Sutton, Jonathan E.; Beste, Ariana; Steven H. Overbury
2015-10-12
In this study, we use density functional theory to explain the preferred structure of partially reduced CeO 2(111). Low-energy ordered structures are formed when the vacancies are isolated (maximized intervacancy separation) and the size of the Ce 3+ ions is minimized. Both conditions help minimize disruptions to the lattice around the vacancy. The stability of the ordered structures suggests that isolated vacancies are adequate for modeling more complex (e.g., catalytic) systems. Oxygen diffusion barriers are predicted to be low enough that O diffusion between vacancies is thermodynamically controlled at room temperature. The O-diffusion-reaction energies and barriers are decreased when onemore » Ce f electron hops from a nearest-neighbor Ce cation to a next-nearest-neighbor Ce cation, with a barrier that has been estimated to be slightly less than the barrier to O diffusion in the absence of polaron hopping. In conculsion, this indicates that polaron hopping plays a key role in facilitating the overall O diffusion process, and depending on the relative magnitudes of the polaron hopping and O diffusion barriers, polaron hopping may be the kinetically limiting process.« less
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
2017-07-24
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Current-voltage characteristics of manganite-titanite perovskite junctions.
Ifland, Benedikt; Peretzki, Patrick; Kressdorf, Birte; Saring, Philipp; Kelling, Andreas; Seibt, Michael; Jooss, Christian
2015-01-01
After a general introduction into the Shockley theory of current voltage (J-V) characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite-titanate p-n heterojunctions made of n-doped SrTi1- y Nb y O3, y = 0.002 and p-doped Pr1- x Ca x MnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC) in a thin cross plane lamella of the junction. In the J-V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER) effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron-polaron hole-polaron pair generation and separation at the interface.
Current–voltage characteristics of manganite–titanite perovskite junctions
Ifland, Benedikt; Peretzki, Patrick; Kressdorf, Birte; Saring, Philipp; Kelling, Andreas; Seibt, Michael
2015-01-01
Summary After a general introduction into the Shockley theory of current voltage (J–V) characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1− yNbyO3, y = 0.002 and p-doped Pr1− xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC) in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER) effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface. PMID:26199851
Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.
Kang, Byungkyun; Biswas, Koushik
2017-10-18
There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.
Polaron hopping in olivine phosphates studied by nuclear resonant scattering
NASA Astrophysics Data System (ADS)
Tracy, Sally June
Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
Extreme electron polaron spatial delocalization in π-conjugated materials
Rawson, Jeff; Angiolillo, Paul J.; Therien, Michael J.
2015-10-28
The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. In this paper, we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. Finally, because the electron polaron dimension can be linked tomore » key performance metrics in organic photovoltaics, light-emitting diodes, and a host of other devices, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.« less
Electronic excitations and self-trapping of electrons and holes in CaSO4
NASA Astrophysics Data System (ADS)
Kudryavtseva, I.; Klopov, M.; Lushchik, A.; Lushchik, Ch; Maaroos, A.; Pishtshev, A.
2014-04-01
A first-principles study of the electronic properties of a CaSO4 anhydrite structural phase has been performed. A theoretical estimation for the fundamental band gap (p → s transitions) is Eg = 9.6 eV and a proper threshold for p → d transitions is Epd = 10.8 eV. These values agree with the data obtained for a set of CaSO4 doped with Gd3+, Dy3+, Tm3+ and Tb3+ ions using the methods of low-temperature highly sensitive luminescence and thermoactivation spectroscopy. The results are consistent with theoretical predictions of a possible low-temperature self-trapping of oxygen p-holes. The hopping diffusion of hole polarons starts above ˜40 K and is accompanied by a ˜50-60 K peak of thermally stimulated luminescence of RE3+ ions caused due to the recombination of hole polarons with the electrons localized at RE3+. There is no direct evidence of the self-trapping of heavy d-electrons, however, one can argue that their motion rather differs from that of conduction s-electrons.
Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites
Jooss, Ch.; Wu, L.; Beetz, T.; Klie, R. F.; Beleggia, M.; Schofield, M. A.; Schramm, S.; Hoffmann, J.; Zhu, Y.
2007-01-01
Polarons, the combined motion of electrons in a cloth of their lattice distortions, are a key transport feature in doped manganites. To develop a profound understanding of the colossal resistance effects induced by external fields, the study of polaron correlations and the resulting collective polaron behavior, i.e., polaron ordering and transition from polaronic transport to metallic transport is essential. We show that static long-range ordering of Jahn–Teller polarons forms a polaron solid which represents a new type of charge and orbital ordered state. The related noncentrosymmetric lattice distortions establish a connection between colossal resistance effects and multiferroic properties, i.e., the coexistence of ferroelectric and antiferromagnetic ordering. Colossal resistance effects due to an electrically induced polaron solid–liquid transition are directly observed in a transmission electron microscope with local electric stimulus applied in situ using a piezo-controlled tip. Our results shed light onto the colossal resistance effects in magnetic field and have a strong impact on the development of correlated electron-device applications such as resistive random access memory (RRAM). PMID:17699633
NASA Astrophysics Data System (ADS)
Lei, Jie
2011-03-01
In order to understand the electronic and transport properties of organic field-effect transistor (FET) materials, we theoretically studied the polarons in two-dimensional systems using a tight-binding model with the Holstein type and Su--Schrieffer--Heeger type electron--lattice couplings. By numerical calculations, it was found that a carrier accepts four kinds of localization, which are named the point polaron, two-dimensional polaron, one-dimensional polaron, and the extended state. The degree of localization is sensitive to the following parameters in the model: the strength and type of electron--lattice couplings, and the signs and relative magnitudes of transfer integrals. When a parameter set for a single-crystal phase of pentacene is applied within the Holstein model, a considerably delocalized hole polaron is found, consistent with the bandlike transport mechanism.
TOPICAL REVIEW: Electron small polarons and bipolarons in LiNbO3
NASA Astrophysics Data System (ADS)
Schirmer, O. F.; Imlau, M.; Merschjann, C.; Schoke, B.
2009-03-01
An overview of the properties of electron small polarons and bipolarons is given, which can occur in the congruently melting composition of LiNbO3 (LN). Such polarons influence the performance of this important optical material decisively. Since coupling to the lattice strongly quenches the tunnelling of free small polarons in general, they are easily localized at one site even by weak irregularities of a crystal. The mechanism of their optical absorptions is thus shared with those of small polarons localized by binding to selected defects. It is shown that the optical properties of free electrons in LN as well as those bound to NbLi antisite defects can be attributed consistently to small polarons. This is extended to electron pairs forming bipolarons bound to NbLi-NbNb nearest neighbours in the LN ground state. On the basis of an elementary phenomenological approach, relying on familiar concepts of defect physics, the peak energies, lineshapes, widths of the related optical absorption bands as well as the defect binding energies induced by lattice distortion are analysed. A criterion universally identifying small polaron absorption bands in oxide materials is pointed out. For the bipolarons, the dissociation energy, 0.27 eV, derived from a corresponding study of the mass action behaviour, is shown to be consistent with the data on isolated polarons. Based on experience with simple O- hole small polaron systems, a mechanism is proposed which explains why the observed small polaron optical absorptions are higher above the peak energies of the bands than those predicted by the conventional theory. The parameters characterizing the optical absorptions are seen to be fully consistent with those determining the electrical conductivity, i.e. the bipolaron dissociation energy and the positions of the defect levels as well as the activation energy of mobility. A reinterpretation of previous thermopower data of reduced LN on the basis of the bipolaron model confirms that the mobility of the free polarons is activated by 0.27 eV. On the basis of the level scheme of the bipolarons as well as the bound and free polarons the temperature dependence of the electronic conductivity is explained. The polaron/bipolaron concept also allows us to account for the concentrations of the various polaron species under the combined influence of illumination and heating. The decay of free and bound polarons dissociated from bipolarons by intense short laser pulses of 532 nm light is put in the present context. A critical review of alternative models, being proposed to explain the mentioned absorption features, is given. These proposals include: single free polarons in the (diamagnetic) LN ground state, oxygen vacancies in their various conceivable charge states, quadpolarons, etc. It is shown why these models cannot explain the experimental findings consistently.
Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
Besides lithium sulfide (Li 2S), lithium persulfide (Li 2S 2) is another solid discharge product in lithium-sulfur (Li-S) batteries. Revealing the charge transport mechanism in the discharge products is important for developing an effective strategy to improve the performance of Li-S batteries. Li 2S 2 cannot transport free electrons due to its wide bandgap between the valence band maximum (VBM) and conduction band minimum (VBM). However, electron polarons (p -) and hole polarons (p +) can appear in solid Li 2S 2 due to the unique molecular orbital structure of the S 2 2- anion. The thermodynamic and kinetic propertiesmore » of native defects are investigated. It is found that negatively charged Li vacancies (V Li-) and p + are the main native defects with a low formation energy of 0.77 eV. The predominant charge carrier is p + because p + has a high mobility. Thus, the electronic conductivity related to p + diffusion is dependent on temperature, and high temperatures are preferred to increase the conductivity.« less
Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
2017-03-06
Besides lithium sulfide (Li 2S), lithium persulfide (Li 2S 2) is another solid discharge product in lithium-sulfur (Li-S) batteries. Revealing the charge transport mechanism in the discharge products is important for developing an effective strategy to improve the performance of Li-S batteries. Li 2S 2 cannot transport free electrons due to its wide bandgap between the valence band maximum (VBM) and conduction band minimum (VBM). However, electron polarons (p -) and hole polarons (p +) can appear in solid Li 2S 2 due to the unique molecular orbital structure of the S 2 2- anion. The thermodynamic and kinetic propertiesmore » of native defects are investigated. It is found that negatively charged Li vacancies (V Li-) and p + are the main native defects with a low formation energy of 0.77 eV. The predominant charge carrier is p + because p + has a high mobility. Thus, the electronic conductivity related to p + diffusion is dependent on temperature, and high temperatures are preferred to increase the conductivity.« less
Concentration and Mobility of Electrically-Conducting Defects in Olivine
NASA Astrophysics Data System (ADS)
Constable, S.; Roberts, J.; Duba, A.
2002-12-01
We have collected measurements of electrical conductivity and thermopower as a function of temperature and oxygen fugacity (f O2) on a sample of San Quintin dunite (95% olivine), and measurements of electrical conductivity equilibration after changes in f O2 on Mt.Porndon lherzolite (65% olivine). Both data sets have been analysed using nonlinear parameter inversion of mathematical models relating conductivity, thermopower, and diffusion kinetics to temperature, f O2, time, and defect concentration and mobility. From the dunite thermopower/conductivity data we are able to estimate the concentration and mobilities of electrically conducting defects. Our model allows electrons, small polarons (Fe+++ on Fe++ sites), and magnesium vacancies (V'' Mg) to contribute to conduction, but only polarons and V'' Mg are required by our data. Polarons dominate conduction below 1300°~C; at this temperature conduction, is equal for the two defects at all f O2 tested. Thermopower measurements allow us to estimate defect concentration independently from mobility, and so we can back out polaron mobility as 12.2x 10-6 exp(-1.05~eV/kT) m2V-1s-1 and magnesium vacancy mobility as 2.72x 10-6 exp(-1.09~eV/kT) m2V-1s-1. Electrical conductivity of the lherzolite, measured as a function of time after changes in the oxygen fugacity of the surrounding CO2/CO atmosphere, is used to infer the diffusivity of the point defects associated with the oxidation reactions. An observed f O2 dependence in the time constants associated with equilibration implies two species of fixed diffusivity, each with f O2-dependent concentrations. Although the rate-limiting step may not necessarily be associated with conducting defects, when time constants are converted to mobilities, the magnitudes and activation energies agree extremely well with the model presented above for the dunite, after one free parameter (effective grain size) is fit at a plausible 1.6~mm diameter. Not only does this study represent one of the few direct measurements of polaron mobility, but the very good agreement between two independent measurement techniques (thermopower versus equilibration kinetics) and two independent samples (dunite versus lherzolite) provides some level of confidence in the results. We are currently extending these modeling techniques to study olivine defect mobility anisotropy.
Particle size dependent confinement and lattice strain effects in LiFePO4.
Shahid, Raza; Murugavel, Sevi
2013-11-21
We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.
2017-03-01
In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.
Small polarons and point defects in LaFeO3
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.
Polaron spin echo envelope modulations in an organic semiconducting polymer
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less
NASA Astrophysics Data System (ADS)
Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp
2016-10-01
Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.
Bloch oscillations in organic and inorganic polymers
NASA Astrophysics Data System (ADS)
Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; de Almeida Fonseca, Antonio Luciano; e Silva, Geraldo Magela
2017-04-01
The transport of polarons above the mobility threshold in organic and inorganic polymers is theoretically investigated in the framework of a one-dimensional tight-binding model that includes lattice relaxation. The computational approach is based on parameters for which the model Hamiltonian suitably describes different polymer lattices in the presence of external electric fields. Our findings show that, above critical field strengths, a dissociated polaron moves through the polymer lattice as a free electron performing Bloch oscillations. These critical electric fields are considerably smaller for inorganic lattices in comparison to organic polymers. Interestingly, for inorganic lattices, the free electron propagates preserving charge and spin densities' localization which is a characteristic of a static polaron. Moreover, in the turning points of the spatial Bloch oscillations, transient polaron levels are formed inside the band gap, thus generating a fully characterized polaron structure. For the organic case, on the other hand, no polaron signature is observed: neither in the shape of the distortion—those polaron profile signatures are absent—nor in the energy levels—as no such polaron levels are formed during the simulation. These results solve controversial aspects concerning Bloch oscillations recently reported in the literature and may enlighten the understanding about the charge transport mechanism in polymers above their mobility edge.
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Generalized formula for electron emission taking account of the polaron effect
NASA Astrophysics Data System (ADS)
Barengolts, Yu A.; Beril, S. I.; Barengolts, S. A.
2018-01-01
A generalized formula is derived for the electron emission current as a function of temperature, field, and electron work function in a metal-dielectric system that takes account of the quantum nature of the image forces. In deriving the formula, the Fermi-Dirac distribution for electrons in a metal and the quantum potential of the image obtained in the context of electron polaron theory are used.
Tracking the coherent generation of polaron pairs in conjugated polymers
NASA Astrophysics Data System (ADS)
de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-12-01
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
Zhou, Fei; Sadigh, Babak; Aberg, Daniel; ...
2016-08-12
The excellent light yield proportionality of europium-doped strontium iodide (SrI 2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI 2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale formore » the unexpected high-energy resolution of SrI 2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI 2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.« less
NASA Astrophysics Data System (ADS)
Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias
2018-03-01
We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.
The elusive role of NbLi bound polaron energy in hopping charge transport in Fe : LiNbO3.
Guilbert, Laurent; Vittadello, Laura; Bazzan, Marco; Mhaouech, Imed; Messerschmidt, Simon; Imlau, M
2018-02-06
Charge transport due to small polarons hopping among defective (bound polarons) and regular (free polarons) sites is shown to depend in a non-trivial way from the value of the stabilization energy provided by the lattice distortion surrounding the charge carriers. This energy, normally not directly accessible for bound polarons by spectroscopic techniques, is here determined by a combination of experimental and numerical methods for the important case of small electron polarons bound to \\mathrm{Nb}_{\\mathrm{Li}} defects in the prototype ferroelectric oxide lithium niobate. Our findings provide an estimation of the \\mathrm{Nb}_{\\mathrm{Li}} polaron stabilization energy E_{GP}=\\unit[(0.75\\pm0.05)]{eV} and point out that in lithium niobate both free and bound polarons contributes to charge transport already at room temperature, explaining the fast decays of the light-induced bound polaron population observed by transient absorption spectroscopy. © 2018 IOP Publishing Ltd.
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.
Superconducting Polarons and Bipolarons
NASA Astrophysics Data System (ADS)
Alexandrov, A. S.
The seminal work by Bardeen, Cooper and Schrieffer (BCS) extended further by Eliashberg to the intermediate coupling regime solved one of the major scientific problems of Condensed Matter Physics in the last century. The BCS theory provides qualitative and in many cases quantitative descriptions of low-temperature superconducting metals and their alloys, and some novel high-temperature superconductors like magnesium diboride. The theory has been extended by us to the strong-coupling regime where carriers are small lattice polarons and bipolarons. Here I review the multi-polaron strong-coupling theory of superconductivity. Attractive electron correlations, prerequisite to any superconductivity, are caused by an almost unretarded electron-phonon (e-ph) interaction sufficient to overcome the direct Coulomb repulsion in this regime. Low energy physics is that of small polarons and bipolarons, which are real-space electron (hole) pairs dressed by phonons. They are itinerant quasiparticles existing in the Bloch states attemperatures below the characteristic phonon frequency. Since there is almost no retardation (i.e. no Tolmachev-Morel-Anderson logarithm) reducing the Coulomb repulsion, e-ph interactions should be relatively strong to overcome the direct Coulomb repulsion, so carriers mustbe polaronic to form pairs in novel superconductors. I identify the long-range Fröhlich electron-phonon interaction as the most essential for pairing in superconducting cuprates. A number of key observations have been predicted or explained with polarons and bipolarons including unusual isotope effects and upper critical fields, normal state (pseudo)gaps and kinetic properties, normal state diamagnetism, and giant proximity effects. These and many other observations provide strong evidence for a novel state of electronic matter in layered cuprates, which is a charged Bose-liquid of small mobile bipolarons.
NASA Astrophysics Data System (ADS)
Zhou, Fei; Sadigh, Babak; Erhart, Paul; Åberg, Daniel
2016-08-01
The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for non-linear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.
Implications of the formation of small polarons in Li2O2 for Li-air batteries
NASA Astrophysics Data System (ADS)
Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.
2012-01-01
Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.
The role of local repulsion in superconductivity in the Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo
2017-01-01
We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics
NASA Astrophysics Data System (ADS)
Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich
2012-07-01
Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.
Polaronic transport in Ag-based quaternary chalcogenides
NASA Astrophysics Data System (ADS)
Wei, Kaya; Khabibullin, Artem R.; Stedman, Troy; Woods, Lilia M.; Nolas, George S.
2017-09-01
Low temperature resistivity measurements on dense polycrystalline quaternary chalcogenides Ag2+xZn1-xSnSe4, with x = 0, 0.1, and 0.3, indicate polaronic type transport which we analyze employing a two-component Holstein model based on itinerant and localized polaron contributions. Electronic structure property calculations via density functional theory simulations on Ag2ZnSnSe4 for both energetically similar kesterite and stannite structure types were also performed in order to compare our results to those of the compositionally similar but well known Cu2ZnSnSe4. This theoretical comparison is crucial in understanding the bonding that results in polaronic type transport for Ag2ZnSnSe4, as well as the structural and electronic properties of both crystal structure types. In addition to possessing this unique electronic transport, the thermal conductivity of Ag2ZnSnSe4 is low and decreases with increasing silver content. This work reveals unique structure-property relationships in materials that continue to be of interest for thermoelectric and photovoltaic applications.
Screening effect on the polaron by surface plasmons
NASA Astrophysics Data System (ADS)
Xu, Xiaoying; Xu, Xiaoshan; Seal, Katyayani; Guo, Hangwen; Shen, Jian; Low Dimensional Materials Physics, Oak Ridge National Lab Team; University of Tennessee Team; Physics Department, Fudan University Team
2011-03-01
Surface plasmons occur when the conduction electrons at a metal/dielectric interface resonantly interact with external electromagnetic fields. While surface plasmons in vicinity of a polaron in the dielectric material, a strong screening effect on polaron characteristics is introduced. In this work, we observed the reduction of polarons in multiferroic LuFe2O4, which is mainly contributed by surface plasmons. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Creation of Rydberg Polarons in a Bose Gas
NASA Astrophysics Data System (ADS)
Camargo, F.; Schmidt, R.; Whalen, J. D.; Ding, R.; Woehl, G.; Yoshida, S.; Burgdörfer, J.; Dunning, F. B.; Sadeghpour, H. R.; Demler, E.; Killian, T. C.
2018-02-01
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p -wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n . Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.
Polaronic exciton behavior in gas-phase water
NASA Astrophysics Data System (ADS)
Udal'tsov, Alexander V.
2018-03-01
Features of the absorption spectrum of gas-phase water in the energy range 7-10 eV have been considered applying polaronic exciton theory. The interaction of the incident photon generating polaronic exciton in water is described taking into account angular momentum of the electron so that polaronic exciton radii have been estimated in dependence on spin-orbit coupling under proton sharing. The suggested approach admits an estimate of kinetic and rotation energies of the polaronic exciton. As a result sixteen steps of half Compton wavelength, λC/2 = h/(2mec) changing polaronic exciton radius were found consistent with local maxima and shoulders in the spectrum. Thus, the absorption of gas-phase water in the energy range 8.5-10 eV has been interpreted in terms of polaronic exciton rotation mainly coupled with the proton sharing. The incident photon interaction with water is also considered in terms of Compton interaction, when the rotation energy plays a role like the energy loss of the incident photon under Compton scattering. The found symmetry and the other evidence allowed to conclude about polaronic exciton migration under the interaction angle 90°.
Piezo electric polaron and polaron pinning in n-CdS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagasaka, K.
1976-05-01
The cyclotron resonance of the piezoelectric polaron in n-CdS has been investigated using far infrared spectroscopy at magnetic fields to 90 kOe. Both lamellar grating and Michelson Fourier transform spectrometers were used with a 0.3/sup 0/K Ge bolometer to study the photon energy region from 10 cm/sup -1/ to 60 cm/sup -1/. The theory of Miyake predicts that the frequency of the polaron's cyclotron resonance is shifted from the bare hand electron resonance frequency according to the expression: ..delta omega../sup p//sub c// ..cap omega../sub c/ varies as H/sup -1/ T/sup /sup 2///sup 3//. The magnetic field dependence of the presentmore » cyclotron resonance confirms this expression; the cyclotron mass isiezoelectric polaron effects. The bare band mass in n-CdS has also been determined by taking into account the Froehlich polaron interaction in addition to the piezoelectric polaron effects. For H parallel to the c-axis this cyclotron mass is 0.155 +- 0.005 m. The polaron pinning due to the 43 cm/sup -1/ optically inactive phonon has been observed.« less
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Honma, Keisuke; Kobayashi, Nobuhiko; Hirose, Kenji
2012-06-01
We present a methodology to study the charge-transport properties of organic semiconductors by the time-dependent wave-packet diffusion method, taking the polaron effects into account. As an example, we investigate the transport properties of single-crystal pentacene organic semiconductors coupled with inter- and intramolecular vibrations within the mixed Holstein and Peierls model, which describes both hopping and bandlike transport behaviors due to small and large polaron formations. Taking into account static disorders, which inevitably exist in the molecular crystals, we present the temperature dependence of charge-transport properties in competition among the thermal fluctuation of molecular motions, the polaron formation, and the static disorders.
Phase-breaking effect on polaron transport in organic conjugated polymers
Meng, Ruixuan; Yin, Sun; Zheng, Yujun; ...
2017-06-15
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
Phase-breaking effect on polaron transport in organic conjugated polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ruixuan; Yin, Sun; Zheng, Yujun
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
NASA Astrophysics Data System (ADS)
Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm
2013-05-01
Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.
Bloch oscillations as generators of polarons in a 1D crystal
NASA Astrophysics Data System (ADS)
Nazareno, H. N.; Brito, P. E. de
2016-08-01
The main purpose of this work is to characterize the kind of propagation/localization of carriers in a one-dimensional crystalline structure along the tight-binding model while the electron-phonon interaction is taken into account through a deformation potential and the system is under the action of a dc electric field. The lattice was treated in the classical formalism of harmonic vibrations. A remarkable effect is obtained due to the presence of the electric field. On one side the particle performs Bloch oscillations and at the same time it interacts with the lattice and as a result at each turning point of its trajectory phonons are generated that carry with them a fraction of the electronic wave packet, it is the polaron formation. This way the Bloch oscillations pump polarons into the system. We explain why the polaron is formed at returning points of the oscillations.
Relaxation of photoexcitations in polaron-induced magnetic microstructures
NASA Astrophysics Data System (ADS)
Köhler, Thomas; Rajpurohit, Sangeeta; Schumann, Ole; Paeckel, Sebastian; Biebl, Fabian R. A.; Sotoudeh, Mohsen; Kramer, Stephan C.; Blöchl, Peter E.; Kehrein, Stefan; Manmana, Salvatore R.
2018-06-01
We investigate the evolution of a photoexcitation in correlated materials over a wide range of time scales. The system studied is a one-dimensional model of a manganite with correlated electron, spin, orbital, and lattice degrees of freedom, which we relate to the three-dimensional material Pr1 -xCaxMnO3 . The ground-state phases for the entire composition range are determined and rationalized by a coarse-grained polaron model. At half doping a pattern of antiferromagnetically coupled Zener polarons is realized. Using time-dependent density-matrix renormalization group (tDMRG), we treat the electronic quantum dynamics following the excitation. The emergence of quasiparticles is addressed, and the relaxation of the nonequilibrium quasiparticle distribution is investigated via a linearized quantum-Boltzmann equation. Our approach shows that the magnetic microstructure caused by the Zener polarons leads to an increase of the relaxation times of the excitation.
Healable supramolecular polymers as organic metals.
Armao, Joseph J; Maaloum, Mounir; Ellis, Thomas; Fuks, Gad; Rawiso, Michel; Moulin, Emilie; Giuseppone, Nicolas
2014-08-13
Organic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice. Here we describe a one-dimensional supramolecular polymer in which photoinduced through-space charge-transfer complexes lead to highly coherent domains with delocalized electronic states displaying metallic behavior. We also reveal that diffusion of supramolecular polarons in the nanowires repairs structural defects thereby improving their conduction. The ability to access metallic properties from mendable self-assemblies extends the current understanding of both fields and opens a wide range of processing techniques for applications in organic electronics.
Nonadiabatic small-polaron hopping electron transport in diphenoquinone-doped polycarbonate
NASA Astrophysics Data System (ADS)
Yamaguchi, Yasuhiro; Yokoyama, Masaaki
1991-10-01
The dependences of electron mobility on the electric field F, temperature T, and hopping site distance R have been characterized in 3,5-dimethyl-3',5'-di-tert-butyl-4,4'-diphenoquinone dispersed molecularly in a polycarbonate according to Schein's analytical technique. The electron mobility can be described in the form a0R2 exp(-2R/R0) exp(-E0/kT) × exp[β(1/kT-1/kT0)F1/2], where a0, R0, β, and T0 are constants. Moreover, it is found that the zero-field activation energy E0 is independent of R. The invariable E0 and the exponential dependence of the Arrhenius prefactor on R strongly suggest that the electron transport therein is due to nonadiabatic small-polaron hopping. Based on the small-polaron theory, the transport properties are qualitatively discussed in terms of molecular properties.
Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface
NASA Astrophysics Data System (ADS)
Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare
The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.
Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-01-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-09-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Displacement of polarons by vibrational modes in doped conjugated polymers
NASA Astrophysics Data System (ADS)
Anderson, M.; Ramanan, C.; Fontanesi, C.; Frick, A.; Surana, S.; Cheyns, D.; Furno, M.; Keller, T.; Allard, S.; Scherf, U.; Beljonne, D.; D'Avino, G.; von Hauff, E.; Da Como, E.
2017-10-01
Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p -doped conjugated homo- and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors.
Magnetic polarons in antiferromagnetic CaMnO3-x (x<0.01) probed by O17 NMR
NASA Astrophysics Data System (ADS)
Trokiner, A.; Verkhovskii, S.; Yakubovskii, A.; Gerashenko, A.; Monod, P.; Kumagai, K.; Mikhalev, K.; Buzlukov, A.; Litvinova, Z.; Gorbenko, O.; Kaul, A.; Kartavtzeva, M.
2009-06-01
We study with O17 NMR and bulk magnetization a lightly electron doped CaMnO3-x (x<0.01) polycrystalline sample in the G -type antiferromagnetic state. The O17 NMR spectra show two lines with very different intensities corresponding to oxygen sites with very different local magnetic environments. The more intense unshifted line is due to the antiferromagnetic (AF) matrix. The thermal dependence of the magnetic moment of the AF sublattice deduced from the O17 linewidth is typical of insulating three-dimensional Heisenberg antiferromagnets. The less intense, strongly shifted line directly evidences the existence of ferromagnetic (FM) domains embedded in the AF spin lattice. The extremely narrow line in zero magnetic field indicates a nearly perfect alignment of the manganese spins in the FM domains which also display an unusually weak temperature dependence of their magnetic moment. We show that these FM entities start to move above 40 K in a slow-diffusion regime. These static and dynamic properties bear a strong similarity with those of a small size self-trapped magnetic polaron.
The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
Spreafico, Clelia; VandeVondele, Joost
2014-12-21
The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.
NASA Astrophysics Data System (ADS)
Vardanyan, Karen A.; Asatryan, Anna L.; Vartanian, Arshak L.
2015-07-01
Considering the effect of an external electric field in wurtzite nitride cylindrical nanowire (NW), the polaron self-energy and effective mass due to the electron interaction with the quasi-confined optical phonons are studied theoretically by means of Lee-Low-Pines variational approach. The analytical expressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective mass are obtained as functions of the wire radius and the strength of the electric field applied perpendicular to the wire axis. It is found that the main contribution to polaron basic parameters is from higher frequency optical phonon modes. The numerical results on the GaN material show that the polaron self-energy increases with the increase of the electric field and is more sensitive to the field when the wire radius is larger. It is also found that the polaron self-energy in GaN NWs is higher than that in zinc-blende GaAs-based cylindrical NWs.
Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface
Chen, Chaoyu; Avila, José; Frantzeskakis, Emmanouil; Levy, Anna; Asensio, Maria C.
2015-01-01
The polaron is a quasi-particle formed by a conduction electron (or hole) together with its self-induced polarization in a polar semiconductor or an ionic crystal. Among various polarizable examples of complex oxides, strontium titanate (SrTiO3) is one of the most studied. Here we examine the carrier type and the interplay of inner degrees of freedom (for example, charge, lattice, orbital) in SrTiO3. We report the experimental observation of Fröhlich polarons, or large polarons, at the bare SrTiO3 surface prepared by vacuum annealing. Systematic analyses of angle-resolved photoemission spectroscopy and X-ray absorption spectra show that these Fröhlich polarons are two-dimensional and only exist with inversion symmetry breaking by two-dimensional oxygen vacancies. Our discovery provides a rare solvable field theoretical model, and suggests the relevance of large (bi)polarons for superconductivity in perovskite oxides, as well as in high-temperature superconductors. PMID:26489376
NASA Astrophysics Data System (ADS)
Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.
2017-12-01
We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.
Mapping polaronic states and lithiation gradients in individual V2O5 nanowires
De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng; Parija, Abhishek; Jaye, Cherno; Wangoh, Linda; Wang, Jian; Fischer, Daniel A.; Piper, Louis F. J.; Prendergast, David; Banerjee, Sarbajit
2016-01-01
The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V2O5, lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V2O5 framework couple to local structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation. PMID:27349567
Electronic transport in pure and doped UO2
NASA Astrophysics Data System (ADS)
Massih, A. R.
2017-12-01
The thermoelectric properties of pure and doped UO2, namely the thermal and electrical conductivities and the thermopower, are assessed. We adopt the small polaron theory of the Mott type insulators, wherein the charge carriers, the electron and hole on the U3+ and U5+ ions, are treated as small polarons. For the thermal conductivity, the small polaron theory is applicable at temperatures above 1500 K. A review of the experimental data on the temperature dependence of the aforementioned transport properties is made. The data include UO2 with dopants such as Cr2O3, Gd2O3, Y2O3 and Nb2O5. We compare the applications of the theory with the data. Two limiting regimes, adiabatic and nonadiabatic, with the ensuing expressions for the conductivities and the thermoelectric power are considered. We discuss both the merits and shortcomings of the putative small polaron model and the simplification thereof as applied to pure and doped uranium dioxide.
Polaron theory of high- Tc superconductors
NASA Astrophysics Data System (ADS)
Alexandrov, A. S.
1989-05-01
It is shown that the ordinary electron-phonon interaction can produce a high Tc as a result of the polaron narrowing of the band, which is not considered by the traditional theory of strong-coupling superconductors based on Migdal-Eliashberg equations, which are violated even in the range of moderate values λ ⪖1. Numerous experimental data are discussed which seem to favour a phonon-mediated attraction, polaron mass enhancement, narrow band and nonadiabatic motion of carriers and charged Bose-like excitations in high Tc metallic oxides.
NASA Astrophysics Data System (ADS)
Dimakogianni, M.; Simserides, C.; Triberis, G. P.
2013-07-01
We introduce a theoretical model to scrutinize the conductivity of small polarons in 1D disordered systems, focusing on two crucial - as will be demonstrated - factors: the density of states and the spatial extent of the electronic wave function. The investigation is performed for any temperature up to 300 K and under electric field of arbitrary strength up to the polaron dissociation limit. To accomplish this task, we combine analytical work with numerical calculations.
QM/QM approach to model energy disorder in amorphous organic semiconductors.
Friederich, Pascal; Meded, Velimir; Symalla, Franz; Elstner, Marcus; Wenzel, Wolfgang
2015-02-10
It is an outstanding challenge to model the electronic properties of organic amorphous materials utilized in organic electronics. Computation of the charge carrier mobility is a challenging problem as it requires integration of morphological and electronic degrees of freedom in a coherent methodology and depends strongly on the distribution of polaron energies in the system. Here we represent a QM/QM model to compute the polaron energies combining density functional methods for molecules in the vicinity of the polaron with computationally efficient density functional based tight binding methods in the rest of the environment. For seven widely used amorphous organic semiconductor materials, we show that the calculations are accelerated up to 1 order of magnitude without any loss in accuracy. Considering that the quantum chemical step is the efficiency bottleneck of a workflow to model the carrier mobility, these results are an important step toward accurate and efficient disordered organic semiconductors simulations, a prerequisite for accelerated materials screening and consequent component optimization in the organic electronics industry.
Chain Length Dependence of Energies of Electron and Triplet Polarons in Oligofluorenes
Chen, Hung Cheng; Sreearunothai, Paiboon; Cook, Andrew R.; ...
2017-03-01
Bimolecular equilibria measured the one-electron reduction potentials and triplet free energies (ΔG° T) of oligo(9,9-dihexyl)fluorenes and a polymer with lengths of n = 1–10 and 57 repeat units. We can accurately measure one-electron potentials electrochemically only for the shorter oligomers. Starting at n = 1 the free energies change rapidly with increasing length and become constant for lengths longer than the delocalization length. Both the reduction potentials and triplet energies can be understood as the sum of a free energy for a fixed polaron and a positional entropy. Furthermore, the positional entropy increases gradually with length beyond the delocalization lengthmore » due to the possible occupation sites of the charge or the triplet exciton. Our results reinforce the view that charges and triplet excitons in conjugated chains exist as polarons and find that positional entropy can replace a popular empirical model of the energetics.« less
Miyata, Kiyoshi; Atallah, Timothy L.; Zhu, X.-Y.
2017-01-01
Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials. PMID:29043296
Cotunneling and polaronic effect in granular systems
NASA Astrophysics Data System (ADS)
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
NASA Astrophysics Data System (ADS)
Ifland, Benedikt; Hoffmann, Joerg; Kressdorf, Birte; Roddatis, Vladimir; Seibt, Michael; Jooss, Christian
2017-06-01
The effect of correlation effects on photovoltaic energy conversion at manganite/titanite heterojunctions is investigated. As a model system we choose a heterostructure consisting of the small polaron absorber Pr0.66Ca0.34MnO3 (PCMO) epitaxially grown on single-crystalline Nb-doped SrTi0.998Nb0.002O3 (STNO) substrates. The high structural and chemical quality of the interfaces is proved by detailed characterization using high-resolution transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) studies. Spectrally resolved and temperature-dependent photovoltaic measurements show pronounced contributions of both the Jahn-Teller (JT) excitations and the charge transfer (CT) transitions to the photovoltaic effect at different photon energies. A linear temperature dependence of the open-circuit voltage for an excitation in the PCMO manganite is only observed below the charge-ordering temperature, indicating that the diffusion length of the photocarrier exceeds the size of the space charge region. The photovoltaic response is compared to that of a heterojunction of lightly doped Pr0.05Ca0.95MnO3 (CMO)/STNO, where the JT transition is absent. Here, significant contributions of the CT transition to the photovoltaic effect set in below the Neel temperature. We conclude that polaronic correlations and ordering effects are essentials for photovoltaic energy conversion in manganites.
NASA Astrophysics Data System (ADS)
Lee, Young-Ahn; Han, Seung-Ik; Rhee, Hanju; Seo, Hyungtak
2018-05-01
Polarons have been suggested to explain the mechanism of the coloration of WO3 induced by UV light. However, despite the many experimental results that support small polarons as a key mechanism, direct observation of the carrier dynamics of polarons have yet to be reported. Here, we investigate the correlation between the electronic structure and the coloration of WO3 upon exposure to UV light in 5% H2/N2 gas and, more importantly, reveal photon-induced excited d-electron generation/relaxation via the W5+ oxidation state. The WO3 is fabricated by radio-frequency magnetron sputtering. X-ray diffraction patterns show that prepared WO3 is amorphous. Optical bandgap of 3.1 eV is measured by UV-vis before and after UV light. The results of Fourier transform infrared and Raman exhibit pristine WO3 is formed with surface H2O. The colored WO3 shows reduced state of W5+ state (34.3 eV) by using X-ray photoelectron spectroscopy. The valence band maximum of WO3 after UV light in H2 is shifted from mid gap to shallow donor by using ultraviolet photoelectron spectroscopy. During the exploration of the carrier dynamics, pump (700 nm)-probe (1000 nm) spectroscopy at the femtosecond scale was used. The results indicated that electron-phonon relaxation of UV-irradiated WO3, which is the origin of the polaron-induced local surface plasmonic effect, is dominant, resulting in slow decay (within a few picoseconds); in contrast, pristine WO3 shows fast decay (less than a picosecond). Accordingly, the long photoinduced carrier relaxation is ascribed to the prolonged hot-carrier lifetime in reduced oxides resulting in a greater number of free d-electrons and, therefore, more interactions with the W5+ sub-gap states.
Polaronic and ionic conduction in NaMnO2: influence of native point defects
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
Layered NaMnO2 has promising applications as a cathode material for sodium ion batteries. We will discuss strategies to improve the electrical performance of NaMnO2, including how to optimize the conditions of synthesis and how impurity doping affects the performance. Using hybrid density functional theory, we explored the structural, electronic, and defect properties of bulk NaMnO2. It is antiferromagnetic in the ground state with a band gap of 3.75 eV. Small hole and electron polarons can form in the bulk either through self-trapping or adjacent to point defects. We find that both Na and Mn vacancies are shallow acceptors with the induced holes trapped as small polarons, while O vacancies are deep defect centers. Cation antisites, especially MnNa, are found to have low formation energies. As a result, we expect that MnNa exists in as-grown NaMnO2 in moderate concentrations, rather than forming only at a later stage of the charging process, at which point it causes undesirable structural phase transitions. Both electronic conduction, via polaron hopping, and ionic conduction, through VNa migration, are significantly affected by the presence of point defects. This work was supported by DOE.
Mapping polaronic states and lithiation gradients in individual V 2O 5 nanowires
De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng; ...
2016-06-28
The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO 2 , lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO 4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V 2 O 5 , lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V 2 O 5 framework couple to localmore » structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation.« less
NASA Astrophysics Data System (ADS)
El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2017-11-01
The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.
First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.
Elmaslmane, A R; Watkins, M B; McKenna, K P
2018-06-21
We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.
NASA Astrophysics Data System (ADS)
Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo
2017-11-01
Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.
NASA Astrophysics Data System (ADS)
Baniya, Sangita; Vardeny, Shai R.; Lafalce, Evan; Peygambarian, Nasser; Vardeny, Z. Valy
2017-06-01
We measure the spectra of resonant Raman scattering and doping-induced absorption of pristine films of the π -conjugated donor-acceptor (D -A ) copolymer, namely, thieno[3,4 b]thiophene-alt-benzodithiophene (PTB7), as well as photoinduced absorption spectrum in a blend of PTB7 with fullerene phenyl-C61-butyric acid methyl ester molecules used for organic photovoltaic (OPV) applications. We find that the D -A copolymer contains six strongly coupled vibrational modes having relatively strong Raman-scattering intensity, which are renormalized upon adding charge polarons onto the copolymer chains either by doping or photogeneration. Since the lower-energy charge-polaron absorption band overlaps with the renormalized vibrational modes, they appear as antiresonance lines superposed onto the induced polaron absorption band in the photoinduced absorption spectrum but less so in the doping-induced absorption spectrum. We show that the Raman-scattering, doping-, and photoinduced absorption spectra of PTB7 are well explained by the amplitude mode model, where a single vibrational propagator describes the renormalized modes and their related intensities in detail. From the relative strengths of the induced infrared activity of the polaron-related vibrations and electronic transitions, we obtain the polaron effective kinetic mass in PTB7 using the amplitude mode model to be approximately 3.8 m* , where m* is the electron effective mass. The enhanced polaronic mass in PTB7 may limit the charge mobility, which, in turn, reduces the OPV solar-cell efficiency based on the PTB7-fullerene blend.
Influence of lithium vacancies on the polaronic transport in olivine phosphate structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugavel, Sevi, E-mail: murug@physics.du.ac.in; Sharma, Monika; Shahid, Raza
2016-01-28
Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity betweenmore » the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.« less
NASA Astrophysics Data System (ADS)
Onoda, Masashige; Sato, Takuma
2017-12-01
The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.
Yoo-Kong, Sikarin; Liewrian, Watchara
2015-12-01
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.
Existence of bound states of a polaron with a breather in soft potentials
NASA Astrophysics Data System (ADS)
Cuevas, J.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Bishop, A. R.
2006-08-01
We consider polarons in models of coupled electronic and vibrational degrees of freedom, in the presence of a soft nonlinear substrate potential (Morse potential). In particular, we focus on a bound state of a polaron with a breather, a so-called “polarobreather.” We analyze the existence of these states based on frequency resonance conditions and illustrate their stability using Floquet spectrum techniques. Multisite solutions of this type are also obtained both in the stationary case (bond-centered and twisted polarons) and in the breathing case (bond-centered and twisted polarobreathers). For all the branches examined, the dynamical evolution of instabilities pertinent to the corresponding solutions are also briefly discussed. Finally, a different branch of so-called phantom polarobreathers is also demonstrated.
Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons
NASA Astrophysics Data System (ADS)
Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi
2016-07-01
We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.
Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiV O4 films
NASA Astrophysics Data System (ADS)
Chaudhuri, A.; Mandal, L.; Chi, X.; Yang, M.; Scott, M. C.; Motapothula, M.; Yu, X. J.; Yang, P.; Shao-Horn, Y.; Venkatesan, T.; Wee, A. T. S.; Rusydi, A.
2018-05-01
Here, we report an anisotropic small-hole polaron in an orthorhombic structure of BiV O4 films grown by pulsed-laser deposition on yttrium-doped zirconium oxide substrate. The polaronic state and electronic structure of BiV O4 films are revealed using a combination of polarization-dependent x-ray absorption spectroscopy at V L3 ,2 edges, spectroscopic ellipsometry, x-ray photoemission spectroscopies, and high-resolution x-ray diffraction with the support of first-principles calculations. We find that in the orthorhombic phase, which is slightly different from the conventional pucherite structure, the unoccupied V 3d orbitals and charge inhomogeneities lead to an anisotropic small-hole polaron state. Our result shows the importance of the interplay of charge and lattice for the formation of a hole polaronic state, which has a significant impact in the electrical conductivity of BiV O4 , hence its potential use as a photoanode for water splitting.
Snedden, Edward W; Monkman, Andrew P; Dias, Fernando B
2013-04-04
Geminate polaron-pair recombination directly to the triplet state of the small dye molecule copper(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H- phthalocyanine (CuPC) and exciton trapping in CuPC domains, combine to reduce the internal quantum efficiency of free polaron formation in the bulk-heterojunction blends of CuPC doped with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polaronic and dressed molecular states in orbital Feshbach resonances
NASA Astrophysics Data System (ADS)
Xu, Junjun; Qi, Ran
2018-04-01
We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.
Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3
NASA Astrophysics Data System (ADS)
Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.
2013-03-01
Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.
Small polaron hopping conduction mechanism in LiFePO4 glass and crystal
NASA Astrophysics Data System (ADS)
Banday, Azeem; Murugavel, Sevi
2017-01-01
The optimization of a cathode material is the most important criterion of lithium ion battery technology, which decides the power density. In order to improve the rate capability, a cathode material must possess high electronic and ionic conductivities. Therefore, it is important to understand the charge transport mechanism in such an advanced cathode material in its intrinsic state before modifying it by various means. In this work, we report the thermal, structural, and electrical conductivity studies on lithium iron phosphate, LiFePO4, both in its polycrystalline (LFPC) and glassy (LFPG) counterpart states. The vibrational spectroscopic measurements reveal the characteristic vibrational modes, which are the intrinsic part of LFPC, whereas in LFPG, the phonon modes become broader and overlap with each other due to the lattice disorder. The electrical conductivity measurements reveal that LFPG exhibits a higher polaronic conductivity of 1.6 orders than the LFPC sample. The temperature dependent dc conductivity has been analyzed with the Mott model of polarons and reveals the origin of enhanced polaronic conductivity in LFPG. Based on the analysis, the enhanced polaronic conductivity in LFPG has been attributed to the combined effect of reduced hopping length, decreased activation energy, and enhanced polaron concentration.
Neukirch, Amanda J.; Nie, Wanyi; Blancon, Jean-Christophe; ...
2016-05-25
Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. In spite of the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Wemore » report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI 3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI 3 (MA = CH 3NH 3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. Furthermore, the fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH 2) 2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.« less
Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; Tretiak, Sergei; Bair, Raymond A.; Gray, Stephen K.; Van Voorhis, Troy; Larsen, Ross E.; Darling, Seth B.
2017-01-01
Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. We propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. Much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs. PMID:28553494
DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites
NASA Astrophysics Data System (ADS)
Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex
Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.
Transition of a small-bipolaron gas to a Fröhlich polaron in a deformable lattice
NASA Astrophysics Data System (ADS)
Hettiarachchi, Gayan Prasad; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton
2018-04-01
The electronic properties of guest Cs atoms in a deformable lattice are investigated at various densities n . Low values of n show optical absorptions of small bipolarons. At intermediate n values, new bands appear in the midinfrared (MIR) and high-frequency regions, which coexist with the small bipolaron bands. With a further increase in n , the small bipolaron bands become less discernible and subsequently disappear, resulting in the appearance of a Drude component superimposed on a MIR sideband suggesting a phase transition to a polaronic metal. In this itinerant phase, an approximately twofold mass enhancement is observed. This continuous transition of a gas of small bipolarons to a polaronic metal characterized by a Fröhlich polaron reveals an important part of the complex phase diagram of the metal-insulator transition in a deformable lattice.
Holstein polaron in a valley-degenerate two-dimensional semiconductor.
Kang, Mingu; Jung, Sung Won; Shin, Woo Jong; Sohn, Yeongsup; Ryu, Sae Hee; Kim, Timur K; Hoesch, Moritz; Kim, Keun Su
2018-05-28
Two-dimensional (2D) crystals have emerged as a class of materials with tunable carrier density 1 . Carrier doping to 2D semiconductors can be used to modulate many-body interactions 2 and to explore novel composite particles. The Holstein polaron is a small composite particle of an electron that carries a cloud of self-induced lattice deformation (or phonons) 3-5 , which has been proposed to play a key role in high-temperature superconductivity 6 and carrier mobility in devices 7 . Here we report the discovery of Holstein polarons in a surface-doped layered semiconductor, MoS 2 , in which a puzzling 2D superconducting dome with the critical temperature of 12 K was found recently 8-11 . Using a high-resolution band mapping of charge carriers, we found strong band renormalizations collectively identified as a hitherto unobserved spectral function of Holstein polarons 12-18 . The short-range nature of electron-phonon (e-ph) coupling in MoS 2 can be explained by its valley degeneracy, which enables strong intervalley coupling mediated by acoustic phonons. The coupling strength is found to increase gradually along the superconducting dome up to the intermediate regime, which suggests a bipolaronic pairing in the 2D superconductivity.
Fast Holes, Slow Electrons, and Medium Control of Polaron Size and Mobility in the DA Polymer F8BT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Matthew J.; Bakalis, Jin; Asaoka, Sadayuki
For this research, the nature of electron and hole polarons on poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (pF) and a copolymer poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) has been studied by chemical doping, pulse radiolysis, charge modulation spectroscopy, quantum chemical calculations, and microwave conductivity. While pF exhibits very similar behavior in all respects for the electron and the hole, this paper explores the hypothesis that the donor acceptor (push–pull) nature of F8BT will tend to localize charges. Optical spectra and quantum chemical calculations point to an electron localized on the thiadiazole unit in polar liquids but becoming more delocalized as the solvent polarity decreases. Indeed, in the nonpolar solventmore » benzene, the electron mobility is only 2.7 times lower than that of the hole, which conversely is shown to be delocalized in all environments and has a similar mobility to polarons on the homopolymer polyfluorene. Lastly, advantageous modifications to the optoelectronic properties of conjugated polymers that come about by using alternating donor acceptor repeat units have thus been shown to not significantly hinder charge transport despite the corrugated energy landscape along the backbone.« less
Fast Holes, Slow Electrons, and Medium Control of Polaron Size and Mobility in the DA Polymer F8BT
Bird, Matthew J.; Bakalis, Jin; Asaoka, Sadayuki; ...
2017-06-28
For this research, the nature of electron and hole polarons on poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (pF) and a copolymer poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) has been studied by chemical doping, pulse radiolysis, charge modulation spectroscopy, quantum chemical calculations, and microwave conductivity. While pF exhibits very similar behavior in all respects for the electron and the hole, this paper explores the hypothesis that the donor acceptor (push–pull) nature of F8BT will tend to localize charges. Optical spectra and quantum chemical calculations point to an electron localized on the thiadiazole unit in polar liquids but becoming more delocalized as the solvent polarity decreases. Indeed, in the nonpolar solventmore » benzene, the electron mobility is only 2.7 times lower than that of the hole, which conversely is shown to be delocalized in all environments and has a similar mobility to polarons on the homopolymer polyfluorene. Lastly, advantageous modifications to the optoelectronic properties of conjugated polymers that come about by using alternating donor acceptor repeat units have thus been shown to not significantly hinder charge transport despite the corrugated energy landscape along the backbone.« less
Directed current in the Holstein system.
Hennig, D; Burbanks, A D; Osbaldestin, A H
2011-03-01
We propose a mechanism to rectify charge transport in the semiclassical Holstein model. It is shown that localized initial conditions associated with a polaron solution, in conjunction with static electron on-site potential not having inversion symmetry, constitute minimal prerequisites for the emergence of a directed current in the underlying periodic lattice system. In particular, we demonstrate that for unbiased spatially localized initial conditions (constituted by kicked static polaron states), violation of parity prevents the existence of pairs of counterpropagating trajectories, thus allowing for a directed current despite the time reversibility of the equations of motion. Nevertheless, propagating polaron solutions associated with sets of unbiased localized initial conditions which eventually leave the region of localized initial conditions do not exhibit time reversibility. Since the initial conditions belonging to the corresponding counterpropagating, current-compensating polaron solutions are not contained in the set, this gives rise to the emergence of a current. Occurrence of long-range coherent charge transport is demonstrated.
Intrachain exciton dynamics in conjugated polymer chains in solution.
Tozer, Oliver Robert; Barford, William
2015-08-28
We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations-that are low-frequency-is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton's temporary occupation of a LEGS-and particularly a quasi-band QEES-its motion is semi-ballistic with a large group velocity. After a short period of rapid transport, the exciton wavefunction collapses again into an exciton-polaron state. We present a simple model for the activated dynamics which is in agreement with the data.
Site-specific hydration and dehydration of San Carlos olivine
NASA Astrophysics Data System (ADS)
Ferriss, E.; Plank, T. A.; Walker, D.
2016-12-01
Hydrogen incorporation and diffusion in olivine is critical to understanding fundamental Earth processes such as mantle rheology, plate tectonics, melt generation and magma ascent. Interpreting measured H profiles in olivine requires a more comprehensive understanding of H point defect reactions than currently exists because H diffusivity (D) ranges over 6 orders of magnitude, from slow diffusing H incorporated as (4H+)Si [1] to rapid `proton-polaron' bulk H diffusion [2]. Here we present the first experiments on H diffusing into and then out of Fe-bearing olivine using the whole-block method [3], which allows a finely-resolved time series of H profiles in 3 crystallographic directions using the same sample for all dehydration steps. A piece of nearly-dry, oriented San Carlos olivine was hydrated in a piston cylinder apparatus using H2O and solid buffers of Ni/NiO and San Carlos olivine and enstatite at 800 °C and 10 kbar for 17.5 hours, just long enough to saturate the `proton-polaron' mechanism. The sample was then dehydrated in a CO/CO2 gas-mixing furnace at 800°C and 10-14 bar fO2 for total heating times of 1, 3, 7, 13, 19, 43, and 68 hrs, at which point most, but not all, of the H had left the crystal. FTIR profiles at 1, 3, and 7 hours show bulk H profiles consistent with `proton-polaron' diffusion. Later the pace of dehydration slowed, and in several cases the bulk H profile shape differed from what would be expected during simple diffusive loss. The small peak at 3600 cm-1, (4H+)Si, remained essentially unchanged throughout all experiments. The peak at 3573 cm-1, (Ti4+)Mg(2H+)Mg, was initially present but tiny, grew to become the largest peak after hydration, and then during dehydration returned to its initial height. The apparent diffusivity of this peak during hydration and the initial stages of dehydration is 4 orders of magnitude faster than the same peak in synthetic forsterite [2]. Peaks at 3542, 3525, 3489, and 3480 cm-1 were not present initially, grew during hydration, and were removed completely during dehydration. No lower-wavenumber H peaks were observed. These results represent a major step toward reconciling the peak-specific understanding of H diffusion [1] with the 2-mechanism H bulk diffusion model [2]. [1] Padrón-Navarta et al. 2014 [2] Kohlstedt & Mackwell 1998 [3] Ferriss et al. 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk; Yam, ChiYung
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can bemore » suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.« less
Magnetic hard gap due to bound magnetic polarons in the localized regime.
Rimal, Gaurab; Tang, Jinke
2017-02-08
We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.
Pelzer, Kenley M.; Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; ...
2017-01-01
Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. Here we propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower thanmore » most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. In conclusion, much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Lastly, our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.« less
Spectroscopic Evidence of Formation of Small Polarons in Doped Manganites
NASA Astrophysics Data System (ADS)
Moritomo, Yutaka; Machida, Akihiko; Nakamura, Arao
1998-03-01
Temperature dependence of absorption spectra for thin films of doped manganites R_0.6Sr_0.4MnO_3, where R is rare-earth atom, has been investigated systematically changing averaged ionic radius < rA > of perovskite A-site. We have observed a specific absorption band at ~1.5eV due to optical excitations from small polarons (SP)(Machida et al.), submitted.. Spectral weight of the SP band increases with decreasing temperature and eventually disappears at the insulator-metal (IM) transition, indicating that SP in the paramagnetic state (T >= T_C) changes into bare electrons (or large polarons) in the ferromagnetic state due to the enhanced one-electron bandwidth W. We further derived important physical quantities, i.e., W, on-site exchange interaction J and binding energy Ep of SP, and discuss material dependence of stability of SP. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.
Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors.
Mizokawa, Takashi
2012-10-23
Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 - ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 - xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons.
NASA Astrophysics Data System (ADS)
Cramer, Tobias; Steinbrecher, Thomas; Koslowski, Thorsten; Case, David A.; Biscarini, Fabio; Zerbetto, Francesco
2009-04-01
Water is an omnipresent polar impurity that is expected to be the origin of many electric degradation phenomena observed in organic semiconductors. Here, we describe a microscopic model for polaron formation in the outermost layer of a pentacene crystal due to the polarization of a nearby water layer. The efficient coupling of a classical force field that describes the liquid with a tight-binding model that represents the π system of the organic layer permits the calculation of nanosecond length trajectories. The model predicts that the reorientation of water dipoles stabilizes positive charge carriers on average by 0.6 eV and thus leads to a polaron trap state at the liquid interface. Thermal fluctuations of the water molecules provoke two-dimensional diffusive hopping of the charge carrier parallel to the interface with mobilities of up to 0.6cm2s-1V-1 and lead to an amorphous broadening of the valence-band tail. As a consequence, water-filled nanocavities act as trapping sites in pentacene transistors. Instead, a complete wetting of the organic film is expected to result in fast thermally activated hopping transport. Polaron trapping is thus not expected to be a limiting factor for transistor-based sensors that operate under water.
NASA Astrophysics Data System (ADS)
Falvo, Cyril
2018-02-01
The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.
NASA Astrophysics Data System (ADS)
Deák, Peter; Aradi, Bálint; Frauenheim, Thomas
2015-07-01
Ti O2 is an oxygen-deficient, intrinsically n -type material, but it is often debated whether the electrons are donated by oxygen vacancies (VO) or titanium interstitials (T ii) . Investigating this issue is complicated by the fact that rutile can self-trap electrons in intrinsic small polaron states, while bulk anatase cannot. The screened hybrid functional HSE06 was proven to account for this phenomenon and has provided quantitatively correct results for VO in our earlier study. Here, we use it for T ii in both rutile and anatase, allowing full spin and symmetry freedom, to shed light on the similarities and differences to VO. We find that these two defects give rise to very similar fingerprints in electron paramagnetic resonance, infrared absorption, or photoelectron spectra. In weakly reduced rutile, the ground state of both defects is (2 +) , with two electrons in polaronic traps, bound loosely to the defect. Most of the time, only these latter states (crudely resembling a hydrogenic series, with increasing distance from the defect) are likely to be detected. In anatase, both VO and T ii can be expected to be ionized at room temperature (singly and doubly, respectively), and the next vertical ionization energy is similar in the two defects—and very close to the ionization energy of the bound polarons in rutile. Most signals in paramagnetic resonance experiments on rutile must also be related to the polaron states, and, in general, very special conditions have to be fulfilled to detect electrons localized to VO or T ii itself. We show that, in thermal equilibrium, the dominant defect in intrinsic samples is VO, and T ii can be the majority defect only in strongly reduced anatase, or in case of p -type doping.
Hole polarons and p -type doping in boron nitride polymorphs
NASA Astrophysics Data System (ADS)
Weston, L.; Wickramaratne, D.; Van de Walle, C. G.
2017-09-01
Boron nitride polymorphs hold great promise for integration into electronic and optoelectronic devices requiring ultrawide band gaps. We use first-principles calculations to examine the prospects for p -type doping of hexagonal (h -BN ), wurtzite (w z -BN ), and cubic (c -BN ) boron nitride. Group-IV elements (C, Si) substituting on the N site result in a deep acceptor, as the atomic levels of the impurity species lie above the BN valence-band maximum. On the other hand, group-II elements (Be, Mg) substituting on the B site do not give impurity states in the band gap; however, these dopants lead to the formation of small hole polarons. The tendency for polaron formation is far more pronounced in h -BN compared to w z -BN or c -BN . Despite forming small hole polarons, Be acceptors enable p -type doping, with ionization energies of 0.31 eV for w z -BN and 0.24 eV for c -BN ; these values are comparable to the Mg ionization energy in GaN.
Absolute instability of polaron mode in semiconductor magnetoplasma
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Dubey, Swati; Ghosh, S.
2018-01-01
Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.
Polaronic deformation at the Fe2+/3 + impurity site in Fe:LiNbO3 crystals
NASA Astrophysics Data System (ADS)
Sanson, A.; Zaltron, A.; Argiolas, N.; Sada, C.; Bazzan, M.; Schmidt, W. G.; Sanna, S.
2015-03-01
Iron doped LiNbO3 crystals with different iron valence states are investigated. An extended x-ray absorption fine structure (EXAFS) spectroscopy study highlights evident changes in the local structure around iron that can be ascribed to the presence of small polarons. In particular, when a Fe3+ replaced a Li ion, the oxygen octahedron shrinked with respect to the pure material, with an average iron-oxygen bond value very similar to that of Fe2O3 hematite. When adding an electron, it localizes at the Fe site in a configuration very close to the atomic Fe d orbitals, inducing a relaxation of the oxygen cage. The same system was modelled by spin-polarized density functional theory (DFT). Several local as well as hybrid exchange-correlation functionals were probed on the bulk LiNbO3 structural properties. The computation is then extended to the case of hematite and finally to the Fe defect in LiNbO3. The calculations reproduced with good accuracy the large lattice relaxation of the oxygen ligands associated to the electronic capture at the Fe center that can be interpreted as due to the polaron formation. The calculations reproduce satisfactorily the available EXAFS data, and allow for the estimation of the polaron energies and the optical properties of the defect.
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Deka, Utpal; Prasad K, Shyam; Okram, G. S.; Sanjeev, Ganesh; Chandra Petwal, Vikash; Verma, Vijay Pal; Dwivedi, Jishnu
2018-07-01
The study of electronic and magnetic properties of electron beam (EB) irradiated PrCoO3 manganites is presented in this communication. The diffraction data confirms that pristine as well as electron beam irradiated samples are single phased and they crystalize at orthorhombic distorted structure with Pbnm space group. The electrical resistivity of all the samples reveals semiconducting behavior. Small polaron hopping model is appropriately employed to investigate the semiconducting nature of the pristine and EB irradiated samples. The Seebeck coefficient (S) data of the pristine sample exhibits colossally high positive value (about 300 mV/K) and substantial decrease in S value is noticed in the irradiated samples. The high temperature analysis of thermopower data validates the small polaron hopping model. The magnetic measurements display possible existence of super-paramagnetic characteristics in the samples.
Effect of dynamic disorder on charge transport along a pentacene chain
NASA Astrophysics Data System (ADS)
Böhlin, J.; Linares, M.; Stafström, S.
2011-02-01
The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.
The Effect of Phonons in RbCl Quantum Pseudodot Qubits
NASA Astrophysics Data System (ADS)
Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin
2016-07-01
By employing the Pekar variational method, the eigenenergies and eigenfunctions of the ground and first-excited states are obtained in a strong electron-longitudinal optical (LO) phonon coupling RbCl quantum pseudodot (QPD). A single qubit can be realized in this two-level quantum system. The electron probability density (EPD) oscillates in the RbCl QPD with a certain period. The investigated results show that the EPD rises with raising the chemical potential of the two-dimensional electron gas and the zero point of the pseudoharmonic potential, whereas it decays with increasing the polaron radius. However, the oscillating period (OP) possesses precisely the opposite characteristics. Through the results and analysis above, we find three ways to adjust the EPD and the OP via changing the chemical potential of the two-dimensional electron gas, the zero point of the pseudoharmonic potential, and the polaron radius.
Infrared spectroscopic study of CaFe0.7Co0.3O3
NASA Astrophysics Data System (ADS)
Zhang, C. X.; Xia, H. L.; Dai, Y. M.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Qiu, X. G.
2017-08-01
Temperature-dependent infrared spectroscopy has been investigated for CaFe0.7Co0.3O3 which undergoes a ferromagnetic transition at TC≈177 K . It is observed that the spectral weight is transferred from ˜4800 -14 000 cm-1 to ˜0 -4800 cm-1 as the temperature is lowered around TC. Such a large-range spectral weight transfer is attributed to the Hund's interaction. The phonons in CaFe0.7Co0.3O3 show minor asymmetric line shapes, implying relatively weak electron-phonon coupling compared with the parent compound CaFeO3. The optical conductivity also reveals a broad peak structure in the range of ˜700 -1500 cm-1. Fit by the model of single-polaron absorption, the broad peak is interpreted by the excitation of polarons. From the fitting parameters of the polaron peak, we estimate the electron-phonon coupling constant α ˜ 0.4 -0.5 , implying that CaFe0.7Co0.3O3 falls into the weak-coupling regime.
Hydrogenic impurity bound polaron in an anisotropic quantum dot
NASA Astrophysics Data System (ADS)
Chen, Shi-Hua
2018-01-01
The effect of the electron-phonon interaction on an electron bound to a hydrogenic impurity in a three-dimensional (3D) anisotropic quantum dot (QD) is studied theoretically. We use the Landau-Pekar variational approach to calculate the binding energy of ground state (GS) and first-excited state (ES) with considering electron-phonon interaction. The expressions of the GS and ES energies under investigation depict a rich variety of dependent relationship with the variational parameters in three different limiting cases. Numerical calculations were performed for ZnSe QDs with different confinement lengths in the xy-plane and the z-direction, respectively. It is illustrated that binding energies of impurity polarons corresponding to each level are larger in small QDs. Furthermore, the contribution to binding energy from phonon is about 15% of the total binding energy.
Phonon assisted carrier motion on the Wannier-Stark ladder
NASA Astrophysics Data System (ADS)
Cheung, Alfred; Berciu, Mona
2014-03-01
It is well known that at zero temperature and in the absence of electron-phonon coupling, the presence of an electric field leads to localization of carriers residing in a single band of finite bandwidth. In this talk, we will present an implementation of the self-consistent Born approximation (SCBA) to study the effect of weak electron-phonon coupling on the motion of a carrier in a biased system. At moderate and strong electron-phonon coupling, we supplement the SCBA, describing the string of phonons left behind by the carrier, with the momentum average approximation to describe the phonon cloud that accompanies the resulting polaron. We find that coupling to the lattice delocalizes the carrier, as expected, although long-lived resonances resulting from the Wannier-Stark states of the polaron may appear in certain regions of the parameter space. We end with a discussion of how our method can be improved to model disorder, other types of electron-phonon coupling, and electron-hole pair dissociation in a biased system.
High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator
Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James
2013-01-01
Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578
The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers
NASA Astrophysics Data System (ADS)
Di, Bing; Wang, Ya-Dong; Zhang, Ya-Lin; An, Zhong
2013-06-01
The inelastic scattering of oppositely charge polarons in polymer heterojunctions is believed to be of fundamental importance for the light-emitting and transport properties of conjugated polymers. Based on the tight-binding SSH model, and by using a nonadiabatic molecular dynamic method, we investigate the effects of interface hopping on inelastic scattering of oppositely charged polarons in a polymer heterojunction. It is found that the scattering processes of the charge and lattice defect depend sensitively on the hopping integrals at the polymer/polymer interface when the interface potential barrier and applied electric field strength are constant. In particular, at an intermediate electric field, when the interface hopping integral of the polymer/polymer heterojunction material is increased beyond a critical value, two polarons can combine to become a lattice deformation in one of the two polymer chains, with the electron and the hole bound together, i.e., a self-trapped polaron—exciton. The yield of excitons then increases to a peak value. These results show that interface hopping is of fundamental importance and facilitates the formation of polaron—excitons.
Chen, Y.; Yi, H. T.; Wu, X.; Haroldson, R.; Gartstein, Y. N.; Rodionov, Y. I.; Tikhonov, K. S.; Zakhidov, A.; Zhu, X. -Y.; Podzorov, V.
2016-01-01
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10−11 to 10−10 cm3 s−1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm2 V−1 s−1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. We suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles. PMID:27477058
Chen, Y.; Yi, H. T.; Wu, X.; ...
2016-08-01
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10 –11 to 10 –10 cm 3 s –1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cmmore » 2 V –1 s –1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.« less
Donor defects and small polarons on the TiO2(110) surface
NASA Astrophysics Data System (ADS)
Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.
2016-05-01
The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.
Controlling n-type doping in MoO 3
Peelaers, H.; Chabinyc, M. L.; Van de Walle, C. G.
2017-02-27
Here, we study the electronic properties of native defects and intentional dopant impurities in MoO 3, a widely used transparent conductor. Using first-principles hybrid functional calculations, we show that electron polarons can be self-trapped, but they can also bind to defects; thus, they play an important role in understanding the properties of doped MoO 3. Our calculations show that oxygen vacancies can cause unintentional n-type doping in MoO 3. Mo vacancies are unlikely to form. Tc and Re impurities on the Mo site and halogens (F, Cl, and Br) on the O site all act as shallow donors but trapmore » electron polarons. Fe, Ru, and Os impurities are amphoteric and will compensate n-type MoO 3. Mn dopants are also amphoteric, and they show interesting magnetic properties. These results support the design of doping approaches that optimally exploit functionality.« less
ERIC Educational Resources Information Center
Walker, Charles T.; Slack, Glen A.
1970-01-01
Originators of the concept coiners of the name are discussed for the following particles": boson, electron, exciton, fermion, magnon, neutron, phonon, photon, plasmon, polariton, polaron, proton, and roton. (Author/DS)
Energy Migration in Organic Thin Films--From Excitons to Polarons
NASA Astrophysics Data System (ADS)
Mullenbach, Tyler K.
The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.
Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkar, Hitesh; Barvat, Arun; Pal, Prabir
2016-06-07
The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction.more » X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.« less
Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2016-11-01
In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.
Magnetic, electronic, dielectric and optical properties of Pr(Ca:Sr)MnO 3
NASA Astrophysics Data System (ADS)
Sichelschmidt, J.; Paraskevopoulos, M.; Brando, M.; Wehn, R.; Ivannikov, D.; Mayr, F.; Pucher, K.; Hemberger, J.; Pimenov, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A.
2001-03-01
The charge-ordered perovskite Pr0.65Ca0.28Sr0.07MnO3 was investigated by means of magnetic susceptibility, specific heat, dielectric and optical spectroscopy and electron-spin resonance techniques. Under moderate magnetic fields, the charge order melts yielding colossal magnetoresistance effects with changes of the resistivity over eleven orders of magnitude. The optical conductivity is studied from audio frequencies far into the visible spectral regime. Below the phonon modes hopping conductivity is detected. Beyond the phonon modes the optical conductivity is explained by polaronic excitations out of a bound state. ESR techniques yield detailed informations on the (H,T ) phase diagram and reveal a broadening of the linewidth which can be modeled in terms of activated polaron hopping.
Molecular behavior of zero-dimensional perovskites
Yin, Jun; Maity, Partha; De Bastiani, Michele; Dursun, Ibrahim; Bakr, Osman M.; Brédas, Jean-Luc; Mohammed, Omar F.
2017-01-01
Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them. PMID:29250600
Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer
NASA Astrophysics Data System (ADS)
Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa
Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.
Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit
NASA Astrophysics Data System (ADS)
Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin
2015-08-01
By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Seema; Gupta, Rashmi; Bamzai, K.K., E-mail: kkbamz@yahoo.com
2016-09-15
Highlights: • CeV, NdV and mixed CeNdV nanoparticle prepared by chemical co precipitation method. • With mixing of Ce{sup 3+} and Nd{sup 3+} morphology is totally changed in mixed CeNdV. • Optical band energy of CeV, NdV and CeNdV shows good photocatalyst under UV light. • Conduction mechanism in CeV due to large polaron and small polaron in CeNdV. - Abstract: Cerium orthovanadate, neodymium orthovanadate and mixed cerium neodymium orthovanadate nanoparticles was prepared by co-precipitation method. Powder X-ray diffraction reveals tetragonal zircon structure. Slight increase in lattice parameter, volume and decrease in X-ray density inferred that Ce{sup 3+} and Nd{supmore » 3+} ion replaces each other. Transmission electron microscopy suggests change in morphology with the effect of mixing and validates formation of nanocrystalline material. The infrared transmittance spectrum confirmed the presence of various functional groups. Dielectric properties as function of frequency show dielectric constant and loss tangent decreases with increase in frequency which is due to Maxwell–Wagner type interfacial polarization. The variation of AC conductivity measurement with frequency suggests conduction mechanism due to large polaron hopping in CeV whereas small polaron in mixed CeNdV. The activation energy decreases with rising frequency indicates the conduction mechanism is based on polaron hopping between localized states in disordered manner.« less
NASA Astrophysics Data System (ADS)
de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.
2018-04-01
The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.
Polarons and Mobile Impurities Near a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Shadkhoo, Shahriar
This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which derives the effective Euclidean action from the classical equation of motion. We calculate the effective mass of the polaron in the model polar liquid at zero and finite temperatures. The self-trapping transition of this polaron turns out to be discontinuous in certain regions of the phase diagram. In order to systematically investigate the role of quantum fluctuations on the polaron properties, we adopt a quantum field theory which supports nearly-critical local modes: the quantum Landau-Brazovskii (QLB) model, which exhibits fluctuation-induced first order transition (weak crystallization). In the vicinity of the phase transition, the quantum fluctuations are strongly correlated; one can in principle tune the strength of these fluctuations, by adjusting the parameters close to or away from the transition point. Furthermore, sufficiently close to the transition, the theory accommodates "soliton'' solutions, signaling the nonlinear response of the system. Therefore, the model seems to be a promising candidate for studying the effects of strong quantum fluctuations and also failure of linear response theory, in the polaron problem. We observe that at zero temperature, and away from the Brazovskii transition where the linear response approximation is valid, the localization transition of the polaron is discontinuous. Upon enhancing fluctuations---of either thermal or quantum nature---the gap of the effective mass closes at distinct second-order critical points. Sufficiently close to the Brazovskii transition where the nonlinear contributions of the field are significantly large, a new state appears in addition to extended and self-trapped polarons: an impurity-induced soliton. We interpret this as the break-down of linear response, reminiscent of what we observe in a polar liquid. Quantum LB model has been proposed to be realizable in ultracold Bose gases in cavities. We thus discuss the experimental feasibility, and propose a setup which is believed to exhibit the aforementioned polaronic and solitonic states. We eventually generalize the polaron formalism to the case of impurities that couple quadratically to a nearly-critical field; hence called the ''quadratic polaron''. The Hertz-Millis field theory and its generalization to the case of magnetic transition in helimagnets, is taken as a toy model. The phase diagram of the bare model contains both second-order and fluctuation-induced first-order quantum phase transitions. We propose a semi-classical scenario in which the impurity and the field couple quadratically. The polaron properties in the vicinity of these transitions are calculated in different dimensions. We observe that the quadratic coupling in three dimensions, even in the absence of the critical modes with finite wavelength, leads to a jump-like localization of the polaron. In lower dimensions, the transition behavior remains qualitatively similar to those in the case of linear coupling, namely the critical modes must have a finite wavelength to localize the particle.
NASA Astrophysics Data System (ADS)
Xiao, Jing-Lin
2014-06-01
On the condition of strong electron-LO phonon coupling in parabolic quantum dot (QD), the first excited state energy, the excitation energy and the transition frequency between the first excited and the ground states of the bound polaron are calculated by using the linear combination operator and the unitary transformation methods. The variation of the above quantities with the temperature, the Coulombic impurity potential and the QD confinement strength are studied in detail. We find that (1) These physical quantities will increase with increasing temperature. (2) They are increasing functions of the confinement strength due to the existence of the Coulombic impurity potential between the electron and the hydrogen-like impurity. (3) We obtain three ways of tuning them via controlling the temperature, the Coulombic impurity potential and the confinement strength.
Electron-Phonon Systems on a Universal Quantum Computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James
We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less
Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study
NASA Astrophysics Data System (ADS)
Cattena, Carlos J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.
2010-10-01
In this work we attempt to elucidate the nature of conductivity in polymers by taking the acid-base doped polyaniline (PAni) polymer. We evaluate the PAni conductance by using realistic ab initio parameters and including decoherent processes within the minimal parametrization model of D’Amato-Pastawski. In contrast to general wisdom, which associates the conducting state with coherent propagation in a periodic polaronic lattice, we show that decoherence can account for high conductance in the strongly disordered bipolaronic lattice. Hence, according to our results, there is no need of considering a mix model of “conducting” polaronic lattice islands separated by “insulating” bipolaronic lattice strands as is usually assumed for PAni. We find that without dephasing events, even very short strands of bipolaronic lattices are not able to sustain electronic transport. We also include a discussion of specific mechanisms that should be involved in decoherence rates of PAni and relate them with Marcus-Hush theory of electron transfer.
Donor defects and small polarons on the TiO{sub 2}(110) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, P. G.; Janotti, A., E-mail: janotti@udel.edu; Van de Walle, C. G.
2016-05-14
The role of defects in the chemical activity of the rutile TiO{sub 2}(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend tomore » localize in the form of small polarons, which are the factual cause of the deep states ∼1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO{sub 2} and related oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djidjou, T. K.; Basel, Tek; Rogachev, A.
We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitudemore » of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.« less
NASA Astrophysics Data System (ADS)
Benedict, Christopher J.; Rao, Ashok; Sanjeev, Ganesh; Okram, G. S.; Babu, P. D.
2016-01-01
In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO3 cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation.
Influence of Ce Doping on Structural and Transport Properties of Ca1- x Ce x MnO3 ( x=0.2) Manganite
NASA Astrophysics Data System (ADS)
Varshney, Dinesh; Mansuri, Irfan
2011-01-01
We have investigated structural, electric, magnetic and thermal transport properties of electron doped Ca1- x Ce x MnO3 ( x=0.2) manganites. The Cerium substitution for Ca2+causes electron doping into insulating CaMnO3 without e g electron. At room temperature the polycrystalline Ca0.8Ce0.2MnO3 is in the crystallographic orthorhombic structure, with Pnma space group symmetry from the refinement of x-ray powder diffraction patterns. The electrical resistivity data infers that Ca0.8Ce0.2MnO3 manganite is in the semiconducting phase. A smooth linear behavior of log plot values is obtained and is well fitted with adiabatic small polaron conduction model. Nearest-neighbor hopping of a small polaron leads to a mobility with a thermally activated form. The negative values of thermopower infer electron as carriers in Ca0.8Ce0.2MnO3. From susceptibility measurements the Ce doped CaMnO3 shows a transition from antiferromagnetic (AFM) to paramagnetic (PM) phase.
Spectroscopic views of high-Tc superconductors
NASA Astrophysics Data System (ADS)
Wendin, Göran
1989-01-01
Recent progress in the fields of photoelectron spectroscopy, electron energy loss spectroscopy, inverse photoemission, and infrared- and optical reflectivity applied to high-Tc superconductors is analyzed in terms of correlation effects, transport properties and Fermi liquid behaviour. For the CuO2 based materials, a picture emerges of localized holes in copper 3d levels and itinerant holes in oxygen 2p-like bands. A Fermi liquid picture and a superconducting gap is indicated by angle-resolved photo-emission, infrared absorption, and NMR. A Fermi surface is indicated by positron annihilation. Infrared absorption reveals strongly frequency and temperature dependent scattering and polaronic behaviour for frequencies below 0.1 eV. Infrared absorption indicates a maximum superconducting gap of 2Δ/kBTc = 8 and suggests that ordinary samples may show a range of gaps 2 < 2Δ/kBTc < 8 resulting in commonly measured average values of 2Δ/kBTc = 5. An interesting possibility in YBaCuO, suggested by infrared reflectivity and photoconductivity measurements, is that polarons in the CuO2 planes with 0.13 eV excitation energy mediate an attractive interaction between quasi-holes in O 2p-derived conduction bands. The polarons will involve important lattice distortions even if, as is frequently assumed, magnetic polaron effects may be the essential thing.
Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons.
Silva, Gesiel Gomes; da Cunha, Wiliam Ferreira; de Sousa Junior, Rafael Timóteo; Almeida Fonseca, Antonio Luciano; Ribeiro Júnior, Luiz Antônio; E Silva, Geraldo Magela
2018-06-20
An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.
Charge and energy transports via poly-phenylacetylene based dendrimers
NASA Astrophysics Data System (ADS)
Shin, Yongwoo; Li, Minghai; Lin, Xi
2010-03-01
Poly-Phenylacetylene (PPA) is widely used in photoconductivity, photoluminescence, and light harvesting applications. In this work, we investigate the charge and exciton transport energetics and mechanisms in the PPA-based dendrimers using our recently developed adapted Su-Schrieffer-Heeger (SSH) model Hamiltonians and ab initio Hartree-Fock (HF) calculations. We found both doping and photo-excitation lead to the formation of optical phonon dressed pi electron states, namely the self-localized polarons, in the energy gap. Independent from their origins, these polarons can be self-trapped at multiple lattice locations along the PPA chain, and migrate from one to the next with an activation barrier of ˜0.006 eV, slightly higher than the corresponding barrier found in trans-polyacetylene. The PPA-based dendrimers can be constructed via the meta-positions of phenyl rings. In this case, we found the dendrimer junctions form attractive potential wells for both polarons and excitons, and the width and height of these junction potential wells can be controlled by the geometry of the dendrimers.
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; ...
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.more » This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.« less
Accessible switching of electronic defect type in SrTi O3 via biaxial strain
NASA Astrophysics Data System (ADS)
Chi, Yen-Ting; Youssef, Mostafa; Sun, Lixin; Van Vliet, Krystyn J.; Yildiz, Bilge
2018-05-01
Elastic strain is used widely to alter the mobility of free electronic carriers in semiconductors, but a predictive relationship between elastic lattice strain and the extent of charge localization of electronic defects is still underdeveloped. Here we considered SrTi O3 , a prototypical perovskite as a model functional oxide for thin film electronic devices and nonvolatile memories. We assessed the effects of biaxial strain on the stability of electronic defects at finite temperature by combining density functional theory (DFT) and quasiharmonic approximation (QHA) calculations. We constructed a predominance diagram for free electrons and small electron polarons in this material, as a function of biaxial strain and temperature. We found that biaxial tensile strain in SrTi O3 can stabilize the small polaron, leading to a thermally activated and slower electronic transport, consistent with prior experimental observations on SrTi O3 and distinct from our prior theoretical assessment of the response of SrTi O3 to hydrostatic stress. These findings also resolved apparent conflicts between prior atomistic simulations and conductivity experiments for biaxially strained SrTi O3 thin films. Our computational approach can be extended to other functional oxides, and for the case of SrTi O3 our findings provide concrete guidance for conditions under which strain engineering can shift the electronic defect type and concentration to modulate electronic transport in thin films.
Dynamics of heavy carriers in the ferromagnetic superconductor UGe2
NASA Astrophysics Data System (ADS)
Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.
2018-04-01
Superconductivity and ferromagnetism in a number of uranium-based materials come from the same f-electrons with a relatively large effective mass, suggesting the presence of a band of heavy quasiparticles, whose nature is still a mystery. Here, UGe2 dynamics in both ferromagnetic and paramagnetic phases is studied employing high-field μ +SR spectroscopy. The spectra exhibit a doublet structure characteristic to formation of subnanometer-sized magnetic polarons. This model is thoroughly explored here and correlated with the unconventional physics of UGe2. The heavy-fermion behaviour is ascribed to magnetic polarons; when coherent they form a narrow band, thus reconciling heavy carriers with superconductivity and itinerant ferromagnetism.
NASA Astrophysics Data System (ADS)
Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter
2018-04-01
We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by means of a complementary many-body polaron theory, which yields a similar robust spin and orbital order as the Hartree-Fock approximation. Using realistic parameters for the vanadium perovskite La1 -xCaxVO3 , we show that its soft gap is reproduced as well as the marginal doping dependence of the position of the chemical potential relative to the center of the lower Hubbard band. The present theory uncovers also the reasons why the d1→d0 satellite excitations, which directly probe the effect of the random defect fields on the polaron state, are not well resolved in the available experimental photoemission spectra for La1 -xCaxVO3 .
EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline
NASA Astrophysics Data System (ADS)
Karray, Fekri; Kassiba, Abdelhadi
2012-06-01
Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.
NASA Astrophysics Data System (ADS)
Petrova, Jasmina; Romanova, Julia; Madjarova, Galia; Ivanova, Anela; Tadjer, Alia; Gospodinova, Natalia
A number of studies prove the existence of magnetically active states in polyaniline and claim polaronic nature of conductivity, but the molecular structure of polarons and bipolarons with account of the solvent effect has not been exhausted. Alongside with conductivity, the optical and magnetic properties of the polymer related to its practical application could be rationalized by the elucidation of this problem. The purpose of this chapter is the assessment of the degree of protonation on the spatial and electronic structure of hydrated polyaniline oligomers. Neutral and protonated emeraldine octamers are modeled to this end. UHF, UBLYP, and UB3LYP with 6-31G* basis set were employed for optimization of the geometry in aqueous medium (PCM). Various structural parameters: bond lengths, valence, and torsion angles, were analyzed and compared. The distribution of Mulliken and NBO charge density and Mulliken atomic spin density was discussed.
NASA Astrophysics Data System (ADS)
Dzhumanov, S.; Karimboev, E. X.
2014-07-01
In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .
Effect of halogen dopants on the properties of Li2O2: is chloride special?
Cortes, Henry A; Vildosola, Verónica L; Barral, María Andrea; Corti, Horacio R
2018-05-18
There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.
Spin-state polarons as a precursor to ferromagnetism and metallicity in hole-doped LaCoO3
NASA Astrophysics Data System (ADS)
Podlesnyak, A.; Russina, M.; Pomjakushina, E.; Conder, K.; Khomskii, D.
2008-03-01
Lightly doped cobaltites La1-xSrxCoO3 exhibit magnetic properties at low temperatures, in strong contrast to the diamagnetic LaCoO3. We undertook an inelastic neutron scattering study with the goal to identify the energy spectrum and magnetic state of cobalt ions in the doped system with x=0.002. In distinguish to the parent compound, where no excitations have been found for T<30 K, an inelastic peak at δE ˜0.75 meV was observed in La0.998Sr0.002CoO3 at T=1.5 K. The intensity of this excitation is much higher than what is expected from an estimated concentration of doped holes. Furthermore, strong Zeeman splitting of the inelastic peak corresponds to an unusually high effective magnetic moment ˜15 μB. Neighboring low-spin (LS) Co^4+ and intermediate-spin Co^3+ ions can share an eg electron by swapping configuration. The t2g electrons, in their turn, couple ferromagnetically. Therefore, we propose that the holes introduced in the LS state of LaCoO3 are extended over the neighboring Co sites forming spin-state polarons and transforming the involved Co^3+ ions to the higher spin state. Grows of spin-state polarons with hole doping finally results in a metallic ferromagnetic state for x > 0.3.
NASA Astrophysics Data System (ADS)
Zhang, Haijuan; Wang, Kuidong; Zhang, Yuanyuan; Dong, Wenxia; Chen, Long; Tang, Xiaodong; Chen, Jie
2017-11-01
The colossal magnetoresistance effect endows La0.7A0.3MnO3 manganites distinctive fascination. Both theoretical and experimental studies demonstrated that the interplay among polarons could significantly influence magnetoresistance. However, the underlying microscopic mechanism of the influence remains elusive due to the lack of experimental evidences. Utilizing ultrafast optical spectroscopy to track the polaron dynamics around Curie temperatures, we observed a diverse two-step recovery process in three sibling manganite thin films with various magnetoresistance effects and Curie temperatures, while the slow step was proposed to be the formation evolution of correlated polarons through the polaron-polaron interaction. Polarons in La0.7Ca0.3MnO3 equilibrate much faster than those in La0.7(Ca0.58Sr0.42)0.3MnO3 and La0.7Sr0.3MnO3, indicating a comparatively tighter interaction between polarons and subsequently a stronger magnetoresistance effect.
Rice, W. D.; Liu, W.; Pinchetti, V.; ...
2017-04-07
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, W. D.; Liu, W.; Pinchetti, V.
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.
2016-12-01
Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.
Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3
NASA Astrophysics Data System (ADS)
Chen, Hungru; Umezawa, Naoto
2014-07-01
Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yuping; Galli, Giulia
Here, we carried out calculations based on density functional theory to investigate the electronic, vibrational, and dielectric properties of mixed halide perovskites CH 3NH 3AI 3–xCl x with A = Pb and Sn. Computed free energies indicated that Cl mixed systems may be formed only for Cl concentrations not exceeding 10 19 cm –3, and phonon calculations showed that the disorder induced in the host lattice by the presence of a smaller halogen is responsible for mechanical instabilities. However, we found that the presence of chloride may be beneficial to the electronic properties of the perovskites. Chloride anions cause themore » organic cations to be displaced from the center of the cage; such a displacement induces preferential orientations of the cation dipole, which in turn are responsible for notable changes in the dielectric properties of the material and possibly for the formation of local ferroelectric domains. The latter are instrumental in separating electron hole pairs and hence in contributing to long charge-carrier diffusion lengths, in spite of polarons being more likely formed in mixed perovksites than in CH 3NH 3AI 3.« less
He, Yuping; Galli, Giulia
2016-12-14
Here, we carried out calculations based on density functional theory to investigate the electronic, vibrational, and dielectric properties of mixed halide perovskites CH 3NH 3AI 3–xCl x with A = Pb and Sn. Computed free energies indicated that Cl mixed systems may be formed only for Cl concentrations not exceeding 10 19 cm –3, and phonon calculations showed that the disorder induced in the host lattice by the presence of a smaller halogen is responsible for mechanical instabilities. However, we found that the presence of chloride may be beneficial to the electronic properties of the perovskites. Chloride anions cause themore » organic cations to be displaced from the center of the cage; such a displacement induces preferential orientations of the cation dipole, which in turn are responsible for notable changes in the dielectric properties of the material and possibly for the formation of local ferroelectric domains. The latter are instrumental in separating electron hole pairs and hence in contributing to long charge-carrier diffusion lengths, in spite of polarons being more likely formed in mixed perovksites than in CH 3NH 3AI 3.« less
Dynamical control of electron-phonon interactions with high-frequency light
NASA Astrophysics Data System (ADS)
Dutreix, C.; Katsnelson, M. I.
2017-01-01
This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Kaibo; Qatar Univ., Doha; Abdellah, Mohamed
Echoing the roaring success of their bulk coun-terparts, nano-objects built from organolead halide perov-skites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the pho-toinduced charge dynamics is essential for optimizing OLHP optoelectronic functionalities. However, mapping the carri-er-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales. By correlating ultrafast time-resolved optical and X-ray absorp-tion measurements, this work reveals the photoinduced formation of strong-coupling polarons in CH 3NH 3PbBr 3 nanoparticles. Such polarons originate from the self-trapping of electrons in the net Coulombic field causedmore » by the dis-placed inorganic nuclei and the oriented organic cations. The transient structural change detected at the Pb L 3 X-ray ab-sorption edge is well captured by a distortion with average bond elongation in the [PbBr 6] 2- motif. As a result, general implications for designing novel OLHP nanomaterials targeting the active utilization of these quasi-particles are outlined.« less
Zheng, Kaibo; Qatar Univ., Doha; Abdellah, Mohamed; ...
2016-10-28
Echoing the roaring success of their bulk coun-terparts, nano-objects built from organolead halide perov-skites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the pho-toinduced charge dynamics is essential for optimizing OLHP optoelectronic functionalities. However, mapping the carri-er-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales. By correlating ultrafast time-resolved optical and X-ray absorp-tion measurements, this work reveals the photoinduced formation of strong-coupling polarons in CH 3NH 3PbBr 3 nanoparticles. Such polarons originate from the self-trapping of electrons in the net Coulombic field causedmore » by the dis-placed inorganic nuclei and the oriented organic cations. The transient structural change detected at the Pb L 3 X-ray ab-sorption edge is well captured by a distortion with average bond elongation in the [PbBr 6] 2- motif. As a result, general implications for designing novel OLHP nanomaterials targeting the active utilization of these quasi-particles are outlined.« less
Size dependent polaronic conduction in hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Monika; Banday, Azeem; Murugavel, Sevi
2016-05-23
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observedmore » that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.« less
Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.
2016-01-01
The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong delocalization of the positive polaron on the polymer donor is an important reason for the efficient charge separation in bulk heterojunction systems as it minimizes the wasteful process of charge recombination. The combination of advanced EPR spectroscopy and DFT is a powerful approach for investigation of light-induced charge dynamics in organic photovoltaic materials. PMID:23670645
NASA Astrophysics Data System (ADS)
Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu
2017-06-01
The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Yi, H. T.; Wu, X.
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10 –11 to 10 –10 cm 3 s –1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cmmore » 2 V –1 s –1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.« less
Non-extensive entropy of modified Gaussian quantum dot under polaron effects
NASA Astrophysics Data System (ADS)
Bahramiyan, H.; Khordad, R.; Sedehi, H. R. Rastegar
2018-01-01
The effect of electron-phonon (e-p) interaction on the non-extensive Tsallis entropy of a modified Gaussian quantum dot has been investigated. In this work, the LO-phonons, SO-phonons and LO + SO-phonons have been considered. It is found that the entropy increases with enhancing the confinement potential range and depth. The entropy decreases with considering the electron-phonon interaction. The electron-LO + SO-phonon interaction has the largest contribution to the entropy.
Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
Zhao, Xiao-gang; Liu, Peng; Song, Yue-Chan; Zhang, An-ping; Chen, Xiao-ming; Zhou, Jian-ping
2015-09-21
(In1/2Nb1/2)TiO2 (IN-T) ceramics were prepared via a solid-state reaction route. X-ray diffraction (XRD) and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compounds. The results indicated that the sintered ceramics have a single phase of rutile TiO2. Dielectric spectroscopy (frequency range from 20 Hz to 1 MHz and temperature range from 10 K to 270 K) was performed on these ceramics. The IN-T ceramics showed extremely high permittivities of up to ∼10(3), which can be referred to as colossal permittivity, with relatively low dielectric losses of ∼0.05. Most importantly, detailed impedance data analyses of IN-T demonstrated that electron-pinned defect-dipoles, interfacial polarization and polaron hopping polarization contribute to the colossal permittivity at high temperatures (270 K); however, only the complexes (pinned electron) and polaron hopping polarization are active at low temperatures (below 180 K), which is consistent with UDR analysis.
NASA Astrophysics Data System (ADS)
Rana, Aniket; Sharma, Chhavi; Prabhu, Deepak D.; Kumar, Mahesh; Karuvath, Yoosaf; Das, Suresh; Chand, Suresh; Singh, Rajiv K.
2018-04-01
Ultrafast charge carrier dynamics as well as the generation of polaron pair in squaraine (SQ) and squaraine:[6,6]-phenyl-C 71-butyric acid methyl ester (SQ:PCBM71) have been studied using ultrafast transient absorption spectroscopy (UTAS). The current study reveals that the pure SQ exhibits the creation of singlet and triplet states; however, incorporation of PCBM71 in SQ results in the formation of polaron pairs with ˜550ps lifetime, which in turn leads to the creation of free electrons in the device. We show that the considerable increment in monomolecular and bimolecular recombination in SQ:PCBM71 compared to pure SQ which describes the interfacial compatibility of SQ and PCBMC71 molecules. The present work not only provides the information about the carrier generation in SQ and SQ:PCBM71 but also gives the facts relating to the effect of PCBM71 mixing into the SQ which is very significant because the SQ has donor-acceptor-donor (D-A-D) structure and mixing one more acceptor can introduce more complex recombinations in the blend. These findings have been complimented by the charge transport study in the device using impedance spectroscopy. The various important transport parameters are transit time (τt), diffusion constant (Dn), global mobility (μ) and carrier lifetime (τr). The values of these parameters are 26.38 μs, 4.64x10-6 cm2s-1, 6.12x10-6 cm2V-1s-1 and 399 μs, respectively. To the best of our knowledge such study related to SQ is not present in the literature comprehensively.
Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires
NASA Astrophysics Data System (ADS)
Sun, Hui; Li, Hua; Tian, Qiang
2018-04-01
Polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/Al x Ga1- x As core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.
Chen, Ren-Ai; Wang, Cong; Li, Sheng; George, Thomas F.
2013-01-01
With the development of experimental techniques, effective injection and transportation of electrons is proven as a way to obtain polymer light-emitting diodes (PLEDs) with high quantum efficiency. This paper reveals a valid mechanism for the enhancement of quantum efficiency in PLEDs. When an external electric field is applied, the interaction between a negative polaron and triplet exciton leads to an electronic two-transition process, which induces the exciton to emit light and thus improve the emission efficiency of PLEDs. PMID:28809346
NASA Astrophysics Data System (ADS)
Datt, Gopal; Abhyankar, A. C.
2017-07-01
Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in the modern electronics industry.
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Anwar, Shahid; Lalla, N. P.; Patil, S. I.
2006-11-01
In the present study we report the precise resistivity measurements for the polycrystalline bulk sample as well as highly oriented thin-films of La 0.8Ca 0.2MnO 3. The poly crystalline sample was prepared by standard solid-state reaction route and the oriented thin film was prepared by pulsed laser deposition (PLD). The phase purity of these samples was confirmed by X-ray diffraction and the back-scattered electron imaging using scanning electron microscopy (SEM). The oxygen stoichiometry analysis was done by iodimetry titration. The resistivities of these samples were carried out with four-probe resistivity measurement setup. The observed temperature dependence of resistivity data for both the samples was fitted using the polaron model. We have found that polaronic model fits well with the experimental data of both polycrystalline and single crystal samples. A new phenomenological model is proposed and used to estimate contribution to the resistivity due to grain boundary in the ferromagnetic state of polycrystalline manganites and it has been shown that the scattering of electrons from the grain boundary (grain surface) is a function of temperature and controlled by the effective grain resistance at that temperature.
NASA Astrophysics Data System (ADS)
Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning
2011-09-01
Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.
Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R
2015-11-24
Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.
Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility
NASA Astrophysics Data System (ADS)
Los, Victor F.
2017-08-01
A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.
A new DFT approach to model small polarons in oxides with proper account for long-range polarization
NASA Astrophysics Data System (ADS)
Kokott, Sebastian; Levchenko, Sergey V.; Scheffler, Matthias; Theory Department Team
In this work, we address two important challenges in the DFT description of small polarons (excess charges localized within one unit cell): sensitivity to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. The polaron properties are obtained using a modified neutral potential-energy surface (PES). Using the hybrid HSE functional and considering the whole range 0 <= α <= 1 , we show that the modified PES model significantly reduces the dependence of the polaron level and binding energy in MgO and TiO2 on the XC functional. It does not eliminate the dependence on supercell size. Based on Pekar's model, we derive the proper long-range behavior of the polaron and a finite-size correction that allows to obtain the polaron properties in the dilute limit (tested for supercells containing up to 1,000 atoms). The developed approach reduces drastically the computational time for exploring the polaron PES, and gives a consistent description of polarons for the whole range of α. It allowed us to find a self-trapped hole in MgO that is noticeably more stable than reported previously. partially supported by UniCat (Deutsche Forschungsgemeinschaft).
Magnetic order and polaron formation in hole-doped LaMnO_3
NASA Astrophysics Data System (ADS)
Terashita, Hirotoshi; Neumeier, John J.; Mitchell, J. F.
2003-03-01
We report the magnetic properties of hole-doped La_1-xCa_xMnO3 (0 <= x <= 0.14). A ferromagnetic saturation moment M_sat develops linearly with Mn^4+ concentration. The slope of M_sat versus Mn^4+ concentration is 27 μ_B/(Mn-ion) per substututed Mn^4+, which is about 3 times larger in magnitude than that of electron-doped CaMnO3 [1]. This result suggests differences in the formation of magnetic polarons of the A-type antiferromagnet LaMnO3 versus that of the G-type antiferromagnet CaMnO_3. Supported by NSF Grant DMR9982834 and the USDOE under contract W-31-109-ENG-38. [1] J. J. Neumeier and J. L. Cohn, Phys. Rev. B 61, 14319 (2000).
NASA Astrophysics Data System (ADS)
Chia, Elbert; Cheng, Liang; Lourembam, James; Wu, S. G.; Motapothula, Mallikarjuna R.; Sarkar, Tarapada; Venkatesan, Venky
Using terahertz time-domain spectroscopy (THz-TDS), we obtained the complex optical conductivity [ σ (ω) ] of Ta-doped TiO2 thin films - a transparent conducting oxide (TCO), in the frequency range 0.3-2.7 THz, temperature range 10-300 K and various Ta dopings. Our results reveal the existence of an interacting polaronic gas in these TCOs, and suggest that their large conductivity is caused by the combined effects of large carrier density and small electron-phonon coupling constant due to Ta doping. NUSNNI-NanoCore, NRF-CRP (NRF2008NRF-CRP002-024), NUS cross-faculty Grant and FRC (ARF Grant No. R-144-000-278-112), MOE Tier 1 (RG123/14), SinBeRISE CREATE.
Observation of Spin-Polarons in a strongly interacting Fermi liquid
NASA Astrophysics Data System (ADS)
Zwierlein, Martin
2009-03-01
We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) film on SrTiO3 (STO) substrate. The variations in out-of-plane lattice constant and BO6 octahedral rotation across the PSMO/STO interface strongly depend on the thickness of PSMO films. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI’) phase is formed during the cubic-to-tetragonal phase transition of STO, apparently due to enhanced electron-phonon interaction and atomic disorder in the film.more » The transport properties of the FI’ phase in the 30-nm film are masked because of the reduced interfacial effect and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to formation of the theoretically predicted novel ferromagnetic-polaronic insulator in systems, as illustrated in a new phase diagram, that are otherwise ferromagnetic metals (FM) in bulk form.« less
ARPES Study on the Strongly Correlated Iron Chalcogenides Fe1+ySexTe1-x
NASA Astrophysics Data System (ADS)
Liu, Zhongkai
2014-03-01
The level of electronic correlation has been one of the key questions in understanding the nature of iron-based superconductivity. Using Angle Resolved Photoemission Spectroscopy (ARPES), we systematically investigated the correlation level in the iron chalcogenide family Fe1+ySexTe1-x. For the parent compound Fe1.02Te, we discovered ``peak-dip-hump'' spectra with heavily renormalized quasiparticles in the low temperature antiferromagnetic (AFM) state, characteristic of coherent polarons seen in other correlated materials with complex electronic and lattice interactions. As the temperature (or Se ratio x) increases and Fe1.02SexTe1-x is in the paramagnetic (PM) phase, we observed dissociation behavior of polarons, suggestive of connection between the weakening electron-phonon coupling and AFM. Further increase of x leads to an incoherent to coherent crossover in the electronic structure, indicating a reduction in the electronic correlation as the superconductivity emerges. Furthermore, the reduction of the electronic correlation in Fe1+ySexTe1-x evolves in an orbital-dependent way, where the dxy orbital is influenced most significantly. At the other end of the phase diagram (FeSe) where the single crystal is not stable, we have studied the MBE-grown thin film which also reveals orbital-dependent strong correlation in the electronic structure. Our findings provide a quantitative comprehension on the correlation level and its evolution on the phase diagram of Fe1+ySexTe1-x. We discuss the physical scenarios leading to strong correlations and its connection to superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emin, David, E-mail: emin@unm.edu
Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness ofmore » this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy.« less
REVIEW ARTICLE: On correlation effects in electron spectroscopies and the GW approximation
NASA Astrophysics Data System (ADS)
Hedin, Lars
1999-10-01
The GW approximation (GWA) extends the well-known Hartree-Fock approximation (HFA) for the self-energy (exchange potential), by replacing the bare Coulomb potential v by the dynamically screened potential W, e.g. Vex = iGv is replaced by icons/Journals/Common/Sigma" ALT="Sigma" ALIGN="TOP"/>GW = iGW. Here G is the one-electron Green's function. The GWA like the HFA is self-consistent, which allows for solutions beyond perturbation theory, like say spin-density waves. In a first approximation, iGW is a sum of a statically screened exchange potential plus a Coulomb hole (equal to the electrostatic energy associated with the charge pushed away around a given electron). The Coulomb hole part is larger in magnitude, but the two parts give comparable contributions to the dispersion of the quasi-particle energy. The GWA can be said to describe an electronic polaron (an electron surrounded by an electronic polarization cloud), which has great similarities to the ordinary polaron (an electron surrounded by a cloud of phonons). The dynamical screening adds new crucial features beyond the HFA. With the GWA not only bandstructures but also spectral functions can be calculated, as well as charge densities, momentum distributions, and total energies. We will discuss the ideas behind the GWA, and generalizations which are necessary to improve on the rather poor GWA satellite structures in the spectral functions. We will further extend the GWA approach to fully describe spectroscopies like photoemission, x-ray absorption, and electron scattering. Finally we will comment on the relation between the GWA and theories for strongly correlated electronic systems. In collecting the material for this review, a number of new results and perspectives became apparent, which have not been published elsewhere.
Biswas, Somnath; Husek, Jakub; Baker, L Robert
2018-04-24
Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.
Creation of Rydberg Polarons in a Bose Gas
NASA Astrophysics Data System (ADS)
Schmidt, Richard
2017-04-01
In this talk we review the theory of various types of Bose polarons that can be realized in ultracold atomic systems. We then report the spectroscopic observation of Rydberg polarons in a Bose gas which is in excellent agreement with theoretical predictions. This novel type of polaron is created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate and it is distinguished by the occupation of a large number bound molecular states. The cross-over from few-body bound molecular oligomers to many-body polaron features is described with a functional determinant theory that solves an extended Froehlich Hamiltonian for an impurity in a Bose gas. The detailed analysis of the red-detuned tail of the excitation spectrum describes the contribution from the region of highest density in the condensate and provides a clear signature of Rydberg polarons. This work has been performed in collaboration with groups at Rice University, Harvard University, and the TU Vienna.
NASA Astrophysics Data System (ADS)
Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Castiglioni, Jorge; Mombrú, Alvaro W.
2017-06-01
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of 3-8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications.
Percolation Magnetism in Ferroelectric Nanoparticles
NASA Astrophysics Data System (ADS)
Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.
2017-06-01
Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.
Inter-subband structure factor for a quasi-one-dimensional polaron gas
NASA Astrophysics Data System (ADS)
Machado, Paulo César Miranda; Osório, Francisco Aparecido Pinto; Borges, Antônio Newton
2016-08-01
In this work, the collective excitation spectra of quasi-one-dimensional plasmon in a rectangular GaAs quantum wire is investigated. Our calculations are performed within the Singwi, Tosi, Land and Sjölander (STLS) self-consistent theory taking into account the plasmon-longitudinal optical (LO) phonon coupling effects. We have employed a three subband model with only the first subband occupied by electrons and we have considered intra-subband and inter-subband transitions. We show that the polaronic effects cause the appearance of dips and oscillations in the static structure factor dispersion relation, which are directly related with the oscillator strength transfer between the collective excitation energy branches. We have also observed oscillations in the pair-correlation function that are characteristic of inter-subband transitions and it denotes partial localization of the particle.
Spin-correlated doublet pairs as intermediate states in charge separation processes
NASA Astrophysics Data System (ADS)
Kraffert, Felix; Behrends, Jan
2017-10-01
Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.
Hole polaron-polaron interaction in transition metal oxides and its limit to p-type doping
NASA Astrophysics Data System (ADS)
Chen, Shiyou; Wang, Lin-Wang
2014-03-01
Traditionally the origin of the poor p-type conductivity in some transition metal oxides (TMOs) was attributed to the limited hole concentration: the charge-compensating donor defects, such as oxygen vacancies and cation interstitials, can form spontaneously as the Fermi energy shifts down to near the valence band maximum. Besides the thermodynamic limit to the hole concentration, the limit to the hole mobility can be another possible reason, e.g., the hole carrier can form self-trapped polarons with very low carrier mobility. Although isolated hole polarons had been found in some TMOs, the polaron-polaron interaction is not well-studied. Here we show that in TMOs such as TiO2 and V2O5, the hole polarons prefer to bind with each other to form bipolarons, which are more stable than free hole carriers or separated polarons. This pushes the hole states upward into the conduction band and traps the holes. The rise of the Fermi energy suppresses the spontaneous formation of the charge-compensating donor defects, so the conventional mechanism becomes ineffective. Since it can happen in the impurity-free TMO lattices, independent of any extrinsic dopant, it acts as an intrinsic and general limit to the p-type conductivity in these TMOs. This material is based upon work performed by the JCAP, a US DOE Energy Innovation Hub, the NSFC (No. 61106087 and 91233121) and special funds for major state basic research (No. 2012CB921401).
Formation of Electron Strings in Narrow Band Polar Semiconductors
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.
2000-01-01
We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.
Intrinsic charge trapping in amorphous oxide films: status and challenges
NASA Astrophysics Data System (ADS)
Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.
2018-06-01
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.
NASA Astrophysics Data System (ADS)
Grein, C. H.; John, Sajeev
1989-04-01
We present a first principles theory of the temperature dependence of the Urbach optical absorption edge in crystals and disordered semiconductors which incorporates the effects of short range correlated static disorder and the non-adiabatic quantum dynamics of the coupled electron-phonon system. At finite temperatures the dominant features of the Urbach tail are accounted for by multiple phonon absorption and emission side bands which accompany the optically induced electronic transition and which provide a dynamic polaronic potential well that localizes the electron. Excellent agreement is found with experimental data on both crystalline and amorphous silicon.
Giant magnetoelectric effect in pure manganite-manganite heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Sanjukta; Pankaj, Ravindra; Yarlagadda, Sudhakar
2017-11-01
Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form (Insulator) /(LaMnO3)(n)/Interface/(CaMnO3)(n)/(Insulator) show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from LaMnO3 to CaMnO3 due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface.
Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites
Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J.; Lee, Jooseop; Ruff, Jacob P. C.; Ko, J. Y. Peter; Brown, Craig M.; Harriger, Leland W.; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J.; Lee, Seung-Hun
2017-01-01
Long carrier lifetime is what makes hybrid organic–inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic–inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance. PMID:28673975
Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.
Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun
2017-07-18
Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.
Defects in codoped NiO with gigantic dielectric response
NASA Astrophysics Data System (ADS)
Wu, Ping; Ligatchev, Valeri; Yu, Zhi Gen; Zheng, Jianwei; Sullivan, Michael B.; Zeng, Yingzhi
2009-06-01
We combine first-principles, statistical, and phenomenological methods to investigate the electronic and dielectric properties of NiO and clarify the nature of the gigantic dielectric response in codoped NiO. Unlike previous models which are dependent on grain-boundary effects, our model based on small polaron hopping in homogeneous material predicts the dielectric permittivity (104-5) for heavily Li- and MD -codoped NiO (MD=Ti,Al,Si) . Furthermore, we reproduce the experimental trends in dielectric properties as a function of the dopants nature and their concentrations, as well as the reported activation energies for the relaxation in Li- and Ti-codoped NiO (0.308 eV or 0.153 eV depending on the Fermi-level position). In this study, we demonstrate that small polaron hopping on dopant levels is the dominant mechanism for the gigantic dielectric response in these codoped NiO.
Electronic and transport properties of Li-doped NiO epitaxial thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm2 V -1s -1). The conduction mechanism is better described by small-polaron hoping model in the temperaturemore » range of 200 K < T <330 K, and variable range hopping at T <200 K. A combination of x-ray photoemission and O K-edge x-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization.NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. This work reports the controlling of conductivity and increase of work functions by Li doping.« less
Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Nagaraja, B. S.; Shyam Prasad, K.; Okram, G. S.; Sanjeev, Ganesh; Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu; Poornesh, P.
2018-02-01
The structural, electrical, magnetic, and thermal properties of electron beam (EB) irradiated PrMnO3 manganites were investigated in the present communication. X-ray diffraction data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). Furthermore, the diffracted data are analyzed in detail using Rietveld refinement technique. It is observed that the EB dosage feebly disturbs the MnO6 octahedra. The electrical resistivity of all the samples exhibits semiconducting behavior. Small polaron hopping model is conveniently employed to investigate the semiconducting nature of the pristine as well as EB irradiated samples. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit large positive values at lower temperatures, signifying holes as the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism assists the thermoelectric transport property in the high temperature region. The magnetic measurements confirm the existence of paramagnetic (PM) to ferromagnetic (FM) behavior for the pristine and irradiated samples. In the lower temperature regime, coexistence of FM clusters and AFM matrix is dominating. Thus, the complex magnetic behavior of the compound has been explained in terms of rearrangement of antiferromagnetically coupled ionic moments.
NASA Astrophysics Data System (ADS)
Nery, Jean Paul; Allen, Philip B.
2016-09-01
We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.
Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E
2016-07-21
Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.
Taherinia, Davood; Smith, Christopher E; Ghosh, Soumen; Odoh, Samuel O; Balhorn, Luke; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel
2016-04-26
We report the synthesis, transport measurements, and electronic structure of conjugation-broken oligophenyleneimine (CB-OPI 6) molecular wires with lengths of ∼4 nm. The wires were grown from Au surfaces using stepwise aryl imine condensation reactions between 1,4-diaminobenzene and terephthalaldehyde (1,4-benzenedicarbaldehyde). Saturated spacers (conjugation breakers) were introduced into the molecular backbone by replacing the aromatic diamine with trans-1,4-diaminocyclohexane at specific steps during the growth processes. FT-IR and ellipsometry were used to follow the imination reactions on Au surfaces. Surface coverages (∼4 molecules/nm(2)) and electronic structures of the wires were determined by cyclic voltammetry and UV-vis spectroscopy, respectively. The current-voltage (I-V) characteristics of the wires were acquired using conducting probe atomic force microscopy (CP-AFM) in which an Au-coated AFM probe was brought into contact with the wires to form metal-molecule-metal junctions with contact areas of ∼50 nm(2). The low bias resistance increased with the number of saturated spacers, but was not sensitive to the position of the spacer within the wire. Temperature dependent measurements of resistance were consistent with a localized charge (polaron) hopping mechanism in all of the wires. Activation energies were in the range of 0.18-0.26 eV (4.2-6.0 kcal/mol) with the highest belonging to the fully conjugated OPI 6 wire and the lowest to the CB3,5-OPI 6 wire (the wire with two saturated spacers). For the two other wires with a single conjugation breaker, CB3-OPI 6 and CB5-OPI 6, activation energies of 0.20 eV (4.6 kcal/mol) and 0.21 eV (4.8 kcal/mol) were found, respectively. Computational studies using density functional theory confirmed the polaronic nature of charge carriers but predicted that the semiclassical activation energy of hopping should be higher for CB-OPI molecular wires than for the OPI 6 wire. To reconcile the experimental and computational results, we propose that the transport mechanism is thermally assisted polaron tunneling in the case of CB-OPI wires, which is consistent with their increased resistance.
Oxide double quantum dot - an answer to the qubit problem?
NASA Astrophysics Data System (ADS)
Yarlagadda, Sudhakar; Dey, Amit
We propose that oxide-based double quantum dots with only one electron (tunnelling between the dots) can be regarded as a qubit with little decoherence; these dots can possibly meet future challenges of miniaturization. The tunnelling of the eg electron between the dots and the attraction between the electron and the hole on adjacent dots can be modelled as an anisotropic Heisenberg interaction between two spins with the total z-component of the spins being zero. We study two anisotropically interacting spins coupled to optical phonons; we restrict our analysis to the regime of strong coupling to the environment, to the antiadiabatic region, and to the subspace with zero value for SzT (the z-component of the total spin). In the case where each spin is coupled to a different phonon bath, we assume that the system and the environment are initially uncorrelated (and form a simply separable state) in the polaronic frame of reference. By analyzing the polaron dynamics through a non-Markovian quantum master equation, we find that the system manifests a small amount of decoherence that decreases both with increasing nonadiabaticity and with enhancing strength of coupling g. Recently I got an invitation to visit Argonne National Lab from Jan./2106 to end of March/2016. I thought I would give a talk at APS March meeting. Please accept the submission.
Effects of compositional defects on small polaron hopping in micas.
Rosso, Kevin M; Ilton, Eugene S
2005-06-22
Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.
NASA Astrophysics Data System (ADS)
Kalosakas, G.; Aubry, S.; Tsironis, G. P.
1998-10-01
We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.
Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene
2018-03-01
When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.
NASA Astrophysics Data System (ADS)
Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun
2018-02-01
Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.
NASA Astrophysics Data System (ADS)
Narvaez, Gustavo A.; Bester, Gabriel; Zunger, Alex
2006-08-01
We calculate the P -shell-to- S -shell decay lifetime τ(P→S) of electrons in lens-shaped self-assembled (In,Ga)As/GaAs dots due to Auger electron-hole scattering within an atomistic pseudopotential-based approach. We find that this relaxation mechanism leads to fast decay of τ(P→S)˜1-7ps for dots of different sizes. Our calculated Auger-type P -shell-to- S -shell decay lifetimes τ(P→S) compare well to data in (In,Ga)As/GaAs dots, showing that as long as both electrons and holes are present there is no need for an alternative polaron mechanism.
Redox driven conductance changes for resistive memory
NASA Astrophysics Data System (ADS)
Shoute, Lian C. T.; Pekas, Nikola; Wu, Yiliang; McCreery, Richard L.
2011-03-01
The relationship between bias-induced redox reactions and resistance switching is considered for memory devices containing TiO2 or a conducting polymer in "molecular heterojunctions" consisting of thin (2-25 nm) films of covalently bonded molecules, polymers, and oxides. Raman spectroscopy was used to monitor changes in the oxidation state of polythiophene in Au/P3HT/SiO2/Au devices, and it was possible to directly determine the formation and stability of the conducting polaron state of P3HT by applied bias pulses [P3HT = poly(3-hexyl thiophene)]. Polaron formation was strongly dependent on junction composition, particularly on the interfaces between the polymer, oxide, and electrodes. In all cases, trace water was required for polaron formation, leading to the proposal that water reduction acts as a redox counter-reaction to polymer oxidation. Polaron stability was longest for the case of a direct contact between Au and SiO2, implying that catalytic water reduction at the Au surface generated hydroxide ions which stabilized the cationic polaron. The spectroscopic information about the dependence of polaron stability on device composition will be useful for designing and monitoring resistive switching memory based on conducting polymers, with or without TiO2 present.
NASA Astrophysics Data System (ADS)
Irle, Stephan; Lischka, Hans
1997-08-01
Ab initio self-consistent-field (SCF), two-configuration SCF (TCSCF), and density functional theory (DFT) calculations on the charge-transfer complexes of doubly Li/Cl-doped oligothiophenes and oligo(p-phenyls) and on respective charged systems without counterions have been carried out in order to study polaron to bipolaron transitions. Oligomer chains up to octamers and the ring structures cyclo-dodecathiophene and cyclo-dodeca(p-phenyl) have been investigated. Special attention is paid to the open-shell biradical character of two isolated polaronic defects. It is found that the TCSCF and the spin-unrestricted DFT methods can be successfully applied. A bipolaron structure is obtained when the doping atoms are located on neighboring rings and when there is one undoped ring separating the two doped ones. If there are two or more undoped rings in between a two-polaron configuration (biradical) is found. The bipolaron system is calculated to be more stable than the two-polaron case when counterions are taken into account. The stabilities are reversed if the bare, doubly-charged systems are considered. A theoretical estimate for the barrier height of the polaron to bipolaron transition is given using model reaction coordinates.
TOPICAL REVIEW: O- bound small polarons in oxide materials
NASA Astrophysics Data System (ADS)
Schirmer, O. F.
2006-11-01
Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO3 and KTaO3, quartz, the sillenites (e.g. Bi12TiO20), Al2O3, LiNbO3, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO3, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated can be used to explain radiation and light induced absorption especially in laser and non-linear oxide materials, the role of some defects in photorefractive compounds, the coloration of various gemstones, the structure of certain catalytic surface centres, etc. The relation to further phenomena is discussed: free small polarons, similar distorted centres in the sulfides and selenides, acceptor defects trapping two holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mombrú, Dominique; Romero, Mariano, E-mail: mromero@fq.edu.uy; Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. Inmore » addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.« less
Chiral plaquette polaron theory of cuprate superconductivity
NASA Astrophysics Data System (ADS)
Tahir-Kheli, Jamil; Goddard, William A., III
2007-07-01
Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a separation distance from (π/a,π/a) given by δQ≈(2π/a)x , where x is the doping. When the perturbed x2-y2 band energy in mean field is included, incommensurability along the Cu-O bond direction is favored. A resistivity ˜Tμ+1 arises when the polaron energy separation density is of the form ˜Δμ due to Coulomb scattering of the x2-y2 band with polarons. A uniform density leads to linear resistivity. The coupling of the x2-y2 band to the undoped Cud9 spins leads to the angle-resolved photoemission pseudogap and its qualitative doping and temperature dependence. The chiral plaquette polaron leads to an explanation of the evolution of the bilayer splitting in Bi-2212.
Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure
NASA Astrophysics Data System (ADS)
Brockt, C.; Jeckelmann, E.
2017-02-01
We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.
NASA Astrophysics Data System (ADS)
Rabe, T.; Görrn, P.; Lehnhardt, M.; Tilgner, M.; Riedl, T.; Kowalsky, W.
2009-04-01
We examine polaron-induced absorption in organic transport materials using a highly sensitive measurement technique. A hole only device is embedded into a low-loss TE2 waveguide structure, and the current induced change of the waveguide absorption is measured. The exemplary study of 2,2',7,7'-tetrakis(N,N-diphenylamine)-9,9'-spiro-bifluorene (S-TAD) reveals a very low polaron absorption cross section of σp≤2.6×10-18cm2 for 560 nm ≤λ≤660nm. The accuracy of this data is unsurpassed by other techniques used for the unambiguous study of polaronic species in organic thin films.
First-principles study of hole polaron formation and migration in SrI2
NASA Astrophysics Data System (ADS)
Zhou, Fei; Sadigh, Babak; Aberg, Daniel
2015-03-01
We investigate the formation of self-trapped holes (STH) in the high performance scintillator material SrI2 using a recently developed first principles method, polaron self-interaction correction (pSIC). pSIC removes the significant spurious self-interaction of localized polaron states. It is capable of accurately reproduce the configurational energy landscape of polaronic states from optimized hybrid functionals at the computational cost of the local density approximation. We searched for and identified all symmetrically distinct STH states localized on neighboring I-I dimers, i.e. Vk centers, and found non-trivial relation between the STH formation energies and dimer separation. All possible polaron hopping paths of the type IAIB -->IBIC are investigated systematically with pSIC and the elastic band method, and paths with low migration barrier energy of about 0.2 eV were identified, suggesting high mobility in SrI2. We expect that the present approach can be applied to study polaron formation and migration in other materials. Support from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22) is acknowledged. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore N We acknowledge funding from the NA-22 agency.
Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms
NASA Astrophysics Data System (ADS)
Zwierlein, Martin
2009-05-01
We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.
Intrinsic Charge Transport in Organic Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Podzorov, Vitaly
2005-03-01
Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).
NASA Astrophysics Data System (ADS)
Zheng, Peng; Zhang, Rui-zhi; Chen, Hao-ying; Hao, Wen-tao
2014-06-01
The Seebeck coefficient and electrical conductivity of CaCu3Ti4O12 (CCTO) ceramics were measured and analyzed in the high temperature range of 300°C to 800°C, and then the electrical conduction mechanism was investigated by using a combination of experimental data fitting and first-principles calculations. The Seebeck coefficient of the CCTO ceramic sintered at 1050°C is negative with largest absolute value of ˜650 μV/K at 300°C, and the electrical conductivity is 2-3 orders greater than the value reported previously by other researchers. With increasing sintering temperature, the Seebeck coefficient decreases while the electrical conductivity increases. The temperature dependence of the electrical conductivity follows the rule of adiabatic hopping conduction of small polarons. The calculated density of states of CCTO indicates that the conduction band is mainly contributed by the antibonding states of Cu 3 d electrons, therefore small-polaron hopping between CuO4 square planar clusters was proposed. Possible ways to further improve the thermoelectric properties of CCTO are also discussed.
Local description of a polyenic radical cation
NASA Astrophysics Data System (ADS)
Karafiloglou, P.; Kapsomenos, G.
1995-06-01
The various local electronic events occurring in a radical cation of a linear polyene with even number of centers are investigated by means of the calculation of the expectation values of second quantized density operators, in the framework of the general poly-electron population analysis. Two series of calculations in two limit geometries (a strong alternant and a polaron-like one) are performed by using as analysers both natural AOs in ab initio correlated wave functions, as well as the model orthogonal AOs in PPP + full CI ones. The probabilities of finding simultaneously the positive charge (+) and the radical center (·) follows, in accord with basic chemical intuition, an oscillating (even-odd) law, even at distant AO positions. The probability of having a transmission of the (+) charge through the π-bonds (when the (·) is located in one extremity of the polyene) is greater than this of the transmission of the (·). Comparing the radical cation with the parent polyene, it is shown that oxidation creates an important trend of single-double bond inversion even in strongly alternant geometry; this effect is more pronounced in bonds of the middle. The examination of various CDW structures shows that some of them can have small or negligible contributions; this counterintuitive and cooperative effect is rationalized by means of Moffitt's theorem. All the above effects are not the consequence of the polaron-like geometry, but are controlled from the topology of n-centers linearly disposed and involving ( n-1) electrons.
NASA Astrophysics Data System (ADS)
Gao, Bin; Weng, Yakui; Zhang, Jun-Jie; Zhang, Huimin; Zhang, Yang; Dong, Shuai
2017-03-01
Oxides with 4d/5d transition metal ions are physically interesting for their particular crystalline structures as well as the spin-orbit coupled electronic structures. Recent experiments revealed a series of 4d/5d transition metal oxides R 3 MO7 (R: rare earth; M: 4d/5d transition metal) with unique quasi-one-dimensional M chains. Here first-principles calculations have been performed to study the electronic structures of La3OsO7 and La3RuO7. Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state (3 t 2g orbitals occupied), are attributed to the strong p - d hybridization with oxygen ions, instead of the spin-orbit coupling. The Ca-doping to La3OsO7 and La3RuO7 can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped 5d transition metal oxides. In addition, our calculations predict that the Ca-doping can trigger ferromagnetism in La3RuO7 but not in La3OsO7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tronto, Jairo, E-mail: jairotronto@ufv.br; Pinto, Frederico G.; Costa, Liovando M. da
2015-01-15
A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermalmore » treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made. • Thermal treatment above 120 °C causes partially breakdown of the LDH structure. • ESR results indicated a polaron response characteristic of electron conductivity.« less
Ultrafast Light Switching of Ferromagnetism in EuSe
NASA Astrophysics Data System (ADS)
Henriques, A. B.; Gratens, X.; Usachev, P. A.; Chitta, V. A.; Springholz, G.
2018-05-01
We demonstrate that light resonant with the band gap forces the antiferromagnetic semiconductor EuSe to enter ferromagnetic alignment in the picosecond timescale. A photon generates an electron-hole pair, whose electron forms a supergiant spin polaron of magnetic moment of nearly 6000 Bohr magnetons. By increasing the light intensity, the whole of the illuminated region can be fully magnetized. The key to the novel large photoinduced magnetization mechanism is the huge enhancement of the magnetic susceptibility when both antiferromagnetic and ferromagnetic interactions are present in the material and are of nearly equal magnitude, as is the case in EuSe.
Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?
NASA Astrophysics Data System (ADS)
Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran
2008-09-01
The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.
NASA Astrophysics Data System (ADS)
Sun, Y. Y.; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, S. B.
2014-10-01
The behavior of cation substitutional hole doping in GaN and ZnO is investigated using hybrid density functional calculations. Our results reveal that Mg substitution for Ga (MgGa) in GaN can assume three different configurations. Two of the configurations are characterized by the formation of defect-bound small polaron (i.e., a large structural distortion accompanied by hole localization on one of the neighboring N atoms). The third one has a relatively small but significant distortion that is characterized by highly anisotropic polaron localization. In this third configuration, MgGa exhibits both effective-mass-like and noneffective-mass-like characters. In contrast, a similar defect in ZnO, LiZn, cannot sustain the anisotropic polaron in the hybrid functional calculation, but undergoes spontaneous breaking of a mirror symmetry through a mechanism driven by the hole localization. Finally, using NaZn in ZnO as an example, we show that the deep acceptor levels of the small-polaron defects could be made shallower by applying compressive strain to the material.
Many-body interferometry of magnetic polaron dynamics
NASA Astrophysics Data System (ADS)
Ashida, Yuto; Schmidt, Richard; Tarruell, Leticia; Demler, Eugene
2018-02-01
The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed-matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and analyze a platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.
Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.
Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C
2013-12-02
PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.
2014-10-01
We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy
NASA Astrophysics Data System (ADS)
Ho, I.-Chen
Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms, electron intervalley scattering and impact ionization of InAs crystals, are observed under the excitation of intense THz field on a sub-picosecond time scale. These two competing mechanisms are demonstrated by changing the impurity doping type of the semiconductors and varying the strength of the THz field. Another investigation of nonlinear carrier dynamics is the observation of coherent polaron oscillation in n-doped semiconductors excited by intense THz pulses. Through modulations of surface reflection with a THz pump/THz probe technique, this work experimentally verifies the interaction between energetic electrons and a phonon field, which has been theoretically predicted by previous publications, and shows that this interaction applies for the acoustic phonon modes. Usually, two transverse acoustic (2TA) phonon responses are inactive in infrared measurement, while they are detectable in second-order Raman spectroscopy. The study of polaron dynamics, with nonlinear THz spectroscopy (in the far-infrared range), provides a unique method to diagnose the overtones of 2TA phonon responses of semiconductors, and therefore incorporates the abilities of both infrared and Raman spectroscopy. This work presents a new milestone in wave-matter interaction and seeks to benefit the industrial applications in high power, small scale devices.
Tracking polaron generation in electrochemically doped polyaniline thin films
NASA Astrophysics Data System (ADS)
Kalagi, S. S.; Patil, P. S.
2018-04-01
Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.
Polaron-to-Polaron Transitions in the Radio-Frequency Spectrum of a Quasi-Two-Dimensional Fermi Gas
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ong, W.; Arakelyan, I.; Thomas, J. E.
2012-06-01
We measure radio-frequency spectra for a two-component mixture of a Li6 atomic Fermi gas in a quasi-two-dimensional regime with the Fermi energy comparable to the energy level spacing in the tightly confining potential. Near the Feshbach resonance, we find that the observed resonances do not correspond to transitions between confinement-induced dimers. The spectral shifts can be fit by assuming transitions between noninteracting polaron states in two dimensions.
Organic magnetoresistance based on hopping theory
NASA Astrophysics Data System (ADS)
Yang, Fu-Jiang; Xie, Shi-Jie
2014-09-01
For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.
NASA Astrophysics Data System (ADS)
Jirák, Z.; Hejtmánek, J.; Knížek, K.; Veverka, M.
2008-07-01
Two perovskite cobaltites, LaCoO3 and DyCoO3 , which are border compounds with respect to the Ln size, were investigated by the electric resistivity and thermopower measurements up to 800-1000 K. Special attention was given to effects of extra holes or electrons, introduced by light doping of Co sites by Mg2+ or Ti4+ ions. The experiments on the La-based compounds were complemented by magnetic measurements. The study shows that both kinds of charge carriers induce magnetic states on surrounding Co3+ sites and form thus thermally stable polarons of large total spin. Their itinerancy is characterized by low-temperature resistivity, which is of Arrhenius type ρ˜exp(EA/kT) for the hole (Co4+) -doped samples, while an unusual dependence ρ˜1/Tν (n=8-10) is observed for the electron (Co2+) -doped samples. At higher temperatures, additional hole carriers are massively populated in the Co3+ background, leading to a resistivity drop. This transition become evident at ˜300K and 450 K and culminates at TI-M=540 and 780 K for the La- and Dy-based samples, respectively. The electronic behaviors of the cobaltites in dependence on temperature are explained considering local excitations from the diamagnetic low-spin (LS) Co3+ to close-lying paramagnetic high-spin (HS) Co3+ states and subsequent formation of a metallic phase of the IS Co3+ character through a charge transfer mechanism between LS/HS pairs. The magnetic polarons associated with doped carriers are interpreted as droplets of such intermediate (IS) phase.
NASA Astrophysics Data System (ADS)
Jida, Shin'suke; Miki, Toshikatsu
1996-11-01
Paramagnetic centers in Nb-doped BaTiO3 ceramics are measured at 77-500 K by electron paramagnetic resonance (EPR) for investigating the role of the centers on the well-known positive temperature coefficient of resistivity (PTCR) effect (PTCR at the Curie temperature). EPR detects four signals; an anisotropically broad singlet signal at g=2.005, a sextet signal due to Mn2+, a Cr3+ signal, and a Ti3+ signal. The former two signals arise in the rhombohedral and cubic phases, but disappear in the tetragonal and orthorhombic phases. The Cr3+ signal appears in all of the phases, while the Ti3+ signal is detected only at low temperatures. The singlet signal also arises in undoped, barium-deficient BaTiO3 ceramics, therefore the signal is attributable to barium-vacancy-associated centers rather than Nb4+ ions or Fe3+ ions proposed by several authors. In this article, we propose that the singlet signal is due to vacancy-pairs of VBa-F+ type, i.e., the vacancy pair of VBa-VO capturing one electron. The electrical resistivity data show a polaronic character of low-temperature conduction and a high resistivity jump around the Curie temperature. The low-temperature polaronic conduction is explained in terms of electron-hopping between Ti4+ and Ti3+ ions. The resistivity jump at the Curie temperature occurs along with the EPR intensity increase of the singlet signal, the Mn2+ signal and the Cr3+ signal. We conclude that the PTCR of Nb-doped BaTiO3 ceramics is strongly associated with the trap activation of the VBa-VO vacancy-pairs and manganese centers at the tetragonal-to-cubic transition.
Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...
2017-09-13
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less
Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G
2017-10-19
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.
NASA Astrophysics Data System (ADS)
Gilev, A. R.; Kiselev, E. A.; Zakharov, D. M.; Cherepanov, V. A.
2017-10-01
The total conductivity, Seebeck coefficient and oxygen non-stoichiometry for La1.2Sr0.8Ni0.9Fe0.1O4+δ have been measured vs temperature and oxygen partial pressure P(O2). The measurements were carried out at 800, 850, 900 and 950 °C within the P(O2) range of 10-5-0.21 atm. La1.2Sr0.8Ni0.9Fe0.1O4+δ was shown to be oxygen deficient in all temperature and P(O2) ranges studied. The calculated values of the partial molar enthalpy of oxygen depend very slightly on oxygen content (δ), indicating that La1.2Sr0.8Ni0.9Fe0.1O4+δ with the oxygen deficiency can be considered an ideal solution. The model of point defect equilibria in La1.2Sr0.8Ni0.9Fe0.1O4+δ has been proposed and fitted to experimental dependencies. Subsequent joint analysis of the defect structure and transport properties revealed that electron holes can coexist in both localized and quasi-delocalized states in the oxide: the former corresponded to high-spin state Ni3+ and the latter - to low-spin state Ni3+. The mobilities of localized electron holes were shown to be significantly lower in comparison to quasi-delocalized ones. The behavior of localized electron holes was explained in terms of a small polaron conduction mechanism; in contrast, quasi-delocalized electron holes were described in terms of a band conduction approach. The small polaron conduction mechanism was shown to be predominant in the Sr- and Fe-co-doped lanthanum nickelate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less
NASA Astrophysics Data System (ADS)
Caruso, Fabio; Verdi, Carla; Poncé, Samuel; Giustino, Feliciano
2018-04-01
We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra.
Localization of holes near charged defects in orbitally degenerate, doped Mott insulators
NASA Astrophysics Data System (ADS)
Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter
2018-05-01
We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.
NASA Astrophysics Data System (ADS)
Scott, Alwyn C.; Bigio, Irving J.; Johnston, Clifford T.
1989-06-01
The best available data are presented of the integrated intensity of the 1650-cm-1 band in crystalline acetanilide as a function of temperature. A concise theory of polaron states is presented and used to interpret the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, A. C.; Bigio, I. J.; Johnston, C. T.
1989-06-15
The best available data are presented of the integrated intensity of the1650-cm/sup /minus/1/ band in crystalline acetanilide as a function oftemperature. A concise theory of polaron states is presented and used tointerpret the data.
Polaronic effects at finite temperatures in the B850 ring of the LH2 complex.
Chorošajev, Vladimir; Rancova, Olga; Abramavicius, Darius
2016-03-21
Energy transfer and relaxation dynamics in the B850 ring of LH2 molecular aggregates are described, taking into account the polaronic effects, by a stochastic time-dependent variational approach. We explicitly include the finite temperature effects in the model by sampling the initial conditions of the vibrational states randomly. This is in contrast to previous applications of the variational approach, which consider only the zero-temperature case. The method allows us to obtain both the microscopic dynamics at the single-wavefunction level and the thermally averaged picture of excitation relaxation over a wide range of temperatures. Spectroscopic observables such as temperature dependent absorption and time-resolved fluorescence spectra are calculated. Microscopic wavefunction evolution is quantified by introducing the exciton participation (localization) length and the exciton coherence length. Their asymptotic temperature dependence demonstrates that the environmental polaronic effects range from exciton self-trapping and excitonic polaron formation at low temperatures to thermally induced state delocalization and decoherence at high temperatures. While the transition towards the polaronic state can be observed on the wavefunction level, it does not produce a discernible effect on the calculated spectroscopic observables.
Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions
NASA Astrophysics Data System (ADS)
Hahn, Thomas; Klimin, Sergei; Tempere, Jacques; Devreese, Jozef T.; Franchini, Cesare
2018-04-01
We present results for the solution of the large polaron Fröhlich Hamiltonian in 3 dimensions (3D) and 2 dimensions (2D) obtained via the diagrammatic Monte Carlo (DMC) method. Our implementation is based on the approach by Mishchenko [A. S. Mishchenko et al., Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317]. Polaron ground state energies and effective polaron masses are successfully benchmarked with data obtained using Feynman's path integral formalism. By comparing 3D and 2D data, we verify the analytically exact scaling relations for energies and effective masses from 3 D →2 D , which provides a stringent test for the quality of DMC predictions. The accuracy of our results is further proven by providing values for the exactly known coefficients in weak- and strong-coupling expansions. Moreover, we compute polaron dispersion curves which are validated with analytically known lower and upper limits in the small-coupling regime and verify the first-order expansion results for larger couplings, thus disproving previous critiques on the apparent incompatibility of DMC with analytical results and furnishing useful reference for a wide range of coupling strengths.
NASA Astrophysics Data System (ADS)
Wang, Ya-Dong; Meng, Yan; Di, Bing; Wang, Shu-Ling; An, Zhong
2010-12-01
According to the one-dimensional tight-binding Su—Schrieffer—Heeger model, we have investigated the effects of charged polarons on the static polarizability, αxx, and the second order hyperpolarizabilities, γxxxx, of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su-Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on αxx and γxxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of αxx and γxxxx increase as the on-site Coulomb interaction U increases for U < Uc and decrease with U for U > Uc, where Uc is a critical value of U at which the static polarizability or the second order hyperpolarizability reaches a maximal value of αmax or γmax. It is found that the effect of the e-e interaction on the value of αxx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γxxxx is sensitive both to the ratio of U to V and to the size of the molecule.
Telegraph noise in Markovian master equation for electron transport through molecular junctions
NASA Astrophysics Data System (ADS)
Kosov, Daniel S.
2018-05-01
We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.
Dressed tunneling approximation for electronic transport through molecular transistors
NASA Astrophysics Data System (ADS)
Seoane Souto, R.; Yeyati, A. Levy; Martín-Rodero, A.; Monreal, R. C.
2014-02-01
A theoretical approach for the nonequilibrium transport properties of nanoscale systems coupled to metallic electrodes with strong electron-phonon interactions is presented. It consists of a resummation of the dominant Feynman diagrams from the perturbative expansion in the coupling to the leads. We show that this scheme eliminates the main pathologies found in previous simple analytical approaches for the polaronic regime. The results for the spectral and transport properties are compared with those from several other approaches for a wide range of parameters. The method can be formulated in a simple way to obtain the full counting statistics. Results for the shot and thermal noise are presented.
NASA Astrophysics Data System (ADS)
Zhuo, Jing-Mei; Zhao, Li-Hong; Chia, Perq-Jon; Sim, Wee-Sun; Friend, Richard H.; Ho, Peter K. H.
2008-05-01
The infrared absorption spectrum of the polaron charges at the Fermi level EF in a heavily p-doped conducting poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film has been measured using interferogram-modulated Fourier-transform charge-modulation spectroscopy. The spectrum indicates softer phonons and weaker electron-phonon coupling riding on a strongly redshifted Drude-like electronic transition, different from the population-averaged “bulk” spectrum. This provides direct evidence that the EF holes are sufficiently delocalized even in such disordered materials to reside in an energy continuum (band states) while the rest of the hole population resides in self-localized gap states.
What Is Moving in Hybrid Halide Perovskite Solar Cells?
2016-01-01
Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron–hole recombination rates, and current–voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behavior displayed by hybrid perovskites introduces a sensitivity in materials characterization to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials modeling and device simulations. There are large differences between the average and local crystal structures, and the nature of charge transport is too complex to be described by common one-dimensional drift-diffusion models. Herein, we critically discuss the atomistic origin of the dynamic processes and the associated chemical disorder intrinsic to crystalline hybrid perovskite semiconductors. PMID:26859250
Polaron in the dilute critical Bose condensate
NASA Astrophysics Data System (ADS)
Pastukhov, Volodymyr
2018-05-01
The properties of an impurity immersed in a dilute D-dimensional Bose gas at temperatures close to its second-order phase transition point are considered. Particularly by means of the 1/N-expansion, we calculate the leading-order polaron energy and the damping rate in the limit of vanishing boson–boson interaction. It is shown that the perturbative effective mass and the quasiparticle residue diverge logarithmically in the long-length limit, signalling the non-analytic behavior of the impurity spectrum and pole-free structure of the polaron Green’s function in the infrared region, respectively.
Zeković, Slobodan; Ivić, Zoran
2009-01-01
The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.
Polaronic Effect on Electrical Conductivity and Thermoelectric Power in Ga(Cu)V4S8
NASA Astrophysics Data System (ADS)
Naik, I.
2018-01-01
Polycrystalline V4-cluster compounds of GaV4S8 and its derivatives Ga0.90 Cu0.10V4S8 and Ga0.90Cu0.20V4S8 have been prepared at 800°C by solid-state reaction method. Although the cubic-rhombohedral phase transformation at 45 K was found to be absent in the derivatives of GaV4S8, low-temperature hopping conduction occurred in all the materials. In the present context, we explain the conduction mechanism for all the materials using polaron theory. The polaron size was found to be large above 260 K but small below 260 K in GaV4S8, as confirmed by the Seebeck coefficient. From the activation energies and polaron size, the anomaly at 260 K is interpreted as associated with crossover from thermally activated to nearest-neighbor hopping upon cooling.
Photoluminescence-detected magnetic-resonance study of fullerene-doped π-conjugated polymers
NASA Astrophysics Data System (ADS)
Lane, P. A.; Shinar, J.; Yoshino, K.
1996-10-01
X-band photoluminescence (PL)-detected magnetic resonance (PLDMR) spectra of C60- and C70-doped 2,5-dihexoxy poly(p-phenylenevinylene) (DHO-PPV), 2,5-dibutoxy poly(p-phenylene ethynylene) (DBO-PPE), and poly(3-dodecylthiophene) (P3DT) are described and discussed. While light doping of DHO-PPV by both fullerenes quenches the PL, both the polaron and triplet exciton resonances are dramatically enhanced. This is attributed to the creation of conformational defects which enhance the fission of 11Bu singlet excitons to polaron pairs and intersystem crossing to 13Bu triplet excitons. The triplet resonance in all polymers is quenched at relatively low doping levels of C60 and C70, which is attributed to quenching of triplets by positive polarons injected onto the polymer chain. Increased doping by C60, but not C70, quenches the polaron resonance, also due to photoinduced charge transfer.
NASA Astrophysics Data System (ADS)
Kagan, M. Yu.; Valkov, V. V.
2011-01-01
We search for marginal Fermi-liquid behavior in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron-polaron effects and other mechanisms for mass-enhancement (related to the momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find a tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case with a large mismatch between the densities of heavy and light bands in the strong coupling limit. We also find that for low temperatures and equal densities, the resistivity in a homogeneous state R(T )∝T2 behaves as a Fermi-liquid in both 3D and 2D. For temperatures greater than the effective bandwidth for heavy electrons T >Wh*, the coherence of the heavy component breaks down completely. The heavy particles move diffusively in the surrounding light particles. At the same time, light particles scatter on heavy particles as if on immobile (static) impurities. Under these conditions, the heavy component is marginal, while the light component is not. The resistivity approaches saturation for T >Wh* in the 3D case. In 2D the resistivity has a maximum and a localization tail owing to weak-localization corrections of the Altshuler-Aronov type. This behavior of resistivity in 3D could be relevant for some uranium-based heavy-fermion compounds such as UNi2Al3 and in 2D, for some other mixed-valence compounds, possibly including layered manganites. We also consider briefly the superconductive (SC) instability in this model. The leading instability tends to p-wave pairing and is governed by an enhanced Kohn-Luttinger mechanism for SC at low electron densities. The critical temperature corresponds to the pairing of heavy electrons via polarization of the light electrons in 2D.
Characterization and electrical properties of V 2O 5-CuO-P 2O 5 glasses
NASA Astrophysics Data System (ADS)
Al-Assiri, M. S.
2008-08-01
Characterization and electrical properties of vanadium-copper-phosphate glasses of compositions xV 2O 5-(40- x)CuO-60P 2O 5 have been reported. X-ray diffraction (XRD) confirms the amorphous nature of these glasses. It was observed that, the density ( d) decreases gradually while the molar volume ( Vm) increases with the increase of the vanadium oxide content in such glasses. This may be due to the effect of the polarizing power strength, PPS, which is a measure of ratio of the cation valance to its diameter. The dc conductivity increases while the activation energy decreases with the increase of the V 2O 5 content. The dc conductivity in the present glasses is electronic and depends strongly upon the average distance, R, between the vanadium ions. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Youwen; Kitamura, Kenji; Takekawa, Shunji
2005-04-01
The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti
2016-05-23
Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaronmore » radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.« less
NASA Astrophysics Data System (ADS)
Jamil, Arifa; Afsar, M. F.; Sher, F.; Rafiq, M. A.
2017-03-01
We report detailed ac electrical and structural characterization of manganese cobalt ferrite nanoparticles, prepared by coprecipitation technique. X-ray diffraction (XRD) confirmed single-phase cubic spinel structure of the nanoparticles. Tetrahedral (A) and octahedral (B) group complexes were present in the spinel lattice as determined by Fourier Transform Infrared Spectroscopy (FTIR). Scanning Electron Microscope (SEM) images revealed presence of spherical shape nanoparticles having an average diameter 50-80 nm. Composition, temperature and frequency dependent ac electrical study of prepared nanoparticles interpreted the role of cationic distribution between A and B sites. Overlapping large polaron tunnelling (OLPT) conduction mechanism was observed from 290 to 200 K. Frequency exponent s was fitted theoretically using OLPT model. High values of Density of States (DOS) of the order of 1022-1024 eV-1 cm-3 were extracted from ac conductivity for different compositions. We found that DOS was dependent on distribution of cations in the tunnel-type cavities along the a and b axis.
Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram
2017-02-01
The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.
Role of PO4 tetrahedron in LiFePO4 and FePO4 system.
Zeng, Yuewu
2015-06-01
Using high resolution transmission electron microscopy with image simulation and Fourier analysis, the Li1- x FePO4 (x < 0.01), Li1- x FePO4 (x ∼ 0.5), and FePO4 particles, prepared by charging or discharging the 053048 electrochemical cells (thickness: 5 mm, width: 30 mm, height: 48 mm) and dismantled inside an Ar-filled dry box, were investigated. The high resolution images reveal: (1) the solid solution of Li1- x FePO4 (x < 0.01) contains some missing Li ions leading PO4 group distorted around M1 tunnel of the unit cell; (2) the texture of the particles of Li1- x FePO4 (x ∼0.5) has homogeneously distributed compositional domains of LiFePO4 and FePO4 resulting from spinodal decomposition which promote Li ion easily getting into the particle due to uphill diffusion, (3) the particles of FePO4 formed in charging have heavily distorted lattice and contain some isolated LiFePO4 , (4) interface between LiFePO4 and FePO4 and between amorphous and crystal region provides the lattice distortion of small polarons. © 2015 Wiley Periodicals, Inc.
Theory of Charge Transport in Organic Crystals: Lessons from the Past and Prospects for the Future
NASA Astrophysics Data System (ADS)
Kenkre, V. M.
2002-03-01
Interest in fundamental issues regarding charge transport in organic materials shifted in the early 80's from the field of crystals to the field of disordered systems after polaron theories[1,2] were successfully applied[2] to what was suspected to be a mobility transition in naphthalene[3]. Recent experiments on pentacene[4] have been responsible for a reversal of the shift: there is now a revival of interest in crystals particularly in basic questions regarding electron-phonon interactions, polaron formation, the nature of charge carriers, and the issue of band versus hopping transport. High magnitudes of the new mobilities appear to imply large free carrier bandwidths which have led some to conjecture that band (rather than hopping) transport is characteristic of pentacene[5]. And yet, pentacene experiments show an unmistakable rise in the mobility at higher temperature, a rise that seems to signal polaronic behavior. Added to this fascinating mélange of facts are clear velocity saturation effects[6] observed in pentacene[4] along with some cavalier interpretation attempts of those non-Ohmic effects. The purpose of the talk is to attempt to address basic issues raised by these observations. 1. R. Silbey and R. W. Munn, J. Chem. Phys. 72, 2763 (1980). 2. V. M. Kenkre, John D. Andersen, D.H. Dunlap, and C.B. Duke, Phys. Rev. Lett. 62, 1165 (1989); see also M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford Univ Press, New Yourk 1999), p. 968. 3. L. B. Schein, C. B. Duke, and A.R. McGhie, Phys. Rev. Lett. 40, 197 (1978); C. B. Duke and L. B. Schein, Physics Today 33, 42 (1980). 4. J. H. Schoen, C. Kloc, and B. Batlogg, Phys. Rev. Lett. 86, 3843 (2001); Phys. Rev. B63, 245201 (2001). 5. Note, however, a recent demonstration against bare band descriptions in pentacene provided by J. D. Andersen, L. Giuggioli, and V. M. Kenkre, Phys. Rev. B, submitted. 6. V. M. Kenkre and P. E. Parris, Phys. Rev. B, submitted; P. E. Parris, M. Kús and V. M. Kenkre, Phys. Lett. A 289, 188 (2001).
NASA Astrophysics Data System (ADS)
Smart, Tyler J.; Ping, Yuan
2017-10-01
Hematite (α-Fe2O3) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe2O3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.
NASA Astrophysics Data System (ADS)
Kagan, M. Yu.; Val'kov, V. V.
2011-07-01
We search for marginal Fermi-liquid behavior [1] in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron polaron effect [2] and other mechanisms of mass enhancement (related to momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find the tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case for a large mismatch between the densities of heavy and light bands in the strong-coupling limit. We also observe that for low temperatures and equal densities, the homogeneous state resistivity R( T) ˜ T 2 behaves in a Fermi-liquid fashion in both 3D and 2D cases. For temperatures higher than the effective bandwidth for heavy electrons T > W {*/ h }, the coherent behavior of the heavy component is totally destroyed. The heavy particles move diffusively in the surrounding of light particles. At the same time, the light particles scatter on the heavy ones as if on immobile (static) impurities. In this regime, the heavy component is marginal, while the light one is not. The resistivity saturates for T > W {*/ h } in the 3D case. In 2D, the resistivity has a maximum and a localization tail due to weak-localization corrections of the Altshuler-Aronov type [3]. Such behavior of resistivity could be relevant for some uranium-based heavy-fermion compounds like UNi2Al3 in 3D and for some other mixed-valence compounds possibly including layered manganites in 2D. We also briefly consider the superconductive (SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by the enhanced Kohn-Luttinger [4] mechanism of SC at low electron density. The critical temperature corresponds to the pairing of heavy electrons via polarization of the light ones in 2D.
Structural and Thermal Disorder of Solution-Processed CH3NH3PbBr3 Hybrid Perovskite Thin Films.
Wolf, Christoph; Kim, Joo-Sung; Lee, Tae-Woo
2017-03-29
We extracted the electronic disorder energy of the organic-inorganic lead-halide hybrid perovskite CH 3 NH 3 PbBr 3 from temperature-dependent absorption data. We showed that the disorder at room temperature is ∼30 meV and is due to strong electron-phonon coupling with the longitudinal-optical mode of energy 16 meV. This mode can be attributed to longitudinal-optical phonons of the inorganic PbBr 6 frame; this conclusion highlights the polaronic nature of electronic excitations in CH 3 NH 3 PbBr 3 . We showed that structural disorder is of the same impact as thermal disorder. A temperature-dependence of the exciton binding energy was observed close to the orthorhombic-to-tetragonal phase-transition temperature.
Polaron mobility obtained by a variational approach for lattice Fröhlich models
NASA Astrophysics Data System (ADS)
Kornjača, Milan; Vukmirović, Nenad
2018-04-01
Charge carrier mobility for a class of lattice models with long-range electron-phonon interaction was investigated. The approach for mobility calculation is based on a suitably chosen unitary transformation of the model Hamiltonian which transforms it into the form where the remaining interaction part can be treated as a perturbation. Relevant spectral functions were then obtained using Matsubara Green's functions technique and charge carrier mobility was evaluated using Kubo's linear response formula. Numerical results were presented for a wide range of electron-phonon interaction strengths and temperatures in the case of one-dimensional version of the model. The results indicate that the mobility decreases with increasing temperature for all electron-phonon interaction strengths in the investigated range, while longer interaction range leads to more mobile carriers.
Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity
NASA Astrophysics Data System (ADS)
Yau, J. K.; Lee, C. M.
2003-03-01
A numerical method is proposed to calculate the Frohlich Hamiltonian containing N electrons bound to polar quantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite charges, such as excitons.
Designing heavy metal oxide glasses with threshold properties from network rigidity
NASA Astrophysics Data System (ADS)
Chakraborty, Shibalik; Boolchand, P.; Malki, M.; Micoulaut, M.
2014-01-01
Here, we show that a new class of glasses composed of heavy metal oxides involving transition metals (V2O5-TeO2) can surprisingly be designed from very basic tools using topology and rigidity of their underlying molecular networks. When investigated as a function of composition, such glasses display abrupt changes in network packing and enthalpy of relaxation at Tg, underscoring presence of flexible to rigid elastic phase transitions. We find that these elastic phases are fully consistent with polaronic nature of electronic conductivity at high V2O5 content. Such observations have new implications for designing electronic glasses which differ from the traditional amorphous electrolytes having only mobile ions as charge carriers.
On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Tolea, F.; Grecu, M. N.; Kuncser, V.; Constantinescu, S. Gr.; Ghica, D.
2015-04-01
The role of iron doping on magnetic properties of hydrothermal anatase TiO2:57Fe (0-1 at. %) nanoparticles is investigated by combining superconducting quantum interference device magnetometry with Mössbauer and electron paramagnetic resonance techniques. The results on both as-prepared and thermally treated samples in reduced air atmosphere reveal complexity of magnetic interactions, in connection to certain iron ion electron configurations and defects (oxygen vacancies, F-center, and Ti3+ ions). The distribution of iron ions is predominantly at nanoparticle surface layers. Formation of weak ferromagnetic domains up to 380 K is mainly related to defects, supporting the bound magnetic polaron model.
Designing heavy metal oxide glasses with threshold properties from network rigidity.
Chakraborty, Shibalik; Boolchand, P; Malki, M; Micoulaut, M
2014-01-07
Here, we show that a new class of glasses composed of heavy metal oxides involving transition metals (V2O5-TeO2) can surprisingly be designed from very basic tools using topology and rigidity of their underlying molecular networks. When investigated as a function of composition, such glasses display abrupt changes in network packing and enthalpy of relaxation at Tg, underscoring presence of flexible to rigid elastic phase transitions. We find that these elastic phases are fully consistent with polaronic nature of electronic conductivity at high V2O5 content. Such observations have new implications for designing electronic glasses which differ from the traditional amorphous electrolytes having only mobile ions as charge carriers.
Spin-enhanced organic bulk heterojunction photovoltaic solar cells.
Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy
2012-01-01
Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.
Charge distribution and transport properties in reduced ceria phases: A review
NASA Astrophysics Data System (ADS)
Shoko, E.; Smith, M. F.; McKenzie, Ross H.
2011-12-01
The question of the charge distribution in reduced ceria phases (CeO2-x) is important for understanding the microscopic physics of oxygen storage capacity, and the electronic and ionic conductivities in these materials. All these are key properties in the application of these materials in catalysis and electrochemical devices. Several approaches have been applied to study this problem, including ab initio methods. Recently [1], we applied the bond valence model (BVM) to discuss the charge distribution in several different crystallographic phases of reduced ceria. Here, we compare the BVM results to those from atomistic simulations to determine if there is consistency in the predictions of the two approaches. Our analysis shows that the two methods give a consistent picture of the charge distribution around oxygen vacancies in bulk reduced ceria phases. We then review the transport theory applicable to reduced ceria phases, providing useful relationships which enable comparison of experimental results obtained by different techniques. In particular, we compare transport parameters obtained from the observed optical absorption spectrum, α(ω), dc electrical conductivity with those predicted by small polaron theory and the Harrison method. The small polaron energy is comparable to that estimated from α(ω). However, we found a discrepancy between the value of the electron hopping matrix element, t, estimated from the Marcus-Hush formula and that obtained by the Harrison method. Part of this discrepancy could be attributed to the system lying in the crossover region between adiabatic and nonadiabatic whereas our calculations assumed the system to be nonadiabatic. Finally, by considering the relationship between the charge distribution and electronic conductivity, we suggest the possibility of low temperature metallic conductivity for intermediate phases, i.e., x˜0.3. This has not yet been experimentally observed.
Spectroscopic study of excitations in pi-conjugated polymers
NASA Astrophysics Data System (ADS)
Yang, Cungeng
This dissertation deals with spin-physics of photo excitations in pi-conjugated polymers. Optical and magneto-optical spectroscopies, including continuous wave and time-resolved photo-induced absorption, photoluminescence, electroluminescence, and their optically detected magnetic resonance, were used to study steady state and transient photogeneration, energy transfer, spin relaxation, and spin dependent recombination process in the time domain from tens of nanoseconds to tens of milliseconds in polymer materials including regio-random poly (3-hexyl-thiophene-2,5-diyl), regio-regular poly (3-hexyl-thiophene-2,5-diyl), poly (9,9-dioctyl-fluorenyl-2,7-diyl), poly (poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) of various morphologies, and transition metal complex poly (Pt-quinoxene). Our studies provided the tools to clarify the physical pictures regarding two types of long-lived photoexcitations, namely polarons (both germinate polaron-pairs, and unpaired polarons) and triplet excitons, which are the major excitations in these exotic semiconductors in electrical and optical related applications. From measurements of transient fluorescence and transient fluorescence detected magnetic resonance we show that photogenerated geminate polaron pairs live up to hundreds of microseconds following laser pulsed excitation. This conclusion is in agreement with the delayed formation of triplet excitons that we measured by transient photoinduced absorption. It also agrees with the weak spin-lattice relaxation rate in polymers that we measured using the optically detected magnetic resonance dynamic in thin films and organic light emitting devices. Randomly captured nongeminate polaron pairs were shown to be the major source of optically detected magnetic resonance signal at steady, state. We found that the dynamics and magnitude of the signal depend on the spin-relaxation rate, generation rate and decay rate of the geminate pairs and nongeminate pairs. Importantly we found that the spin-relaxation rate depends weakly on temperature and strongly on coupled heavy atom orbital and magnetic momentum dipole induced by dopants or high intensity excitation. Also the polaron generation rate is excitation energy and nano-morphology dependent; whereas the polaron decay rate is morphology and spin dependent.
Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot
NASA Astrophysics Data System (ADS)
M, Tiotsop; A, J. Fotue; S, C. Kenfack; N, Issofa; H, Fotsin; L, C. Fai
2016-04-01
In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.
2018-02-01
It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.
Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys
NASA Astrophysics Data System (ADS)
Nhung, Tran Hong; Planel, R.
1983-03-01
The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.
Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors
NASA Astrophysics Data System (ADS)
Bulaevskii, Lev N.; Lin, Shi-Zeng
2012-12-01
We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.
Semiconducting transition metal oxides.
Lany, Stephan
2015-07-22
Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO(2), and the high levels of hole doping in Co(2)ZnO(4) due to a self-doping mechanism that originates from the multivalence of Co.
Electronic conductivity studies on oxyhalide glasses containing TMO
NASA Astrophysics Data System (ADS)
Vijayatha, D.; Viswanatha, R.; Sujatha, B.; Narayana Reddy, C.
2016-05-01
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl2 - 60 PbO - (40-x) V2O5 (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl2 containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V2O5 concentration. Analysis of the results is interpreted in view Austin-Mott's small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.
Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3
NASA Astrophysics Data System (ADS)
Ahmad, I.; Akhtar, M. J.; Younas, M.; Siddique, M.; Hasan, M. M.
2012-10-01
In the modern micro-electronics, transition metal oxides due to their colossal values of dielectric permittivity possess huge potential for the development of capacitive energy storage devices. In the present work, the dielectric permittivity and the effects of temperature and frequency on the electrical transport properties of polycrystalline NdFeO3, prepared by solid state reaction method, are discussed. Room temperature Mossbauer spectrum confirms the phase purity, octahedral environment for Fe ion, and high spin state of Fe3+ ion. From the impedance spectroscopic measurements, three relaxation processes are observed, which are related to grains, grain boundaries (gbs), and electrode-semiconductor contact in the measured temperature and frequency ranges. Decrease in resistances and relaxation times of the grains and grain boundaries with temperature confirms the involvement of thermally activated conduction mechanisms. Same type of charge carriers (i.e., small polaron hole hopping) have been found responsible for conduction and relaxation processes through the grain and grain boundaries. The huge value of the dielectric constant (˜8 × 103) at high temperature and low frequency is correlated to the Maxwell-Wagner relaxation due to electrode-sample contact.
Impact of Space-Charge Layers on Sudden Death in Li/O2 Batteries.
Radin, Maxwell D; Monroe, Charles W; Siegel, Donald J
2015-08-06
The performance of Li/O2 batteries is thought to be limited by charge transport through the solid Li2O2 discharge product. Prior studies suggest that electron tunneling is the main transport mechanism through thin, compact Li2O2 deposits. The present study employs a new continuum transport model to explore an alternative scenario, in which charge transport is mediated by polaron hopping. Unlike earlier models, which assume a uniform carrier concentration or local electroneutrality, the possibility of nonuniform space charge is accounted for at the Li2O2/electrolyte and Li2O2/electrode interfaces, providing a more realistic picture of transport in Li2O2 films. The temperature and current-density dependences of the discharge curves predicted by the model are in good agreement with flat-electrode experiments over a wide range of rates, supporting the hypothesis that polaron hopping contributes significantly to charge transport. Exercising the model suggests that this mechanism could explain the observed enhancement in cell performance at elevated temperature and that performance could be further improved by tuning the interfacial orientation of Li2O2 crystallites.
Thermodynamics of Polaronic States in Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Farhan, Alan
Artificial spin ices represent a class of systems consisting of lithographically patterned nanomagnets arranged in two-dimensional geometries. They were initially introduced as a two-dimensional analogue to geometrically frustrated pyrochlore spin ice, and the most recent introduction of artificial spin ice systems with thermally activated moment fluctuations not only delivered the possibility to directly investigate geometrical frustration and emergent phenomena with real space imaging, but also paved the way to design and investigate new two-dimensional magnetic metamaterials, where material properties can be directly manipulated giving rise to properties that do not exist in nature. Here, taking advantage of cryogenic photoemission electron microscopy, and using the concept of emergent magnetic charges, we are able to directly visualize the creation and annihilation of screened emergent magnetic monopole defects in artificial spin ice. We observe that these polaronic states arise as intermediate states, separating an energetically excited out-of-equilibrium state and low-energy equilibrium configurations. They appear as a result of a local screening effect between emergent magnetic charge defects and their neighboring magnetic charges, thus forming a transient minimum, before the system approaches a global minimum with the least amount of emergent magnetic charge defects. This project is funded by the Swiss National Science Foundation.
Polaronic Charge Carrier-Lattice Interactions in Lead Halide Perovskites.
Wolf, Christoph; Cho, Himchan; Kim, Young-Hoon; Lee, Tae-Woo
2017-10-09
Almost ten years after the renaissance of the popular perovskite-type semiconductors based on lead salts with the general formula AMX 3 (A=organic or inorganic cation; M=divalent metal; X=halide), many facets of photophysics continue to puzzle researchers. In this Minireview, light is shed on the low mobilities of charge carriers in lead halide perovskites with special focus on the lattice properties at non-zero temperature. The polar and soft lattice leads to pronounced electron-phonon coupling, limiting carrier mobility and retarding recombination. We propose that the proper picture of excited charge carriers at temperature ranges that are relevant for device operations is that of a polaron, with Fröhlich coupling constants between 1<α<3. Under the aspect of light-emitting diode application, APbX 3 perovskite show moderate second order (bimolecular) recombination rates and high third-order (Auger) rate constants. It has become apparent that this is a direct consequence of the anisotropic polar A-site cation in organic-inorganic hybrid perovskites and might be alleviated by replacing the organic moiety with an isotropic cation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic polarons in a nonequilibrium polariton condensate
NASA Astrophysics Data System (ADS)
Mietki, Paweł; Matuszewski, Michał
2017-09-01
We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.
NASA Astrophysics Data System (ADS)
Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin
2017-03-01
Employing variational method of Pekar type (VMPT), this paper investigates the first-excited state energy (FESE), excitation energy and transition frequency of the strongly-coupled polaron in the CsI quantum pseudodot (QPD) with electric field. The temperature effects on the strong-coupling polaron in electric field are calculated by using the quantum statistical theory (QST). The results from the present investigation show that the FESE, excitation energy and transition frequency increase (decrease) firstly and then at lower (higher) temperature regions. They are decreasing functions of the electric field strength. Supported by the National Natural Science Foundation of China under Grant No. 11464033
Lafolet, F; Genoud, F; Divisia-Blohorn, B; Aronica, C; Guillerez, S
2005-07-07
In situ electron spin resonance (ESR) and UV-vis spectro-electrochemical studies have been performed on two copolymers consisting of alternating subunits of regioregular head to tail (HT) coupled 3-octylthiophene tetramer and 2,2'-bipyridine subunits (P4) or 3-octylthiophene hexamer subunits of the same regioregularity and 2,2'-bipyridine subunits (P6). Both P4 and P6 have been investigated in their metal-free form as well as in the ruthenium(II) metalated form (P4-Ru and P6-Ru). P4 and P6 in the p-doped state exhibit a clear ESR signal characteristic of the presence of polarons in the oligothienylene subunits. In the case of P4, no recombination of polarons into bipolarons is observed, whereas the recombination process takes place in P6. The formation of bipolarons is well-rationalized in terms of the conjugation length, and it seems clear that the higher length of the oligothiophene subunit in P6( )()stabilizes bipolarons(.)() The same effect, is induced by the coordination of -Ru(bpy)(2)(2+) to the bipyridine unit in the metalated form of both polymers, which results in an increase of the conjugation length. Important information is gained from the analysis of the ESR spectra of both nonmetalated and metalated in the oxidized (p-doped) and reduced (n-doped) forms. In the p-doped state both nonmetalated and metalated polymers reveal the presence of a narrow ESR line characteristic of the mobile spin carriers in the polymer matrix. The oxidation of the metal center occurs at higher potentials and leads to an irreversible destruction of the system. To the contrary, in the reduced (n-doped) state the ESR lines of the nonmetalated and metalated polymers markedly differ. A significant line broadening with simultaneous change of the g-value is caused by spin-orbit coupling phenomenon induced by the presence of the coordinating metal. Finally, the observation of a clear polaronic band in the UV-vis spectrum of p-doped P4 and its strong dependence on the applied potential can be clearly correlated with the potential induced changes in the ESR spin density. The same applies to P4-Ru, where the changes in the polaronic and bipolaronic bands can also be correlated with the ESR spin density changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sijie; Gillin, W. P., E-mail: w.gillin@qmul.ac.uk; Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS
The change in current through an organic light emitting diode (OLED) when it is placed in a magnetic field has been dubbed organic magnetoresistance and provides a means to understand the spin interactions that are occurring in working devices. Whilst there are a wide range of interactions that have been proposed to be the cause of the measured effects, there is still a need to identify their individual roles and in particular how they respond to an applied magnetic field. In this work, we investigate the effect of changing the balance of electron and hole injection in a simple aluminiummore » tris(8-hydroxyqinoline) based OLED and demonstrate that the triplet polaron interaction appears to be much stronger for electrons than for holes in this material.« less
NASA Astrophysics Data System (ADS)
Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2017-05-01
The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.
Electron-phonon interaction in quantum transport through quantum dots and molecular systems
NASA Astrophysics Data System (ADS)
Ojeda, J. H.; Duque, C. A.; Laroze, D.
2016-12-01
The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.
NASA Astrophysics Data System (ADS)
Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.
2018-05-01
In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.
Quantum vibrational polarons: Crystalline acetanilide revisited
NASA Astrophysics Data System (ADS)
Hamm, Peter; Edler, Julian
2006-03-01
We discuss a refined theoretical description of the peculiar spectroscopy of crystalline acetanilide (ACN). Acetanilide is a molecular crystal with quasi-one-dimensional chains of hydrogen-bonded units, which is often regarded as a model system for the vibrational spectroscopy of proteins. In linear spectroscopy, the CO stretching (amide I) band of ACN features a double-peak structure, the lower of which shows a pronounced temperature dependence which has been discussed in the context of polaron theory. In nonlinear spectroscopy, both of these peaks respond distinctly differently. The lower-frequency band exhibits the anharmonicity expected from polaron theory, while the higher-frequency band responds as if it were quasiharmonic. We have recently related the response of the higher-frequency band to that of a free exciton [J. Edler and P. Hamm, J. Chem. Phys. 117, 2415 (2002)]. However, as discussed in the present paper, the free exciton is not an eigenstate of the full quantum version of the Holstein polaron Hamiltonian, which is commonly used to describe these phenomena. In order to resolve this issue, we present a numerically exact solution of the Holstein polaron Hamiltonian in one dimension (1D) and 3D. In 1D, we find that the commonly used displaced oscillator picture remains qualitatively correct, even for relatively large exciton coupling. However, the result is not in agreement with the experiment, as it fails to explain the free-exciton band. In contrast, when taking into account the 3D nature of crystalline acetanilide, certain parameter regimes exist where the displaced oscillator picture breaks down and states appear in the spectrum that indeed exhibit the characteristics of a free exciton. The appearance of these states is a speciality of vibrational polarons, whose source of exciton coupling is transition dipole coupling which is expected to have opposite signs of interchain and intrachain coupling.
Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures
NASA Astrophysics Data System (ADS)
Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.
2018-05-01
Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitablymore » influencing the dielectric loss while invariably upholding the CP value.« less
Electronic transition in La1-xSrxTiO3
NASA Astrophysics Data System (ADS)
Hays, C. C.; Zhou, J.-S.; Markert, J. T.; Goodenough, J. B.
1999-10-01
The transition with increasing x in La1-xSrxTiO3 from an antiferromagnetic, p-type polaronic conductor to an n-type metal with an enhanced Pauli paramagnetism was investigated by monitoring changes in structure, magnetic properties, and, under different hydrostatic pressures, the resistance and thermoelectric power of ceramic samples. We conclude that LaTiO3 is an itinerant-electron antiferromagnet and the transition is first order with a phase separation associated with cooperative oxygen-atom displacements that segregate strongly correlated states from Fermi-liquid states. The Néel temperature TN~145 K decreases precipitously to 100 K at the phase limit x=0.045+/-0.005 the two-phase domain extends over the compositions 0.045<=x<=0.08.
Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi
2016-02-19
In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.
Phase separation of electrons strongly coupled with phonons in cuprates and manganites
NASA Astrophysics Data System (ADS)
Alexandrov, Sasha
2009-03-01
Recent advanced Monte Carlo simulations have not found superconductivity and phase separation in the Hubbard model with on-site repulsive electron-electron correlations. I argue that microscopic phase separations in cuprate superconductors and colossal magnetoresistance (CMR) manganites originate from a strong electron-phonon interaction (EPI) combined with unavoidable disorder. Attractive electron correlations, caused by an almost unretarded EPI, are sufficient to overcome the direct inter-site Coulomb repulsion in these charge-transfer Mott-Hubbard insulators, so that low energy physics is that of small polarons and small bipolarons. They form clusters localized by disorder below the mobility edge, but propagate as the Bloch states above the mobility edge. I identify the Froehlich EPI as the most essential for pairing and phase separation in superconducting layered cuprates. The pairing of oxygen holes into heavy bipolarons in the paramagnetic phase (current-carrier density collapse (CCDC)) explains also CMR and high and low-resistance phase coexistence near the ferromagnetic transition of doped manganites.
Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach
NASA Astrophysics Data System (ADS)
Chen, Lipeng; Zhao, Yang
2017-12-01
Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.
Polaron Thermodynamics of Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, Willie; Cheng, Chingyun; Arakelyan, Ilya; Thomas, John
2015-05-01
We present the first spatial profile measurements for spin-imbalanced mixtures of atomic 6Li fermions in a quasi-2D geometry with tunable strong interactions. The observed minority and majority profiles are not correctly predicted by BCS theory for a true 2D system, but are reasonably well fit by a 2D-polaron model of the free energy. Density difference profiles reveal a flat center with two peaks at the edges, consistent with a fully paired core of the corresponding 2D density profiles. These features are more prominent for higher interaction strengths. Not predicted by the polaron model is an observed transition from a spin-imbalanced normal fluid phase to a spin-balanced central core above a critical imbalance. Supported by ARO, DOE, AFOSR, NSF.
Merrill, Frank E.; Morris, Christopher
2005-05-17
A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.
Polaron pair mediated triplet generation in polymer/fullerene blends
Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.
2015-01-01
Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields. PMID:25735188
Electronic conductivity studies on oxyhalide glasses containing TMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayatha, D.; Department of Physics, Gurunanak Institute of Technology, Hyderabad -040; Viswanatha, R.
2016-05-06
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibitsmore » Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.« less
Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2
NASA Astrophysics Data System (ADS)
Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid
2016-08-01
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.
Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4
Zhong, Ruidan; Winn, Barry L.; Gu, Genda; ...
2017-04-28
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less
Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ruidan; Winn, Barry L.; Gu, Genda
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less
NASA Astrophysics Data System (ADS)
Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen
2011-09-01
We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; ...
2016-06-08
Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less
The role of solitons in charge and energy transfer in 1D molecular chains
NASA Astrophysics Data System (ADS)
Ivić , Zoran
1998-03-01
The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less
Kurowska, Aleksandra; Zassowski, Pawel; Kostyuchenko, Anastasia S; Zheleznova, Tatyana Yu; Andryukhova, Kseniya V; Fisyuk, Alexander S; Pron, Adam; Domagala, Wojciech
2017-11-15
A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.
Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates.
Pärschke, Ekaterina M; Wohlfeld, Krzysztof; Foyevtsova, Kateryna; van den Brink, Jeroen
2017-09-25
The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba 2 IrO 4 and Sr 2 IrO 4 to La 2 CuO 4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr 2 IrO 4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
Polaron-like vortices, dissociation transition, and self-induced pinning in magnetic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulaevskii, L. N., E-mail: lnb@lanl.gov; Lin, S.-Z.
2013-09-15
Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low spin relaxation rate and at low bias currents, vortices carrying magnetic polarization clouds become polaron-like and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen-Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as the voltage in the I-V characteristics jump to values corresponding to the BS drag coefficient at a critical current J{sub c}. The nonuniform components of the magnetic field and magnetization drop as the velocity increases, resulting inmore » weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally, the jump shows up as a depinning transition and the corresponding current at the jump is the depinning current. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current J{sub r} < J{sub c}. As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides (RE)Ni{sub 2}B{sub 2}C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems for a detailed study of vortex polaron formation by measuring I-V characteristics. We also propose to use a superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow. For Nb and a proper magnet multilayer structure, we estimate the critical current density J{sub c} {approx} 10{sup 9} A/m{sup 2} at the magnetic field B Almost-Equal-To 1 T.« less
Optical phonon modes and polaron related parameters in GaxIn1-xP
NASA Astrophysics Data System (ADS)
Bouarissa, N.; Algarni, H.; Al-Hagan, O. A.; Khan, M. A.; Alhuwaymel, T. F.
2018-02-01
Based on a pseudopotential approach under the virtual crystal approximation that includes the effect of compositional disorder, the optical lattice vibration frequencies and polaron related parameters in zinc-blende GaxIn1-xP have been studied. Our findings showed generally reasonably good accord with data in the literature. Other case, our results are predictions. The composition dependence of longitudinal optical (LO) and transverse optical (TO) phonon modes, LO-TO splittings, Frӧhlich coupling parameter, Debye temperature of LO phonon frequency, and polaron effective mass has been analyzed and discussed. While a non-monotonic behavior has been noticed for the LO and TO phonon frequencies versus Ga concentration x, a monotonic behavior has been observed for the rest of the features of interest. The information derived from this investigation may be useful for optoelectronic technological applications.
Magnon Polarons in the Spin Seebeck Effect.
Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji
2016-11-11
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
Many body effects in a widely tunable Bose-Fermi mixture
NASA Astrophysics Data System (ADS)
Ahamdi, Peyman; Wu, Cheng-Hsun; Santiago, Ibon; Park, Jee Woo; Zwierlein, Martin
2011-05-01
A Bose-Einstein condensate immersed in the Fermi sea provides a rich platform for the study of many body effects such as polaron physics, boson-induced superfluidity and models of high-tc superconductivity. Few bosonic impurities in a Fermi sea form bosonic polarons, dressed quasi-particles that can condense, while few fermionic impurities in a Bose condensate might dress into heavy fermions with an immense increase of the effective mass. In an atom trap, both extremes of boson-fermion imbalance can in principle be realized in one and the same sample. Recently we have realized a Bose Einstein condensate of 41K immersed in a Fermi sea of 40K at T /TF = 0.3 and detected a wide Feshbach resonance between them. The mixture's lifetime is long enough so that bosonic polarons should form at an expected binding energy of about 0.6 TF. In this talk I will summarize our observations and the progress we have made to detect polaron physics in Bose-Fermi mixtures. This work was supported by the NSF, AFOSR-MURI, AFOSR-YIP, ARO-MURI, a grant from the Army Research Office with funding from the DARPA OLE program, the David and Lucille Packard Foundation and the Alfred P. Sloan Foundation.
Hartree-Fock treatment of Fermi polarons using the Lee-Low-Pine transformation
NASA Astrophysics Data System (ADS)
Kain, Ben; Ling, Hong Y.
2017-09-01
We consider the Fermi polaron problem at zero temperature, where a single impurity interacts with noninteracting host fermions. We approach the problem starting with a Fröhlich-like Hamiltonian where the impurity is described with canonical position and momentum operators. We apply the Lee-Low-Pine (LLP) transformation to change the fermionic Fröhlich Hamiltonian into the fermionic LLP Hamiltonian, which describes a many-body system containing host fermions only. We adapt the self-consistent Hartree-Fock (HF) approach, first proposed by Edwards, to the fermionic LLP Hamiltonian in which a pair of host fermions with momenta k and k' interact with a potential proportional to k .k' . We apply the HF theory, which has the advantage of not restricting the number of particle-hole pairs, to repulsive Fermi polarons in one dimension. When the impurity and host fermion masses are equal our variational ansatz, where HF orbitals are expanded in terms of free-particle states, produces results in excellent agreement with McGuire's exact analytical results based on the Bethe ansatz. This work raises the prospect of using the HF ansatz and its time-dependent generalization as building blocks for developing all-coupling theories for both equilibrium and nonequilibrium Fermi polarons in higher dimensions.
NASA Astrophysics Data System (ADS)
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; Yartsev, Arkady
2017-02-01
Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V-1 s-1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3.
NASA Astrophysics Data System (ADS)
Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.
2016-08-01
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.
Electron capture and transport mediated by lattice solitons
NASA Astrophysics Data System (ADS)
Hennig, D.; Chetverikov, A.; Velarde, M. G.; Ebeling, W.
2007-10-01
We study electron transport in a one-dimensional molecular lattice chain. The molecules are linked by Morse interaction potentials. The electronic degree of freedom, expressed in terms of a tight binding system, is coupled to the longitudinal displacements of the molecules from their equilibrium positions along the axis of the lattice. More specifically, the distance between two sites influences in an exponential fashion the corresponding electronic transfer matrix element. We demonstrate that when an electron is injected in the undistorted lattice it causes a local deformation such that a compression results leading to a lowering of the electron’s energy below the lower edge of the band of linear states. This corresponds to self-localization of the electron due to a polaronlike effect. Then, if a traveling soliton lattice deformation is launched a distance apart from the electron’s position, upon encountering the polaronlike state it captures the latter dragging it afterwards along its path. Strikingly, even when the electron is initially uniformly distributed over the lattice sites a traveling soliton lattice deformation gathers the electronic amplitudes during its traversing of the lattice. Eventually, the electron state is strongly localized and moves coherently in unison with the soliton lattice deformation. This shows that for the achievement of coherent electron transport we need not start with the polaronic effect.
Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-04-01
The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.
Zhang, Yingjie; Aziz, Hany
2017-01-11
We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.
NASA Astrophysics Data System (ADS)
Wada, Y.; Enokida, I.; Yamamoto, J.; Furukawa, Y.
2018-05-01
Raman images of carriers (positive polarons) at the channel of an ionic liquid-gated transistor (ILGT) fabricated with regioregular poly(3-hexylthiophene) (P3HT) have been measured with excitation at 785 nm. The observed spectra indicate that carriers generated are positive polarons. The intensities of the 1415 cm-1 band attributed to polarons in the P3HT channel were plotted as Raman images; they showed the carrier density distribution. When the source-drain voltage VD is lower than the source-gate voltage VG (linear region), the carrier density was uniform. When VD is nearly equal to VG (saturation region), a negative carrier density gradient from the source electrode towards the drain electrode was observed. This carrier density distribution is associated with the observed current-voltage characteristics, which is not consistent with the "pinch-off" theory of inorganic semiconductor transistors.
Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells: Effect of self-localization
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Godde, T.; Kavokin, K. V.; Yakovlev, D. R.; Reshina, I. I.; Sedova, I. V.; Sorokin, S. V.; Ivanov, S. V.; Kusrayev, Yu. G.; Bayer, M.
2017-04-01
We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se diluted-magnetic-semiconductor quantum wells by using time-resolved photoluminescence (PL). The magnetic-field and temperature dependencies of this dynamics allow us to separate the nonmagnetic and magnetic contributions to the exciton localization. We deduce the EMP energy of 14 meV, which is in agreement with time-integrated measurements based on selective excitation and the magnetic-field dependence of the PL circular polarization degree. The polaron formation time of 500 ps is significantly longer than the corresponding values reported earlier. We propose that this behavior is related to strong self-localization of the EMP, accompanied with a squeezing of the heavy-hole envelope wave function. This conclusion is also supported by the decrease of the exciton lifetime from 600 ps to 200-400 ps with increasing magnetic field and temperature.
Dissipative vibrational model for chiral recognition in olfaction
NASA Astrophysics Data System (ADS)
Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin
2015-09-01
We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.
Vidal, Julien; Trani, Fabio; Bruneval, Fabien; Marques, Miguel A L; Botti, Silvana
2010-04-02
We use hybrid functionals and restricted self-consistent GW, state-of-the-art theoretical approaches for quasiparticle band structures, to study the electronic states of delafossite Cu(Al,In)O2, the first p-type and bipolar transparent conductive oxides. We show that a self-consistent GW approximation gives remarkably wider band gaps than all the other approaches used so far. Accounting for polaronic effects in the GW scheme we recover a very nice agreement with experiments. Furthermore, the modifications with respect to the Kohn-Sham bands are strongly k dependent, which makes questionable the common practice of using a scissor operator. Finally, our results support the view that the low energy structures found in optical experiments, and initially attributed to an indirect transition, are due to intrinsic defects in the samples.
Conductive mechanism in manganite materials
NASA Astrophysics Data System (ADS)
Liu, Xianming; Zhu, Hong; Zhang, Yuheng
2002-01-01
We describe a model in which f(T)=M(T)/Mmax represents both the fraction of the itinerant electron density in the double-exchange (DE) theory and the magnetization σ in the current carrier density collapse (CCDC) theory. With this model, we have checked the DE and CCDC theories with our experimental results of the transport behavior. The DE theory yields agreement with the experimental resistivity excellently, in which the conductivity is the sum of the polaronic and itinerant electronic conductivity for the insulator-metal transition regime. The fitting curves of the resistivity by the CCDC theory deviate from the experiment seriously. This might be caused by the improper assumption of the temperature-dependent carrier density and the temperature-independent carrier mobility. Therefore, it is concluded that the DE theory is more suitable to explain the conductive mechanism in perovskite manganites.
Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V
2017-08-23
Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer˙ + and fullerene˙ - was extracted. In composites with low-efficient polymers the contribution of the SCPP to the in-phase ESE signal is high, while in composites with high-efficient polymers it is low. This finding can be used as a selection criterion of charge separation efficiency in the polymer/fullerene composites.
Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin
2012-04-07
The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.
Observation of ferromagnetism in Mn doped KNbO3
NASA Astrophysics Data System (ADS)
Manikandan, M.; Venkateswaran, C.
2015-06-01
Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.
The influence of charge and magnetic order on polaron and acoustic phonon dynamics in LuFe 2O 4
Lee, J.; Trugman, S. A.; Zhang, C. L.; ...
2015-07-27
Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polarondynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe 2O 4. We experimentally observed the influence of magnetic order on polarondynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. As a result, this provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle
2016-08-31
During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw; Ni, Wei-Shih; Lee, Jhe-You
2015-06-07
The effect of incorporation of ethylene glycol (EG) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on electron phonon coupling and conductivity is investigated. It is shown that the carrier density (N{sub C}) increases significantly and the carrier mobility (μ) increases slightly at 300 K. The increased intensity of the Raman spectrum between 1400 and 1450 cm{sup −1}, following EG treatment (that is, the quinoid-dominated structures of the PEDOT chain), leads to an increase in the number of polarons (bipolarons), which leads to an increase in N{sub C}. In addition, μ in PEDOT:PSS samples with or without EG addition exhibits a strong temperature dependence, which demonstrates themore » dominance of tunneling (hopping) at low (high) temperatures. The high conductivity of PEDOT:PSS samples with the addition of EG is attributed to the combined effect of the modification of the electron-phonon coupling and the increase in N{sub C} (μ)« less
Oxide Thermoelectric Materials: A Structure-Property Relationship
NASA Astrophysics Data System (ADS)
Nag, Abanti; Shubha, V.
2014-04-01
Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.
Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Khasa, S.; Yadav, Arti; Dahiya, M. S.; Seema, Ashima, Agarwal, A.
2015-06-01
The DC conductivities of glasses having composition x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3 (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO.23 Li2O.20Bi2O3.50B2O3 and 7V2O5.23Li2O.20Bi2O3.50B2O3 (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott's small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, Muhammad, E-mail: mgul@upesh.edu.pk
2016-04-15
Highlights: • Uniform MnCr{sub 2}O{sub 4} nanoparticles synthesized by surfactant-free coprecipitation route. • XRD analysis confirmed the single spinel phase formation in the material. • Dielectric loss was found abnormal over certain lower frequencies. • AC conductivity proved the involvement of small polarons in conduction process. - Abstract: Radio frequency dielectric behavior of nanocrystalline MnCr{sub 2}O{sub 4} synthesized via surfactant-free controlled coprecipitation route has been studied. Keeping in view the necessity of particle size uniformity and phase purity for genuine performance, experimental conditions were optimized accordingly. The scanning electron micrographs of the synthesized product revealed the formation of monodispersed particlemore » system. X-ray diffraction analysis confirmed monophasic spinel structure formation with 65 nm crystallite size. Two characteristic peaks observed between 700 cm{sup −1} and 400 cm{sup −1} in the FTIR spectrum also supported the spinel phase purity of compound. The dielectric constant was found normal, but loss tangent of the sample showed abnormal behavior with frequency. The observed dielectric behavior of the synthesized product has been explained on the basis of space-charge polarization according to Maxwell–Wagner’s model and mutual contribution of n-type &p-type charge carriers (Rezlescu model). The ac conductivity linearly increased with frequency highlighting the existence of polaron hopping.« less
NASA Astrophysics Data System (ADS)
Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.
2018-02-01
The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao
The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less
Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric
We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.
Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao; ...
2018-01-23
The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less
NASA Astrophysics Data System (ADS)
Korotana, R.; Mallia, G.; Gercsi, Z.; Liborio, L.; Harrison, N. M.
2014-05-01
Hybrid-exchange density functional theory calculations are carried out to determine the effects of A-site doping on the electronic and magnetic properties of the manganite series La1-xCaxMnO3. This study focuses on the ground state of an ordered Ca occupancy in a periodic structure. It is shown that the hybrid-exchange functional, Becke three-parameter Lee-Yang-Parr (B3LYP), provides an accurate and consistent description of the electronic structure for LaMnO3, CaMnO3, and La0.75Ca0.25MnO3. We have quantified the relevant structural, magnetic, and electronic energy contributions to the stability of the doped compound. An insight into the exchange coupling mechanism for the low hole density region of the phase diagram, where a polaron (anti-Jahn-Teller) forms, is also provided. This study completes a microscopic description of the lightly doped insulator with an antiferromagnetic-to-ferromagnetic and metal-to-insulator transition.
Directional charge separation in isolated organic semiconductor crystalline nanowires
Labastide, J. A.; Thompson, H. B.; Marques, S. R.; ...
2016-02-25
One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized alongmore » the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.« less
NASA Astrophysics Data System (ADS)
Schmidt, V. H.
1981-06-01
Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.
Diffusive transport of several hundred keV electrons in the Earth's slot region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.
2017-12-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.
2017-10-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conradson, Steven D.; Andersson, David A.; Boland, Kevin S.
Mixed valence O-doped UO 2+x and photoexcited UO 2 containing transitory U 3+ and U 5+ host a coherent polaronic quantum phase (CPQP) that exhibits the characteristics of a Fröhlich-type, nonequilibrium, phonon-coupled Bose-Einstein condensate whose stability and coherence are amplified by collective, anharmonic motions of atoms and charges. Complementary to the available, detailed, real space information from scattering and EXAFS, an outstanding question is the electronic structure. Mapping the Mott gap in UO 2, U 4O 9, and U 3O 7 with O XAS and NIXS and UM5 RIXS shows that O doping raises the peak of the U5f statesmore » of the valence band by ~0.4 eV relative to a calculated value of 0.25 eV. However, it lowers the edge of the conduction band by 1.5 eV vs the calculated 0.6 eV, a difference much larger than the experimental error. This 1.9 eV reduction in the gap width constitutes most of the 2–2.2 eV gap measured by optical absorption. In addition, the XAS spectra show a tail that will intersect the occupied U5f states and give a continuous density-of-states that increases rapidly above its constricted intersection. Femtosecond-resolved photoemission measurements of UO 2, coincident with the excitation pulse with 4.7 eV excitation, show the unoccupied U5f states of UO 2 and no hot electrons. 3.1 eV excitation, however, complements the O-doping results by giving a continuous population of electrons for several eV above the Fermi level. The CPQP in photoexcited UO 2 therefore fulfills the criteria for a nonequilibrium condensate. The electron distributions resulting from both excitations persist for 5–10 ps, indicating that they are the final state that therefore forms without passing through the initial continuous distribution of nonthermal electrons observed for other materials. Three exceptional findings are: (1) the direct formation of both of these long lived (>3–10 ps) excited states without the short lived nonthermal intermediate; (2) the superthermal metallic state is as or more stable than typical photoinduced metallic phases; and (3) the absence of hot electrons accompanying the insulating UO 2 excited state. This heterogeneous, nonequilibrium, Fröhlich BEC stabilized by a Fano-Feshbach resonance therefore continues to exhibit unique properties.« less
Polaron formation in normal state optical conductivity of iron-based superconductor
NASA Astrophysics Data System (ADS)
Choudhary, K. K.; Lodhi, Pavitra Devi; Kaurav, Netram
2018-05-01
Normal state Optical conductivity σ(ω) of Iron-Based superconductor LaFeAsO have been investigated using polaron formation mechanism. The coherent Drude free carrier excitations as well as the incoherent motion of carriers leading to a polaron formation, originated from inter and intra layer transitions of charge carriers are incorporated in the present model. Coherent motion of Drude carriers obtained from an effective interaction potential leads to a peak at zero frequency regime which is an indication of metallic conduction in superconducting materials and also produces a long tail at higher frequencies infrared region. Whereas, the incoherent motion i.e. hopping of carriers from Fe to Fe in the FeAs layer and from FeAs layer to LaO layer produces two different peaks at around 100 cm-1 and 430 cm-1 respectively. Two contributions, Drude and hopping carriers successfully explain the anomalies observed in the optical conductivity of metallic state of the iron-based superconductors.
Madelung and Hubbard interactions in polaron band model of doped organic semiconductors
Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.
2016-01-01
The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355
Bound magnetic polaron in a semimagnetic double quantum well
NASA Astrophysics Data System (ADS)
Kalpana, P.; Jayakumar, K.
2017-09-01
The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jedrecy, N., E-mail: jedrecy@insp.jussieu.fr; Hamieh, M.; Hebert, C.
We show that the well-established universal scaling σ{sub xy}{sup AHE} ∼ σ{sub xx}{sup 1.6} between anomalous Hall and longitudinal conductivities in the low conductivity regime (σ{sub xx} < 10{sup 4} Ω{sup −1} cm{sup −1}) transforms into the scaling σ{sub xy}{sup AHE} ∼ σ{sub xx}{sup 2} at the onset of strong electron localization. The crossover between the two relations is observed in magnetite-derived Zn{sub x}Fe{sub 3-x}O{sub 4} thin films where an insulating/hopping regime follows a bad metal/hopping regime below the Verwey transition temperature T{sub v}. Our results demonstrate that electron localization effects come into play in the anomalous Hall effect (AHE)more » modifying significantly the scaling exponent. In addition, the thermal evolution of the anomalous Hall resistivity suggests the existence of spin polarons whose size would decrease below T{sub v}.« less
Study of biodegradable polymers for ``green'' devices
NASA Astrophysics Data System (ADS)
Perez, Carlos; Jiang, Xiaomei; Jiang Group Team
2015-03-01
Π - conjugated polymers such as polythiophenes are conventional picks for cost-effective organic solar cells. However, these organic semiconductors are not environment-friendly since the polymer back bones require temperature higher than 3000C to be decomposed, thus will cause potential environment problems upon disposal. In this work, the optical and electronic properties of biodegradable polymers, conjugated poly(disulfidediamine), were examined via continuous wave laser spectroscopy, FTIR spectroscopy and conductivity measurement. We found that the attachment of a side chain to aromatic ring increases both photo and thermal stability, as well as higher conductivity. Thermal annealing improved the film morphological, photophysical and electronic properties. Photo-Induced Absorption (PIA) reveals different features comparing with conventional pi-conjugated polymers. No observation of long-lived photoexcitations such as polarons or triplets which are common with pi-conjugated polymers. Instead, we found the formation of low energy species upon thermal annealing in these biodegradable polymers.
Fujihashi, Yuta; Wang, Lu; Zhao, Yang
2017-12-21
Recent advances in quantum optics allow for exploration of boson dynamics in dissipative many-body systems. However, the traditional descriptions of quantum dissipation using reduced density matrices are unable to capture explicit information of bath dynamics. In this work, efficient evaluation of boson dynamics is demonstrated by combining the multiple Davydov Ansatz with finite-temperature time-dependent variation, going beyond what state-of-the-art density matrix approaches are capable to offer for coupled electron-boson systems. To this end, applications are made to excitation energy transfer in photosynthetic systems, singlet fission in organic thin films, and circuit quantum electrodynamics in superconducting devices. Thanks to the multiple Davydov Ansatz, our analysis of boson dynamics leads to clear revelation of boson modes strongly coupled to electronic states, as well as in-depth description of polaron creation and destruction in the presence of thermal fluctuations.
Theory of exciton transfer and diffusion in conjugated polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barford, William, E-mail: william.barford@chem.ox.ac.uk; Tozer, Oliver Robert; University College, University of Oxford, Oxford OX1 4BH
We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for themore » exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The spectral properties of the migrating excitons are also investigated. The emission intensity ratio of the 0-0 and 0-1 vibronic peaks is related to the effective Huang-Rhys parameter of the emitting state, which in turn is related to the chromophore size. The intensity ratios calculated from the effective Huang-Rhys parameters are in agreement with experimental spectra, and the time-resolved trend for the intensity ratio to decrease with time was also reproduced as the excitation migrates to shorter, lower energy chromophores as a function of time. In addition, the energy of the exciton state shows a logarithmic decrease with time, in agreement with experimental observations.« less
Theory of exciton transfer and diffusion in conjugated polymers.
Barford, William; Tozer, Oliver Robert
2014-10-28
We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ~10 nm are in good agreement with experiment. The spectral properties of the migrating excitons are also investigated. The emission intensity ratio of the 0-0 and 0-1 vibronic peaks is related to the effective Huang-Rhys parameter of the emitting state, which in turn is related to the chromophore size. The intensity ratios calculated from the effective Huang-Rhys parameters are in agreement with experimental spectra, and the time-resolved trend for the intensity ratio to decrease with time was also reproduced as the excitation migrates to shorter, lower energy chromophores as a function of time. In addition, the energy of the exciton state shows a logarithmic decrease with time, in agreement with experimental observations.
Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.
2017-07-01
Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather than the mere presence or absence of coherence or noise, that is responsible for the optimal heat engine performance. In addition, we find that the effective voltage of QHE exhibits superior robustness against the bath noise as long as the system-bath coupling is not very strong.
NASA Astrophysics Data System (ADS)
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2013-09-01
We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.
NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
Ma, Q.; Li, W.; Thorne, R. M.; ...
2017-09-29
Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less
Bulk magnetic properties of La1-xCaxMnO3 (0⩽x⩽0.14) : Signatures of local ferromagnetic order
NASA Astrophysics Data System (ADS)
Terashita, Hirotoshi; Neumeier, J. J.
2005-04-01
We report the bulk magnetic properties of hole-doped La1-xCaxMnO3 (0⩽x⩽0.14) in the paramagnetic and antiferromagnetic regions; the Mn4+ concentration was determined with chemical analysis. Significant enhancement of the effective paramagnetic moment illustrates the existence of ferromagnetic clusters (polarons). The data reveal a distinct crossover in the paramagnetic region, signifying competition between ferromagnetic clusters and antiferromagnetic correlations associated with the low-temperature magnetically ordered state. The results suggest similarity in the magnetic properties at low temperatures between hole-doped LaMnO3 and electron-doped CaMnO3 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.
The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less
Polaron conductivity mechanism in oxalic acid dihydrate: ac conductivity experiment
NASA Astrophysics Data System (ADS)
Levstik, Adrijan; Filipič, Cene; Bobnar, Vid; Levstik, Iva; Hadži, Dušan
2006-10-01
The ac electrical conductivity of the oxalic acid dihydrate ( α -POX) was investigated as a function of the frequency and temperature. The real part of the complex ac electrical conductivity was found to follow the universal dielectric response σ'∝νs , indicating that hopping or tunneling of localized charge carriers governs the electrical transport. A detailed analysis of the temperature dependence of the exponent s revealed that in a broad temperature range 50-200K the tunneling of polarons is the dominating charge transport mechanism.
Analog of small Holstein polaron in hydrogen-bonded amide systems
NASA Astrophysics Data System (ADS)
Alexander, D. M.
1985-01-01
A class of amide-I (C = O stretch) related excitations and their contribution to the spectral function for infrared absorption is determined by use of the Davydov Hamiltonian. The treatment is a fully quantum, finite-temperature one. A consistent picture and a quantitative fit to the absorption data for crystalline acetanilide confirms that the model adequately explains the anomalous behavior cited by Careri et al. The localized excitation responsible for this behavior is the vibronic analog of the small Holstein polaron. The possible extension to other modes and biological relevance is examined.
Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO 4 over Multiple Lithium Intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuh-Chieh; Wen, Bohua; Wiaderek, Kamila M.
ε -Li x VOPO 4 is a promising multi-electron cathode for rechargeable lithium-ion bat- teries that has an extremely high theoretical capacity of 318 mAh/g. In this w ork, we demonstrate the stable cycling of more than one Li in solid-state-syn thesized ε - LiVOPO 4 over more than 20 cycles for the first time. Using a combination of densit y functional theory (DFT) calculations, X-ray pair distribution funct ion (PDF) analy- sis and X-ray Absorption Near Edge Structure (XANES) measurements, we pre sent a comprehensive analysis of the thermodynamics, kinetics and stru ctural evolution of ε -Li x VOPOmore » 4 over the entire lithiation range. We identify two intermediate ph ases at x = 1 . 5 and 1.75 in the low-voltage regime using DFT calculations, and the comput ed and electrochemically measured voltage profiles are in excellent agree ment. Operando PDF techniques show a reversible hysteretic change in the short ( < 2° A) V-O bond lengths coupled with an irreversible extension of the long V-O bond ( > 2.4 °A) dur- ing low-voltage cycling. These observations are confirmed with EXAFS spe ctra. We identify hydrogen intercalation from the electrolyte decomposition as a likely explana- tion for the ~ 2 . 4°A V-O bond and its irreversible extension. In terms of electronic conductivity, we find Li x VOPO 4 to be a large band gap insulator across the entire lithiation range, and calculated small polaron migration barriers are similar to those of the olivine LiMPO 4 cathodes. Finally, we demonstrate that ε -LiVOPO 4 is likely to be a one-dimensional diffuser using climbing-image nudged elastic ban d calculations. These results highlight the importance of nano-sizing and carbon coating in achieving good electrochemical performance in this material.« less
Zhang, Changzhe; Bu, Yuxiang
2016-09-14
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
Dynamic d-symmetry Bose condensate of a planar-large-bipolaron liquid in cuprate superconductors
NASA Astrophysics Data System (ADS)
Emin, David
2017-11-01
Planar-large-bipolarons can form if the ratio of the surrounding mediums' static to high-frequency dielectric constants is especially large, ε0/ε∞ >> 2. A large-bipolaron in p-doped La2CuO4 is modelled as two electrons being removed from the out-of-plane orbitals of four oxygen ions circumscribed by four copper ions of a CuO2 layer. These oxygen dianions relax inwardly as they donate electrons to the surrounding outwardly relaxing copper cations. This charge transfer generates the strong in-plane electron-lattice interaction needed to stabilise a large-bipolaron with respect to decomposing into polarons. The lowest-energy radial in-plane optic vibration of a large-bipolaron's four core oxygen ions with their associated electronic charges has d-symmetry. Electronic relaxation in response to multiple large-bipolarons' atomic vibrations lowers their frequencies to generate a phonon-mediated attraction among them which fosters their condensation into a liquid. This liquid features distinctive transport and optical properties. A large-bipolaron liquid's superconductivity can result when it undergoes a Bose condensation yielding macroscopic occupation of its ground state. The synchronised vibrations of large-bipolarons' core-oxygen ions with their electronic charges generate this Bose condensate's dynamic global d-symmetry.
Charge Transport Processes in Molecular Junctions
NASA Astrophysics Data System (ADS)
Smith, Christopher Eugene
Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires. Using quantum-based calculations, we modeled 'p-type' polaron transport through oligophenylenethiophene (OPTI) wires and assigned transport activation energies to specific modes of nuclear motion. We also show control over 'n-type', LUMO-mediated transport in short ( 2 nm) redox-active perylenediimide (PDI) SAMs bound to contacts through isocyano linkers. By changing the contact work function (φ) and temperature, we were able to verify thermally-assisted LUMO transport. Transition voltage spectroscopy and the single level model was employed to fit the experimental I-V curves and extract the electronic coupling (epsilon) and the EF-LUMO offset (epsilonl). It was found that epsilonl does not change with φ (LUMO pinning), while Gamma changes with both φ and temperature. Further, the PDI SAMs could be reversibly chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.
Water-in-Olivine Magma Ascent Chronometry: Every Crystal is a Clock
NASA Astrophysics Data System (ADS)
Newcombe, M. E.; Asimow, P. D.; Ferriss, E.; Barth, A.; Lloyd, A. S.; Hauri, E.; Plank, T. A.
2017-12-01
The syneruptive decompression rate of basaltic magma in volcanic conduits is thought to be a critical control on eruptive vigor. Recent efforts have constrained decompression rates using models of diffusive water loss from melt embayments (Lloyd et al. 2014; Ferguson et al. 2016), olivine-hosted melt inclusions (Chen et al. 2013; Le Voyer et al. 2014), and clinopyroxene phenocrysts (Lloyd et al. 2016). However, these techniques are difficult to apply because of the rarity of melt embayments and clinopyroxene phenocrysts suitable for analysis and the complexities associated with modeling water loss from melt inclusions. We are developing a new magma ascent chronometer based on syneruptive diffusive water loss from olivine phenocrysts. We have found water zonation in every olivine phenocryst we have measured, from explosive eruptions of Pavlof, Seguam, Fuego, Cerro Negro and Kilauea volcanoes. Phenocrysts were polished to expose a central plane normal to the crystallographic `b' axis and volatile concentration profiles were measured along `a' and `c' axes by SIMS or nanoSIMS. Profiles are compared to 1D and 3D finite-element models of diffusive water loss from olivine, with or without melt inclusions, whose boundaries are in equilibrium with a melt undergoing closed-system degassing. In every case, we observe faster water diffusion along the `a' axis, consistent with the diffusion anisotropy observed by Kohlstedt and Mackwell (1998) for the so-called `proton-polaron' mechanism of H-transport. Water concentration gradients along `a' match the 1D diffusion model with a diffusivity of 10-10 m2/s (see Plank et al., this meeting), olivine-melt partition coefficient of 0.0007-0.002 (based on melt inclusion-olivine pairs), and decompression rates equal to the best-fit values from melt embayment studies (Lloyd et al. 2014; Ferguson et al. 2016). Agreement between the melt embayment and water-in-olivine ascent chronometers at Fuego, Seguam, and Kilauea Iki demonstrates the potential of this new technique, which can be applied to any olivine-bearing mafic-intermediate eruption using common analytical tools (SIMS and FTIR). In theory, each crystal is a clock, with the potential to record variable ascent in the conduit, over the course of an eruption, and between eruptions.
NASA Astrophysics Data System (ADS)
Huang, Q.; Li, Z. W.; Li, J.; Ong, C. K.
2001-05-01
High-quality epitaxial La0.7Sr0.3Mn1- xFexO3 (LSMFO) thin films have been successfully prepared on SrTiO3 single-crystal substrates by pulsed laser deposition. No structural changes were observed for x≤0.12. For x = 0.2, an elongation in the a-axis direction was identified. An antiferromagnetic arrangement of Fe and Mn ions over the whole Fe-doping region and a canted spin structure at x≥0.12 were observed. Unlike the case for the bulks, only one resistivity peak was observed for the epitaxial films. This shows that one of the two resistivity peaks for polycrystalline LSMFO bulks has its origin in grain boundaries. The effect of Fe doping can be attributed to a combination of doping disorder, Fe-Mn superexchange interactions and a site-percolation mechanism, which suppress the metallic conduction and ferromagnetism. In epitaxial LSMFO thin films, extrinsic magnetoresistance (MR) related to grain boundary effects was excluded. The intrinsic MR is gradually enhanced with increasing Fe concentration. For the film with x = 0.12, a fairly large MR = 12% was observed in a small field of 4 kOe at 145 K. For those films, the resistivity above Tc (the ferromagnetic Curie temperature) follows the Emin-Holstein model for small polarons. The polaron activation energy is enhanced due to weakening of the local double-exchange ferromagnetism by Fe doping. The fitting results indicate that the lattice polarons are magnetic in nature and that non-nearest-neighbour polaron hopping exists. The resistivity below Tp (the resistivity peak temperature) follows an empirical relation, ρ(T,H) = ρ0 + ρ2(H)T2 + ρ7.5(H)T7.5. It is found that the MR arises mainly from the suppression of T7.5-terms. The enhanced MR can be attributed to the suppression of the enhanced magnetic scattering and polaron scattering under an external field.
Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.
Pal, Bappaditya; Giri, P K
2011-10-01
Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.
Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films
NASA Astrophysics Data System (ADS)
Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian
2018-02-01
The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.
NASA Astrophysics Data System (ADS)
Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.
2014-03-01
Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.
Excitations Partition into Two Distinct Populations in Bulk Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lili; Brawand, Nicholas P.; Vörös, Márton
2018-01-09
Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single-domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second-order recombination and the other by third-order recombination. Based on ab initio simulations, this observation is found to be most consistent withmore » the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single-crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lili; Brawand, Nicholas P.; Vörös, Márton
Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single-domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second-order recombination and the other by third-order recombination. Based on ab initio simulations, this observation is found to be most consistent withmore » the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single-crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Fukuda, Kunito; Asakawa, Naoki
2017-08-01
Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
Ultra-fast pump-probe determination of electron-phonon coupling in cuprate superconductors
NASA Astrophysics Data System (ADS)
Mihailovic, Dragan
2010-03-01
Fresh femtosecond spectroscopy experiments show the electron-phonon interaction strength λ to be 0.7 and 1.4 for YBCO and LSCO respectively and not around 0.2 as previously reported [1]. The revised estimates arise primarily from improved time-resolution, and also partly from improved modeling. Comparison with classical superconductors and pnictides shows non-monotonic correlation of λ with Tc. Systematic new measurements of the condensate vaporization energy (Uv) in cuprates [2] and pnictides reveals a power-law dependence on Tc with exponent 2. However, Uc is 16-18 times greater than the BCS condensation energy Uc, implying that a significant heat capacity of the ``bosonic glue.'' In contrast, charge-density wave systems with electronically driven ordering transitions have Uv˜Uc. The data suggest BCS and Eliashberg-based models to be inappropriate for describing the physics of high-temperature superconductors, and point towards polaron models which consider strong or intermediate λ.[4pt] [1] C.Gadermeier et al., arXiv:0902.1636[0pt] [2] P.Kusar et al., Phys. Rev. Lett. 101, 227001 (2008)
Phonon Effects on Charge Transport Through a Two State Molecule
NASA Astrophysics Data System (ADS)
Ulloa, Sergio E.; Yudiarsah, Efta
2008-03-01
We study the effect of local and non-local phonon on the transport properties of a molecule model described by two- electronic states. The local phonon interaction is tackled by means of a Lang Firsov transformation [1,2]. The interaction with non-local phonons (phonon-assisted hopping) is considered perturbatively up to the first nonzero order in the self energy. The presence of different kinds of electron-phonon interaction open new transmission channels. In addition to the polaron shift and replicas due to local phonons, non-local phonons cause the appearance of new satellite states around the initial states. In the weak coupling regime of non-local phonon and electrons, states are shifted an amount proportional to square of the interaction. However, in the strong coupling regime, the non-linear effects emerge and display more interesting features on transport properties. Additional features on transport properties due to new transmission channel are shown to appear at finite temperatures. [1] G. D. Mahan, Many-particle physics, 3rd ed. (Plenum Publishers, New York, 2000). [2] R. Gutierrez et al., Phys. Rev. B. 74, 235105 (2006).
Straus, Daniel B; Hurtado Parra, Sebastian; Iotov, Natasha; Gebhardt, Julian; Rappe, Andrew M; Subotnik, Joseph E; Kikkawa, James M; Kagan, Cherie R
2016-10-05
Quantum and dielectric confinement effects in 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures below 75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly-spaced resonances every 40-46 meV, consistent with electron-phonon coupling to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character, and these assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond timescale competitive with that for PL. At temperatures above 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous below 75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.
The effect of magnetic field on RbCl quantum pseudodot qubit
NASA Astrophysics Data System (ADS)
Xiao, Jing-Lin
2015-07-01
Under the condition of strong electron-LO-phonon coupling in a RbCl quantum pseudodot (QPD) with an applied magnetic field (MF), the eigenenergies and the eigenfunctions of the ground and the first excited states (GFES) are obtained by using a variational method of the Pekar type (VMPT). A single qubit can be realized in this two-level quantum system. The electron’s probability density oscillates in the RbCl QPD with a certain period of T0 = 7.933 fs when the electron is in the superposition state of the GFES. The results indicate that due to the presence of the asymmetrical structure in the z direction of the RbCl QPD, the electron’s probability density shows double-peak configuration, whereas there is only peak if the confinement is a symmetric structure in the x and y directions of the RbCl QPD. The oscillating period is an increasing function of the cyclotron frequency and the polaron radius, whereas it is a decreasing one of the chemical potential of the two-dimensional electron gas and the zero point of the pseudoharmonic potential (PP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akande, Akinlolu, E-mail: akandea@tcd.ie; Bhattacharya, Sandip; Cathcart, Thomas
2014-02-21
We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate themore » charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.« less
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; ...
2017-02-08
The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.
The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less
Doping-induced spectral shifts in two-dimensional metal oxides
NASA Astrophysics Data System (ADS)
Ylvisaker, E. R.; Pickett, W. E.
2013-03-01
Doping of strongly layered ionic oxides is an established paradigm for creating novel electronic behavior. This is nowhere more apparent than in superconductivity, where doping gives rise to high-temperature superconductivity in cuprates (hole doped) and to surprisingly high Tc in HfNCl (Tc = 25.5 K, electron doped). First-principles calculations of hole doping of the layered delafossite CuAlO2 reveal unexpectedly large doping-induced shifts in spectral density, strongly in opposition to the rigid-band picture that is widely used as an accepted guideline. These spectral shifts, of similar origin as the charge transfer used to produce negative electron affinity surfaces and adjust Schottky barrier heights, drastically alter the character of the Fermi level carriers, leading in this material to an O-Cu-O molecule-based carrier (or polaron, at low doping) rather than a nearly pure-Cu hole as in a rigid-band picture. First-principles linear response electron-phonon coupling (EPC) calculations reveal, as a consequence, net weak EPC and no superconductivity rather than the high Tc obtained previously using rigid-band expectations. These specifically two-dimensional dipole-layer-driven spectral shifts provide new insights into materials design in layered materials for functionalities besides superconductivity.
NASA Technical Reports Server (NTRS)
Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam
2013-01-01
We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.
NASA Astrophysics Data System (ADS)
Allen, S. James; Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler; Chen, Ru; Balents, Leon; Stemmer, Susanne
2013-03-01
By reducing the number of SrO planes in a GdTiO3 /SrTiO3/ GdTiO3 quantum well heterostructure, an electron gas with ~ fixed 2D electron density can be driven close to the Mott metal insulator transition - a quantum critical point at ~1 electron per unit cell. A single interface between the Mott insulator GdTiO3 and band insulator SrTiO3 has been shown to introduce ~ 1/2 electron per interface unit cell. Two interfaces produce a quantum well with ~ 7 1014 cm-2 electrons: at the limit of a single SrO layer it may produce a 2D magnetic Mott insulator. We use temperature and frequency dependent (DC - 3eV) conductivity and temperature dependent magneto-transport to understand the relative importance of electron-electron interactions, electron-phonon interactions, and surface roughness scattering as the electron gas is compressed toward the quantum critical point. Terahertz time-domain and FTIR spectroscopies, measure the frequency dependent carrier mass and scattering rate, and the mid-IR polaron absorption as a function of quantum well thickness. At the extreme limit of a single SrO plane, we observe insulating behavior with an optical gap substantially less than that of the surrounding GdTiO3, suggesting a novel 2D Mott insulator. MURI program of the Army Research Office - Grant No. W911-NF-09-1-0398
Research of spin-orbit interaction in organic conjugated polymers
NASA Astrophysics Data System (ADS)
Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.
2017-06-01
The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.
NASA Astrophysics Data System (ADS)
Lonsky, Martin; Teschabai-Oglu, Jan; Pierz, Klaus; Sievers, Sibylle; Schumacher, Hans Werner; Yuan, Ye; Böttger, Roman; Zhou, Shengqiang; Müller, Jens
2018-02-01
We present systematic temperature-dependent resistance noise measurements on a series of ferromagnetic Ga1 -xMnxAs epitaxial thin films covering a large parameter space in terms of the Mn content x and other variations regarding sample fabrication. We infer that the electronic noise is dominated by switching processes related to impurities in the entire temperature range. While metallic compounds with x >2 % do not exhibit any significant change in the low-frequency resistance noise around the Curie temperature TC, we find indications for an electronic phase separation in films with x <2 % in the vicinity of TC, manifesting itself in a maximum in the noise power spectral density. These results are compared with noise measurements on an insulating Ga1 -xMnxP reference sample, for which the evidence for an electronic phase separation is even stronger and a possible percolation of bound magnetic polarons is discussed. Another aspect addressed in this work is the effect of ion-irradiation-induced disorder on the electronic properties of Ga1 -xMnxAs films and, in particular, whether any electronic inhomogeneities can be observed in this case. Finally, we put our findings into the context of the ongoing debate on the electronic structure and the development of spontaneous magnetization in these materials.
CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3
NASA Astrophysics Data System (ADS)
Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng
2013-12-01
In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathavan, T., E-mail: tjmathavan@gmail.com; Divya, A.; Benial, A. Milton Franklin
2016-05-23
Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.
Study of conduction behavior in Pr0.67Sr0.03Ag0.30MnO3
NASA Astrophysics Data System (ADS)
Bhat, Masroor Ahmad; Modi, Anchit; Pandey, Devendra K.; Gaur, N. K.
2018-05-01
In this paper, we report the conduction mechanism in Pr0.67Sr0.03Ag0.30MnO3 system synthesized via conventional solid state reaction route. The structural information was carried by X - Ray diffraction using Rietveld refinement which confirms the secondary phase of the sample. The SEM image shows the formation of double phase composite because of limited reaction of silver with parent compound. The resistivity behavior indicates the semiconducting behavior. The electronic nature can be estimated by means of variable range hopping (VRH) and small polaron hopping (SPH) model showing that the enhancement of double exchange interaction suppress the band gap and boost the carrier delocalization of charge carriers.
A new type of localized fast moving electronic excitations in molecular chains
NASA Astrophysics Data System (ADS)
Korshunova, A. N.; Lakhno, V. D.
2014-06-01
It is shown that in a Holstein molecular chain placed in a strong longitudinal electric field some new types of excitations can arise. These excitations can transfer a charge over large distance (more than 1000 nucleotide pairs) along the chain retaining approximately their shapes. Excitations are formed only when a strong electric field either exists or quickly arises under especially preassigned conditions. These excitations transfer a charge even in the case when Holstein polarons are practically immobile. The results obtained are applied to synthetic homogeneous PolyG/PolyC DNA duplexes. They can also be provide the basis for explanation of famous H.W. Fink and C. Schönenberger experiment on long-range charge transfer in DNA.
NASA Astrophysics Data System (ADS)
Mathavan, T.; Divya, A.; Archana, J.; Ramasubbu, A.; Benial, A. Milton Franklin; Jothirajan, M. A.
2016-05-01
Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.
Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption
NASA Astrophysics Data System (ADS)
Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.
2018-04-01
The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.
Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter
2010-01-01
Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836
NASA Astrophysics Data System (ADS)
Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.
2013-10-01
a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.
Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Ma, Q.; Li, W.; Thorne, R. M.; ...
2016-04-28
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less
Investigation of a combined platinum and electron lifetime control treatment for silicon
NASA Astrophysics Data System (ADS)
Jia, Yunpeng; Cui, Zhihang; Yang, Fei; Zhao, Bao; Zou, Shikai; Liang, Yongsheng
2017-02-01
In silicon, the effect of Combined Lifetime Treatment (CLT) involving platinum diffusion and subsequent electron irradiation is different from the separate treatments of platinum diffusion and electron irradiation, even the treatment of electron irradiation followed by platinum diffusion. In this paper, we investigated the experimental behavior of different kinds of lifetime treated samples. We found that the reverse leakage current (Irr) increases with the increasing platinum diffusion temperature or electron irradiation dose in the separate treatments. Conversely, Irr of the CLT samples decreased with rising platinum diffusion temperature at the same dose of subsequent electron irradiation. By deep-level transient spectroscopy (DLTS), a new energy level E7 (Ec -0.376 eV) was found in our CLT samples. The new level E7 suppresses the dominance of the deeper level E8 (Ec -0.476 eV), which is caused by electron irradiation directly and results in Irr's increase. The formation of the level E7 comes from the complex defect-combined effect between platinum atoms and silicon vacancies, and it affects device's characteristics finally. These research will be helpful to the development of platinum-diffused devices used in intense electron irradiation environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, V.H.
1981-06-01
Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less
NASA Astrophysics Data System (ADS)
Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.
2014-12-01
The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.
Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model
Johnston, S.; Nowadnick, E. A.; Kung, Y. F.; ...
2013-06-24
Here, we performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). We also present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the filling and behavior of the fermion sign as a function of model parameters. We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model andmore » examine the evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling. From this we find further evidence for a competition between charge-density-wave and antiferromagnetic order at half- filling.« less
Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk
2016-04-20
The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bansal, Neha; Reynolds, Luke X.; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B.; McCulloch, Iain; Rebois, Dylan G.; Kirchartz, Thomas; Hill, Michael S.; Molloy, Kieran C.; Nelson, Jenny; Haque, Saif A.
2013-01-01
The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. PMID:23524906
Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots
Vanacore, Giovanni M.; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H.
2017-01-01
Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible. PMID:28852685
Charge transport in organic semiconductors.
Bässler, Heinz; Köhler, Anna
2012-01-01
Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.
Template-mediated nano-crystallite networks in semiconducting polymers.
Kwon, Sooncheol; Yu, Kilho; Kweon, Kyoungchun; Kim, Geunjin; Kim, Junghwan; Kim, Heejoo; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Jehan; Lee, Seoung Ho; Lee, Kwanghee
2014-06-18
Unlike typical inorganic semiconductors with a crystal structure, the charge dynamics of π-conjugated polymers (π-CPs) are severely limited by the presence of amorphous portions between the ordered crystalline regions. Thus, the formation of interconnected pathways along crystallites of π-CPs is desired to ensure highly efficient charge transport in printable electronics. Here we report the formation of nano-crystallite networks in π-CP films by employing novel template-mediated crystallization (TMC) via polaron formation and electrostatic interaction. The lateral and vertical charge transport of TMC-treated films increased by two orders of magnitude compared with pristine π-CPs. In particular, because of the unprecedented room temperature and solution-processing advantages of our TMC method, we achieve a field-effect mobility of 0.25 cm(2) V(-1) s(-1) using a plastic substrate, which corresponds to the highest value reported thus far. Because our findings can be applied to various π-conjugated semiconductors, our approach is universal and is expected to yield high-performance printable electronics.
Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL
Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko
2017-01-01
The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842
Organic Solar Cells: Degradation Processes and Approaches to Enhance Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fungura, Fadzai
2016-12-17
Intrinsic photodegradation of organic solar cells, theoretically attributed to C-H bond rearrangement/breaking, remains a key commercialization barrier. This work presents, via dark electron paramagnetic resonance (EPR), the first experimental evidence for metastable C dangling bonds (DBs) (g=2.0029±0.0004) formed by blue/UV irradiation of polymer:fullerene blend films in nitrogen. The DB density increased with irradiation and decreased ~4 fold after 2 weeks in the dark. The dark EPR also showed increased densities of other spin-active sites in photodegraded polymer, fullerene, and polymer:fullerene blend films, consistent with broad electronic measurements of fundamental properties, including defect/gap state densities. The EPR enabled identification of defectmore » states, whether in the polymer, fullerene, or at the donor/acceptor (D/A) interface. Importantly, the EPR results indicate that the DBs are at the D/A interface, as they were present only in the blend films. The role of polarons in interface DB formation is also discussed.« less
Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Mihailovic, D.
2015-01-01
A ‘pseudogap' was introduced by Mott to describe a state of matter that has a minimum in the density of states at the Fermi level, deep enough for states to become localized. It can arise either from Coulomb repulsion between electrons, and/or incipient charge or spin order. Here we employ ultrafast spectroscopy to study dynamical properties of the normal to pseudogap state transition in the prototype high-temperature superconductor Bi2Sr2CaCu2O8+δ. We perform a systematic temperature and doping dependence study of the pseudogap photodestruction and recovery in coherent quench experiments, revealing marked absence of critical behaviour of the elementary excitations, which implies an absence of collective electronic ordering beyond a few coherence lengths on short timescales. The data imply ultrafast carrier localization into a textured polaronic state arising from a competing Coulomb interaction and lattice strain, enhanced by a Fermi surface instability. PMID:25891310
Novel gas sensor with dual response under CO(g) exposure: Optical and electrical stimuli
NASA Astrophysics Data System (ADS)
Rocha, L. S. R.; Cilense, M.; Ponce, M. A.; Aldao, C. M.; Oliveira, L. L.; Longo, E.; Simoes, A. Z.
2018-05-01
In this work, a lanthanum (La) doped ceria (CeO2) film, which depicted a dual gas sensing response (electric and optical) for CO(g) detection, was obtained by the microwave-assisted hydrothermal (HAM) synthesis and deposited by the screen-printing technique, in order to prevent deaths by intoxication with this life-threatening gas. An electric response under CO(g) exposure was obtained, along with an extremely fast optical response for a temperature of 380 °C, associated with Ce+4 reduction and vacancy generation. A direct optical gap was found to be around 2.31 eV from UV-Vis results, which corresponds to a transition from valence band to 4f states. Due to the anomalous electron configuration of cerium atoms with 4f electrons in its reduced state, they are likely to present an electric conduction based on the small polaron theory with a hopping mechanism responsible for its dual sensing response with a complete reversible behaviour.
Stability of the two-dimensional Fermi polaron
NASA Astrophysics Data System (ADS)
Griesemer, Marcel; Linden, Ulrich
2018-02-01
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.
Self-trapping of holes in p-type oxides: Theory for small polarons in MnO
NASA Astrophysics Data System (ADS)
Peng, Haowei; Lany, Stephan
2012-02-01
Employing the p-d repulsion to increase the valence band dispersion and the energy of the VBM is an important design principle for p-type oxides, as manifested in prototypical p-type oxides like Cu2O or CuAlO2 which show a strong Cu-d/O-p interaction. An alternative opportunity to realize this design principle occurs for Mn(+II) compounds, where the p-d orbital interaction occurs dominantly in the fully occupied d^5 majority spin direction of Mn. However, the ability of Mn to change the oxidation state from +II to +III can lead to a small polaron mechanism for hole transport which hinders p-type conductivity. This work addresses the trends of hole self-trapping for MnO between octahedral (rock-salt structure) and tetrahedral coordination (zinc-blende structure). We employ an on-site hole-state potential so to satisfy the generalized Koopmans condition. This approach avoids the well-known difficulty of density-functional calculations to describe correctly the localization of polaronic states, and allows to quantitatively predict the self-trapping energies. We find that the tetrahedrally coordinated Mn is less susceptible to hole self-trapping than the octahedrally coordinated Mn.
Response of radiation belt simulations to different radial diffusion coefficients
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.
2013-12-01
Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tantawy, Hesham Ramzy; Aston, D. Eric, E-mail: aston@uidaho.edu; Kengne, Blaise-Alexis F.
2015-11-07
An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested.more » They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)« less
Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers
NASA Astrophysics Data System (ADS)
Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah
2018-01-01
The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.
NASA Astrophysics Data System (ADS)
van Eersel, H.; Bobbert, P. A.; Janssen, R. A. J.; Coehoorn, R.
2016-04-01
We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy)3) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasing the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.
Centimetre-scale electron diffusion in photoactive organic heterostructures
NASA Astrophysics Data System (ADS)
Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.
2018-02-01
The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.
Kerner, Ross A; Rand, Barry P
2018-01-04
Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.
Structure and Charge Hopping Dynamics in Green Rust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wander, Matthew C; Rosso, Kevin M; Schoonen, Martin A
Green rust is a family of mixed-valent iron phases formed by a number of abiotic and biotic processes under alkaline suboxic conditions. Due to its high Fe 2+ content, green rust is a potentially important phase for pollution remediation by serving as a powerful electron donor for reductive transformation. However, mechanisms of oxidation of this material are poorly understood. An essential component of the green rust structure is a mixed-valent brucite-like Fe(OH) 2 sheet comprised of a two dimensional network of edge-sharing iron octahedra. Room temperature Mössbauer spectra show a characteristic signature for intermediate valence on the iron atoms inmore » this sheet, indicative of a Fe 2+-Fe 3+ valence interchange reaction faster than approximately 10 7 s -1. Using Fe(OH) 2 as structural analogue for reduced green rust, we performed Hartree-Fock calculations on periodic slab models and cluster representations to determine the structure and hopping mobility of Fe 3+ hole polarons in this material, providing a first principles assessment of the Fe 2+-Fe 3+ valence interchange reaction rate. The calculations show that among three possible symmetry unique iron-to-iron hops within a sheet, a hop to next-nearest neighbors at an intermediate distance of 5.6 Å is the fastest. The predicted rate is on the order of 10 12 s -1 consistent the Mössbauer-based constraint. All other possibilities, including hopping across interlayer spaces, are predicted to be slower than 10 7 s -1. Collectively, the findings suggest the possibility of hole self-diffusion along sheets as a mechanism for regeneration of lattice Fe 2+ sites, consistent with previous experimental observations of edge-inward progressive oxidation of green rust.« less
Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh
2015-10-15
Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less
Hot-electron thermocouple and the diffusion thermopower of two-dimensional electrons in GaAs.
Chickering, W E; Eisenstein, J P; Reno, J L
2009-07-24
A simple hot-electron thermocouple is realized in a two-dimensional electron system (2DES) and used to measure the diffusion thermopower of the 2DES at zero magnetic field. This hot-electron technique, which requires no micron-scale patterning of the 2DES, is much less sensitive than conventional methods to phonon-drag effects. Our thermopower results are in good agreement with the Mott formula for diffusion thermopower for temperatures up to T approximately 2 K.
Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-04-01
Transport of conduction electrons and holes through the lattice of α-Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent field method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobilities across basal oxygen planes relative to that within iron bilayers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only less than one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe-Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.
NASA Technical Reports Server (NTRS)
Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.;
2016-01-01
We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.;
2016-01-01
In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
Polaronic behavior in a weak-coupling superconductor.
Swartz, Adrian G; Inoue, Hisashi; Merz, Tyler A; Hikita, Yasuyuki; Raghu, Srinivas; Devereaux, Thomas P; Johnston, Steven; Hwang, Harold Y
2018-02-13
The nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm -3 ) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3 , using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.
Study of structural, electronic and magneto transport properties of La0.7Ca0.2-xSrxAg0.1MnO3
NASA Astrophysics Data System (ADS)
Subhashini, P.; Munirathinum, B.; Krishnaiah, M.; Venkatesh, R.; Venkateswarlu, D.; Ganesan, V.
2016-10-01
Structural, electrical and magneto transport properties of Lanthanum based manganites La0.7Ca0.2-xSrxAg0.1MnO3 (x=0 & 0.1) synthesized by low temperature nitrate route is studied systematically. The X-ray Diffraction patterns confirm the presence of orthorhombic structure with Pnma space group. The temperature dependence of MR (-35%) from 233-272K for x=0 and an MR (-26%) from 281-309K for x=0.1composition with an overall variation of 1% is very much advantageous for device application. Interestingly, in low temperature regime, the MR value of -47% obtained in x=0.1 composition at 10T around 5K is 20% higher than the MR obtained at 10T around the metal insulator transition. Significant changes happening in the low temperature MR measurements is discussed in the light of electron-electron interactions and weak localization mechanisms while the additional broad hump responsible for flat MR is attributed to the intrinsic electronic in homogeneity driven phase competition created due to the presence of mono valent Ag ions. The complex localization mechanism associated with insulating regime is in accordance with Variable range hopping of small polarons.
2009-12-01
MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Mayr, F.; Loidl, A.
2006-07-01
We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, X.; Pereiro, J.; Strle, J.
Tungsten oxide and its associated bronzes (compounds of tungsten oxide and an alkali metal) are well known for their interesting optical and electrical characteristics. We have modified the transport properties of thin WO 3 films by electrolyte gating using both ionic liquids and polymer electrolytes. We are able to tune the resistivity of the gated film by more than five orders of magnitude, and a clear insulator-to-metal transition is observed. To clarify the doping mechanism, we have performed a series of incisive operando experiments, ruling out both a purely electronic effect (charge accumulation near the interface) and oxygen-related mechanisms. Wemore » propose instead that hydrogen intercalation is responsible for doping WO 3 into a highly conductive ground state and provide evidence that it can be described as a dense polaronic gas.« less
Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides
NASA Technical Reports Server (NTRS)
Chakraverty, B. K.
1990-01-01
The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.
Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution
NASA Astrophysics Data System (ADS)
Savinov, M.; Bovtun, V.; Tereshina-Chitrova, E.; Stupakov, A.; Dejneka, A.; Tyunina, M.
2018-01-01
Magneto-dielectric properties of (A2+)MnO3-type perovskites are attractive for applications and stimulate extensive studies of these materials. Here, the complex dielectric and magnetic responses are investigated as in epitaxial films of SrTi0.6Mn0.4O3, solid solution of paraelectric SrTiO3 and magnetic SrMnO3. The impedance and resonance measurements at frequencies of 10-2-1010 Hz and temperatures of 10-500 K reveal broad dielectric anomalies centered at 100-200 K, while the films are paramagnetic at all temperatures. Analysis shows polaronic electrical conductivity behind the observed behavior. Electron-phonon correlations, rather than spin-phonon correlations, are suggested to produce the apparent magneto-dielectric responses in many multiferroic manganites.
The Sternheimer-GW method and the spectral signatures of plasmonic polarons
NASA Astrophysics Data System (ADS)
Giustino, Feliciano
During the past three decades the GW method has emerged among the most promising electronic structure techniques for predictive calculations of quasiparticle band structures. In order to simplify the GW work-flow while at the same time improving the calculation accuracy, we developed the Sternheimer-GW method. In Sternheimer-GW both the screened Coulomb interaction and the electron Green's function are evaluated by using exclusively occupied Kohn-Sham states, as in density-functional perturbation theory. In this talk I will review the basics of Sternheimer-GW, and I will discuss two recent applications to semiconductors and superconductors. In the case of semiconductors we calculated complete energy- and momentum-resolved spectral functions by combining Sternheimer-GW with the cumulant expansion approach. This study revealed the existence of band structure replicas which arise from electron-plasmon interactions. In the case of superconductors we calculated the Coulomb pseudo-potential from first principles, and combined this approach with the Eliashberg theory of the superconducting critical temperature. This work was supported by the Leverhulme Trust (RL-2012-001), the European Research Council (EU FP7/ERC 239578), the UK Engineering and Physical Sciences Research Council (EP/J009857/1), and the Graphene Flagship (EU FP7/604391).
Unconventional magnetism in the layered oxide LaSrRhO4
NASA Astrophysics Data System (ADS)
Furuta, Noriyasu; Asai, Shinichiro; Igarashi, Taichi; Okazaki, Ryuji; Yasui, Yukio; Terasaki, Ichiro; Ikeda, Masami; Fujita, Takahito; Hagiwara, Masayuki; Kobayashi, Kensuke; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi
2014-10-01
We have prepared polycrystalline samples of LaSrRh1-xGaxO4 and LaSr1-xCaxRhO4, and have measured the x-ray diffraction, resistivity, Seebeck coefficient, magnetization, and electron spin resonance in order to evaluate their electronic states. The energy gap evaluated from the resistivity and the Seebeck coefficient systematically changes with the Ga concentration, and suggests that the system changes from a small polaron insulator to a band insulator. We find that all the samples show Curie-Weiss-like susceptibility with a small Weiss temperature of the order of 1 K, which is seriously incompatible with the collective wisdom that a trivalent rhodium ion is nonmagnetic. We have determined the g factor to be g =2.3 from the electron spin resonance, and the spin number to be S =1 from the magnetization-field curves by fitting with a modified Brillouin function. The fraction of the S =1 spins is 2%-5%, which depends on the degree of disorder in the La/Sr/Ca site, which implies that disorder near the apical oxygen is related to the magnetism of this system. A possible origin for the magnetic Rh3+ ions is discussed.
NASA Astrophysics Data System (ADS)
Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.
2017-09-01
We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam
Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Glocer, Alex; Himwich, E. W.
2014-01-01
The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.
Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
Donatini, Fabrice; Pernot, Julien
2018-03-09
In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.
Li, W.; Ma, Q.; Thorne, R. M.; ...
2016-06-10
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.; Ma, Q.; Thorne, R. M.
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less
Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?
Salvatella, G; Gort, R; Bühlmann, K; Däster, S; Vaterlaus, A; Acremann, Y
2016-09-01
Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.
NASA Astrophysics Data System (ADS)
Roskosz, M.; Deloule, E.; Ingrin, J.; Depecker, C.; Laporte, D.; Merkel, S.; Remusat, L.; Leroux, H.
2018-07-01
The distribution of hydrogen isotopes during diffusion-driven aqueous processes in silicate glasses, melts and crystals was investigated. Hydration/dehydration experiments were performed on silica glasses at 1000 °C and 1 bar total pressure. Dehydration triggered by decompression-driven bubble nucleation and growth was performed on rhyolitic melts at 800 °C and a few hundred MPa. Hydrogen extraction from a nominally anhydrous mineral (grossular) single crystal was carried out at 800 °C and ambient pressure. After these three series of experiments, pronounced water (sensu lato) concentration profiles were observed in all recovered samples. In the grossular single-crystal, a large spatial variation in H isotopes (δD variation > 550‰) was measured across the sample. This isotopic distribution correlates with the hydrogen extraction profile. The fit to the data suggests an extreme decoupling between hydrogen and deuterium diffusion coefficients (DH and DD respectively), akin to the decoupling expected in a dilute ideal gas (DH/DD ≈ 1.41). Conversely, no measurable spatially- and time-resolved isotopic variations were measured in silicate glasses and melts. This contrasted behavior of hydrogen isotopes likely stands in the different water speciation and solution mechanisms in the three different materials. Glasses and melts contain essentially hydroxyl and molecular water groups but the mobile species is molecular water in both cases. Protonated defects make up most of the water accommodated in grossular and other nominally anhydrous minerals (NAM). These defects are also the mobile species that diffuse against polarons. These results are crucial to accurately model the degassing behavior of terrestrial and lunar magmas and to derive the initial D/H of water trapped in fluid inclusions commonly analyzed in mantle NAMs, which suffered complex geological histories.
Nonadiabatic small-polaron hopping conduction in Li-doped and undoped Bi4Sr3Ca3CuyOx (0<=y<=5)
NASA Astrophysics Data System (ADS)
Mollah, S.; Som, K. K.; Bose, K.; Chakravorty, A. K.; Chaudhuri, B. K.
1992-11-01
Detailed experimental results of temperature- and CuO-concentration-dependent dc conductivities of semiconducting Bi4Sr3Ca3CuyOx (y=0 to 5) and Li-doped Bi4Sr3Ca3-zLizCu4Ox (z=0.1, 0.5, and 1.0) glasses are reported. The variation of activation energy with glass compositions dominates the conductivity. Unlike many glasses with transition-metal ions, a strong preexponential factor containing the ``small-polaron'' tunneling term [exp(-2αR)] is observed. Nonadiabatic small-polaron hopping mechanism is found to be appropriate for explaining the conductivity data of both glass systems. Addition of alkali-metal ions decreases the conductivities and causes appreciable change of some model parameters obtained from least-squares fittings of the experimental data. The overall thermal behavior of the electrical conductivities of the glasses, however, remains unaltered. This indicates that small (less than 10 wt.%) amount of Li or other alkali-metal ions in these glasses acts as a flux to keep the oxygen content fixed in the corresponding glass-ceramic (superconducting) phases. This in turn helps increase the superconducting transition temperature of the glass ceramics and also lower the sintering and melting temperatures of the glasses.
Magnetic Polarons in Anisotropic Quantum Dots
NASA Astrophysics Data System (ADS)
Oszwaldowski, Rafal; Petukhov, Andre; Zutic, Igor
2010-03-01
Tunability of confinement in magnetically-doped quantum dots (QDs) allows to tailor magnetism to an extent not available in bulk semiconductors. Versatile control of magnetic ordering, along with piezomagnetism, has been predicted even at a fixed number of carriers [1]. Recent experiments on colloidal QDs revealed strongly bound magnetic polarons (MPs) [2]. Previous studies of MPs in bulk semiconductors showed that the mean-field theory predicts a spurious magnetic phase transition, which is removed by taking into account spin fluctuations [3]. Here we present our theoretical results for MPs forming in QDs with pronounced magnetic anisotropy, which influences the spin fluctuations. We apply our findings to explain some peculiarities of the magnetic behavior of type-II ZnSe/(Zn,Mn)Te QDs, where magnetic polarons are found to persist to at least 200K [4]. Supported by ONR, AFOSR, and NSF-ECCS CAREER. [4pt] [1] R. M. Abolfath, A. G. Petukhov, and I. Zutic, Phys. Rev. Lett. 101, 207202 (2008); I. Zutic and A. G. Petukhov, Nature Mater.4, 623 (2009). [0pt] [2] R. Beaulac et al., Science 325, 973 (2009). [0pt] [3] T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982). [0pt] [4] I. R. Sellers, R. Oszwaldowski, et al., preprint; I. R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colomer, M.T., E-mail: tcolomer@icv.csic.e; Maczka, M.
2011-02-15
Taking advantage of the fact that TiO{sub 2} additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO{sub 2} give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y{sub 2}(Ti{sub 1-y}Zr{sub y}){sub 2}O{sub 7} pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and highermore » additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO{sub 2} content. Furthermore, zirconium titanate phase (ZrTiO{sub 4}) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y{sub 2}O{sub 3} in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO{sub 2} range from 0.21 to 10{sup -7.5} atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 {sup o}C and 10{sup -12.3} atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO{sub 2} dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti{sup 3+} and Ti{sup 4+}. -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: {yields} Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors under low partial pressures. {yields} From 5 mol% of TiO{sub 2}, Y{sub 2}(Ti{sub 1-y},Zr{sub y}){sub 2}O{sub 7} pyrochlore is present as a minor phase, being y close to 1 according to FT-Raman studies. {yields} The onset of the electronic conductivity under reducing conditions exhibit a -1/4 pO{sub 2} dependence. The n-type electronic conduction is due to a small polaron-hopping between Ti{sup 3+} and Ti{sup 4+}.« less
Electron Mobility and Trapping in Ferrihydrite Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr
Iron is the most abundant transition metal in the Earth's crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent on electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilitiesmore » and interfacial charge transfer processes has remained obscured. We developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for the essential nanophase ferrihydrite, and tested predictions made by the simulations using pump-probe spectroscopy. We acquired optical transient absorption spectra as a function of particle size and under a variety of solution conditions, and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over timescales that spanned picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by nanoparticle size and aggregation state, suspension pH, and the injection of multiple electrons per nanoparticle. We conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors such as pH-dependent surface charge.« less
Electron Mobility and Trapping in Ferrihydrite Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr
Iron is the most abundant transition metal in the Earth’s crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well-studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent upon electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilities andmore » interfacial charge transfer processes has remained obscured. In this paper, we developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for essential nanophase ferrihydrite and tested predictions made by the simulations using pump–probe spectroscopy. We acquired optical transient absorption spectra as a function of the particle size and under a variety of solution conditions and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over time scales that spanned from picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by the nanoparticle size and aggregation state, suspension pH, and injection of multiple electrons per nanoparticle. Finally, we conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems, with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors, such as pH-dependent surface charge.« less
Electron Mobility and Trapping in Ferrihydrite Nanoparticles
Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr; ...
2017-05-18
Iron is the most abundant transition metal in the Earth’s crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well-studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent upon electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilities andmore » interfacial charge transfer processes has remained obscured. In this paper, we developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for essential nanophase ferrihydrite and tested predictions made by the simulations using pump–probe spectroscopy. We acquired optical transient absorption spectra as a function of the particle size and under a variety of solution conditions and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over time scales that spanned from picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by the nanoparticle size and aggregation state, suspension pH, and injection of multiple electrons per nanoparticle. Finally, we conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems, with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors, such as pH-dependent surface charge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkhitaryan, V. V.; Danilovic, D.; Hippola, C.
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π-conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing amore » monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I/I is ∝ PL within the PPR model, while it is ∝ P2L crossing over to P3L within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Lastly, our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.« less
Mkhitaryan, V. V.; Danilovic, D.; Hippola, C.; ...
2018-01-03
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π-conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing amore » monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I/I is ∝ PL within the PPR model, while it is ∝ P2L crossing over to P3L within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Lastly, our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.« less
NASA Astrophysics Data System (ADS)
Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.
2018-01-01
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.
Redirected charge transport arising from diazonium grafting of carbon coated LiFePO4.
Madec, L; Seid, K A; Badot, J-C; Humbert, B; Moreau, P; Dubrunfaut, O; Lestriez, B; Guyomard, D; Gaubicher, J
2014-11-07
The morphological and the electrical properties of carbon coated LiFePO4 (LFPC) active material functionalized by 4-ethynylbenzene tetrafluoroboratediazonium salt were investigated. For this purpose, FTIR, Raman, XPS, High Resolution Transmission Electron Microscopy (HRTEM) and Broadband Dielectric Spectroscopy (BDS) were considered. Electronic conductivities of LFPC samples at room temperature were found to decrease in a large frequency range upon simple immersion in polar solvents and to decrease further upon functionalization. Due to their high dipole moment, strongly physisorbed molecules detected by XPS likely add barriers to electron hopping. Significant alteration of the carbon coating conductivity was only observed, however, upon functionalization. This effect is most presumably associated with an increase in the sp(3) content determined by Raman spectroscopy, which is a strong indication of the formation of a covalent bond between the organic layer and the carbon coating. In this case, the electron flux appears to be redirected and relayed by short-range (intra chain) and long-range (inter chain) electron transport through molecular oligomers anchored at the LFPC surface. The latter are controlled by tunnelling and slightly activated hopping, which enable higher conductivity at low temperature (T < 250 K). Alteration of the electron transport within the carbon coating also allows detection of a relaxation phenomenon that corresponds to small polaron hopping in bulk LiFePO4. XPS and HRTEM images allow a clear correlation of these findings with the island type oligomeric structure of grafted molecules.
Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations
NASA Astrophysics Data System (ADS)
Li, W.; Thorne, R. M.; Ma, Q.; Zhang, X.-J.; Gladstone, G. R.; Hue, V.; Valek, P. W.; Allegrini, F.; Mauk, B. H.; Clark, G.; Kurth, W. S.; Hospodarsky, G. B.; Connerney, J. E. P.; Bolton, S. J.
2017-10-01
Juno observed the low-altitude polar region during perijove 1 on 27 August 2016 for the first time. Auroral intensity and false-color maps from the Ultraviolet Spectrograph (UVS) instrument show extensive diffuse aurora observed equatorward of the main auroral oval. Juno passed over the diffuse auroral region near the System III longitude of 120°-150° (90°-120°) in the northern (southern) hemisphere. In the region where these diffuse auroral emissions were observed, the Jupiter Energetic Particle Detector Instrument (JEDI) and Jovian Auroral Distributions Experiment (JADE) instruments measured nearly full loss cone distributions for the downward going electrons over energies of 0.1-700 keV but very few upward going electrons. The false-color maps from UVS indicate more energetic electron precipitation at lower latitudes than less energetic electron precipitation, consistent with observations of precipitating electrons measured by JEDI and JADE. The comparison between particle and aurora measurements provides first direct evidence that these precipitating energetic electrons are mainly responsible for the diffuse auroral emissions at Jupiter.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event
NASA Astrophysics Data System (ADS)
Pham, K. H.; Tu, W.; Xiang, Z.
2017-12-01
Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eersel, H. van; Bobbert, P. A.; Janssen, R. A. J.
2016-04-28
We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy){sub 3}) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasingmore » the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.« less
Smith, Christopher E; Odoh, Samuel O; Ghosh, Soumen; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel
2015-12-23
Self-assembled conjugated molecular wires containing thiophene up to 6 nm in length were grown layer-by-layer using click chemistry. Reflection-absorption infrared spectroscopy, ellipsometry and X-ray photoelectron spectroscopy were used to follow the stepwise growth. The electronic structure of the conjugated wires was studied with cyclic voltammetry and UV-vis spectroscopy as well as computationally with density functional theory (DFT). The current-voltage curves (±1 V) of the conjugated molecular wires were measured with conducting probe atomic force microscopy (CP-AFM) in which the molecular wire film bound to a gold substrate was contacted with a conductive AFM probe. By systematically measuring the low bias junction resistance as a function of length for molecules 1-4 nm long, we extracted the structure dependent tunneling attenuation factor (β) of 3.4 nm(-1) and a contact resistance of 220 kΩ. The crossover from tunneling to hopping transport was observed at a molecular length of 4-5 nm with an activation energy of 0.35 eV extracted from Arrhenius plots of resistance versus temperature. DFT calculations revealed localizations of spin densities (polarons) on molecular wire radical cations. The calculations were employed to gauge transition state energies for hopping of polarons along wire segments. Individual estimated transition state energies were 0.2-0.4 eV, in good agreement with the experimental activation energy. The transition states correspond to flattening of dihedral angles about specific imine bonds. These results open up possibilities to further explore the influence of molecular architecture on hopping transport in molecular junctions, and highlight the utility of DFT to understand charge localization and associated hopping-based transport.
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth
2008-07-01
The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.
NASA Technical Reports Server (NTRS)
Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.;
2016-01-01
Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
NASA Astrophysics Data System (ADS)
Xiao, Jing-lin
2018-02-01
In the present work, we study the ground state energy, the first excited state energy and the transition frequency (TF) between the two states of the strong-coupling impurity bound polaron in an asymmetric Gaussian potential quantum well (AGPQW) by using the variational method of the Pekar type. By employing quantum statistics theory, the temperature effect on the state energies (SEs) and the TF are also calculated with a hydrogen-like impurity at the coordinate origin of the AGPQW. According to the obtained results, we found that the SEs and the TF are increasing functions of the temperature, whereas they are decreasing ones of the Coulombic impurity potential.
Polaron effect on the bandgap modulation in monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Xiao, Yao; Li, Zhi-Qing; Wang, Zi-Wu
2017-12-01
We theoretically study the bandgap modulation in monolayer transition metal dichalcogenides (TMDs) originating from the carrier-optical phonon coupling in the Fröhlich polaron model, in which both of the surface optical phonons modes induced by the polar substrate and the intrinsic longitudinal optical phonons modes have been taken into account. We find that the modulated magnitude of the bandgap is in the range of 100-500 meV by altering different polar substrates and tuning the internal distance between TMDs and polar substrate. The large tunability of the bandgap not only provides a possible explanation for the experimental measurements regarding the dielectric environmental sensitivity of the bandgap, but also holds promise for potential applications in optoelectronics and photovoltaics.
Chemical effect on diffusion in intermetallic compounds
NASA Astrophysics Data System (ADS)
Chen, Yi-Ting
With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion activation enthalpy and diffusion pre-factor by using lattice structure simulation. Last but not the least, X-ray photoelectron spectroscopy and First principal calculation simulation were used to observe the electron binding energies in the intermetallic compound and illustrate the partial covalent bonding behavior in the intermetallic compounds.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk
2016-01-01
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy. PMID:26857477
Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...
2014-12-22
The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines themore » selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. In conclusion, we suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.« less
NASA Astrophysics Data System (ADS)
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
Lightwave-driven quasiparticle collisions on a subcycle timescale
NASA Astrophysics Data System (ADS)
Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-05-01
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Lightwave-driven quasiparticle collisions on a subcycle timescale.
Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R
2016-05-12
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; ...
2016-02-09
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines themore » selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. In conclusion, we suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.« less
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Himwich, Elizabeth W.; Glocer, Alex; Sibeck, David G.
2015-01-01
The precipitation of high-energy magnetospheric electrons (E greater than 500-600 electronvolts) in the diffuse aurora contributes significant energy flux into Earth's ionosphere. In the diffuse aurora, precipitating electrons initially injected from the plasmasheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can be additionally reflected back into the magnetosphere by the two magnetically conjugated atmospheres, leading to a series of multiple reflections that can greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 kilometers) and the resultant population of secondary electrons and electrons cascading toward lower energies. We present the solution of the Boltzmann.Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E is less than or equal to 600 electronvolts) and their energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account the role of multiple atmospheric reflections of the precipitated electrons that were initially moved into the loss cone via wave.particle interaction processes in Earth's plasmasheet.
Insulator to metal transition in WO 3 induced by electrolyte gating
Leng, X.; Pereiro, J.; Strle, J.; ...
2017-07-03
Tungsten oxide and its associated bronzes (compounds of tungsten oxide and an alkali metal) are well known for their interesting optical and electrical characteristics. We have modified the transport properties of thin WO 3 films by electrolyte gating using both ionic liquids and polymer electrolytes. We are able to tune the resistivity of the gated film by more than five orders of magnitude, and a clear insulator-to-metal transition is observed. To clarify the doping mechanism, we have performed a series of incisive operando experiments, ruling out both a purely electronic effect (charge accumulation near the interface) and oxygen-related mechanisms. Wemore » propose instead that hydrogen intercalation is responsible for doping WO 3 into a highly conductive ground state and provide evidence that it can be described as a dense polaronic gas.« less
Shuai, Zhigang; Wang, Linjun; Li, Qikai
2011-03-04
The carrier mobility for carbon electronic materials is an important parameter for optoelectronics. We report here some recently developed theoretical tools to predict the mobility without any free parameters. Carrier scatterings with phonons and traps are the key factors in evaluating the mobility. We consider three major scattering regimes: i) where the molecular internal vibration severely induces charge self-trapping and, thus, the hopping mechanism dominates; ii) where both intermolecular and intramolecular scatterings come to play roles, so the Holstein-Peierls polaron model is applied; and, iii) where charge is well delocalized with coherence length comparable with acoustic phonon wavelength, so that a deformation potential approach is more appropriate. We develop computational methods at the first-principles level for the three different cases that have extensive potential application in rationalizing material design.
Electron heat transport measured in a stochastic magnetic field.
Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D
2003-07-25
New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.
NASA Technical Reports Server (NTRS)
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John;
2016-01-01
Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.
NASA Astrophysics Data System (ADS)
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; Giles, Barbara; Strangeway, Robert; Russell, Christopher; Khotyaintsev, Yuri; Burch, Jim; Moore, Thomas; Lavraud, Benoit; Phan, Tai; Avanov, Levon
2016-06-01
Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.
Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells
2011-01-01
Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, H.R.
Bohm diffusion has been found to be approximately valid for many plasmas in strong magnetic fields. Assuming Bohm diffusion describes electron diffusion directly (H. R. Kaufman, AIAA J. {bold 23}, 78 (1985)), with an equal ion loss possible from the ambipolar field that is generated (F. F. Chen, {ital Introduction} {ital to} {ital Plasma} {ital Physics} (Plenum, New York, 1974), p. 169), an order-of-magnitude analysis can show why such electron diffusion should be expected.
ERIC Educational Resources Information Center
Dozier, David M.
This monograph defines and describes research in the study of adoption of electronic text services in higher education institutions. Electronic text here includes text and graphic information encoded and transmitted via broadcast, signal, or cable, under user control. It places the diffusion of electronic text in higher education within the…
NASA Astrophysics Data System (ADS)
Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars
2013-05-01
The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.
Multielectronic conduction in La1-xSrxGa1/2Mn1/2O3-δ as solid oxide fuel cell cathode
NASA Astrophysics Data System (ADS)
Iguchi, E.; Hashimoto, Y.; Kurumada, M.; Munakata, F.
2003-08-01
Four-probe dc conductivities, capacitances, and thermopower have been measured in the temperature range of 80-1123 K for La1-xSrxGa1/2Mn1/2O3-δ, which is a desirable cathode material for lanthanum-gallate electrolytes of solid oxide fuel cells. The dc conductivities in the specimens (0.1⩽x⩽0.3) are insensitive to x but the thermopower is very sensitive to x, although the x=0 specimen exhibits a somewhat different conduction behavior. At T<300 K, a relaxation process has shown in dielectric loss factor with the activation energy higher than that for dc conduction in every specimen. These results at T<300 K have been numerically analyzed within the framework of the multielectronic conduction consisting of the polaronic conduction of Mn 3d eg holes created by Sr doping, the band conduction of O 2p holes and the hopping conduction of Mn 3d eg electrons, where the O 2p holes and Mn 3d eg electrons are created by thermal excitation of electrons from O 2p bands to Mn 3d eg narrow bands. At T>500 K, the band conduction dominates the electronic transports. The ionic conduction due to O2- migration seems difficult to contribute directly to the dc conduction even at high temperature.
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
NASA Astrophysics Data System (ADS)
Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.
Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; ...
2015-10-16
Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO 2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests amore » novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.
Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO 2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests amore » novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less
NASA Technical Reports Server (NTRS)
Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.;
2016-01-01
We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Coroniti, F. V.
1976-01-01
The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.
Electron confinement at diffuse ZnMgO/ZnO interfaces
NASA Astrophysics Data System (ADS)
Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.
2017-01-01
Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.
NASA Astrophysics Data System (ADS)
Das, Tridip
Understanding of the vacancy formation, interaction, increasing its concentration and diffusion, and controlling its chemical strain will advance the design of mixed ionic and electronic conductor (MIEC) materials via element doping and strain engineering. This is especially central to improve the performance of the solid oxide fuel cell (SOFC), an energy conversion device for sustainable future. The oxygen vacancy concentration grows exponentially with the temperature at dilute vacancy concentration but not at higher concentration, or even decreases due to oxygen vacancy interaction and vacancy ordered phase change. This limits the ionic conductivity. Using density functional theory (DFT), we provided fundamental understanding on how oxygen vacancy interaction originates in one of the typical MIEC, La1-xSrxFeO3-delta (LSF). The vacancy interaction is determined by the interplay of the charge state of multi-valence ion (Fe), aliovalent doping (La/Sr ratio), the crystal structure, and the oxygen vacancy concentration and/or nonstoichiometry (delta). It was found excess electrons left due to the formation of a neutral oxygen vacancy get distributed to Fe directly connected to the vacancy or to the second nearest neighboring Fe, based on crystal field splitting of Fe 3d orbital in different Fe-O polyhedral coordination. The progressively larger polaron size and anisotropic shape changes with increasing Sr-content resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical delta threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations, cause a decrease in the mobile oxygen vacancy site fraction (X), both delta and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach. A detailed oxygen vacancy migration barrier calculation gave the oxygen ionic diffusivity and conductivity. Oxygen vacancy also causes chemical strain, which was treated as a scalar in the literature. However, in many materials, it should be a tensor, which is anisotropic. We illustrate this effect on CeO2, in which it explained a puzzling experiment, which shows significant amplification of measured strain on applied bias in non-stoichiometric Gd doped ceria. The presence of highly localized 4f valence orbital in Ce causes charge disproportionation on the formation of neutral oxygen vacancy, producing anisotropic chemical strain in ceria with cubic symmetry. Understanding of delta and X and anisotropic chemical strain in the lattice has led to the design of better MIEC via element doping and strain engineering of the lattice.
A quiescent state of 3 to 8 MeV radiation belt electrons
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Blake, J. B.; Kolasinski, W. A.; Fritz, T. A.
During a ∼3 month period in mid-1996 outer radiation belt electrons in the energy range from ∼ 3 to 8 MeV were diffusing inward and decaying in intensity with no internal or external source. Measurements from the HIST instrument on POLAR are used to constrain a model for time dependent lossy radial diffusion of these electrons, and to obtain estimates of a parameterized radial diffusion coefficient and lifetime. For lower energy electrons, of ∼ 1 to 3 MeV, a source at L > 6 is apparent throughout most of the same period.
Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-08-15
Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Theoretical characterization of charge transport in chromia (α-Cr2O3)
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-08-01
Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.
Diffusion by one wave and by many waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2010-03-01
Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.
NASA Astrophysics Data System (ADS)
Abdallah, F. B.; Benali, A.; Triki, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.
2018-05-01
The effect of annealing temperature on the structure, morphology and dielectric properties of La0.75Ba0.25FeO3 compound prepared by the sol-gel method was investigated. The increase of the annealing temperature from 900 to 1100 °C, promotes an increase of the average grain size value. Two dielectric relaxations are detected using the dielectric modulus formalism, attributed to grain and grain boundary relaxations. This behavior was confirmed by both Nyquist and Argand's plots of dielectric impedance and Modulus results at different measuring temperatures. The ac conductivity could be described by Jonscher's power law revealing the presence of both overlapping large polaron tunneling and non-overlapping small polaron tunneling mechanisms.
Semiclassical and quantum polarons in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Hamm, P.; Tsironis, G. P.
2007-08-01
Crystalline acetanilide is a an organic solid with peptide bond structure similar to that of proteins. Two states appear in the amide I spectral region having drastically different properties: one is strongly temperature dependent and disappears at high temperatures while the other is stable at all temperatures. Experimental and theoretical work over the past twenty five years has assigned the former to a selftrapped state while the latter to an extended free exciton state. In this article we review the experimental and theoretical developments on acetanilide paying particular attention to issues that are still pending. Although the interpretation of the states is experimentally sound, we find that specific theoretical comprehension is still lacking. Among the issues that that appear not well understood is the effective dimensionality of the selftrapped polaron and free exciton states.
Modulation of low-energy galactic electrons in the heliosphere
NASA Astrophysics Data System (ADS)
Sibusiso Nkosi, Godfrey; Potgieter, Marius; Nndanganeni, Rendanie
The modulation of cosmic ray electrons in the heliosphere assists in improving our understand-ing and assessment of the diffusion tensor applicable to low-energy electrons from the inner to the outer heliosphere, in particular inside the heliosheath. A three-dimensional (3D) numerical model based on Parker's transport equation is used to study the modulation of 10 MeV galac-tic electrons. The emphasis is placed on the role that perpendicular diffusion plays in causing the observed extraordinary increase in the intensity of these electrons in the heliosheath. The model is compared to observations from the Voyager mission and conclusions are made about the role of the perpendicular diffusion in the heliosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordman, Olli; Nordman, Nina; Pashkevich, Valfrid
2001-08-01
The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified. {copyright} 2001 Optical Society of America
Ab initio simulations of water splitting on hematite
NASA Astrophysics Data System (ADS)
Seriani, Nicola
2017-11-01
In recent years, hematite has attracted great interest as a photocatalyst for water splitting, but many questions remain unanswered about the mechanisms and the main limiting factors. For this reason, density functional theory has been used to understand the optical, electronic and chemical properties of this material at an atomistic level. Bulk doping can be used to reduce the band gap, and to increase photoabsorption and charge mobility. Charge transport takes place through adiabatic polaron hopping. The stable (0 0 0 1) surface has a stoichiometric termination when exposed to oxygen, it becomes hydroxylated in water, and it has an oxygen-rich termination under illumination in a photoelectrochemical setup. On the oxygen-rich termination, surface states are present that might act as recombination centres for electrons and holes. On the contrary, on the hydroxylated termination surface states appear only on reaction intermediates. The intrinsic surface states disappear in the presence of an overlayer of gallium oxide. The reaction of water oxidation is assumed to proceed by four proton-coupled electron transfers and it is shown to involve a nucleophilic attack with the formation of an OOH group. Calculated overpotentials are in the range of 0.5-0.6 V. Open questions and future research directions are briefly discussed.
NASA Astrophysics Data System (ADS)
Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi
2015-12-01
Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.
Interfacial coupling and polarization of perovskite ABO3 heterostructures
NASA Astrophysics Data System (ADS)
Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei
2017-02-01
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.
Tunnelling magnetoresistance and 1/f noise in phase-separated manganites
NASA Astrophysics Data System (ADS)
Sboychakov, A. O.; Rakhmanov, A. L.; Kugel, K. I.; Kagan, M. Yu; Brodsky, I. V.
2003-03-01
The magnetoresistance and the noise power of non-metallic phase-separated manganites are studied. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in an insulating matrix. The concentration of metallic phase is assumed to be far from the percolation threshold. The electron tunnelling between ferrons causes the charge transfer in such a system. The magnetoresistance is determined both by the increase in the volume of the metallic phase and by the change in the electron hopping probability. In the framework of such a model, the low-field magnetoresistance is proportional to H2 and decreases with temperature as T-n, where n can vary from 1 to 5, depending on the parameters of the system. In the high-field limit, the tunnelling magnetoresistance grows exponentially. Different mechanisms of the voltage fluctuations in the system are analysed. The noise spectrum generated by the fluctuations of the number of droplets with extra electrons has a 1/f form over a wide frequency range. In the case of strong magnetic anisotropy, the 1/f noise can also arise due to fluctuations of the magnetic moments of ferrons. The 1/f noise power depends only slightly on the magnetic field in the low field range whereas it can increase as H6 in the high-field limit.
2D Ruddlesden-Popper Perovskites for Optoelectronics.
Chen, Yani; Sun, Yong; Peng, Jiajun; Tang, Junhui; Zheng, Kaibo; Liang, Ziqi
2018-01-01
Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
NASA Astrophysics Data System (ADS)
Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.
2014-09-01
A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-04-08
Transport of conduction electrons and holes through the lattice of ??Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic couplingmore » followed the Generalized Mulliken-Hush approach using the complete active space self-consistent field (CASSCF) method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c-axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobility across basal oxygen planes relative to that within iron bi-layers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only approximately one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe?Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, R. P.; Tripathi, A. K.; Halder, S.
The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less
NASA Astrophysics Data System (ADS)
Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.
2018-01-01
Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.
Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events
NASA Astrophysics Data System (ADS)
Tu, W.; Cunningham, G.; Li, X.; Chen, Y.
2015-12-01
During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.