in a given azimuth of the sample. Therefore, measurements of photo- and Auger electron intensities over π steradians can be performed rapidly by azimuthal rotation of the sample. Using this analyzer, two-dimensional patterns of electron-beam-excited O KVV and Mg KVV Auger electron diffraction (AED) from a MgO(001) surface were measured in short acquisition times. The AED patterns obtained were compared with theoretical ones calculated by the multiple-scattering scheme. The agreement between experimental and theoretical data was good for both O KVV and Mg KVV transitions.

  4. Ultrafast gating of a mid-infrared laser pulse by a sub-pC relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesar, D. B.; Musumeci, P.; Alesini, D.

    In this paper we discuss a relative time-of-arrival measurement scheme between an electron beam and a mid-infrared laser pulse based on the electron-beam controlled transmission in semiconductor materials. This technique can be used as a time-stamping diagnostic in ultrafast electron diffraction or microscopy. In particular, our characterization of Germanium demonstrates that sub-ps time-of-arrival sensitivity could be achieved in a single shot and with very low charge beams (<1 pC). Detailed measurements as a function of the beam charge and the laser wavelength offer insights on the free carrier dynamics in the semiconductor upon excitation by the electron beam.

  5. Investigation of a Plasma Edge Cathode Under High Current Density Electron Extraction

    DTIC Science & Technology

    1991-12-05

    simu- lation using the MAGIC code confirmed the expected features of the scheme. SLTMMARY .. . . . . . . . . . .. . . . . . . . . . . 1 I...description. An electron temperature of 1 eV was mea- sured in the extraction region without extraction turned on. The plasma from the plasma gun was...jet is reduced if the time between shots is reduced to below I min. The numerical simulation with MAGIC gave confirming results. The simulated current

  6. An HL7/CDA Framework for the Design and Deployment of Telemedicine Services

    DTIC Science & Technology

    2001-10-25

    schemes and prescription databases. Furthermore, interoperability with the Electronic Health Re- cord ( EHR ) facilitates automatic retrieval of relevant...local EHR system or the integrated electronic health record (I- EHR ) [9], which indexes all medical contacts of a patient in the regional net- work...suspected medical problem. Interoperability with middleware services of the HII and other data sources such as the local EHR sys- tem affects

  7. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  8. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    DTIC Science & Technology

    1988-10-01

    TheUnierstyof Texas. at Dallas Center for’ "Quantum, Electronics The IGamm~a-7Ra~y.,La’ser. Project o Qua’rter’l y’ Report SJuly-September .1988 Co...Dallas Center for Quantum Electronics P.O. Box 830688 Richardson, Texas 75083-0688 October 1988 0 Quarterly Technical Progress Report 1 July 1988...ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA & WORK UNIT NUM9ERS University of Texas at Dallas Center for Quantum Electronics P.O. Box 830688

  9. Geminal embedding scheme for optimal atomic basis set construction in correlated calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr

    2015-12-28

    We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less

  10. New generation electron-positron factories

    NASA Astrophysics Data System (ADS)

    Zobov, Mikhail

    2011-09-01

    In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.

  11. Design of Servo Scheme and Drive Electronics for the Integrated Electrohydraulic Actuation System of RLV-TD

    NASA Astrophysics Data System (ADS)

    Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.

  12. Understanding Intense Laser Interactions with Solid Density Plasma

    DTIC Science & Technology

    2017-01-04

    obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter...with negligible pump-probe jitter being possible with future laser- wakefield-accelerator ultrafast-electron-diffraction schemes. Distribution

  13. A novel approach for clock recovery without pattern effect from degraded signal

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi

    2003-04-01

    A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.

  14. Study of optical techniques for the Ames unitary wind tunnels. Part 1: Schlieren

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    Alignment procedures and conceptual designs for the rapid alignment of the Ames Unitary Wind Tunnel schlieren systems were devised. The schlieren systems can be aligned by translating the light source, the mirrors, and the knife edge equal distances. One design for rapid alignment consists of a manual pin locking scheme. The other is a motorized electronic position scheme. A study of two optical concepts which can be used with the schlieren system was made. These are the 'point diffraction interferometers' and the 'focus schlieren'. Effects of vibrations were studied.

  15. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  16. Broadband and stable acoustic vortex emitter with multi-arm coiling slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xue; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: eleqc@nus.edu.sg, E-mail: jccheng@nju.edu.cn; Zou, Xin-ye

    2016-05-16

    We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband. The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance. Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications.

  17. Adaptive method for electron bunch profile prediction

    DOE PAGES

    Scheinker, Alexander; Gessner, Spencer

    2015-10-15

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. Thus, the simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrialmore » control system. Finally, the main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.« less

  18. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.

    PubMed

    Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias

    2011-04-15

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.

  19. Electrical Manipulation of Spin Qubits in Li-doped Si

    NASA Astrophysics Data System (ADS)

    Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim

    2011-03-01

    We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.

  20. Adaptive method for electron bunch profile prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial controlmore » system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.« less

  1. Resonance magnetoplasticity in ultralow magnetic fields

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-09-01

    Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.

  2. High-power microwave amplifier based on overcritical relativistic electron beam without external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Koronovskii, A. A.; Saratov State Technical University, Politechnicheskaja 77, Saratov 410028

    2015-04-13

    The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with themore » following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.« less

  3. Collisionless Spectral Kinetic Simulation of Ideal Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Gong, Junbo; Wilczek, Sebastian; Szeremley, Daniel; Oberrath, Jens; Eremin, Denis; Dobrygin, Wladislaw; Schilling, Christian; Friedrichs, Michael; Brinkmann, Ralf Peter

    2016-09-01

    Active Plasma Resonance Spectroscopy denotes a class of industry-compatible plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. One particular realization of APRS with a high degree of geometric and electric symmetry is the Multipole Resonance Probe (MRP). The Ideal MRP(IMRP) is an even more symmetric idealization which is suited for theoretical investigations. In this work, a spectral kinetic scheme is presented to investigate the behavior of the IMRP in the low pressure regime. However, due to the velocity difference, electrons are treated as particles whereas ions are only considered as stationary background. In the scheme, the particle pusher integrates the equations of motion for the studied particles, the Poisson solver determines the electric field at each particle position. The proposed method overcomes the limitation of the cold plasma model and covers kinetic effects like collisionless damping.

  4. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  5. Classification of topological phonons in linear mechanical metamaterials

    PubMed Central

    Süsstrunk, Roman

    2016-01-01

    Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105

  6. Study Trapped Charge Distribution in P-Channel Silicon-Oxide-Nitride-Oxide-Silicon Memory Device Using Dynamic Programming Scheme

    NASA Astrophysics Data System (ADS)

    Li, Fu-Hai; Chiu, Yung-Yueh; Lee, Yen-Hui; Chang, Ru-Wei; Yang, Bo-Jun; Sun, Wein-Town; Lee, Eric; Kuo, Chao-Wei; Shirota, Riichiro

    2013-04-01

    In this study, we precisely investigate the charge distribution in SiN layer by dynamic programming of channel hot hole induced hot electron injection (CHHIHE) in p-channel silicon-oxide-nitride-oxide-silicon (SONOS) memory device. In the dynamic programming scheme, gate voltage is increased as a staircase with fixed step amplitude, which can prohibits the injection of holes in SiN layer. Three-dimensional device simulation is calibrated and is compared with the measured programming characteristics. It is found, for the first time, that the hot electron injection point quickly traverses from drain to source side synchronizing to the expansion of charged area in SiN layer. As a result, the injected charges quickly spread over on the almost whole channel area uniformly during a short programming period, which will afford large tolerance against lateral trapped charge diffusion by baking.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soleimanikahnoj, S.; Knezevic, I.

    Zigzag phosphorene nanoribbons are metallic owing to the edge states, whose energies are inside the gap and far from the bulk bands. We show that -- through electrical manipulation of edge states -- electron propagation can be restricted to one of the ribbon edges or, in case of bilayer phosphorene nanoribbons, to one of the layers. This finding implies that edge and layer can be regarded as tunable equivalents of the spin-one-half degree of freedom, i.e., the pseudospin. In both layer- and edge-pseudospin schemes, we propose and characterize a pseudospin field-effect transistor, which can generate pseudospin-polarized current. Also, we proposemore » edge- and layer-pseudospin valves that operate analogously to conventional spin valves. The performance of valves in each pseudospin scheme is benchmarked by the pseudomagnetoresistance (PMR) ratio. The edge-pseudospin valve shows a nearly perfect PMR, with remarkable robustness against device parameters and disorder. Furthermore, these results may initiate new developments in pseudospin electronics.« less

  8. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  9. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.

    PubMed

    Gómez Pueyo, Adrián; Marques, Miguel A L; Rubio, Angel; Castro, Alberto

    2018-05-09

    We examine various integration schemes for the time-dependent Kohn-Sham equations. Contrary to the time-dependent Schrödinger's equation, this set of equations is nonlinear, due to the dependence of the Hamiltonian on the electronic density. We discuss some of their exact properties, and in particular their symplectic structure. Four different families of propagators are considered, specifically the linear multistep, Runge-Kutta, exponential Runge-Kutta, and the commutator-free Magnus schemes. These have been chosen because they have been largely ignored in the past for time-dependent electronic structure calculations. The performance is analyzed in terms of cost-versus-accuracy. The clear winner, in terms of robustness, simplicity, and efficiency is a simplified version of a fourth-order commutator-free Magnus integrator. However, in some specific cases, other propagators, such as some implicit versions of the multistep methods, may be useful.

  10. Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusche, C., E-mail: c.tusche@fz-juelich.de; Peter Grünberg Institut; Goslawski, P.

    2016-06-27

    In the quest for detailed spectroscopic insight into the electronic structure at solid surfaces in a large momentum range, we have developed an advanced experimental approach. It combines the 3D detection scheme of a time-of-flight momentum microscope with an optimized filling pattern of the BESSY II storage ring. Here, comprehensive data sets covering the full surface Brillouin zone have been used to study faint substrate-film hybridization effects in the electronic structure of graphene on Ir(111), revealed by a pronounced linear dichroism in angular distribution. The method paves the way to 3D electronic bandmapping with unprecedented data recording efficiency.

  11. Electron impact excitation of tin

    NASA Astrophysics Data System (ADS)

    Sharma, Lalita; Bharti, Swati; Srivastava, Rajesh

    2017-05-01

    We study the electron impact excitation of the fine-structure levels of the ground state configuration 5p2 to the excited states of the configuration 5p6s in tin atom. These calculations have been carried out in the jj coupling scheme using the relativistic distorted-wave method. Results for differential cross section are reported at incident electron energies 20, 50, 80 and 100 eV while integrated cross sections are presented in the incident electron energy range of 5 to 100 eV. Contribution to the Topical Issue: "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

  12. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  13. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  14. Electronic properties of Fe3O4: LCAO calculations and Compton spectroscopy

    NASA Astrophysics Data System (ADS)

    Panwar, Kalpana; Tiwari, Shailja; Heda, N. L.

    2018-04-01

    We report the Compton profile (CP) measurements of Fe3O4 using 100 mCi241Am Compton spectrometer at momentum resolution of 0.55 a.u. The experimental CP has been compared with the linear combination of atomic orbitals (LCAO) data within density functional theory (DFT). The local density and generalized gradient approximation (LDA and GGA, respectively) have been used under the framework of DFT scheme. It is found that the DFT-GGA scheme gives the better agreement than to DFT-LDA. In addition, we have also computed the M ulliken's population (M P) and density of states (DOS) using the DFT scheme. M P data predicts the charge transfer from Fe to O atoms while DOS have confirmed the half metallic character of the compound.

  15. A licence to vape: Is it time to trial of a nicotine licensing scheme to allow Australian adults controlled access to electronic cigarettes devices and refill solutions containing nicotine?

    PubMed

    Gartner, Coral; Hall, Wayne

    2015-06-01

    Australia has some of the most restrictive laws concerning use of nicotine in e-cigarettes. The only current legal option for Australians to legally possess and use nicotine for vaping is with a medical prescription and domestic supply is limited to compounding pharmacies that prepare medicines for specific patients. An alternative regulatory option that could be implemented under current drugs and poisons regulations is a 'nicotine licensing' scheme utilising current provisions for 'dangerous poisons'. This commentary discusses how such a scheme could be used to trial access to nicotine solutions for vaping outside of a 'medicines framework' in Australia. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Computational investigation and experimental considerations for the classical implementation of a full adder on SO2 by optical pump-probe schemes.

    PubMed

    Bomble, L; Lavorel, B; Remacle, F; Desouter-Lecomte, M

    2008-05-21

    Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds.

  17. Laser control of reactions of photoswitching functional molecules.

    PubMed

    Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki

    2006-07-21

    Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.

  18. New methods of multimode fiber interferometer signal processing

    NASA Astrophysics Data System (ADS)

    Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.

    1995-06-01

    New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.

  19. Free-Space Quantum Signatures Using Heterodyne Measurements

    NASA Astrophysics Data System (ADS)

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  20. Secure privacy-preserving biometric authentication scheme for telecare medicine information systems.

    PubMed

    Li, Xuelei; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping

    2014-11-01

    Healthcare delivery services via telecare medicine information systems (TMIS) can help patients to obtain their desired telemedicine services conveniently. However, information security and privacy protection are important issues and crucial challenges in healthcare information systems, where only authorized patients and doctors can employ telecare medicine facilities and access electronic medical records. Therefore, a secure authentication scheme is urgently required to achieve the goals of entity authentication, data confidentiality and privacy protection. This paper investigates a new biometric authentication with key agreement scheme, which focuses on patient privacy and medical data confidentiality in TMIS. The new scheme employs hash function, fuzzy extractor, nonce and authenticated Diffie-Hellman key agreement as primitives. It provides patient privacy protection, e.g., hiding identity from being theft and tracked by unauthorized participant, and preserving password and biometric template from being compromised by trustless servers. Moreover, key agreement supports secure transmission by symmetric encryption to protect patient's medical data from being leaked. Finally, the analysis shows that our proposal provides more security and privacy protection for TMIS.

  1. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE PAGES

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...

    2018-05-29

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  2. Decay studies of neutron deficient nuclei near the Z=64 subshell: 142Dy, 140,142Tb, 140,142Gd, 140,142Eu, 142Sm, and 142Pm

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Gilat, J.; Nitschke, J. M.; Wilmarth, P. A.; Vierinen, K. S.

    1991-03-01

    The electron-capture and β+-decay branchings (EC/β+) and delayed proton decays of A=142 isotopes with 61<=Z<=66 and A=140 isotopes with 63<=Z<=65 were investigated with the OASIS facility on-line at the Lawrence Berkeley Laboratory SuperHILAC. Electron capture and positron-decay emission probabilities have been determined for 142Pm and 142Sm decays, and extensive decay schemes have been constructed for 142Eug(2.34+/-0.12 s), 142Gd(70.2+/-0.6 s), 140Eu(1.51+/-0.02 s), and 140Gd(15.8+/-0.4 s). Decay schemes for the new isotopes 142Tbg(597+/-17 ms), 142Tbm(303+/-17 ms), 142Dy(2.3+/-0.3 s), 140Eum(125+/-2 ms), and 140Tb(2.4+/-0.2 s) are also presented. We have assigned γ rays to these isotopes on the basis of γγ and xγ coincidences, and from half-life determinations. Electron-capture and β+-decay branchings were measured for each decay, and β-delayed proton branchings were determined for 142Dy, 142Tb, and 140Tb decays. QEC values, derived from the measured EC/β+ branchings and the level schemes are compared with those from the Wapstra and Audi mass evaluation and the Liran and Zeldes mass calculation. The systematics of the N=77 isomer decays are discussed, and the intense 0+-->1+ and 1+-->0+ ground-state beta decays are compared with shell-model predictions for simple spin-flip transitions.

  3. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  4. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    He, Rongan; Zhou, Jiaqian; Fu, Huiqing; Zhang, Shiying; Jiang, Chuanjia

    2018-02-01

    Constructing direct Z-scheme heterojunction is an effective approach to separating photogenerated charge carriers and improving the activity of semiconductor photocatalysts. Herein, a composite of bismuth(III) oxide (Bi2O3) and graphitic carbon nitride (g-C3N4) was in situ fabricated at room temperature by photoreductive deposition of Bi3+ and subsequent air-oxidation of the resultant metallic Bi. Quantum-sized ω-Bi2O3 nanoparticles approximately 6 nm in diameter were uniformly distributed on the surface of mesoporous g-C3N4. The as-prepared Bi2O3/g-C3N4 composite exhibited higher photocatalytic activity than pure Bi2O3 and g-C3N4 for photocatalytic degradation of phenol under visible light. Reactive species trapping experiments revealed that superoxide radicals and photogenerated holes played important roles in the photocatalytic degradation of phenol. The enhanced photocatalytic activity, identification of reactive species and higher rate of charge carrier recombination (as indicated by stronger photoluminescence intensity) collectively suggest that the charge migration within the Bi2O3/g-C3N4 composite followed a Z-scheme mechanism. Photogenerated electrons on the conduction band of Bi2O3 migrate to the valence band of g-C3N4 and combine with photogenerated holes therein. At the cost of these less reactive charge carriers, the Z-scheme heterojunction enables efficient charge separation, while preserving the photogenerated electrons and holes with stronger redox abilities, which is beneficial for enhanced photocatalytic activity.

  5. Development of highly accurate approximate scheme for computing the charge transfer integral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pershin, Anton; Szalay, Péter G.

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, itmore » was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.« less

  6. Feasibility study of an integrated optic switching center. [satellite tracking application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks.

  7. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  8. One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell

    PubMed Central

    Govindan, T. R.; Meyyappan, M.

    1995-01-01

    A review of the one-dimensional modeling studies in the literature of the Gaseous Electronics Conference (GEC) reference plasma reactor is presented. Most of the studies are based on the fluid model description of the discharge and some utilize hybrid fluid-kinetic schemes. Both models are discussed here briefly. The models provide a basic understanding of the discharge mechanisms and reproduce several critical discharge features observed experimentally. PMID:29151755

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, A.; Tsiounis, Y.; Frankel, Y.

    Recently, there has been an interest in making electronic cash protocols more practical for electronic commerce by developing e-cash which is divisible (e.g., a coin which can be spent incrementally but total purchases are limited to the monetary value of the coin). In Crypto`95, T. Okamoto presented the first practical divisible, untraceable, off-line e-cash scheme, which requires only O(log N) computations for each of the withdrawal, payment and deposit procedures, where N = (total coin value)/(smallest divisible unit). However, Okamoto`s set-up procedure is quite inefficient (on the order of 4,000 multi-exponentiations and depending on the size of the RSA modulus).more » The authors formalize the notion of range-bounded commitment, originally used in Okamoto`s account establishment protocol, and present a very efficient instantiation which allows one to construct the first truly efficient divisible e-cash system. The scheme only requires the equivalent of one (1) exponentiation for set-up, less than 2 exponentiations for withdrawal and around 20 for payment, while the size of the coin remains about 300 Bytes. Hence, the withdrawal protocol is 3 orders of magnitude faster than Okamoto`s, while the rest of the system remains equally efficient, allowing for implementation in smart-cards. Similar to Okamoto`s, the scheme is based on proofs whose cryptographic security assumptions are theoretically clarified.« less

  10. Applications of Nanostructured Graphene in Optoelectronics as Transparent Conductors and Photodetectors

    NASA Astrophysics Data System (ADS)

    Xu, Guowei

    Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, has unique properties of high carrier mobility, high optical transmittance, chemical inertness and flexibility, making it attractive for electronic and optoelectronic applications, such as graphene transistors, ultrahigh capacitors, transparent conductors (TCs), photodetectors. This work explores novel schemes of nanostructured graphene for optoelectronic applications including advanced TCs and photodetectors. In nanophotonic graphene nanohole arrays patterned using nanoimprinting lithography (NIL), highly efficient chemical doping was achieved on the hole edges. This provides a unique scheme for improving both optical transmittance and electrical conductivity of graphene-based TCs. In plasmonic graphene, Ag nanoparticles were decorated on graphene using thermally assisted self-assembly and NIL. Much enhanced conductivity by a factor of 2-4 was achieved through electron doping in graphene from Ag nanoparticles. More importantly, surface plasmonic effect has been incorporated into plasmonic graphene as advanced TCs with light trapping, which is critical to ultrathin-film optoelectronics such as photovoltaics and photodetectors. Based on plasmonic graphene electric double-layer (EDL) transistor, a novel scheme of photodetection has been demonstrated using plasmonic enhanced local field gating. The resulting tuning of interfacial capacitance as well as the quantum capacitance of graphene manifested as extraordinary photoconductivity and hence photoresponse.

  11. Coulomb-Driven Relativistic Electron Beam Compression

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  12. Coulomb-Driven Relativistic Electron Beam Compression.

    PubMed

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  13. On the Asymmetric Focusing of Low-Emittance Electron Bunches via Active Lensing by Using Capillary Discharges

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Bagdasarov, Gennadiy; Bobrova, Nadezhda; Boldarev, Alexey; Olkhovskaya, Olga; Sasorov, Pavel; Gasilov, Vladimir; Barber, Samuel; Gonsalves, Anthony; Schroeder, Carl; van Tilborg, Jeroen; Esarey, Eric; Leemans, Wim; Levato, Tadzio; Margarone, Daniele; Korn, Georg; Kando, Masaki; Bulanov, Sergei

    2017-10-01

    A novel method for asymmetric focusing of electron beams is proposed. The scheme is based on the active lensing technique, which takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside a capillary discharge are described theoretically and modeled with dissipative MHD simulations to enable analysis of capillaries of oblong rectangle cross-sections implying that large aspect ratio rectangular capillaries can be used to form flat electron bunches. The effect of the capillary cross-section on the electron beam focusing properties were studied using the analytical methods and simulation- derived magnetic field map showing the range of the capillary discharge parameters required for producing the high quality flat electron beams.

  14. Team interaction during surgery: a systematic review of communication coding schemes.

    PubMed

    Tiferes, Judith; Bisantz, Ann M; Guru, Khurshid A

    2015-05-15

    Communication problems have been systematically linked to human errors in surgery and a deep understanding of the underlying processes is essential. Although a number of tools exist to assess nontechnical skills, methods to study communication and other team-related processes are far from being standardized, making comparisons challenging. We conducted a systematic review to analyze methods used to study events in the operating room (OR) and to develop a synthesized coding scheme for OR team communication. Six electronic databases were accessed to search for articles that collected individual events during surgery and included detailed coding schemes. Additional articles were added based on cross-referencing. That collection was then classified based on type of events collected, environment type (real or simulated), number of procedures, type of surgical task, team characteristics, method of data collection, and coding scheme characteristics. All dimensions within each coding scheme were grouped based on emergent content similarity. Categories drawn from articles, which focused on communication events, were further analyzed and synthesized into one common coding scheme. A total of 34 of 949 articles met the inclusion criteria. The methodological characteristics and coding dimensions of the articles were summarized. A priori coding was used in nine studies. The synthesized coding scheme for OR communication included six dimensions as follows: information flow, period, statement type, topic, communication breakdown, and effects of communication breakdown. The coding scheme provides a standardized coding method for OR communication, which can be used to develop a priori codes for future studies especially in comparative effectiveness research. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.

    PubMed

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-10

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  16. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  17. Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides

    PubMed Central

    Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong

    2016-01-01

    We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872

  18. Self-mode-locked AlGaInP-VECSEL

    NASA Astrophysics Data System (ADS)

    Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.

    2017-10-01

    We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.

  19. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate.

    PubMed

    Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua

    2014-07-09

    High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.

  20. Quantitative Analysis of the Efficiency of OLEDs.

    PubMed

    Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-12-07

    We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.

Top