Sample records for electron pulses generated

  1. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    NASA Astrophysics Data System (ADS)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  2. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  3. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.

    2016-05-15

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less

  4. Circularly polarized attosecond pulse generation and applications to ultrafast magnetism

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun

    2017-12-01

    Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.

  5. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, Adnah G.

    1988-01-01

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.

  6. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, A.G.

    1988-06-28

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.

  7. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  8. Isolated few-cycle radiation from chirped-pulse compression of a superradiant free-electron laser

    DOE PAGES

    Huang, Yen -Chieh; Zhang, Zhen; Chen, Chia -Hsiang; ...

    2015-08-31

    When a short electron bunch traverses an undulator to radiate a wavelength longer than the bunch length, intense superradiance from the electron bunch can quickly deplete the electron’s kinetic energy and lead to generation of an isolated chirped radiation pulse. Here, we develop a theory to describe this novel chirped pulse radiation in a superradiant free-electron laser and show the opportunity to generate isolated few-cycle high-power radiation through chirped-pulse compression after the undulator. The theory is completely characterized by how fast the electron energy is depleted for a given length of an undulator. We further present two design examples atmore » the THz and extreme-ultraviolet wavelengths and numerically generate isolated three- and nine-cycle radiation pulses, respectively.« less

  9. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  10. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  11. Design and development of compact pulsed power driver for electron beam experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Pankaj; Sharma, S.K.; Adhikary, B.

    2014-07-01

    Pulsed electron beam generation requires high power pulses of fast rise, short duration pulse with flat top. With this objective we have designed a low cost compact pulsed power driver based on water dielectric transmission line. The paper describes the design aspects and construction of the pulse power driver and its experimental results. The pulsed power driver consist of a capacitor bank and its charging power supply, high voltage generator, high voltage switch and pulse compression system. (author)

  12. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  13. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  14. Effects of electron relaxation on multiple harmonic generation from metal surfaces with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karatzas, N. E.; Georges, A. T.

    2006-11-01

    Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm 2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 10 11 W/cm 2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10 -9, while for the 5th-harmonic it is 10 -10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ˜30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.

  15. High-quality beam generation using an RF gun and a 150 MeV microtron

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.

    2000-11-01

    Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.

  16. Control System for the LLNL Kicker Pulse Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Cook, E G

    2002-06-18

    A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.

  17. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  18. Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Peebles, Jonathan Lee

    Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by "ponderomotive scaling'" is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as "super-ponderomotive" electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions. Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 1018 W/cm2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of "injected" pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kalpha imaging. The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.

  19. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  20. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  1. Target charging in short-pulse-laser-plasma experiments.

    PubMed

    Dubois, J-L; Lubrano-Lavaderci, F; Raffestin, D; Ribolzi, J; Gazave, J; Compant La Fontaine, A; d'Humières, E; Hulin, S; Nicolaï, Ph; Poyé, A; Tikhonchuk, V T

    2014-01-01

    Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of these electrons are escaping the target, leaving behind a significant positive electric charge and creating a strong electromagnetic pulse long after the end of the laser pulse. We propose here a detailed model of the target electric polarization induced by a short and intense laser pulse and an escaping electron bunch. A specially designed experiment provides direct measurements of the target polarization and the discharge current in the function of the laser energy, pulse duration, and target size. Large-scale numerical simulations describe the energetic electron generation and their emission from the target. The model, experiment, and numerical simulations demonstrate that the hot-electron ejection may continue long after the laser pulse ends, enhancing significantly the polarization charge.

  2. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  3. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  4. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  5. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  6. Free electron laser with masked chicane

    DOEpatents

    Nguyen, Dinh C.; Carlsten, Bruce E.

    1999-01-01

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  7. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  8. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  9. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1979-01-01

    The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.

  10. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  11. Operation of a long-pulse backward-wave oscillator using a disk cathode

    NASA Astrophysics Data System (ADS)

    Hahn, Kelly; Fuks, Mikhail I.; Schamiloglu, Edl

    2001-08-01

    Recent work at the University of New Mexico has studied the use of a circular disk cathode as the electron source in a long-pulse Backward Wave Oscillator (BWO) experiment. The use of this cathode was motivated by recent studies by Loza and Strelkov of the General Physics Institute in Russia that demonstrated that a relativistic electron beam with stable cross section could be sustained for over one microsecond. In our first investigations using this new cathode configuration we found that the microwave pulse length generated from a long pulse BWO increased somewhat compared to the case when a traditional annular `cookie-cutter' cathode was used. We attribute this pulse lengthening to the hypothesis that the disk cathode generates a relativistic electron beam that is less likely to radially expand, thereby minimizing wall interception and the generation of unwanted plasma. In this paper we describe details of work- in-progress relating to a comparison of microwave generation from a disk cathode and annular cathode in a long-pulse BWO.

  12. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  13. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  14. A compact high current pulsed electron gun with subnanosecond electron pulse widths

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1984-01-01

    A magnetically-collimated, double-pulsed electron gun capable of generating electron pulses with a peak instantaneous current of approximately 70 microamps and a temporal width of 0.35 ns (FWHM) has been developed. Calibration is accomplished by measuring the lifetime of the well known 2(1P)-to-1(1S) transition in helium (58.4nm) at a near-threshold electron-impact energy by use of the delayed-coincidence technique.

  15. Femtosecond Electron and Photon Pulses Facility in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimjaem, S.; Thongbai, C.; Jinamoon, V.

    Femtosecond electron and photon pulses facility has been established as SURIYA project at the Fast Neutron Research Facility (FNRF). Femtosecond electron bunches can be generated from a system consisting of an RF gun with a thermionic cathode, an alpha magnet as an magnetic bunch compressor, and a linear accelerator as a post acceleration section. Femtosecond electron pulses can be used directly or used as a source to produce equally short electromagnetic (EM) radiation pulses via certain kind of radiation production processes. At SURIYA project, we are interested especially in production of radiation in Far-infrared (FIR) regime. At these wavelengths, themore » radiation from femtosecond electron pulses is emitted coherently resulting in high intensity radiation. Overview of the facility, the generation of femtosecond electron bunches, the theoretical background of coherent transition radiation and the recent experimental results will be presented and discussed in this paper.« less

  16. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  17. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  18. Generation of short electron bunches by a laser pulse crossing a sharp boundary of inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, S. V., E-mail: svk-IVTAN@yandex.ru

    The formation of short electron bunches during the passage of a laser pulse of relativistic intensity through a sharp boundary of semi-bounded plasma has been analytically studied. It is shown in one-dimensional geometry that one physical mechanism that is responsible for the generation of electron bunches is their self-injection into the wake field of a laser pulse, which occurs due to the mixing of electrons during the action of the laser pulse on plasma. Simple analytic relationships are obtained that can be used for estimating the length and charge of an electron bunch and the spread of electron energies inmore » the bunch. The results of the analytical investigation are confirmed by data from numerical simulations.« less

  19. Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation

    NASA Astrophysics Data System (ADS)

    Yu, N.; Tu, M.; Maleki, L.

    2002-04-01

    Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.

  20. Contrast Enhancement of the LOASIS CPA Laser and Effects on Electron Beam Performance of LWFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Csaba; Gonsalves, Anthony J.; Panasenko, Dmitriy

    2009-01-22

    A nonlinear optical pulse cleaning technique based on cross-polarized wave (XPW) generation filtering [1] has been implemented to improve laser pulse contrast, and consequently to control pre-ionization in laser-plasma accelerator experiments. Three orders of magnitude improvement in pre-pulse contrast has been achieved, resulting in 4-fold increase in electron charge and improved stability of both the electron beam energy and THz radiation generated as a secondary process in the gas-jet-based LWFA experiments.

  1. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  2. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  3. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Shevelev, M.; Aryshev, A.; Terunuma, N.; Urakawa, J.

    2017-10-01

    The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  4. Nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    2016-09-15

    It is shown that the nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency change substantially due to a reduction in the effective electron–ion collision frequency.

  5. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.

    PubMed

    Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J

    2017-09-01

    We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.

  6. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  7. Generation of double pulses at the Shanghai soft X-ray free electron laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Feng, Chao; Gu, Qiang

    2017-01-28

    In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.

  8. Shutterless ion mobility spectrometer with fast pulsed electron source

    NASA Astrophysics Data System (ADS)

    Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.

    2017-02-01

    Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.

  9. High-order harmonic generation by atoms in a few-cycle laser pulse: Carrier-envelope phase and many-electron effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, M. V.; Manakov, N. L.; Silaev, A. A.

    2011-02-15

    Analytic formulas describing high-order harmonic generation (HHG) by atoms in a short laser pulse are obtained quantum mechanically in the tunneling limit. These results provide analytic expressions of the three-step HHG scenario, as well as of the returning electron wave packet, in a few-cycle pulse. Our results agree well with those of numerical solutions of the time-dependent Schroedinger equation for the H atom, while for Xe they predict many-electron atomic dynamics features in few-cycle HHG spectra and significant dependence of these features on the carrier-envelope phase of a laser pulse.

  10. Laser radiography forming bremsstrahlung radiation to image an object

    DOEpatents

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  11. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  12. Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peebles, J.; Wei, M. S.; Arefiev, A. V.

    A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less

  13. Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP

    DOE PAGES

    Peebles, J.; Wei, M. S.; Arefiev, A. V.; ...

    2017-02-02

    A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less

  14. Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons

    DOE PAGES

    Schaffer, A. F.; Durr, H. A.; Berakdar, J.

    2017-07-17

    Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. Here, the study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.

  15. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  16. Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses.

    PubMed

    Prat, Eduard; Reiche, Sven

    2015-06-19

    X-ray free-electron lasers (XFELs) are cutting-edge research tools that produce almost fully coherent radiation with high power and short-pulse length with applications in multiple science fields. There is a strong demand to achieve even shorter pulses and higher radiation powers than the ones obtained at state-of-the-art XFEL facilities. In this context we propose a novel method to generate terawatt-attosecond XFEL pulses, where an XFEL pulse is pushed through several short good-beam regions of the electron bunch. In addition to the elements of conventional XFEL facilities, the method uses only a multiple-slotted foil and small electron delays between undulator sections. Our scheme is thus simple, compact, and easy to implement both in already operating as well as future XFEL projects. We present numerical simulations that confirm the feasibility and validity of our proposal.

  17. Isolated terawatt attosecond hard X-ray pulse generated from single current spike.

    PubMed

    Shim, Chi Hyun; Parc, Yong Woon; Kumar, Sandeep; Ko, In Soo; Kim, Dong Eon

    2018-05-10

    Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.

  18. Generation of coherent two-color pulses at two adjacent harmonics in a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhao, Zhouyu; Li, Heting; Jia, Qika

    2018-02-01

    The growing requirements of pump-probe techniques and nonlinear optics experiments greatly promote the studies of two-color free-electron lasers (FELs). We propose a new method to generate coherent two-color pulses in a high-gain harmonic generation (HGHG) FEL. In this scheme, an initial tilted electron beam is sent though the modulator and dispersive section of an HGHG FEL to generate the bunching at harmonics of the seed laser. Then a transverse gradient undulator (TGU) is adopted as the radiator and in such radiator, only two separated fractions of the tilted beam will resonate at two adjacent harmonics of the seed laser and are enabled to emit the coherent two-color pulses simultaneously. The time separation between the two pulses are on the order of hundreds of femtoseconds, and can be precisely controlled by varying the tilted amplitude of the electron beam and/or the transverse gradient of the TGU radiator. Numerical simulations confirm the validity and feasibility of this scheme in the extreme ultraviolet waveband.

  19. Formation and dynamics of a plasma in superstrong laser fields including radiative and quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Artemenko, I. I.; Golovanov, A. A.; Kostyukov, I. Yu.; Kukushkina, T. M.; Lebedev, V. S.; Nerush, E. N.; Samsonov, A. S.; Serebryakov, D. A.

    2016-12-01

    Studies of phenomena accompanying the interaction of superstrong electromagnetic fields with matter, in particular, the generation of an electron-positron plasma, acceleration of electrons and ions, and the generation of hard electromagnetic radiation are briefly reviewed. The possibility of using thin films to initiate quantum electrodynamics cascades in the field of converging laser pulses is analyzed. A model is developed to describe the formation of a plasma cavity behind a laser pulse in the transversely inhomogeneous plasma and the generation of betatron radiation by electrons accelerated in this cavity. Features of the generation of gamma radiation, as well as the effect of quantum electrodynamics effects on the acceleration of ions, at the interaction of intense laser pulses with solid targets are studied.

  20. Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.

    2018-05-01

    When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.

  1. Generation of Gigawatt Circularly Polarized Attosecond-Pulse Pairs

    NASA Astrophysics Data System (ADS)

    Hu, K.; Wu, H.-C.

    2017-12-01

    A novel scheme for generating a pair of gigawatt attosecond pulses by coherent Thomson scattering from relativistic electron sheets is proposed. With a circularly polarized relativistic laser pulse, the scattered x-ray signal can have a saddlelike temporal profile, where the lower electromagnetic frequencies are found mostly in the center region of this saddlelike profile. By filtering out the latter, we can obtain two few-attosecond pulses separated by a subfemtosecond interval, which is tunable by controlling the energy of the sheet electrons. Such a pulse pair can be useful for an attosecond pump probe at an unprecedented time resolution and for ultrafast chiral studies in molecules and materials.

  2. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser.

    PubMed

    Tian, Xiangling; Wei, Rongfei; Liu, Meng; Zhu, Chunhui; Luo, Zhichao; Wang, Fengqiu; Qiu, Jianrong

    2018-05-24

    Non-equilibrium electrons induced by ultrafast laser excitation in a correlated electron material can disturb the Fermi energy as well as optical nonlinearity. Here, non-equilibrium electrons translate a semiconductor TiS2 material into a plasma to generate broad band nonlinear optical saturable absorption with a sub-picosecond recovery time of ∼768 fs (corresponding to modulation frequencies over 1.3 THz) and a modulation response up to ∼145%. Based on this optical nonlinear modulator, a stable femtosecond mode-locked pulse with a pulse duration of ∼402 fs and a pulse train with a period of ∼175.5 ns is observed in the all-optical system. The findings indicate that non-equilibrium electrons can promote a TiS2-based saturable absorber to be an ultrafast switch for a femtosecond pulse output.

  3. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi

    2010-03-22

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in themore » electron energy distribution.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, T.; The Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-0193; Arai, T.

    A new type of pulse chopper called an Einzel lens chopper is described. An Einzel lens placed immediately after an electron cyclotron resonance ion source is driven by high-voltage pulses generated by a newly developed solid-state Marx generator. A rectangular negative barrier pulse-voltage is controlled in time, and the barrier pulse is turned on only when a beam pulse is required. The results of successful experiments are reported herein.

  5. Research Laboratory of Electronic Progress Report Number 135.

    DTIC Science & Technology

    1993-06-01

    78 @ 1.12 Ultrashort Pulse Generation in Solid State Lasers ...generation the use of intracavity self-phase-modulation and of ultrashort laser pulses is essential for studies of negative group velocity dispersion... pulses . Our studies focus on exploiting mode locked solid state lasers . While the dominant the short pulse durations and high peak intensity of effect of

  6. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  7. Recent Results With Coupled Opto-Electronic Oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.

    1998-07-01

    We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  8. Recent results with the coupled opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-11-01

    We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  9. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  10. Response of dosemeters in the radiation field generated by a TW-class laser system.

    PubMed

    Olšovcová, V; Klír, D; Krása, J; Krůs, M; Velyhan, A; Zelenka, Z; Rus, B

    2014-10-01

    State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  12. A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.

    PubMed

    Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio

    2008-03-01

    We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.

  13. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  14. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  15. Ion acceleration enhanced by target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  16. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  17. Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Anderson, S G; Barty, C P J

    2003-05-28

    The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less

  18. Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution

    PubMed Central

    Fabiańska, Justyna; Kassier, Günther; Feurer, Thomas

    2014-01-01

    Through combined three-dimensional electromagnetic and particle tracking simulations we demonstrate a THz driven electron streak camera featuring a temporal resolution on the order of a femtosecond. The ultrafast streaking field is generated in a resonant THz sub-wavelength antenna which is illuminated by an intense single-cycle THz pulse. Since electron bunches and THz pulses are generated with parts of the same laser system, synchronization between the two is inherently guaranteed. PMID:25010060

  19. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  20. Extremely High Peak Power Obtained at 29 GHZ Microwave Pulse Generation

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Gunin, A. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shunailov, S. A.; Ul'maskulov, M. R.; Yalandin, M. I.

    2017-12-01

    The paper presents research results on enhancing the peak power of microwave pulses with sub- and nanosecond length using a backward-wave oscillator (BWO) operating at 29 GHz frequency and possessing a reproducible phase structure. Experiments are conducted in two modes on a high-current electron accelerator with the required electron beam power. In the first (superradiation) mode, which utilizes the elongated slow-wave structure, the BWO peak power is 3 GW at 180 ns pulse duration (full width at halfmaximum, FWHM). In the second (quasi-stationary) mode, the BWO peak power reaches 600 MW at 2 ns pulse duration (FWHM). The phase spread from pulse to pulse can vary from units to several tens of percent in a nanosecond pulse mode. The experiments do not show any influence of microwave breakdown on the BWO power generation and radiation pulse duration.

  1. Coherent pump pulses in Double Electron Electron Resonance Spectroscopy

    PubMed Central

    Tait, Claudia E.; Stoll, Stefan

    2016-01-01

    The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858

  2. Mapping the Damping Dynamics of Mega-Ampere Electron Pulses Inside a Solid

    NASA Astrophysics Data System (ADS)

    Shaikh, Moniruzzaman; Lad, Amit D.; Birindelli, Gabriele; Pepitone, Kevin; Jha, Jagannath; Sarkar, Deep; Tata, Sheroy; Chatterjee, Gourab; Dey, Indranuj; Jana, Kamalesh; Singh, Prashant K.; Tikhonchuk, Vladimir T.; Rajeev, P. P.; Kumar, G. Ravindra

    2018-02-01

    We report the lifetime of intense-laser (2 ×1019 W /cm2 ) generated relativistic electron pulses in solids by measuring the time evolution of their Cherenkov emission. Using a picosecond resolution optical Kerr gating technique, we demonstrate that the electrons remain relativistic as long as 50 picoseconds—more than 1000 times longer than the incident light pulse. Numerical simulations of the propagation of relativistic electrons and the emitted Cherenkov radiation with Monte Carlo geant4 package reproduce the striking experimental findings.

  3. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  4. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  5. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  6. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  7. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  8. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  9. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  10. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  11. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Self-action of a high-power 10-μm laser radiation in gases: control of the pulse duration and generation of hot electrons

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Platonenko, Viktor T.; Sterzhantov, A. F.

    2009-07-01

    The propagation of ultrashort 10-μm laser pulses of power exceeding the critical self-focusing power in xenon and air is numerically simulated. It is shown that the pulse duration in certain regimes in xenon can be decreased by 3-4 times simultaneously with the increase in the pulse power by 2-3 times. It is found that the average energy of electrons in a filament upon filamentation of 10-μm laser pulses in air can exceed 200 eV. The features of the third harmonic and terahertz radiation generation upon filamentation are discussed.

  12. Shaped cathodes for the production of ultra-short multi-electron pulses

    PubMed Central

    Petruk, Ariel Alcides; Pichugin, Kostyantyn; Sciaini, Germán

    2017-01-01

    An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made. PMID:28191483

  13. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses.

    PubMed

    Hu, Li-Xiang; Yu, Tong-Pu; Sheng, Zheng-Ming; Vieira, Jorge; Zou, De-Bin; Yin, Yan; McKenna, Paul; Shao, Fu-Qiu

    2018-05-08

    Generation of attosecond bunches of energetic electrons offers significant potential from ultrafast physics to novel radiation sources. However, it is still a great challenge to stably produce such electron beams with lasers, since the typical subfemtosecond electron bunches from laser-plasma interactions either carry low beam charge, or propagate for only several tens of femtoseconds. Here we propose an all-optical scheme for generating dense attosecond electron bunches via the interaction of an intense Laguerre-Gaussian (LG) laser pulse with a nanofiber. The dense bunch train results from the unique field structure of a circularly polarized LG laser pulse, enabling each bunch to be phase-locked and accelerated forward with low divergence, high beam charge and large beam-angular-momentum. This paves the way for wide applications in various fields, e.g., ultrabrilliant attosecond x/γ-ray emission.

  14. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochems, P.; Kirk, A. T.; Bunert, E.

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less

  15. Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Fattahi, Hanieh

    2016-10-01

    This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 ?m to more than 10 ?m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.

  16. Two-color ionization injection using a plasma beatwave accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  17. Two-color ionization injection using a plasma beatwave accelerator

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2018-01-10

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  18. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    DOE PAGES

    Andonian, G.; Barber, S.; O’Shea, F. H.; ...

    2017-02-03

    We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less

  19. A comparison between spectra of runaway electron beams in SF6 and air

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor; Gu, Jianwei; Baksht, Evgenii; Wang, Ruexue; Yan, Ping; Shao, Tao

    2015-12-01

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF6 and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ˜1.6 ns and a full width at half maximum of 3-5 ns is used to produce RAE beams. The SAEBs in SF6 and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF6 and air at pressures of 7.5 Torr, 75 Torr, and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF6 was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF6 in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF6 decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF6 decreased when the rise time of the voltage pulse increased.

  20. Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D J; Barty, C J; Betts, S M

    2005-04-21

    The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less

  1. Laser-pulse shape effects on magnetic field generation in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.

    2018-07-01

    Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.

  2. Frequency up-conversion of a high-power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.

    1992-01-01

    In the study of the propagation of a high-power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. A frequency autoconversion process that can lead to reflectionless propagation of powerful electromagnetic pulses in self-generated plasmas is studied. The theory shows that, under the proper condition, the carrier frequency omega of the pulse shifts upward during the growth of local plasma frequency omega(pe). Thus, the self-generated plasma remains underdense to the pulse. A chamber experiment to demonstrate the frequency autoconversion during the pulse propagation through the self-generated plasma is conducted. The detected frequency shift is compared with the theoretical result calculated by using the measured electron density distribution along the propagation path of the pulse. Good agreement is obtained.

  3. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherencemore » of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).« less

  4. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiancang; Zhang, Xibo; Li, Rui

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less

  5. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  6. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  7. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction

    PubMed Central

    Chang, H. X.; Qiao, B.; Huang, T. W.; Xu, Z.; Zhou, C. T.; Gu, Y. Q.; Yan, X. Q.; Zepf, M.; He, X. T.

    2017-01-01

    We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 1025 photons/s/mm2/mrad2/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 1023 W/cm2. PMID:28338010

  8. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  9. Femtosecond profiling of shaped x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  10. Generation of electron vortex states in ionization by intense and short laser pulses

    NASA Astrophysics Data System (ADS)

    Vélez, F. Cajiao; Krajewska, K.; Kamiński, J. Z.

    2018-04-01

    The generation of electron vortex states in ionization by intense and short laser pulses is analyzed under the scope of the lowest-order Born approximation. For near-infrared laser fields and nonrelativistic intensities of the order of 1016 W /cm2 , we show that one has to modify the nonrelativistic treatment of ionization by accounting for recoil and relativistic mass corrections. By using the corrected quasirelativistic theory, the requirements for the observation of electron vortex states with non-negligible probability and large topological charge are determined.

  11. Overview of options for generating high-brightness attosecond x-ray pulses at free-electron lasers and applications at the European XFEL

    NASA Astrophysics Data System (ADS)

    Serkez, S.; Geloni, G.; Tomin, S.; Feng, G.; Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Meyer, M.

    2018-02-01

    The generation of attosecond, highbrightness x-ray pulses is a matter of great interest given their applications in the study of ultra-fast processes. In recent years, the production of x-ray pulses of high brightness, both in the soft and in the hard x-ray range, has been enabled by x-ray free-electron lasers (XFELs). In contrast to conventional quantum lasers, XFELs are based on the use of an ultra-relativistic electron beam as gain medium. They often work in the self-amplified spontaneous emission (SASE) regime, which provides pulses of duration down to a few femtoseconds, composed of several longitudinal modes. In order to further decrease the duration of these pulses, special methods need to be implemented. In this paper we review available methods, with particular focus on the x-ray laser-enhanced attosecond pulse generation, which is one of the most promising techniques. We illustrate the method using the SASE3 soft x-ray undulator of the European XFEL facility as a case study, emphasizing the importance of high-repetition rate attosecond x-ray pulses. The expected attosecond-level radiation output is used for simulations of sequential ionization processes in atoms in the case of ionization in the soft x-ray regime, demonstrating the importance of this opportunity for the user community.

  12. Attosecond time-energy structure of X-ray free-electron laser pulses

    NASA Astrophysics Data System (ADS)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  13. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Sefkow, A. B.; Geissel, M.; Arefiev, A. V.; Flippo, K. A.; Gaillard, S. A.; Johnson, R. P.; Kimmel, M. W.; Offermann, D. T.; Rambo, P. K.; Schwarz, J.; Shimada, T.

    2015-04-01

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results show that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.

  14. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-Long; Chen, Min; Yu, Tong-Pu; Weng, Su-Ming; Hu, Li-Xiang; McKenna, Paul; Sheng, Zheng-Ming

    2018-04-01

    Attosecond light sources have the potential to open up totally unexplored research avenues in ultrafast science. However, the photon energies achievable using existing generation schemes are limited to the keV range. Here, we propose and numerically demonstrate an all-optical mechanism for the generation of bright MeV attosecond γ-photon beams with desirable angular momentum. Using a circularly polarized Laguerre-Gaussian laser pulse focused onto a cone-foil target, dense attosecond bunches ( ≲ 170 as ) of electrons are produced. The electrons interact with the laser pulse which is reflected by a plasma mirror, producing ultra-brilliant (˜1023 photons/s/mm2/mrad2/0.1%BW) multi-MeV (Eγ,max > 30 MeV) isolated attosecond ( ≲ 260 as ) γ-ray pulse trains. Moreover, the angular momentum is transferred to γ-photon beams via nonlinear Compton scattering of ultra-intense tightly focused laser pulse by energetic electrons. Such a brilliant attosecond γ-photon source would provide the possibilities in attosecond nuclear science.

  15. High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission.

    PubMed

    Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra

    2014-10-20

    The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.

  16. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  17. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  18. Ultra-bright pulsed electron beam with low longitudinal emittance

    DOEpatents

    Zolotorev, Max

    2010-07-13

    A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.

  19. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    PubMed Central

    De Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-01-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste. PMID:26290320

  20. EDITORIAL: Focus on Attosecond Physics

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.

    2008-02-01

    Investigations of light-matter interactions and motion in the microcosm have entered a new temporal regime, the regime of attosecond physics. It is a main 'spin-off' of strong field (i.e., intense laser) physics, in which nonperturbative effects are fundamental. Attosecond pulses open up new avenues for time-domain studies of multi-electron dynamics in atoms, molecules, plasmas, and solids on their natural, quantum mechanical time scale and at dimensions shorter than molecular and even atomic scales. These capabilities promise a revolution in our microscopic knowledge and understanding of matter. The recent development of intense, phase-stabilized femtosecond (10-15 s) lasers has allowed unparalleled temporal control of electrons from ionizing atoms, permitting for the first time the generation and measurement of isolated light pulses as well as trains of pulses on the attosecond (1 as = 10-18 s) time scale, the natural time scale of the electron itself (e.g., the orbital period of an electron in the ground state of the H atom is 152 as). This development is facilitating (and even catalyzing) a new class of ultrashort time domain studies in photobiology, photochemistry, and photophysics. These new coherent, sub-fs pulses carried at frequencies in the extreme ultraviolet and soft-x-ray spectral regions, along with their intense, synchronized near-infrared driver waveforms and novel metrology based on sub-fs control of electron-light interactions, are spawning the new science of attosecond physics, whose aims are to monitor, to visualize, and, ultimately, to control electrons on their own time and spatial scales, i.e., the attosecond time scale and the sub-nanometre (Ångstrom) spatial scale typical of atoms and molecules. Additional goals for experiment are to advance the enabling technologies for producing attosecond pulses at higher intensities and shorter durations. According to theoretical predictions, novel methods for intense attosecond pulse generation may in future involve using overdense plasmas. Electronic processes on sub-atomic spatio-temporal scales are the basis of chemical physics, atomic, molecular, and optical physics, materials science, and even some life science processes. Research in these areas using the new attosecond tools will advance together with the ability to control electrons themselves. Indeed, we expect that developments will advance in a way that is similar to advances that have occurred on the femtosecond time scale, in which much previous experimental and theoretical work on the interaction of coherent light sources has led to the development of means for 'coherent control' of nuclear motion in molecules. This focus issue of New Journal of Physics is centered on experimental and theoretical advances in the development of new methodologies and tools for electron control on the attosecond time scale. Topics such as the efficient generation of harmonics; the generation of attosecond pulses, including those having only a few cycles and those produced from overdense plasmas; the description of various nonlinear, nonperturbative laser-matter interactions, including many-electron effects and few-cycle pulse effects; the analysis of ultrashort propagation effects in atomic and molecular media; and the development of inversion methods for electron tomography, as well as many other topics, are addressed in the current focus issue dedicated to the new field of 'Attosecond Physics'. Focus on Attosecond Physics Contents Observing the attosecond dynamics of nuclear wavepackets in molecules by using high harmonic generation in mixed gases Tsuneto Kanai, Eiji J Takahashi, Yasuo Nabekawa and Katsumi Midorikawa Core-polarization effects in molecular high harmonic generation G Jordan and A Scrinzi Interferometric autocorrelation of an attosecond pulse train calculated using feasible formulae Y Nabekawa and K Midorikawa Attosecond pulse generation from aligned molecules—dynamics and propagation in H2+ E Lorin, S Chelkowski and A D Bandrauk Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses Miaochan Zhi and Alexei V Sokolov Ultrafast nanoplasmonics under coherent control Mark I Stockman Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse Liang-You Peng, Evgeny A Pronin and Anthony F Starace Angular encoding in attosecond recollision Markus Kitzler, Xinhua Xie, Stefan Roither, Armin Scrinzi and Andrius Baltuska Polarization-resolved pump-probe spectroscopy with high harmonics Y Mairesse, S Haessler, B Fabre, J Higuet, W Boutu, P Breger, E Constant, D Descamps, E Mével, S Petit and P Salières Macroscopic effects in attosecond pulse generation T Ruchon, C P Hauri, K Varjú, E Mansten, M Swoboda, R López-Martens and A L'Huillier Monitoring long-term evolution of molecular vibrational wave packet using high-order harmonic generation M Yu Emelin, M Yu Ryabikin and A M Sergeev Intense single attosecond pulses from surface harmonics using the polarization gating technique S G Rykovanov, M Geissler, J Meyer-ter-Vehn and G D Tsakiris Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields M F Kling, J Rauschenberger, A J Verhoef, E Hasović, T Uphues, D B Milošević, H G Muller and M J J Vrakking Self-compression of optical laser pulses by filamentation A Mysyrowicz, A Couairon and U Keller Towards efficient generation of attosecond pulses from overdense plasma targets N M Naumova, C P Hauri, J A Nees, I V Sokolov, R Lopez-Martens and G A Mourou Quantum-path control in high-order harmonic generation at high photon energies Xiaoshi Zhang, Amy L Lytle, Oren Cohen, Margaret M Murnane and Henry C Kapteyn Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse C Ruiz and A Becker Pump and probe ultrafast electron dynamics in LiH: a computational study M Nest, F Remacle and R D Levine Exploring intense attosecond pulses D Charalambidis, P Tzallas, E P Benis, E Skantzakis, G Maravelias, L A A Nikolopoulos, A Peralta Conde and G D Tsakiris Attosecond timescale analysis of the dynamics of two-photon double ionization of helium Emmanuel Foumouo, Philippe Antoine, Henri Bachau and Bernard Piraux Generation of tunable isolated attosecond pulses in multi-jet systems V Tosa, V S Yakovlev and F Krausz Electron wavepacket control with elliptically polarized laser light in high harmonic generation from aligned molecules Y Mairesse, N Dudovich, J Levesque, M Yu Ivanov, P B Corkum and D M Villeneuve Tracing non-equilibrium plasma dynamics on the attosecond timescale in small clusters Ulf Saalmann, Ionut Georgescu and Jan M Rost Ionization in attosecond pulses: creating atoms without nuclei? John S Briggs and Darko Dimitrovski Angular distributions in double ionization of helium under XUV sub-femtosecond radiation P Lambropoulos and L A A Nikolopoulos Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers Toru Morishita, Anh-Thu Le, Zhangjin Chen and C D Lin Attosecond electron thermalization in laser-induced nonsequential multiple ionization: hard versus glancing collisions X Liu, C Figueira de Morisson Faria and W Becker Ion-charge-state chronoscopy of cascaded atomic Auger decay Th Uphues, M Schultze, M F Kling, M Uiberacker, S Hendel, U Heinzmann, N M Kabachnik and M Drescher Measurement of electronic structure from high harmonic generation in non-adiabatically aligned polyatomic molecules N Kajumba, R Torres, Jonathan G Underwood, J S Robinson, S Baker, J W G Tisch, R de Nalda, W A Bryan, R Velotta, C Altucci, I Procino, I C E Turcu and J P Marangos Wavelength dependence of sub-laser-cycle few-electron dynamics in strong-field multiple ionization O Herrwerth, A Rudenko, M Kremer, V L B de Jesus, B Fischer, G Gademann, K Simeonidis, A Achtelik, Th Ergler, B Feuerstein, C D Schröter, R Moshammer and J Ullrich Attosecond metrology in the few-optical-cycle regime G Sansone, E Benedetti, C Vozzi, S Stagira and M Nisoli Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction A A Zholents and M S Zolotorev

  1. High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Qingliang; Yang Ya; Qi Junjie

    2010-02-15

    The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.

  2. Raytheon Stirling/pulse Tube Cryocooler Development

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  3. THz-pump and X-ray-probe sources based on an electron linac

    NASA Astrophysics Data System (ADS)

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A.; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  4. Gamma-ray generation in the interaction of two tightly focused laser pulses with a low-density target composed of electrons

    NASA Astrophysics Data System (ADS)

    Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.

    2015-05-01

    With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.

  5. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  6. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, wemore » generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.« less

  7. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    NASA Astrophysics Data System (ADS)

    Savanier, Marc; Mookherjea, Shayan

    2016-06-01

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.

  8. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2018-02-01

    We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.

  9. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akou, H., E-mail: h.akou@nit.ac.ir; Hamedi, M.

    2015-10-15

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy throughmore » keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.« less

  10. Effects of Electromagnetic Pulses on a Multilayered System

    DTIC Science & Technology

    2014-07-01

    repeatable high - power generators . Repetitive EMP (REMP) is usually wideband with each pulse being composed of a wide range of frequencies. This larger...types of EMPs that are of concern regarding electronics and system infrastructures; they are high -altitude EMP (HEMP) generated from nuclear...ELECTROMAGNETIC PULSES ON A MULTILAYERED SYSTEM A. Upia, K. M. Burke, J. L. Zirnheld Energy Systems Institute, Department of Electrical Engineering

  11. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  12. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  13. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  14. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  15. Double optical gating

    NASA Astrophysics Data System (ADS)

    Gilbertson, Steve

    The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.

  16. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  17. The Behavior of Thin Dielectrics Under Electron Irradiation

    DTIC Science & Technology

    1980-03-01

    one of the principal surface materials used in satellites. As such, their behavior is of concern in SGEMP (system- generated electromagnetic pulse ), which...is time-reversible. 4 B. Goplen, R. E. Clark, and B. Fishbine, "MAD2 - A Computer Code for Systems-Generated Electromagnetic Pulse (SGEMP

  18. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  19. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  20. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE PAGES

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...

    2018-01-03

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  1. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  2. Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"

    NASA Astrophysics Data System (ADS)

    Miller, R. J. Dwayne

    2003-03-01

    Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.

  3. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  4. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  5. Few-cycle pulse generation in an x-ray free-electron laser.

    PubMed

    Dunning, D J; McNeil, B W J; Thompson, N R

    2013-03-08

    A method is proposed to generate trains of few-cycle x-ray pulses from a free-electron laser (FEL) amplifier via a compact "afterburner" extension consisting of several few-period undulator sections separated by electron chicane delays. Simulations show that in the hard x ray (wavelength ~0.1 nm; photon energy ~10 keV) and with peak powers approaching normal FEL saturation (GW) levels, root mean square pulse durations of 700 zs may be obtained. This is approximately two orders of magnitude shorter than that possible for normal FEL amplifier operation. The spectrum is discretely multichromatic with a bandwidth envelope increased by approximately 2 orders of magnitude over unseeded FEL amplifier operation. Such a source would significantly enhance research opportunity in atomic dynamics and push capability toward nuclear dynamics.

  6. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    PubMed

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  7. Tailpulse signal generator

    DOEpatents

    Baker, John [Walnut Creek, CA; Archer, Daniel E [Knoxville, TN; Luke, Stanley John [Pleasanton, CA; Decman, Daniel J [Livermore, CA; White, Gregory K [Livermore, CA

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  8. Femtosecond profiling of shaped x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M. C.; Grguras, I.; Behrens, C.

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  9. Femtosecond profiling of shaped x-ray pulses

    DOE PAGES

    Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...

    2018-03-26

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  10. All optical electron injector using an intense ultrashort pulse laser and a solid wire target

    NASA Astrophysics Data System (ADS)

    Palchan, T.; Eisenmann, S.; Zigler, A.; Kaganovich, D.; Hubbard, R. F.; Fraenkel, M.; Fisher, D.; Henis, Z.

    2006-05-01

    Energetic electron bunches were generated by irradiating a solid tungsten wire 13 μm wide with 50 femtosecond pulses at an intensity of ˜3×1018 W/cm2. The electron yield, energy spectrum and angular distribution were measured. These energetic electron bunches are suitable for injection into a laser driven plasma accelerator. An all-optical electron injector based on this approach could simplify timing and alignment in future laser-plasma accelerator experiments.

  11. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy.

    PubMed

    Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P

    2018-01-01

    We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    DOE PAGES

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; ...

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge ofmore » the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.« less

  13. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    NASA Astrophysics Data System (ADS)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-07-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.

  14. Pulsed Gas Lasers Pumped by a Runaway Electron Initiated Discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, A. N.; Tarasenko, V. F.; Panchenko, N. A.

    2017-12-01

    The generation parameters are investigated in a runaway electron preionized diffuse discharge (REP DD). Laser generation is produced in different spectral bands from the IR to VUV range. New modes of the nitrogen laser operation are obtained. Ultimate efficiencies of N2- and nonchain HF(DF)-lasers are achieved. A possibility of increasing the pulse durations of XeF-, KrF-, ArF- and VUV F2- lasers (157 nm) in an oscillating REP DD is shown. The efficiencies of VUV- and UV-generation comparable with that of a laser pumped by a self-sustained volume discharge with preionization are gained.

  15. Fast pulsed excitation wiggler or undulator

    DOEpatents

    van Steenbergen, Arie

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  16. Ultrafast Imaging of Electronic Motion in Atoms and Molecules

    DTIC Science & Technology

    2016-01-12

    pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in...100 fs. The charge and duration of the electron pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively... faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in-situ. The gun was shown to generate pulses

  17. Note: Self-biased voltage to suppress secondary electrons by a ZnO varistor in a compact pulsed neutron generator

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.

    2017-03-01

    A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.

  18. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; ...

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  19. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  20. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  1. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostyrya, I. D.; Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru

    2015-03-15

    Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U{sub m} ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U{submore » m} behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.« less

  2. A comparison between spectra of runaway electron beams in SF{sub 6} and air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Wang, Ruexue; Yan, Ping

    2015-12-15

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF{sub 6} and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ∼1.6 ns and a full width at half maximum of 3–5 ns is used to produce RAE beams. The SAEBs in SF{sub 6} and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF{sub 6} and air at pressures of 7.5 Torr, 75 Torr,more » and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF{sub 6} was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF{sub 6} in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF{sub 6} decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF{sub 6} decreased when the rise time of the voltage pulse increased.« less

  3. Laser-Matter Interaction in Dielectrics: Insight from Picosecond-Pulsed Second-Harmonic Generation in Periodically Poled LiTaO3

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Wada, Satoshi; Panchenko, Vladislav Ya.

    2017-08-01

    We develop a modified two-temperature (2T) model of laser-matter interaction in dielectrics based on experimental insight from picosecond-pulsed high-frequency temperature-controlled second-harmonic (515 nm) generation in periodically poled stoichiometric LiTaO3 crystal and required for computational treatment of short-pulsed nonlinear optics and materials processing applications. We show that the incorporation of an extended set of recombination-kinetics-related energy-release and heat-exchange processes following short-pulsed photoionization by two-photon absorption of the second harmonic allows accurate simulation of the electron-lattice relaxation dynamics and electron-lattice temperature evolution in LiTaO3 crystal in nonlinear laser-frequency conversion. Our experimentally confirmed model and detailed simulation study show that two-photon ionization with the recombination mechanism via ion-electron-lattice interaction followed by a direct transfer of the recombination energy to the lattice is the main laser-matter energy-transfer pathway responsible for the majority of the crystal lattice heating (approximately 90%) continuing for approximately 50 ps after laser-pulse termination and competing with effect of electron-phonon energy transfer from the free electrons. This time delay is due to a recombination bottleneck which hinders faster relaxation to thermal equilibrium in photoionized dielectric crystal. Generally, our study suggests that in dielectrics photoionized by short-pulsed radiation with intensity range used in nonlinear laser-frequency conversion, the electron-lattice relaxation period is defined by the recombination-stage bottleneck of a few tens of picoseconds and not by the time of the electron-phonon energy transfer. This modification of the 2T model can be applied to a broad range of processes involving laser-matter interactions in dielectrics and semiconductors for charge density reaching the range of 1021- 1022 cm-3 .

  4. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    PubMed

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  5. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  6. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.

    2016-10-01

    Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  8. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    NASA Astrophysics Data System (ADS)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  9. Bibliography of Soviet Laser Developments, Number 85, September - October 1986.

    DTIC Science & Technology

    1987-11-01

    Ultrashort Pulse Generation, Laser Crystal Growing, Free Electron Lasers , Laser Theory, Laser Biological Effects, Laser Communications, Laser ...liquid, gas, and chemical lasers ; components; nonlinear optics; spectroscopy of laser materials; ultrashort pulse generation; crystal growing; theoretical...30 5. Self-focusing 30 6. Acoustic Interaction ................ 30 G. Spectroscopy of Laser Materials ......... 33 H. Ultrashort

  10. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Ratner, D.; Stupakov, G.

    2009-02-23

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp.

  11. Optical pulse generation in a transistor laser via intra-cavity photon-assisted tunneling and excess base carrier redistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, M.; Iverson, E. W.; Wang, C. Y.

    2015-11-02

    For a direct-gap semiconductor (e.g., a p-n junction), photon-assisted tunneling is known to exhibit a high nonlinear absorption. In a transistor laser, as discussed here, the coherent photons generated at the quantum well interact with the collector junction field and “assist” electron tunneling from base to collector, thus resulting in the nonlinear modulation of the laser and the realization of optical pulse generation. 1 and 2 GHz optical pulses are demonstrated in the transistor laser using collector voltage control.

  12. Tunable picosecond infrared pulses generated by stimulated electronic Raman scattering of a mode-locked Ti:Sapphire laser in potassium vapor

    NASA Astrophysics Data System (ADS)

    Ohde, H.; Lin, S.; Minoh, A.; Shimizu, F. O.; Aono, M.; Suzuki, T.

    1996-01-01

    A down-conversion to the mid-infrared region by using Stimulated Electronic Raman Scattering (SERS) in potassium vapor is described. The pump radiation is a frequency-doubled regeneratively amplified Ti:Sapphire laser with a pulse duration of 2 ps, pulse energy of 0.2 mJ, and repetition rate of 10 Hz. With the pumping frequency tuned around the potassium 4 s-5 p transition, nearly transform-limited infrared radiation tunable between 2.2 and 3.4 μm has been generated with a peak infrared energy of 12 µJ, corresponding to a quantum efficiency of 17%, and with a pulse duration of 2 ps. The present tuning range could be extended by extending the tuning range of the pump laser. In comparison, intense infrared radiation of 90 µJ energy but with a very narrow tunability around 2.9 μm has also been generated by SERS in barium vapor.

  13. Semiconductor laser-based optoelectronics oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-08-01

    We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  14. Deuteron flux production in a small high-voltage high-current diode with pulsed magnetic insulation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Isaev, A. A.; Kozlovskii, K. I.; Shatokhin, V. L.

    2017-06-01

    The results of new studies on the production of accelerated deuteron fluxes in a small ion diode with pulsed magnetic insulation of electrons have been presented. A plasma anode of the diode has been formed under the action of a 1.06 μm laser radiation with a pulse duration of 10 ns, a pulse energy of up to 1 J, and a power density on the target of 5 × 1015 W m-2. An accelerating voltage of up to 300 kV has been created using an Arkad'ev-Marx pulsed voltage generator with a stored energy of 50 J and a repetition rate of 1 Hz. A magnetic field of higher than 0.6 T for insulating electrons has been formed by a current pulse of the first cascade of the generator in a spiral line before a conical cascade. Stable deuteron acceleration to 300 keV with a current of up to 1.5 kA and a pulse duration of 0.3 μs has been achieved.

  15. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  16. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  17. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  18. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  19. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  20. Frequency-resolved optical gating system with a tellurium crystal for characterizing free-electron lasers in the wavelength range of 10-30 {mu}m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki

    2009-12-15

    A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 {mu}m. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength {approx}22 {mu}m) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THzmore » at full width half maximum, respectively.« less

  1. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  2. THz-pump and X-ray-probe sources based on an electron linac.

    PubMed

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 10 3 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 10 3 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 10 7 X-rays per 1 keV energy bin per second or 10 5 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  3. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    PubMed Central

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879

  4. Double-shot MeV electron diffraction and microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, P.; Cesar, D.; Maxson, J.

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  5. Double-shot MeV electron diffraction and microscopy

    DOE PAGES

    Musumeci, P.; Cesar, D.; Maxson, J.

    2017-05-19

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  6. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  7. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  8. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  9. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  10. Annual Technical Report, Materials Research Laboratory July 1, 1979 - June 30, 1980.

    DTIC Science & Technology

    1980-06-30

    dense, highly degenerate, transient electron hole systems in PbTe, nSb, a H9 Cd Te. In these experiments an intense ultrashort pulse generated a high...J. Gerritsen, J. Appl. Phys. 51 (1980), 1603. "Generation of Ultrashort Pulses in Synchronous Pumping of Near-Millimeter Wave Lasers ," A. V. Nurmikko...deformation caused by a relatively large amplitude stress pulse . . The relationship between strain rate, stress, and temperature has been examined for bcc

  11. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses

    PubMed Central

    Takahashi, Eiji J.; Lan, Pengfei; Mücke, Oliver D.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2013-01-01

    High-energy isolated attosecond pulses required for the most intriguing nonlinear attosecond experiments as well as for attosecond-pump/attosecond-probe spectroscopy are still lacking at present. Here we propose and demonstrate a robust generation method of intense isolated attosecond pulses, which enable us to perform a nonlinear attosecond optics experiment. By combining a two-colour field synthesis and an energy-scaling method of high-order harmonic generation, the maximum pulse energy of the isolated attosecond pulse reaches as high as 1.3 μJ. The generated pulse with a duration of 500 as, as characterized by a nonlinear autocorrelation measurement, is the shortest and highest-energy pulse ever with the ability to induce nonlinear phenomena. The peak power of our tabletop light source reaches 2.6 GW, which even surpasses that of an extreme-ultraviolet free-electron laser. PMID:24158092

  12. The role of plasma density scale length on the laser pulse propagation and scattering in relativistic regime

    NASA Astrophysics Data System (ADS)

    Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin

    2017-10-01

    The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.

  13. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  14. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  15. Camelot-a novel concept for a multiterawatt pulse power generator for single pulse, burst, or repetetion rate operation. Special report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, A.G.

    1981-04-01

    Superpower pulse generators are fast establishing themselves internationally as candidates for employment in a wide variety of military applications including electronic warfare and jamming, high energy beam weapons, and nuclear weapons effects simulation. Unfortunately, existing multimegajoule pulse power generators such as AURORA do not satisfy many Department of Defense goals for field-adaptable weapon systems-for example, repetition (rep) rate operation, high reliabilty, long life, ease of operation, and low maintenance. The Camelot concept is a multiterawatt rep ratable pulse power source, adaptable to a wide range of output parameters-both charged particles and photons. An analytical computer model has been developed tomore » predict the power flowing through the device. A 5-year development program, culminating in a source region electromagnetic pulse simulator, is presented.« less

  16. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sha; Jones, R. R.

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  17. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE PAGES

    Li, Sha; Jones, R. R.

    2016-11-10

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  18. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source.

    PubMed

    Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  19. Joint Services Electronics Program

    NASA Astrophysics Data System (ADS)

    Tinkham, Michael

    1989-07-01

    Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.

  20. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  1. Formation of 1.4 MeV runaway electron flows in air using a solid-state generator with 10 MV/ns voltage rise rate

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.; Pedos, M. S.; Rukin, S. N.; Rostov, V. V.; Romanchenko, I. V.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2018-04-01

    Fulfillment of the condition that the voltage rise time across an air gap is comparable with the time of electron acceleration from a cathode to an anode allows a flow of runaway electrons (REs) to be formed with relativistic energies approaching that determined by the amplitude of the voltage pulse. In the experiment described here, an RE energy of 1.4 MeV was observed by applying a negative travelling voltage pulse of 860-kV with a maximum rise rate of 10 MV/ns and a rise time of 100-ps. The voltage pulse amplitude was doubled at the cathode of the 2-cm-long air gap due to the delay of conventional pulsed breakdown. The above-mentioned record-breaking voltage pulse of ˜120 ps duration with a peak power of 15 GW was produced by an all-solid-state pulsed power source utilising pulse compression/sharpening in a multistage gyromagnetic nonlinear transmission line.

  2. Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics

    NASA Astrophysics Data System (ADS)

    Nakazawa, Masataka

    Ultrashort optical pulse sources in the 1.5-µm region are becoming increasingly important in terms of realizing ultrahigh-speed optical transmission and signal processing at optical nodes. This paper provides a detailed description of several types of mode-locked erbium-doped fiber laser, which are capable of generating picosecond-femtosecond optical pulses in the 1.55-µm region. In terms of ultrashort pulse generation at a low repetition rate (˜100 MHz), passively mode-locked fiber lasers enable us to produce pulses of approximately 100 fs. With regard to high repetition rate pulse generation at 10-40 GHz, harmonically mode-locked fiber lasers can produce picosecond pulses. This paper also describes the generation of a femtosecond pulse train at a repetition rate of 10-40 GHz by compressing the output pulses from harmonically mode-locked fiber lasers with dispersion-decreasing fibers. Finally, a new Cs optical atomic clock at a frequency of 9.1926 GHz is reported that uses a re-generatively mode-locked fiber laser as an opto-electronic oscillator instead of a quartz oscillator. The repetition rate stability reaches as high as 10-12-10-13.

  3. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  4. Attosecond control of electron beams at dielectric and absorbing membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  5. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  6. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.

  7. Electronic circuit delivers pulse of high interval stability

    NASA Technical Reports Server (NTRS)

    Fisher, B.

    1966-01-01

    Circuit generates a pulse of high interval stability with a complexity level considerably below systems of comparable stability. This circuit is being used as a linear frequency discriminator in the signal conditioner of the Apollo command module.

  8. Next Generation Driver for Attosecond and Laser-plasma Physics.

    PubMed

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  9. R&D100: LED Pulser

    ScienceCinema

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    2018-06-12

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  10. Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Zhao, Z. Q.

    2015-01-15

    Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scalingmore » is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.« less

  11. Laser-plasma accelerator-based single-cycle attosecond undulator source

    NASA Astrophysics Data System (ADS)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  12. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  13. ``Making the Molecular Movie'': First Frames

    NASA Astrophysics Data System (ADS)

    Miller, R. J. Dwayne

    2011-03-01

    Femtosecond Electron Diffraction has enabled atomic resolution to structural changes as they occur, essentially watching atoms move in real time--directly observe transition states. This experiment has been referred to as ``making the molecular movie'' and has been previously discussed in the context of a gedanken experiment. With the recent development of femtosecond electron pulses with sufficient number density to execute single shot structure determinations, this experiment has been finally realized. A new concept in electron pulse generation was developed based on a solution to the N-body electron propagation problem involving up to 10,000 interacting electrons that has led to a new generation of extremely bright electron pulsed sources that minimizes space charge broadening effects. Previously thought intractable problems of determining t=0 and fully characterizing electron pulses on the femtosecond time scale have now been solved through the use of the laser pondermotive potential to provide a time dependent scattering source. Synchronization of electron probe and laser excitation pulses is now possible with an accuracy of 10 femtoseconds to follow even the fastest nuclear motions. The camera for the ``molecular movie'' is well in hand based on high bunch charge electron sources. Several movies depicting atomic motions during passage through structural transitions will be shown. Atomic level views of the simplest possible structural transition, melting, will be presented for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated to the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron systems will be presented in which an exceptionally cooperative phase transitions has been observed. The primitive origin of molecular cooperativity has also been discovered in recent studies of molecular crystals. These new developments will be discussed in the context of developing the necessary technology to directly observe the structure-function correlation in biomolecules--the fundamental molecular basis of biological systems.

  14. Passive mode locking and formation of dissipative solitons in electron oscillators with a bleaching absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Kocharovskaya, E. R.; Vilkov, M. N.

    The mechanisms of passive mode locking and formation of ultrashort pulses in microwave electron oscillators with a bleaching absorber in the feedback loop have been analyzed. It is shown that in the group synchronism regime in which the translational velocity of particles coincides with the group velocity of the electromagnetic wave, the pulse formation can be described by the equations known in the theory of dissipative solitons. At the same time, the regimes in which the translational velocity of electrons differs from the group velocity and the soliton being formed and moving along the electron beam consecutively (cumulatively) receives energymore » from various electron fractions are optimal for generating pulses with the maximal peak amplitudes.« less

  15. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  16. Attomicroscopy: from femtosecond to attosecond electron microscopy

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammed Th

    2018-02-01

    In the last decade, the development of ultrafast electron diffraction (UED) and microscopy (UEM) have enabled the imaging of atomic motion in real time and space. These pivotal table-top tools opened the door for a vast range of applications in different areas of science spanning chemistry, physics, materials science, and biology. We first discuss the basic principles and recent advancements, including some of the important applications, of both UED and UEM. Then, we discuss the recent advances in the field that have enhanced the spatial and temporal resolutions, where the latter, is however, still limited to a few hundreds of femtoseconds, preventing the imaging of ultrafast dynamics of matter lasting few tens of femtoseconds. Then, we present our new optical gating approach for generating an isolated 30 fs electron pulse with sufficient intensity to attain a temporal resolution on the same time scale. This achievement allows, for the first time, imaging the electron dynamics of matter. Finally, we demonstrate the feasibility of the optical gating approach to generate an isolated attosecond electron pulse, utilizing our recently demonstrated optical attosecond laser pulse, which paves the way for establishing the field of ‘Attomicroscopy’, ultimately enabling us to image the electron motion in action.

  17. Transient self-amplified Cerenkov radiation with a short pulse electron beam

    NASA Astrophysics Data System (ADS)

    Poole, B. R.; Blackfield, D. T.; Camacho, J. F.

    2009-08-01

    An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady-state amplifier configuration as well as operation in the self-amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady-state response, a macroparticle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady-state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady-state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of solitonlike pulses. Comparisons between the linear theory, macroparticle model, and PIC simulations are made in the appropriate regimes.

  18. Non-Maxwellian electron distributions by direct laser acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Toncian, T.; Wang, C.; Arefiev, A.; McCary, E.; Meadows, A.; Blakeney, J.; Chester, C.; Roycroft, R.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Hegelich, B. M.

    2015-11-01

    The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets will decompress to near and lower than critical electron densities plasmas extending over lengths of few micrometers. The laser-matter interaction of the main pulse with such a highly localized but inhomogeneous the target leads to the generation of a channel and further self focussing of the laser beam. As measured in a experiment conducted with the GHOST laser system at UT Austin, 2D PIC simulations predict Direct Laser Acceleration of non-Maxwellian electron distribution in the laser propagation direction for such targets. The hereby high density electron bunches have potential applications as injector beams for a further wakefield acceleration stage. This work was supported by NNSA cooperative agreement DE-NA0002008, the DARPA's PULSE program (12-63-PULSE-FP014) and the AFOSR (FA9550-14-1-0045).

  19. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  20. Electron path control of high-order harmonic generation by a spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Mohebbi, Masoud; Nazarpoor Malaei, Sakineh

    2016-04-01

    We theoretically investigate the control of high-order harmonics cut-off and as-pulse generation by a chirped laser field using a metallic bow tie-shaped nanostructure. The numerical results show that the trajectories of the electron wave packet are strongly modified, the short quantum path is enhanced, the long quantum path is suppressed and the low modulated spectrum of the harmonics can be remarkably extended. Our calculated results also show that, by confining electron motion, a broadband supercontinuum with the width of 1670 eV can be produced which directly generates an isolated 34 as-pulse without phase compensation. To explore the underlying mechanism responsible for the cut-off extension and the quantum path selection, we perform time-frequency analysis and a classical simulation based on the three-step model.

  1. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-04

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  2. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.

  3. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  4. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons.

    PubMed

    Dombi, Péter; Rácz, Péter

    2008-03-03

    We propose coherent control of photoelectron acceleration at metal surfaces mediated by surface plasmon polaritons. A high degree of spectral and spatial control of the emission process can be exercised by amplitude and phase controlling the optical waveform (including the carrier-envelope phase) of the plasmon generating few-cycle laser pulse. Numerical results show that the emitted electron beam is highly directional and monoenergetic suggesting applications in contemporary ultrafast methods where ultrashort, well-behaved electron pulses are required.

  5. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.

    PubMed

    Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K

    2013-01-04

    Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.

  6. Ion tracking in photocathode rf guns

    NASA Astrophysics Data System (ADS)

    Lewellen, John W.

    2002-02-01

    Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  7. OSA Proceedings of the Topical Meeting (5th) on Short-Wave Length Coherent Radiation: Generation and Applications Held in Monterey, California on 8-10 April 1991. Volume 11

    DTIC Science & Technology

    1992-05-22

    PIC simulation code to study several of the constraints imposed by plasma phenomena on the propagation of ultrashort high intensity laser pulses in...and radiation spectrum of free electrons in the focus of an ultrashort high intensity laser pulse is solved. Motion and radiation of electrons in a...higher harmonics. These studies are intended as a prelude to experiments with high intensity ultrashort laser pulses . To investigate the motion of

  8. Simulating the inception of pulsed discharges near positive electrodes

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2013-09-01

    With 3D particle simulations we study the inception of pulsed discharges near positive electrodes. In different geometries, we first determine the breakdown voltage. Then we study the probability of inception for a fast voltage pulse. This probability mostly depends on the availability of seed electrons to generate the initial electron avalanches. These results are compared with experimental observations. Then we investigate how the shape of a starting discharge affects its further development. In particular, we discuss the formation of so-called ``inception clouds.'' JT was supported by STW-project 10755.

  9. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  10. Design of a variable width pulse generator feasible for manual or automatic control

    NASA Astrophysics Data System (ADS)

    Vegas, I.; Antoranz, P.; Miranda, J. M.; Franco, F. J.

    2017-01-01

    A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.

  11. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  12. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  13. Chirp of the single attosecond pulse generated by a polarization gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Zenghu

    2005-02-01

    The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predictedmore » that a single 58-as pulse can be generated.« less

  14. Retarding field energy analyzer for high energy pulsed electron beam measurements.

    PubMed

    Hu, Jing; Rovey, Joshua L; Zhao, Wansheng

    2017-01-01

    A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.

  15. Molecular interferometer to decode attosecond electron-nuclear dynamics.

    PubMed

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-03-18

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.

  16. Electromagnetic pulse reduces free radical generation in rat liver mitochondria in vitro.

    PubMed

    Wang, C; Zhou, H; Peng, R; Wang, L; Su, Z; Chen, P; Wang, S; Wang, S; Liu, Y; Cong, J; Wu, K; Hu, X; Fan, E

    2013-04-01

    Non-ionizing radiation electromagnetic pulse (EMP) is generally recorded to induce the generation of free radicals in vivo. Though mitochondria are the primary site to produce free radicals, a rare report is designed to directly investigate the EMP effects on free radical generation at mitochondrial level. Thus the present work was designed to study how EMP induces free radical generation in rat liver mitochondria in vitro using electron paramagnetic resonance technique. Surprisingly, our data suggest that EMP prevents free radical generation by activating antioxidant enzyme activity and reducing oxygen consumption and therefore free radical generation. Electron spin resonance measurements clearly demonstrate that disordering of mitochondrial lipid fluidity and membrane proteins mobility are the underlying contributors to this decreased oxygen consumption. Therefore, our results suggest that EMP might hold the potentiality to be developed as a non-invasive means to benefit certain diseases.

  17. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  18. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  19. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  20. Generation of runaway electron beams in high-pressure nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  1. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Yung Szen, E-mail: yungszen@utm.my; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor; Tabuchi, Yutaka

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, wemore » observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.« less

  2. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    DTIC Science & Technology

    2016-09-01

    TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...control circuitry for control of electron/ nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and...coherence time of the qubit/ memory , we present as an example the integration of cryogenic superconductor components, including filters and

  3. Coherent synchrotron emission in transmission with double foil target

    NASA Astrophysics Data System (ADS)

    Xu, X. R.; Qiao, B.; Chang, H. X.; Zhang, Y. X.; Zhang, H.; Zhong, C. L.; Zhou, C. T.; Zhu, S. P.; He, X. T.

    2018-04-01

    Generation of intense single attosecond pulses from coherent synchrotron emission (CSE), in the transmitted direction of the laser-irradiated double foil targets, has been investigated theoretically and numerically. Unlike conventional CSE in the single foil target case, here the dense electron nanobunch is formed in the vacuum gap between two foils, which is composed of the electrons blown out from the first ultrathin foil. Owing to the existence of the vacuum gap, the electron nanobunch can be accelerated to more energy. In addition, more laser energy can penetrate through the nanobunch and get reflected from the second foil. These reflected lasers and electron nanobunches interact with each other and results in enhanced CSE and consequently, the generation of intense attosecond pulses. Particle-in-cell simulations show that a single attosecond pulse with duration of 18 {as}, photon energy > 0.16 {keV} and peak intensity of 1.7× {10}20 {{W}}/{cm}}2 can be obtained from the double-foil targets irradiated by a laser at intensity of 7.7× {10}21 {{W}}/{cm}}2.

  4. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillationsmore » imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.« less

  6. THz pulses from 4th generation X-ray light sources: Perspectives for fully synchronized THz pump X-ray probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gensch, M.

    2010-02-03

    In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.

  7. Soviet Free-Electron Laser Research

    DTIC Science & Technology

    1985-05-01

    can generate a narrow band electromagnetic radiation over a wide frequency range that can potentially extend from microwaves through the visible and...refer to experiments listed in Table 2. Table 2 COMPARISON OF SOVIET-U.S. HIGH-CURRENT FEL EXPERIMENT S SOVIET u.s. Pulse line accelerators...Power ... Pulse length Efficiency . 3cm 10MW 0.7 p.sec 1.5% 2. Columbia, 2 February 1977 [9] Hollow electron beam Energy

  8. Uniform laser-driven relativistic electron layer for coherent Thomson scattering.

    PubMed

    Wu, H-C; Meyer-ter-Vehn, J; Fernández, J; Hegelich, B M

    2010-06-11

    A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.

  9. James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics

    NASA Technical Reports Server (NTRS)

    Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.

    2013-01-01

    The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).

  10. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.

    PubMed

    Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.

  11. Experimental study of atmospheric-pressure micro-plasmas for the ambient sampling of conductive materials

    NASA Astrophysics Data System (ADS)

    Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting

    2018-02-01

    Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.

  12. Devices That May Interfere with Pacemakers

    MedlinePlus

    ... Devices with risk Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ... the pulse generator Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ...

  13. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.

    PubMed

    Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben

    2017-11-01

    Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Isolated-attosecond-pulse generation from asymmetric molecules with an {omega}+2{omega}/3 multicycle two-color field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qianguang; Department of Physics, Xiaogan University, Xiaogan 432000; Hong Weiyi

    2010-05-15

    The high harmonic generation from asymmetric molecules with an {omega}+2{omega}/3 multicycle bichromatic laser pulse has been investigated. It is shown that the ionization asymmetry in consecutive half optical cycles for asymmetric molecules is further enhanced since the 2{omega}/3 control laser pulse further enhances the amplitude of the ionization peak at the center of the laser pulse. The 2{omega}/3 control laser pulse also significantly enlarges the difference of the photon energies emitted from the ejected electron in the half optical cycle at the central laser pulse and its next half optical cycle. In addition, a broadband supercontinuum is produced in themore » plateau of the spectrum, from which an isolated 90-as pulse can be directly obtained.« less

  15. Apparatus for millimeter-wave signal generation

    DOEpatents

    Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.

    1999-01-01

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  16. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.

    2012-12-15

    An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less

  17. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE PAGES

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  18. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  19. Observation of frequency up-conversion in the propagation of a high-power microwave pulse in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Ren, A.

    1990-01-01

    A chamber experiment is conducted to study the propagation of a high-power microwave pulse. The results show that the pulse is experiencing frequency up-shift while ionizing the background air if the initial carrier frequency of the pulse is higher than the electron plasma frequency at the incident boundary. Such a frequency autoconversion process may lead to reflectionless propagation of a high-power microwave pulse through the atmosphere.

  20. Analytic theory of high-order-harmonic generation by an intense few-cycle laser pulse

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Popov, A. M.; Tikhonova, O. V.; Volkova, E. A.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.

    2012-03-01

    We present a theoretical model for describing the interaction of an electron, weakly bound in a short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential probability of above-threshold ionization and for the yield of high-order-harmonic generation (HHG) are presented. For HHG we then derive detailed analytic expressions for the spectral density of generated radiation in terms of the key laser parameters, including the number N of optical cycles in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation, we provide detailed derivations of the closed-form formulas presented briefly by M. V. Frolov [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.021405 83, 021405(R) (2011)], which were used to describe key features of HHG by both H and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most importantly, we show analytically that the structure of the HHG spectrum stems from interference between electron wave packets originating from electron ionization from neighboring half-cycles near the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency) is shown analytically to occur only in the limit of very large N, and begins to form, as N increases, in the energy region beyond the HHG plateau cutoff.

  1. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    PubMed Central

    Li, Sha; Jones, R. R.

    2016-01-01

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm

  2. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  3. Stabilization and control of the carrier-envelope phase of high-power femtosecond laser pulses using the direct locking technique.

    PubMed

    Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H

    2007-01-08

    We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.

  4. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  5. Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten

    2016-05-01

    Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.

  6. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  7. Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator.

    PubMed

    Kobayashi, Y; Torizuka, K

    2001-08-15

    We have generated femtosecond subharmonic pulses by using an optical parametric oscillator. The optical frequencies of the idler and the signal are one third and two thirds, respectively, of the optical frequency of the pump pulse. The carrier phase of the signal pulse relative to that of the pump pulse was locked by electronic feedback. The carrier-envelope phase slip frequency of the signal pulse relative to that of the pump was locked to F/6 , where F is defined as the repetition frequency.

  8. Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme

    NASA Astrophysics Data System (ADS)

    Ulmaskulov, M. R.; Mesyats, G. A.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Yalandin, M. I.

    2017-04-01

    Test results of high-voltage subnanosecond pulse generator with a hybrid, two-stage energy compression scheme are presented. After the first compression section with a gas discharger, a ferrite-filled gyromagnetic nonlinear transmitting line is used. The offered technical solution makes it possible to increase the voltage pulse amplitude from -185 kV to -325 kV, with a 2-ns pulse rise time minimized down to ˜180 ps. For the small output voltage amplitude of -240 kV, the shortest pulse front of ˜85 ps was obtained. The generator with maximum amplitude was utilized to form an ultra-short flow of runaway electrons in air-filled discharge gap with particles' energy approaching to 700 keV.

  9. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  10. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  11. On the generation of multi-MeV electrons using fs-laser pulses

    NASA Astrophysics Data System (ADS)

    Tsakiris, G. D.; Gahn, C.; Pukhov, A.; Meyer-Ter-Vehn, J.; Pretzler, G.; Witte, K. J.; Thirolf, P.; Habs, D.

    1999-11-01

    We have experimentally investigated the multi-MeV electron production concomitant to the relativistic self-channeling in a high-density gas jet using 200-fs, 1.2-TW laser pulses. Results of systematic measurements of the angularly resolved and absolutely calibrated electron spectra are presented for plasma electron densities in the range of 3× 10^19-4× 10^20 cm-3. Three-dimensional Particle-in-Cell (PIC) simulations closely reproduce the measured electron spectra. A more detailed analysis indicates that for the case investigated, the dominant electron acceleration mechanism is direct laser acceleration [1] at the channel betatron resonance. [1] A. Pukhov, et al., Phys. Plasmas 6, 2847 (1999).

  12. High-intensity pulsed beam source with tunable operation mode

    NASA Astrophysics Data System (ADS)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  13. Ultrashort, high power, and ultralow noise mode-locked optical pulse generation using quantum-dot semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Choi, Myoung-Taek

    This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.

  14. Experimental research of different plasma cathodes for generation of high-current electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafir, G.; Kreif, M.; Gleizer, J. Z.

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods andmore » carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.« less

  15. A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination.

    PubMed

    Agosteo, S; D'Angelo, G; Fazzi, A; Foglio Para, A; Pola, A; Ventura, L; Zotto, P

    2004-01-01

    A recoil-proton spectrometer was created by coupling a p-i-n diode with a polyethylene converter. The maximum detectable energy, imposed by the thickness of the totally depleted layer, is approximately 6 MeV. The minimum detectable energy is limited by the contribution of secondary electrons generated by photons in the detector assembly. This limit is approximately 1.5 MeV at full-depletion voltage and was decreased using pulse-shape discrimination. The diode was set up in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The pulse-shape discrimination was based on the zero-crossing time of bipolar signals from a (CR)2-(RC)2 filter. The detector was characterised using monoenergetic neutrons generated in the Van De Graaff CN accelerator at the INFN-Laboratori Nazionali di Legnaro. The energy limit for discrimination proved to be approximately 900 keV.

  16. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  17. Attosecond Electron Processes in Materials: Excitons, Plasmons, and Charge Dynamics

    DTIC Science & Technology

    2015-05-19

    focused using a f=1.5 m lens into a 250 micron hollow core fiber (HCF) filled with neon gas at atmospheric pressure to stretch the pulse spectrum from... insulator to metal transition. Introduction: The goal of this work was to understand the generation, transport, and manipulation of electronic charge...chemically sensitive probe pulse utilizing specific core level transitions in atoms that are part of a material under study. The measurements follow

  18. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  19. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  20. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  1. Space charge effects in ultrafast electron diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhang, He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-01

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  2. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2014-12-15

    In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less

  3. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron.

    PubMed

    Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen

    2015-12-01

    To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  4. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  5. Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi

    2012-06-22

    Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase belowmore » 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.« less

  6. Electronic switching circuit uses complementary non-linear components

    NASA Technical Reports Server (NTRS)

    Zucker, O. S.

    1972-01-01

    Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.

  7. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  8. On the physics of electron ejection from laser-irradiated overdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thévenet, M.; Vincenti, H.; Faure, J.

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less

  9. Pulsed Plasma Electron Sources

    NASA Astrophysics Data System (ADS)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E < 10^5 V/cm this plasma is not uniform and there is a time delay in its formation. Thus, there is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E <= 10^5 V/cm. In the present report, several types of plasma electron source (PES) will be considered. The first type of PES is fiber-based cathodes, with and without CsI coating. The operation of these cathodes is governed by the formation of the flashover plasma which serves as a source of electrons. The second type of PES is the ferroelectric plasma source (FPS). The operation of FPS, characterized by the formation of dense surface flashover plasma is accompanied also by the generation of fast microparticles and energetic neutrals. The latter was explained by Coulomb micro-explosions of the ferroelectric surface due to an large time-varying electric field at the front of the expanding plasma. A short review of recent achievements in the operation of a multi-FPS-assisted hollow anode to generate a large area electron beam will be presented as well. Finally, parameters of the plasma produced by a multi-capillary cathode with FPS and velvet igniters will be discussed. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, S.Efimov, J. Felsteiner V. Bernshtam, and Yu. M. Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  10. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 10{sup 20 }W/cm{sup 2} irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 10{sup 17 }W/cm{sup 2} interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon fluxmore » rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV) to 6.0 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.« less

  11. Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector

    NASA Astrophysics Data System (ADS)

    Jones, James L.

    1997-02-01

    The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.

  12. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave.

    PubMed

    Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F

    2005-03-01

    During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.

  13. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  14. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  15. Attosecond electronic recollision as field detector

    NASA Astrophysics Data System (ADS)

    Carpeggiani, P. A.; Reduzzi, M.; Comby, A.; Ahmadi, H.; Kühn, S.; Frassetto, F.; Poletto, L.; Hoff, D.; Ullrich, J.; Schröter, C. D.; Moshammer, R.; Paulus, G. G.; Sansone, G.

    2018-05-01

    We demonstrate the complete reconstruction of the electric field of visible–infrared pulses with energy as low as a few tens of nanojoules. The technique allows for the reconstruction of the instantaneous electric field vector direction and magnitude, thus giving access to the characterization of pulses with an arbitrary time-dependent polarization state. The technique combines extreme ultraviolet interferometry with the generation of isolated attosecond pulses.

  16. Picosecond pulse radiolysis of direct and indirect radiolytic effects in highly concentrated halide aqueous solutions.

    PubMed

    Balcerzyk, Anna; Schmidhammer, Uli; El Omar, Abdel Karim; Jeunesse, Pierre; Larbre, Jean-Philippe; Mostafavi, Mehran

    2011-08-25

    Recently we measured the amount of the single product, Br(3)(-), of steady-state radiolysis of highly concentrated Br(-) aqueous solutions, and we showed the effect of the direct ionization of Br(-) on the yield of Br(3)(-). Here, we report the first picosecond pulse-probe radiolysis measurements of ionization of highly concentrated Br(-) and Cl(-) aqueous solutions to describe the oxidation mechanism of the halide anions. The transient absorption spectra are reported from 350 to 750 nm on the picosecond range for halide solutions at different concentrations. In the highly concentrated halide solutions, we observed that, due to the presence of Na(+), the absorption band of the solvated electron is shifted to shorter wavelengths, but its decay, taking place during the spur reactions, is not affected within the first 4 ns. The kinetic measurements in the UV reveal the direct ionization of halide ions. The analysis of pulse-probe measurements show that after the electron pulse, the main reactions in solutions containing 1 M of Cl(-) and 2 M of Br(-) are the formation of ClOH(-•) and BrOH(-•), respectively. In contrast, in highly concentrated halide solutions, containing 5 M of Cl(-) and 6 M of Br(-), mainly Cl(2)(-•) and Br(2)(-•) are formed within the electron pulse without formation of ClOH(-•) and BrOH(-•). The results suggest that, not only Br(-) and Cl(-) are directly ionized into Br(•) and Cl(•) by the electron pulse, the halide atoms can also be rapidly generated through the reactions initiated by excitation and ionization of water, such as the prompt oxidation by the hole, H(2)O(+•), generated in the coordination sphere of the anion. © 2011 American Chemical Society

  17. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy.

    PubMed

    Sun, Jingya; Melnikov, Vasily A; Khan, Jafar I; Mohammed, Omar F

    2015-10-01

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  18. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming

    2017-09-01

    Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.

  19. Influence of electron dynamics on the enhancement of double-pulse femtosecond laser-induced breakdown spectroscopy of fused silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Lei; Yang, Fan; Lu, Yongfeng

    2018-03-01

    Femtosecond laser pulse train induced breakdown of fused silica was studied by investigating its plasma emission and the ablated crater morphology. It was demonstrated that the electron dynamics in the ablated fused silica play a dominant role in the emission intensity of induced plasma and the volume of material removal, corresponding to the evolution of free-electron, self-trapped excitons, and the phase change of the fused silica left over by the first pulse. For a fluence of 11 J/cm2, the maximum plasma intensity of double-pulse irradiation at an interpulse delay of 120 ps was about 35 times stronger than that of a single-pulse, while the ablated crater was reduced by 27% in volume. The ionization of slow plume component generated by the first pulse was found to be the main reason for the extremely high intensity enhancement for an interpulse delay of over 10 ps. The results serve as a route to simultaneously increase the spatial resolution and plasma intensity in laser-induced breakdown spectroscopy of dielectrics.

  20. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of generation of picosecond and subpicosecond x-ray pulses in thin films

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Dzhidzhoev, M. S.; Kolchin, V. V.; Magnitskiy, Sergey A.; Platonenko, Viktor T.; Savel'ev, Andrei B.; Tarasevitch, A. P.

    1995-02-01

    The characteristics of a femtosecond laser plasma, formed by irradiation of a thin freely suspended carbon film, are investigated numerically. It is shown that the use of thin films can increase considerably the electron temperature of a femtosecond laser plasma and make it possible to generate x-rays of shorter wavelengths. This method can also be used to increase the efficiency of conversion of the energy of laser pulses into the radiation emitted by hydrogen-like carbon ions without a significant increase in the duration of x-ray pulses.

  2. The effect of the pulse repetition rate on the fast ionization wave discharge

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Carbone, Emile; Takashima, Keisuke; Zhu, Xi-Ming; Czarnetzki, Uwe; Pu, Yi-Kang

    2018-06-01

    The effect of the pulse repetition rate (PRR) on the generation of high energy electrons in a fast ionization wave (FIW) discharge is investigated by both experiment and modelling. The FIW discharge is driven by nanosecond high voltage pulses and is generated in helium with a pressure of 30 mbar. The axial electric field (E z ), as the driven force of high energy electron generation, is strongly influenced by PRR. Both the measurement and the model show that, during the breakdown, the peak value of E z decreases with the PRR, while after the breakdown, the value of E z increases with the PRR. The electron energy distribution function (EEDF) is calculated with a model similar to Boeuf and Pitchford (1995 Phys. Rev. E 51 1376). It is found that, with a low value of PRR, the EEDF during the breakdown is strongly non-Maxwellian with an elevated high energy tail, while the EEDF after the breakdown is also non-Maxwellian but with a much depleted population of high energy electrons. However, with a high value of PRR, the EEDF is Maxwellian-like without much temporal variation both during and after the breakdown. With the calculated EEDF, the temporal evolution of the population of helium excited species given by the model is in good agreement with the measured optical emission, which also depends critically on the shape of the EEDF.

  3. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  4. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadwick, Bradley A.; Kalmykov, S. Y.

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of themore » pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense plasmas. These results emphasize that investment into new pulse amplification techniques allowing for ultrahigh frequency bandwidth is as important for the design of future LPA as are the current efforts directed to increasing the pulse energy.« less

  5. EDFA-based coupled opto-electronic oscillator and its phase noise

    NASA Technical Reports Server (NTRS)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  6. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  7. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  8. Femtosecond response time measurements of a Cs2Te photocathode

    NASA Astrophysics Data System (ADS)

    Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2017-07-01

    Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometer-type pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser.

  9. Energy sweep compensation of induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J

    1990-09-12

    The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less

  10. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  11. Experimental demonstration of fresh bunch self-seeding in an X-ray free electron laser

    DOE PAGES

    Emma, C.; Lutman, A.; Guetg, M. W.; ...

    2017-04-10

    Here, we report the generation of ultrahigh brightness X-ray pulses using the Fresh Bunch Self-Seeding (FBSS) method in an X-ray Free Electron Laser (XFEL). The FBSS method uses two different electron slices or bunches, one to generate the seed and the other to amplify it after the monochromator. This method circumvents the trade-off between the seed power and electron slice energy spread, which limits the efficiency of regular self-seeded FELs. The experiment, the performance of which is limited by existing hardware, shows FBSS feasibility, generating 5.5 keV photon pulses which are 9 fs long and of 7.3 ×10 –5 bandwidthmore » and 50 GW power. FBSS performance is compared with Self Amplified Spontaneous Emission/self-seeding performance, measuring a brightness increase of twelve/two times, respectively. In an optimized XFEL, FBSS can increase the peak power a hundred times more than state-of-the-art to multi-TW, opening new research areas for nonlinear science and single molecule imaging.« less

  12. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.

    PubMed

    Rokhlenko, Yekaterina; Geacintov, Nicholas E; Shafirovich, Vladimir

    2012-03-14

    The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.

  13. Tunable polarization plasma channel undulator for narrow bandwidth photon emission

    DOE PAGES

    Rykovanov, S. G.; Wang, J. W.; Kharin, V. Yu.; ...

    2016-09-09

    The theory of a plasma undulator excited by a short intense laser pulse in a parabolic plasma channel is presented. The undulator fields are generated either by the laser pulse incident off-axis and/or under the angle with respect to the channel axis. Linear plasma theory is used to derive the wakefield structure. It is shown that the electrons injected into the plasma wakefields experience betatron motion and undulator oscillations. Optimal electron beam injection conditions are derived for minimizing the amplitude of the betatron motion, producing narrow-bandwidth undulator radiation. Polarization control is readily achieved by varying the laser pulse injection conditions.

  14. Short-Pulse Laser-Matter Computational Workshop Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R; Tabak, M

    For three days at the end of August 2004, 55 plasma scientists met at the Four Points by Sheraton in Pleasanton to discuss some of the critical issues associated with the computational aspects of the interaction of short-pulse high-intensity lasers with matter. The workshop was organized around the following six key areas: (1) Laser propagation/interaction through various density plasmas: micro scale; (2) Anomalous electron transport effects: From micro to meso scale; (3) Electron transport through plasmas: From meso to macro scale; (4) Ion beam generation, transport, and focusing; (5) ''Atomic-scale'' electron and proton stopping powers; and (6) K{alpha} diagnostics.

  15. Multidimensional Attosecond Resonant X-Ray Spectroscopy of Molecules: Lessons from the Optical Regime

    PubMed Central

    Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.

    2013-01-01

    New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522

  16. Pulse Duration of Seeded Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  17. Pulse Duration of Seeded Free-Electron Lasers

    DOE PAGES

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico; ...

    2017-06-16

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  18. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.

    PubMed

    Sharma, Ashutosh

    2018-02-01

    Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of singlet oxygen in fullerene-containing media: 2. Fullerene-containing solutions

    NASA Astrophysics Data System (ADS)

    Bagrov, I. V.; Belousova, I. M.; Grenishin, A. S.; Danilov, O. B.; Ermakov, A. V.; Kiselev, V. M.; Kislyakov, I. M.; Murav'eva, T. D.; Sosnov, E. N.

    2008-03-01

    The generation of singlet oxygen in fullerene solutions is studied by luminescence methods upon excitation by pulsed, repetitively pulsed, and continuous radiation sources. The concentration of singlet oxygen in solutions is measured in stationary and pulsed irradiation regimes. The rate constants of quenching of O2(1Δg) by fullerenes C70 and C60 in the CCl4 solution are measured to be (7.2±0.1)×107 L mol-1 s-1 and less than 6×104 L mol-1 s-1, respectively. The temperature and photolytic variations in the generation properties of the fullerene solution exposed to intense continuous radiation are studied by the methods of optical and EPR spectroscopy. Pulsed irradiation resulted in the production of singlet oxygen in suspensions of fullerene-like structures, in particular, astralenes. A liquid pulsed singlet-oxygen generator based on the fullerene solution in CCl4 is developed and studied, in which the yield of O2 (1Δg) to the gas phase at concentrations up to 5×1016 cm-3 is obtained.

  20. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  1. Black phosphorus saturable absorber for ultrashort pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation.more » The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.« less

  2. Development of an All Solid State 6 kHz Pulse Generator for Driving Free Electron Laser Amplifiers

    DTIC Science & Technology

    1990-07-16

    programs. 1-6 SCIENCE RESEARCH LABORATORY In these efforts, Science Research Laboratory is exploiting recent progress in Silicon Con- trolled Rectifier...electrons in silicon as opposed to the low pressure gas in the thyratron. In addition these all-solid-state SCR-switched drivers can be engineered to...nsec PFN 2-5 C Li Figure 2.3: Electrical schematic and cross-sectional view of SNOMAD-11 SCR corn - mutated pulse compression driver. 2-5 SCIENCE

  3. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  4. High power long pulse microwave generation from a metamaterial structure with reverse symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xueying; Stephens, Jacob C.; Mastovsky, Ivan; Shapiro, Michael A.; Temkin, Richard J.

    2018-02-01

    Experimental operation of a high power microwave source with a metamaterial (MTM) structure is reported at power levels to 2.9 MW at 2.4 GHz in full 1 μs pulses. The MTM structure is formed by a waveguide that is below cutoff for TM modes. The waveguide is loaded by two axial copper plates machined with complementary split ring resonators, allowing two backward wave modes to propagate in the S-Band. A pulsed electron beam of up to 490 kV, 84 A travels down the center of the waveguide, midway between the plates. The electron beam is generated by a Pierce gun and is focused by a lens into a solenoidal magnetic field. The MTM plates are mechanically identical but are placed in the waveguide with reverse symmetry. Theory indicates that both Cherenkov and Cherenkov-cyclotron beam-wave interactions can occur. High power microwave generation was studied by varying the operating parameters over a wide range, including the electron beam voltage, the lens magnetic field, and the solenoidal field. Frequency tuning with a magnetic field and beam voltage was studied to discriminate between operation in the Cherenkov mode and the Cherenkov-cyclotron mode. Both modes were observed, but pulses above 1 MW of output power were only seen in the Cherenkov-cyclotron mode. A pair of steering coils was installed prior to the interaction space to initiate the cyclotron motion of the electron beam and thus encourage the Cherenkov-cyclotron high power mode. This successfully increased the output power from 2.5 MW to 2.9 MW (450 kV, 74 A, 9% efficiency).

  5. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  6. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{supmore » 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.« less

  7. Analyzing the effect of slotted foil on radiation pulse profile in a mode locked afterburner X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Hur, Min Sup; Chung, Moses

    2017-06-01

    Extremely short X-ray pulses in the attosecond (as) range are important tools for ultrafast dynamics, high resolution microscopy, and nuclear dynamics study. In this paper, we numerically examine the generation of gigawatt (GW) mode-locked (ML) multichromatic X-rays using the parameters of the Pohang Accelerator Laboratory (PAL)-X-ray free electron laser (XFEL), the Korean XFEL. In this vein, we analyze the ML-FEL [Thompson and McNeil, Phys. Rev. Lett. 100, 203901 (2008)] and mode-locked afterburner (MLAB) FEL [Dunning et al., Phys. Rev. Lett. 110, 104801 (2013)] schemes on the hard X-ray beamline of the PAL-XFEL. Using the ML scheme, we numerically demonstrate a train of radiation pulses in the hard X-ray (photon energy ˜12.4 keV) with 3.5 GW power and 16 as full-width half maximum (FWHM) pulse duration. On the other hand, using the MLAB scheme, a train of radiation pulses with 3 GW power and 1 as FWHM (900 zs in RMS) pulse duration has been obtained at 12.4 keV photon energy. Both schemes generate broadband, discrete, and coherent spectrum compared to the XFEL's narrowband spectrum. Furthermore, the effect of slotted foil is also studied first time on the MLAB-FEL output. Numerical comparisons show that the temporal structure of the MLAB-FEL output can be improved significantly by the use of the slotted foil. Such short X-ray pulses at XFEL facilities will allow the studies of electron-nuclear and nuclear dynamics in atoms or molecules, and the broadband radiation will substantially improve the efficiency of the experimental techniques such as X-ray crystallography and spectroscopy, paving the way for outstanding progress in biology and material science.

  8. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  9. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  10. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  11. Pulsed EPR measurements on reaction rate constants for addition of photo-generated radicals to double bonds of diethyl fumarate and diethyl maleate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio

    2016-11-01

    Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.

  12. Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod

    NASA Astrophysics Data System (ADS)

    Labouret, Timothée; Palpant, Bruno

    2016-12-01

    The excitation of plasmonic gold nanoparticles by ultrashort laser pulses can trigger interesting electron-based effects in biological media such as production of reactive oxygen species or cell membrane optoporation. In order to better understand the optical and thermal processes at play, we modeled the interaction of a subpicosecond, near-infrared laser pulse with a gold nanorod in water. A nonthermal model is used and compared to a simple two-temperature thermal approach. For both models, the computation of the transient optical response reveals strong plasmon damping. Electron emission from the metal into the water is also calculated in a specific way for each model. The dynamics of the resulting local plasma in water is assessed by a rate equation model. While both approaches provide similar results for the transient optical properties, the simple thermal one is unable to properly describe electron emission and plasma generation. The latter is shown to mostly originate from electron-electron thermionic emission and photoemission from the metal. Taking into account the transient optical response is mandatory to properly calculate both electron emission and local plasma dynamics in water.

  13. Laser-plasma mirrors: from electron acceleration to harmonics generation

    NASA Astrophysics Data System (ADS)

    Thévenet, Maxence; Bocoum, Maïmouna; Faure, Jérôme; Leblanc, Adrien; Vincenti, Henri; Quéré, Fabien

    2016-10-01

    Accelerating electrons in the > 10 TV/m fields inside an ultrashort ultraintense laser pulse has been a long-standing goal in experimental physics, motivated by promising theoretical predictions. The biggest hurdle was to have electrons injected in the center of the laser pulse. Recent experimental and numerical results showed that this problem could be solved using a plasma mirror, i.e. an overdense plasma with a sharp (

  14. Development of a compact generator for gigawatt, nanosecond high-voltage pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Lin, E-mail: zhoulin-2003@163.com; Jiang, Zhanxing; Liang, Chuan

    2016-03-15

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by addingmore » a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.« less

  15. Development of a compact generator for gigawatt, nanosecond high-voltage pulses.

    PubMed

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  16. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  17. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be onmore » the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.« less

  18. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  19. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-08-01

    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  20. Time-resolved photoelectron spectroscopy of polyatomic molecules using 42-nm vacuum ultraviolet laser based on high harmonics generation

    NASA Astrophysics Data System (ADS)

    Nishitani, Junichi; West, Christopher W.; Higashimura, Chika; Suzuki, Toshinori

    2017-09-01

    Time-resolved photoelectron spectroscopy (TRPES) of gaseous polyatomic molecules using 266-nm (4.7 eV) pump and 42-nm (29.5 eV) probe pulses is presented. A 1-kHz Ti:sapphire laser with a 35 fs pulse duration is employed to generate high harmonics in Kr gas, and the 19th harmonic (42-nm) was selected using two SiC/Mg mirrors. Clear observation of the ultrafast electronic dephasing in pyrazine and photoisomerization of 1,3-cyclohexadiene demonstrates the feasibility of TRPES with the UV pump and VUV probe pulses under weak excitation conditions in the perturbation regime.

  1. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Hao, Z.; Martin, M.C.

    2004-07-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less

  2. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    NASA Astrophysics Data System (ADS)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  3. Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs.

    PubMed

    Ren, Zhong; Yang, Xiaojing

    2016-07-01

    X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.

  4. Multi-color γ-rays from comb-like electron beams driven by incoherent stacks of laser pulses

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2017-03-01

    Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to 1017 A/m2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing controlled periodic injection. The resulting train of electron bunches maintains exceptional quality while being accelerated beyond the energy limits predicted by accepted scalings. Inverse Thomson scattering from this comb-like beam generates a sequence of quasi-monochromatic, fs-length γ-ray beams, an asset for nuclear forensics and pump-probe experiments in dense plasmas.

  5. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  6. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-01-11

    Materials Scientific Research Instil; MoLow] neat-resiltan? !^erimental"»<* of single crystals of the ZhS6F neat resistant alloy was made for the...Filimonov, and V. L. Chakhlov, Electron Introscopy Scientific Research Institute, Tomsk] [Abstract] A small betatron operating in the pulse mode...a radiation source, a generator of current pulses, and a control panel. Current pulses with a repetition rate up to 200 Hz energize the emitter

  7. Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2014-03-01

    We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.

  8. Reflectometry diagnostics on TCV

    NASA Astrophysics Data System (ADS)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  9. A real-time pulsed photon dosimeter

    NASA Astrophysics Data System (ADS)

    Brown, David; Olsher, Richard H.; Eisen, Yosef; Rodriguez, Joseph F.

    1996-02-01

    Radiation sources producing short pulses of photon radiation are now widespread. Such sources include electron and proton linear accelerators, betatrons, synchrotrons, and field-emission impulse generators. It is often desirable to measure leakage and skyshine radiation from such sources in real time, on a single-pulse basis as low as 8.7 nGy (1 μR) per pulse. This paper describes the design and performance of a prototype, real-time, pulsed photon dosimeter (PPD) capable of single-pulse dose measurements over the range from 3.5 nGy to 3.5 μGy (0.4 to 400 μR). The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of radiation pulses over a 3-s period. A pulse repetition rate of up to 300 Hz is accommodated. The design is eminently suitable for packaging as a lightweight, portable, survey meter. The PPD uses a CdWO 4 scintillator optically coupled to a photodiode to generate a charge at the diode output. A pulse amplifier converts the charge to a voltage pulse. A digitizer circuit generates a burst of logic pulses whose number is proportional to the peak value of the voltage pulse. The digitizer output is recorded by a pulse counter and suitably displayed. A prototype PPD was built for testing and evaluation purposes. The performance of the PPD was evaluated with a variety of pulsed photon sources. The dynamic range, energy response, and response to multiple pulses were characterized. The experimental data confirm the viability of the PPD for pulsed photon dosimetry.

  10. Introduction of Nano-seconds Pulsed Discharge Plasma and its Applications

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Wang, Douyan; Matsumoto, Takao; Okada, Sho; Akiyama, Hidenori

    During the decades, the developments of high power semiconductor switch, magnetic core and etc have allowed us to manufacture the pulsed power source having higher energy transfer efficiency. As the results, the pulsed discharge has been recognized as one of the promised non-thermal plasma to practical use. In this paper, a generation process, electron energy, impedance and a temperature of the pulsed discharge plasma would be explained. In addition, a nano-seconds pulsed discharge plasma would be introduced as the non-thermal plasma processing giving us the highest energy efficiency and be demonstrated it.

  11. Maximizing energy deposition by shaping few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Gateau, Julien; Patas, Alexander; Matthews, Mary; Hermelin, Sylvain; Lindinger, Albrecht; Kasparian, Jérôme; Wolf, Jean-Pierre

    2018-07-01

    We experimentally investigate the impact of pulse shape on the dynamics of laser-generated plasma in rare gases. Fast-rising triangular pulses with a slower decay lead to early ionization of the gas and depose energy more efficiently than their temporally reversed counterparts. As a result, in both argon and krypton, the induced shockwave as well as the plasma luminescence are stronger. This is due to an earlier availability of free electrons to undergo inverse Bremsstrahlung on the pulse trailing edge. Our results illustrate the ability of adequately tailored pulse shapes to optimize the energy deposition in gas plasmas.

  12. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  13. Muscle contraction during electro-muscular incapacitation: A comparison between square-wave pulses and the TASER(®) X26 Electronic control device.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2011-01-01

    Electronic control devices (including the Advanced TASER(®) X26 model produced by TASER International) incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, effects of monophasic square waves with different parameters were compared with those of the X26 electronic control device, using two animal models (frogs and swine). Pulse power, electrical pulse charge, pulse duration, and pulse repetition frequency affected muscle contraction. There was no difference in the charge required, between the square waveform and the X26 waveform, to cause approximately the same muscle-contraction response (in terms of the strength-duration curve). Thus, on the basis of these initial studies, the detailed shape of a waveform may not be important in terms of generating electro-muscular incapacitation. More detailed studies, however, may be required to thoroughly test all potential waveforms to be considered for future use in ECDs. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  14. A Stable High-Energy Electron Source from Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhao, Baozhen; Liu, Cheng; Yan, Wenchao; Golovin, Grigory; Banerjee, Sudeep; Chen, Shouyuan; Haden, Daniel; Fruhling, Colton; Umstadter, Donald

    2016-10-01

    The stability of the electron source from laser wake-field acceleration (LWFA) is essential for applications, such as novel x-ray sources and fundamental experiments in high field physics. To obtain such a stable source, we used an optimal laser pulse and a novel gas nozzle. The high-power laser pulse on target was focused to a diffraction-limited spot by the use of adaptive wavefront correction and the pulse duration was transform limited by the use of spectral feedback control. An innovative design for the nozzle led to a stable, flat-top profile with diameters of 4 mm and 8 mm with a high Mach-number ( 6). In experiments to generate high-energy electron beams by LWFA, we were able to obtain reproducible results with beam energy of 800 MeV and charge >10 pC. Higher charge but broader energy spectrum resulted when the plasma density was increased. These developments have resulted in a laser-driven wakefield accelerator that is stable and robust. With this device, we show that narrowband high-energy x-rays beams can be generated by the inverse-Compton scattering process. This accelerator has also been used in recent experiments to study nonlinear effects in the interaction of high-energy electron beams with ultraintense laser pulses. This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  15. Enhanced production of ECR plasma by using pulse mode microwaves on a large bore ECRIS with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi; Kiriyama, Ryutaro; Takenaka, Tomoya

    2012-11-06

    In order to enhance the efficiency of an electron cyclotron resonance (ECR) plasma for a broad and dense ion beam source at low pressure, the magnetic field configuration is constructed by all permanent magnets. By using the pulse mode, we aim at the generation of plasma with parameters that cannot be achieved in the CW mode at microwave frequencies of 11-13GHz, under the constraint of the same average incident microwave powers. It is found that the total beam currents are increased by the pulse mode operation compared with the case of the CW mode. According to probe measurements of themore » ECR plasma, it is found that the electron density in the pulse mode is larger than that in the CW mode, while the electron temperatures in the pulse mode are lower than that in the CW mode. These results are discussed from the viewpoint of relaxation times obtained on plasma parameters and ECR efficiency. The cause of the beam current increment and operational windows spread due to the pulse mode are also discussed on these parameters suitable to production of molecular/cluster ions.« less

  16. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  17. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less

  19. Laser phase control of high-order harmonic generation at large internuclear distance: the H+ -H2+ system.

    PubMed

    Bandrauk, André D; Barmaki, Samira; Kamta, Gerard Lagmago

    2007-01-05

    Exact (Born-Oppenheimer) 3-D numerical solutions of the time-dependent Schrödinger equation are obtained for the one electron linear H+-H2+ atom-molecule system at large internuclear distance R in interaction with two-cycles intense (I>10(14) W cm(-2)) 800 nm laser pulses. High-order harmonic generation (HHG) spectra are obtained with an energy cutoff larger than the atomic maximum of I(p)+3U(p), where I(p) is the ionization potential and U(p) is the ponderomotive energy. At large R, this extended cutoff is shown to be related to the nature of electron transfer, whose direction is shown to depend critically on the carrier-envelope phase (CEP) of the ultrashort pulse. Constructive and destructive interferences in the HHG spectrum resulting from coherent superpositions of electronic states in the H+-H2+ system are interpreted in terms of multiple electron trajectories extracted from a time profile analysis.

  20. Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage

    NASA Astrophysics Data System (ADS)

    Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG

    2018-04-01

    As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.

  1. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].

  2. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. N.; Grachev, G. N.; Pavlov, A. A.; Smirnov, A. L.; Pavlov, A. A.; Golubev, M. P.

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source.

  4. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

    DOE PAGES

    Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; ...

    2017-06-05

    Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less

  5. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.

    Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less

  6. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  7. Ultrafast Nonlinear Response of Atomic and Molecular Gases in Near-IR and Mid-IR Regions

    NASA Astrophysics Data System (ADS)

    Zahedpour Anaraki, Sina

    There is a dynamical interaction between an ultrashort laser pulse and the medium it propagates through. At the shortest timescales, the near-instantaneous electronic response of the medium contributes to an induced polarization nonlinearity. On a longer timescale, the vibrational response can contribute, followed on even longer timescales by the rotational response. One of the major consequences of these nonlinearities is that they can induce the collapse and filamentation of the laser pulse, leading to ionization and plasma generation. In this dissertation, measurements and theory are presented for both the fundamental atomic and molecular nonlinearities themselves (electronic, rovibrational, and ionization rates) in the range lambda=400nm-2600nm, and their applications. The media investigated are air constituents (Ar, N 2, O2), H2, D2, and common transparent optical materials. In particular, in one application it is shown that in molecular gases like N2 and O2, the propagating laser electric field can pump a rotational wavepacket, producing molecular ensembles with both transient and long-lived ("permanent") alignment components. This alignment, which generates quantum echoes (rotational revivals), can interact with the pulse that generated it (rotational nonlinearity) and with any pulses that may follow. We show that a properly timed train of ultrashort laser pulses can resonate with the rotational revivals, causing a "permanent" alignment in the gas which thermalizes and then drives a strong hydrodynamic response which can exceed that from the plasma heating by a filament.

  8. An environmental-level, real-time, pulsed photon dosemeter.

    PubMed

    Olsher, R H; Frymire, A; Gregoire, T

    2005-01-01

    Radiation sources producing short pulses of photon radiation are widespread. Such sources include electron linear accelerators and field emission impulse generators. It is often desirable to measure leakage and skyshine radiation for these sources in real time and at environmental levels as low as 0.02 microSv per pulse. This note provides an overview of the design and performance of a commercial, real-time, pulsed photon dosemeter (PPD) capable of single-pulse dose measurements over the range from 0.02 to 20 microSv. The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of pulses over a 3 s period. A pulse repetition rate of up to 300 Hz is accommodated.

  9. F + centre generation in MgO crystals at high density of excitation by accelerated electrons of subthreshold energy

    NASA Astrophysics Data System (ADS)

    Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.

    1981-07-01

    Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.

  10. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  11. The CARIBU EBIS control and synchronization system

    NASA Astrophysics Data System (ADS)

    Dickerson, Clayton; Peters, Christopher

    2015-01-01

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.

  12. Method to generate a pulse train of few-cycle coherent radiation

    DOE PAGES

    Garcia, Bryant; Hemsing, Erik; Raubenheimer, Tor; ...

    2016-09-06

    We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. Here, we discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. Wemore » examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.« less

  13. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Cosmic ray neutron background reduction using localized coincidence veto neutron counting

    DOEpatents

    Menlove, Howard O.; Bourret, Steven C.; Krick, Merlyn S.

    2002-01-01

    This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.

  15. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-01

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  16. Electron beam injected into ground generates subsoil x-rays that may deactivate concealed electronics used to trigger explosive devices

    NASA Astrophysics Data System (ADS)

    Retsky, Michael

    2008-04-01

    Explosively formed projectiles (EFP) are a major problem in terrorism and asymmetrical warfare. EFPs are often triggered by ordinary infrared motion detectors. A potential weak link is that such electronics are not hardened to ionizing radiation and can latch-up or enter other inoperative states after exposure to a single short event of ionizing radiation. While these can often be repaired with a power restart, they also can produce shorts and permanent damage. A problem of course is that we do not want to add radiation exposure to the long list of war related hazards. Biological systems are highly sensitive to integrated dosage but show no particular sensitivity to short pulses. There may be a way to generate short pulsed subsoil radiation to deactivate concealed electronics without introducing radiation hazards to military personnel and civilian bystanders. Electron beams of 30 MeV that can be produced by portable linear accelerators (linacs) propagate >20 m in air and 10-12 cm in soil. X-radiation is produced by bremsstrahlung and occurs subsoil beneath the point of impact and is mostly forward directed. Linacs 1.5 m long can produce 66 MWatt pulses of subsoil x-radiation 1 microsecond or less in duration. Untested as yet, such a device could be mounted on a robotic vehicle that precedes a military convoy and deactivates any concealed electronics within 10-20 meters on either side of the road.

  17. Relativistic Channeling of a Picosecond Laser Pulse in a Near-Critical Preformed Plasma

    NASA Astrophysics Data System (ADS)

    Borghesi, M.; MacKinnon, A. J.; Barringer, L.; Gaillard, R.; Gizzi, L. A.; Meyer, C.; Willi, O.; Pukhov, A.; Meyer-Ter-Vehn, J.

    1997-02-01

    Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5 μm in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field.

  18. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  19. Scaling EUV and X-ray Thomson sources to optical free-electron laser operation with traveling-wave Thomson scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steiniger, Klaus; Albach, Daniel; Debus, Alexander; Loeser, Markus; Pausch, Richard; Roeser, Fabian; Schramm, Ulrich; Siebold, Matthias; Bussmann, Michael

    2017-05-01

    Traveling-Wave Thomson-Scattering (TWTS) allows for the realization of optical free-electron lasers (OFELs) from the interaction of short, high-power laser pulses with brilliant relativistic electron bunches. The laser field provides the optical undulator which is traversed by the electrons. In order to achieve coherent amplification of radiation through electron microbunching the interaction between electrons and laser must be maintained over hundreds to thousands of undulator periods. Traveling-Wave Thomson-Scattering is the only scattering geometry so far allowing for the realization of optical undulators of this length which is at the same time scalable from extreme ultraviolet to X-ray photon energies. TWTS is also applicable for the realization of incoherent high peak brightness hard X-ray to gamma-ray sources which can provide orders of magnitude higher photon output than classic head-on Thomson sources. In contrast to head-on Thomson sources TWTS employs a side-scattering geometry where laser and electron propagation direction of motion enclose an angle. Tilting the laser pulse front with respect to the wave front by half of this interaction angle optimizes electron and laser pulse overlap. In the side-scattering geometry the tilt of the pulse-front compensates the spatial offset between electrons and laser pulse-front which would be present otherwise for an electron bunch far from the interaction point where it overlaps with the laser pulse center. Thus the laser pulse-front tilt ensures continuous overlap between laser pulse and electrons while these traverse the laser pulse cross-sectional area. This allows to control the interaction distance in TWTS by the laser pulse width rather than laser pulse duration as is the case for head-on Thomson scattering. Utilizing petawatt class laser pulses with millimeter to centimeter scale width allows for the realization of compact optical undulators with thousands of periods. When laser pulses for TWTS are prepared, care has to be taken of laser dispersion. Especially for scenarios featuring interaction angles of several ten to over one hundred degree the angular dispersion originating from laser pulse-front tilt can significantly prolong the pulse duration during the interaction which leads to a decrease in optical undulator amplitude and eventually terminates the interaction long before the target interaction distance is reached. In the talk it is shown how a pair of two gratings can be used to first generate the pulse-front tilt and second control and compensate dispersion during the interaction by utilizing the plane of optimum compression. Furthermore an experimental setup strategy is presented allowing for an interaction outside the laser pulse focus. This is a necessity for TWTS OFELs requiring focusing to reach optical undulator strengths on the order of unity since the centimeter scale laser pulse width at the interaction point result in turn in Rayleigh lengths on the order of one hundred meter and thus in laser focusing distances of several hundred meter. The talk shows how an out-of-focus interaction geometry utilizing strong focusing of the incident laser pulse needs to be designed in order to regain compactness by reducing the focusing distance by one to two orders of magnitude.

  20. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    PubMed

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-04

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.

  1. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  2. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  3. Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas.

    PubMed

    Sorokovikova, A; Arefiev, A V; McGuffey, C; Qiao, B; Robinson, A P L; Wei, M S; McLean, H S; Beg, F N

    2016-04-15

    The interaction of a multipicosecond, kilojoule laser pulse with a surface of a solid target has been shown to produce electrons with energies far beyond the free-electron ponderomotive limit m_{e}c^{2}a_{0}^{2}/2. Particle-in-cell simulations indicate that an increase in the pulse duration from 1 to 10 ps leads to the formation of a low-density shelf (about 10% of the critical density). The shelf extends over 100  μm toward the vacuum side, with a nonstationary potential barrier forming in that area. Electrons reflected from the barrier gain superponderomotive energy from the potential. Some electrons experience an even greater energy gain due to ponderomotive acceleration when their "dephasing rate" R=γ-p_{x}/m_{e}c drops well below unity, thus increasing acceleration by a factor of 1/R. Both 1D and 2D simulations indicate that these mechanisms are responsible for the generation of extensive thermal distributions with T_{e}>10  MeV and a high-energy cutoff of hundreds of MeV.

  4. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  5. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  6. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  7. RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.

    2001-12-03

    1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and efficient interaction geometry. We use a CO{sub 2} laser that delivers 10 times more photons per unit energy than the 1-{micro}m laser, a high-brightness linac, and the most energy-efficient backscattering interaction geometry. The purpose of this report is to give an update on new results obtained during this year and our near-term plans.« less

  8. Long pulse EBW start-up experiments in MAST

    DOE PAGES

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; ...

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  9. Long pulse EBW start-up experiments in MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  10. Long Pulse EBW Start-up Experiments in MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V. F.; Bigelow, Tim S; Caughman, J. B. O.

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (0) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  11. Megagauss magnetic fields in ultra-intense laser generated dense plasmas

    NASA Astrophysics Data System (ADS)

    Shaikh, Moniruzzaman; Lad, Amit D.; Jana, Kamalesh; Sarkar, Deep; Dey, Indranuj; Kumar, G. Ravindra

    2017-01-01

    Table-top terawatt lasers can create relativistic light intensities and launch megaampere electron pulses in a solid. These pulses induce megagauss (MG) magnetic pulses, which in turn strongly affect the hot electron transport via electromagnetic instabilities. It is therefore crucial to characterize the MG magnetic fields in great detail. Here, we present measurements of the spatio-temporal evolution of MG magnetic fields produced by a high contrast (picosecond intensity contrast 10-9) laser in a dense plasma on a solid target. The MG magnetic field is measured using the magneto-optic Cotton-Mouton effect, with a time delayed second harmonic (400 nm) probe. The magnetic pulse created by the high contrast laser in a glass target peaks much faster and has a more rapid fall than that induced by a low contrast (10-6) laser.

  12. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  13. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    NASA Astrophysics Data System (ADS)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  14. Bright half-cycle optical radiation from relativistic wavebreaking

    NASA Astrophysics Data System (ADS)

    Miao, Bo; Goers, Andy; Hine, George; Feder, Linus; Salehi, Fatholah; Wahlstrand, Jared; Milchberg, Howard

    2015-11-01

    Wavebreaking injection of electrons into relativistic plasma wakes generated in near-critical density hydrogen plasmas by sub-terawatt laser pulses is observed to generate an extremely energetic and ultra-broadband radiation flash. The flash is coherent, with a bandwidth of Δλ / λ ~ 0 . 7 consistent with half-cycle optical emission of duration ~ 1 fs from violent unidirectional acceleration of electrons to light speed from rest over a distance much less than the radiated wavelength. We studied the temporal duration and coherence of the flash by interfering it in the frequency domain with a well-characterized Xe supercontinuum pulse. Fringes across the full flash spectrum were observed with high visibility, and the extracted flash spectral phase supports it being a nearly transform-limited pulse. To our knowledge, this is the first evidence of bright half-cycle optical emission. This research is supported by the Defense Threat Reduction Agency, the US Department of Energy, and the Air Force Office of Scientific Research.

  15. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.

    2017-07-01

    We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

  16. Radio frequency discharge with control of plasma potential distribution.

    PubMed

    Dudnikov, Vadim; Dudnikov, A

    2012-02-01

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  17. Anharmonic resonance absorption of short laser pulses in clusters: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Mahalik, S. S.; Kundu, M.

    2016-12-01

    Linear resonance (LR) absorption of an intense 800 nm laser light in a nano-cluster requires a long laser pulse >100 fs when Mie-plasma frequency ( ω M ) of electrons in the expanding cluster matches the laser frequency (ω). For a short duration of the pulse, the condition for LR is not satisfied. In this case, it was shown by a model and particle-in-cell (PIC) simulations [Phys. Rev. Lett. 96, 123401 (2006)] that electrons absorb laser energy by anharmonic resonance (AHR) when the position-dependent frequency Ω [ r ( t ) ] of an electron in the self-consistent anharmonic potential of the cluster satisfies Ω [ r ( t ) ] = ω . However, AHR remains to be a debate and still obscure in multi-particle plasma simulations. Here, we identify AHR mechanism in a laser driven cluster using molecular dynamics (MD) simulations. By analyzing the trajectory of each MD electron and extracting its Ω [ r ( t ) ] in the self-generated anharmonic plasma potential, it is found that electron is outer ionized only when AHR is met. An anharmonic oscillator model, introduced here, brings out most of the features of MD electrons while passing the AHR. Thus, we not only bridge the gap between PIC simulations, analytical models, and MD calculations for the first time but also unequivocally prove that AHR process is a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in clusters.

  18. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.

    2004-12-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [

    JETP Lett. 74, 371 (2001)JTPLA20021-364010.1134/1.1427124
    ;
    Phys. Rev. E 65, 046504 (2002)PLEEE81063-651X10.1103/PhysRevE.65.046504
    ]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1 μm long or a few femtoseconds in duration) relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  19. [A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].

    PubMed

    Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi

    2005-01-01

    We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.

  20. Electron emission from ferroelectrics - a review

    NASA Astrophysics Data System (ADS)

    Riege, H.

    1994-02-01

    The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.

  1. Strong-Field Control of Laser Filamentation Mechanisms

    NASA Astrophysics Data System (ADS)

    Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan

    2008-05-01

    The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.

  2. Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S.; Takiyama, K.; Hasegawa, N.

    Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasmamore » is generated.« less

  3. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  4. Strong terahertz radiation from relativistic laser interaction with solid density plasmas

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2012-06-01

    We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.

  5. Efficient generation and transportation of energetic electrons in a carbon nanotube array target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Jiang, Gang; Wu, Weidong; Wang, Chaoyang; Gu, Yuqiu; Tang, Yongjian

    2010-01-01

    Laser-driven energetic electron propagation in a carbon nanotube-array target is investigated using two-dimensional particle-in-cell simulations. Energetic electrons are efficiently generated when the array is irradiated by a short intense laser pulse. Confined and guided transportation of energetic electrons in the array is achieved by exploiting strong transient electromagnetic fields created at the wall surfaces of nanotubes. The underlying mechanisms are discussed in detail. Our investigation shows that the laser energy can be transferred more effectively to the target electrons in the array than that of in the flat foil due to the hole structures in the array.

  6. Indoor Fast Neutron Generator for Biophysical and Electronic Applications

    NASA Astrophysics Data System (ADS)

    Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.

    2018-05-01

    This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.

  7. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  8. Attosecond science

    NASA Astrophysics Data System (ADS)

    Villeneuve, D. M.

    2018-01-01

    Scientists have been developing sources of light with ever-shorter pulse durations, in order to study motion in systems ranging from a golfer's swing to the motion of atoms within molecules. The shortest pulses produced to date are under 60 attoseconds, i.e. ? s. One attosecond is to one second as one second is to the age of the universe. For comparison, the classical orbital period of an electron in a hydrogen atom is 150 attoseconds. Attosecond pulses were first produced in 2001. This article describes how attosecond pulses are generated and how they are measured. Some applications of attosecond pulses are described, such as measuring the delay in photoionisation, or observing molecular dissociation dynamics.

  9. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  10. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  11. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  12. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  13. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  14. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  15. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  16. Annular structures formed in a beam of ions during their collective acceleration in a system with dielectric anode

    NASA Astrophysics Data System (ADS)

    Lopatin, V. S.; Remnev, G. E.; Martynenko, A. A.

    2017-05-01

    We have studied the collective acceleration of protons and deuterons in an electron beam emitted from plasma formed at the surface of a dielectric anode insert. The experiments were performed with a pulsed electron accelerator operating at an accelerating voltage up to 1 MV, current amplitude up to 40 kA, and pulse duration of 50 ns. Reduction of the accelerating voltage pulse front width and optimization of the diode unit and drift region ensured the formation of several annular structures in the electron beam. As a result, up to 50% of the radioactivity induced in a copper target was concentrated in a ring with 4.5-cm diameter and 0.2-cm width. The formation of high energy density in these circular traces and the appearance of an axial component of the self-generated magnetic field of the electron beam are related with the increasing efficiency of acceleration of the most intense group of ions.

  17. Giant collimated gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.

    2018-06-01

    Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.

  18. Searching for U-235m produced by Nuclear Excitation by Electronic Transition

    NASA Astrophysics Data System (ADS)

    Chodash, Perry; Norman, Eric; Burke, Jason; Wilks, Scott; Casperson, Robert

    2014-09-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The laser was focused on small samples of both depleted uranium and highly enriched uranium. The plasma conditions created by the intense laser pulse were varied by changing the spot size of the laser on the target. The resulting plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. First results will be presented. Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The laser was focused on small samples of both depleted uranium and highly enriched uranium. The plasma conditions created by the intense laser pulse were varied by changing the spot size of the laser on the target. The resulting plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. First results will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The U.S. DHS, UC Berkeley, the NNIS fellowship and the NSSC further supported this work.

  19. Short pulse fiber lasers mode-locked by carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinji; Martinez, Amos; Xu, Bo

    2014-12-01

    One and two dimensional forms of carbon, carbon nanotubes and graphene, have interesting and useful, not only electronic but also photonic, properties. For fiber lasers, they are very attractive passive mode lockers for ultra-short pulse generation, since they have saturable absorption with inherently fast recovery time (<1 ps). In this paper, we review the photonic properties of graphene and CNT and our recent works on fabrication of fiber devices and applications to ultra-short pulse mode-locked fiber lasers.

  20. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states.

    PubMed

    Moerland, Robert J; Weppelman, I Gerward C; Garming, Mathijs W H; Kruit, Pieter; Hoogenboom, Jacob P

    2016-10-17

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial hardware in a standard SEM, which allows us to easily switch from pulsed to continuous operation of the SEM. Electron pulses of 80-90 ps duration are generated by conjugate blanking of a high-brightness electron beam, which allows probing emitters within a large range of decay rates. Moreover, we simultaneously attain a resolution better than λ/10, which ensures details at deep-subwavelength scales can be retrieved. As a proof-of-principle, we employ the pulsed electron beam to spatially measure excited-state lifetime modifications in a phosphor material across the edge of an aluminum half-plane, coated on top of the phosphor. The measured emission dynamics can be directly related to the structure of the sample by recording photon arrival histograms together with the secondary-electron signal. Our results show that time-resolved electron cathodoluminescence spectroscopy is a powerful tool of choice for nanophotonics, within reach of a large audience.

  1. Ultrafast spintronics roadmap: from femtosecond spin current pulses to terahertz non-uniform spin dynamics via nano-confined spin transfer torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe

    2016-10-01

    Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.

  2. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficiency of an H2—SF6 laser with electron-beam initiation of chemical reactions

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Orlovskii, Viktor M.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.

    2000-06-01

    The spectral and amplitude—time characteristics of HF lasers pumped by a nonchain chemical reaction and initiated by radially convergent and planar electron beams were investigated. The principal channels leading to the formation of vibrationally excited HF molecules were analysed. It was confirmed that high efficiencies (~10%) of a nonchain HF laser may be attained only as a result of the simultaneous formation of atomic and molecular fluorine when the active mixture is acted upon by an electron beam and of the participation of molecular fluorine in population inversion. It was shown that a laser pulse has a complex spectral—temporal profile caused by the successive generation of P-lines and the overlap during the radiation pulse of both the rotational lines of the same vibrational band and of individual vibrational bands.

  3. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    PubMed Central

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  4. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Iwasaki, Masahiko; Wada, Satoshi

    2016-09-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α ) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.

  5. Correction of complex nonlinear signal response from a pixel array detector

    PubMed Central

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-01-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics. PMID:25931072

  6. Correction of complex nonlinear signal response from a pixel array detector.

    PubMed

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-05-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  7. All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Bukhenskii, M. F.

    1984-08-01

    The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.

  8. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  9. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  10. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  11. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  12. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  13. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  14. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

  15. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu.

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that themore » ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.« less

  16. The CARIBU EBIS control and synchronization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, Clayton, E-mail: cdickerson@anl.gov; Peters, Christopher, E-mail: cdickerson@anl.gov

    2015-01-09

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. Themore » control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.« less

  17. Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents

    NASA Astrophysics Data System (ADS)

    Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.

    2018-03-01

    The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.

  18. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  19. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    PubMed

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  1. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGES

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  2. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry thatmore » has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  3. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yunteng; Zhang, Jie; Li, Yang

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Usingmore » both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.« less

  4. Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Beasley, W. H.

    2014-12-01

    Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.

  5. Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon.

    PubMed

    Vaisseau, X; Morace, A; Touati, M; Nakatsutsumi, M; Baton, S D; Hulin, S; Nicolaï, Ph; Nuter, R; Batani, D; Beg, F N; Breil, J; Fedosejevs, R; Feugeas, J-L; Forestier-Colleoni, P; Fourment, C; Fujioka, S; Giuffrida, L; Kerr, S; McLean, H S; Sawada, H; Tikhonchuk, V T; Santos, J J

    2017-05-19

    Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1  kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

  6. Optical measurements and analytical modeling of magnetic field generated in a dieletric target

    NASA Astrophysics Data System (ADS)

    Yafeng, BAI; Shiyi, ZHOU; Yushan, ZENG; Yihan, LIANG; Rong, QI; Wentao, LI; Ye, TIAN; Xiaoya, LI; Jiansheng, LIU

    2018-01-01

    Polarization rotation of a probe pulse by the target is observed with the Faraday rotation method in the interaction of an intense laser pulse with a solid target. The rotation of the polarization plane of the probe pulse may result from a combined action of fused silica and diffused electrons. After the irradiation of the main pulse, the rotation angle changed significantly and lasted ∼2 ps. These phenomena may imply a persistent magnetic field inside the target. An analytical model is developed to explain the experimental observation. The model indicates that a strong toroidal magnetic field is induced by an energetic electron beam. Meanwhile, an ionization channel is observed in the shadowgraph and extends at the speed of light after the irradiation of the main beam. The formation of this ionization channel is complex, and a simple explanation is given.

  7. An all-reflective polarization rotator

    NASA Astrophysics Data System (ADS)

    Bohus, J.; Budai, Judit; Kalashnikov, M.; Osvay, K.

    2017-05-01

    The conceptual design and proof of principle experimental results of a polarization rotator based on mirrors are presented. The device is suitable for any-angle, online rotation of the plane of polarization of high peak intensity ultrashort laser pulses. Controllable rotation of the polarization vector of short laser pulses with a broad bandwidth requires achromatic retarding plates which have a limited scalability and the substantial plate thickness can lead to pulse broadening and inaccurate polarization rotation. Polarization rotators based on reflective optical elements are preferable alternatives to wave plates especially when used in high average power or high peak intensity ultra-short laser systems. The control of the polarization state is desirable in many laser-matter interaction experiments e.g., high harmonic and attosecond pulse generation, electron, proton and ion acceleration, electron-positron pair creating, vacuum nonlinear polarization effect. The device can also serve as a beam attenuator, in combination with a linear polarizer.

  8. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics.

    PubMed

    Luo, W; Xu, W; Pan, Q Y; Cai, X Z; Chen, J G; Chen, Y Z; Fan, G T; Fan, G W; Guo, W; Li, Y J; Liu, W H; Lin, G Q; Ma, Y G; Shen, W Q; Shi, X C; Xu, B J; Xu, J Q; Xu, Y; Zhang, H O; Yan, Z; Yang, L F; Zhao, M H

    2010-01-01

    As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 degrees between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1+/-4.4|(stat)+/-2.1|(syst) keV and the peak width (rms) of 7.8+/-2.8|(stat)+/-0.4|(syst) keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2+/-2.0) x 10(2) Hz can be achieved.

  9. Evidence of Light-by-Light Scattering with Real Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boege, J.

    2003-12-19

    In a new experiment at the Stanford Linear Accelerator Center, heretofore untested aspects of high field strength Quantum Electrodynamics were probed. Bunches of 46.6 GeV electrons available in the Final Focus Test Beam line were brought into collision with terawatt pulses of either 1.17 eV or 2.34 eV photons from a Nd:Glass laser system. Several physical process were investigated. This thesis describes the production of electron-positron pairs in photon-photon collisions. This is particularly interesting since it represents the generation of massive particles from massless particles. The bunch/pulse trajectories are approximately antiparallel. Due to the head-on nature of the collisions, themore » electrons see, in their rest frame, a transformed laser pulse electric field amplitude {bar {var_epsilon}}{sub 0} = 2{gamma}{var_epsilon}{sub 0}, and so a lab frame field {var_epsilon} {approx} 1.0 x 10{sup 11} V/cm corresponds to a 46.6 GeV electron rest frame field {bar {var_epsilon}}{sub 0} {approx} 1.8 x 10{sup 16} V/cm. For electric field amplitudes of this magnitude, perturbative QED is of limited validity. Multiphoton processes dominate collision results. The geometry of the experiments was such that any pairs produced came into existence in the midst of the electron/photon collision region. The electron from a produced pair was indistinguishable from the recoil electrons generated via other processes in collisions. Detecting the positron, then, was the only way to observe pair production. In data accumulated during the September 1994 Final Focus Test Beam run, positrons in excess of background were detected. Positron signals were extracted from an ensemble of data collected during electron bunch/laser pulse collisions. Calorimeter readings were used to measure the energy, and reconstruct the transverse displacement of positrons propagating downstream from the bunch/pulse collision region. Field maps of permanent magnets located downstream of the collision region but upstream of the calorimeter were used in implementing a cut of off-momentum background positrons. Effects of various cuts and the characteristics of the detected positrons are presented. Statistically significant positron production above background is reported. The rate for e{sup +} production is calculated, and the energy spectrum of the candidates is shown. The agreement of simulation results with these observations is described.« less

  10. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  11. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  12. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  13. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  14. Spectra of laser generated relativistic electrons using cone-wire targets

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi

    2012-10-01

    We report on the characterization of the in situ energy spectrum of fast electrons generated by ultra-intense (I˜10^19 W cm-2) short pulse (τ˜0.7 and 10 ps) laser-plasma interactions using the TITAN and OMEGA EP lasers. That in situ spectrum is a key component of ignition efficiency for the Fast Ignition (FI) Inertial Confinement Fusion (ICF) concept. It is challenging to model and, until now, has resisted direct experimental characterization; other techniques have very large error bars or measure the modified spectrum of escaped electrons. This technique also gives an indication of the forward coupling efficiency of the laser to fast electrons. This information is derived from the measurement of Cu Kα x-rays emitted from a 1.5 mm long Cu wire attached to the tip of Au or Al cone targets. Fast electrons, generated in the cone, transport through the cone tip with a fraction of coupling to the wire. Electrons in the wire excite fluorescence measured by a monochromatic imager and an absolutely calibrated HOPG spectrometer. An implicit hybrid-PIC code, LSP, is applied to deduce electron parameters from the Kα measurements. Experiments on the TITAN laser with Au cones attached to wires show an increase in pre-pulse energy from 17 to 1000 mJ, decreases the fast electron fraction entering the wire from 8.4% to 2.5%. On OMEGA EP with Al cones attached to wires, total Kα yield, normalized to laser energy, drops ˜30% for laser pulse length increasing from 1 to 10 ps, indicative of a saturation mechanism. For Au cones, Kα yields were 50% of that measured for Al cones indicating a strong material dependence. In all cases, the spatial distribution can only be fit with a two-temperature electron energy distribution, the relative fractions depending on prepulse level. These results are being used to develop an optimum cone design for integrated FI experiments. This work was performed under the auspices of the USDOE by LLNL under Contract DE-AC52-07NA27344 and DE-FG-02-05ER54834.

  15. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  16. Third harmonic generation in air ambient and laser ablated carbon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravi Pratap, E-mail: ravips@iitk.ac.in; Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablatedmore » plume play a vital role in the observed third harmonic signals.« less

  17. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    NASA Astrophysics Data System (ADS)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  18. Dipolar effects on propagation of ultrashort laser pulse in one-dimensional para-nitroaniline (pNA) molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Li, Hong-Yu; Liu, Ji-Cai; Wang, Chuan-Kui; Luo, Yi

    2005-12-01

    The dynamic behaviour of ultrashort (femtosecond) laser pulses in a molecular medium is studied by solving the full Maxwell-Bloch equations beyond the limits of the slowly varying envelope approximation and the rotating-wave approximation under the resonant and the non-resonant conditions. A one-dimensional asymmetric charge-transfer molecule, para-nitroaniline, is used as a model molecule whose electronic properties are calculated with the time-dependent hybrid density functional theory. Under the one-photon resonant condition, 4π pulse is separated into two sub-pulses. The weight of the second-harmonic component mainly contributed by the two-photon excitation becomes stronger with longer propagation time. Under the two-photon resonant condition, the separation of 4π pulse is not induced and many higher-order spectral components beyond the second-harmonic generation occur. Interestingly, when the pulse propagates for long enough, the carrier modification becomes so significant that a continuous spectrum is generated. The Fourier transform of the high-harmonic spectrum demonstrates that an even shorter laser pulse can be produced in both resonant and non-resonant propagations. The effects of permanent dipole moments on the pulse evolution are discussed.

  19. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniyappan, S.; Johnson, R.; Shimada, T.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  20. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less

  1. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams.

    PubMed

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a approximately 450 kV, approximately 400 ns pulse. It was found that 300-400 MW, approximately 250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  2. Enhancement of the second plateau in solid high-order harmonic spectra by the two-color fields.

    PubMed

    Li, Jin-Bin; Zhang, Xiao; Yue, Sheng-Jun; Wu, Hong-Mei; Hu, Bi-Tao; Du, Hong-Chuan

    2017-08-07

    We theoretically investigate high-order harmonic generation (HHG) from solids in two-color fields. It is found that under the premise of maintaining the same amplitude, the intensity of the second plateau can be enhanced by two to three orders in a proper two-color field compared with the result in the monochromatic field with the same frequency as the driving pulse of the two-color field. This can be attributed to the fact that most excited electrons can be driven to the top of the first conduction band due to the larger vector potential of the two-color fields, which leads to the higher electron population of upper conduction bands. Moreover, we also find that isolated attosecond pulses can be generated from solids by choosing a proper two-color field that allows the electrons to reach the top of the first conduction band only once. This work provides a promising method for extending the range of solid HHG spectra in experiments.

  3. Extreme-ultraviolet-initiated high-order harmonic generation in Ar+

    NASA Astrophysics Data System (ADS)

    Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.

    2018-02-01

    We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.

  4. Generation of singlet oxygen in fullerene-containing media: 2. Fullerene-containing solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagrov, I V; Belousova, I M; Grenishin, A S

    2008-03-31

    The generation of singlet oxygen in fullerene solutions is studied by luminescence methods upon excitation by pulsed, repetitively pulsed, and continuous radiation sources. The concentration of singlet oxygen in solutions is measured in stationary and pulsed irradiation regimes. The rate constants of quenching of O{sub 2}({sup 1}{delta}{sub g}) by fullerenes C{sub 70} and C{sub 60} in the CCl{sub 4} solution are measured to be (7.2{+-}0.1)x10{sup 7} L mol{sup -1} s{sup -1} and less than 6x10{sup 4} L mol{sup -1} s{sup -1}, respectively. The temperature and photolytic variations in the generation properties of the fullerene solution exposed to intense continuous radiationmore » are studied by the methods of optical and EPR spectroscopy. Pulsed irradiation resulted in the production of singlet oxygen in suspensions of fullerene-like structures, in particular, astralenes. A liquid pulsed singlet-oxygen generator based on the fullerene solution in CCl{sub 4} is developed and studied, in which the yield of O{sub 2} ({sup 1}{delta}{sub g}) to the gas phase at concentrations up to 5x10{sup 16} cm{sup -3} is obtained. (laser applications and other topics in quantum electronics)« less

  5. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  6. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    PubMed Central

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  7. Apparatuses for large area radiation detection and related method

    DOEpatents

    Akers, Douglas W; Drigert, Mark W

    2015-04-28

    Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.

  8. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen

    NASA Astrophysics Data System (ADS)

    Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.

    2007-08-01

    The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.

  9. Virtual engine management simulator for educational purposes

    NASA Astrophysics Data System (ADS)

    Drosescu, R.

    2017-10-01

    This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.

  10. Method, apparatus and system for low-energy beta particle detection

    DOEpatents

    Akers, Douglas W.; Drigert, Mark W.

    2012-09-25

    An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.

  11. Distance and Cable Length Measurement System

    PubMed Central

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  12. Correction of complex nonlinear signal response from a pixel array detector

    DOE PAGES

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; ...

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less

  13. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierbach, Jana; Yeung, Mark; Eckner, Erich

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  15. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  16. Quasi-monoenergetic multi-GeV electron acceleration by optimizing the spatial and spectral phases of PW laser pulses

    NASA Astrophysics Data System (ADS)

    Shin, Junghun; Kim, Hyung Taek; Pathak, V. B.; Hojbota, Calin; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Yoon, Jin Woo; Jeon, Cheonha; Nakajima, Kazuhisa; Sylla, F.; Lifschitz, A.; Guillaume, E.; Thaury, C.; Malka, V.; Nam, Chang Hee

    2018-06-01

    Generation of high-quality electron beams from laser wakefield acceleration requires optimization of initial experimental parameters. We present here the dependence of accelerated electron beams on the temporal profile of a driving PW laser, the density, and length of an interacting medium. We have optimized the initial parameters to obtain 2.8 GeV quasi-monoenergetic electrons which can be applied further to the development of compact electron accelerators and radiations sources.

  17. NONLINEAR AND FIBER OPTICS: Mutual suppression of the electron stimulated Raman scattering and four-wave parametric mixing

    NASA Astrophysics Data System (ADS)

    Malakyan, Yu P.

    1990-04-01

    A new effect is considered: self-induced suppression of electron stimulated Raman scattering involving generation of two new fields from the Stokes radiation as a result of four-wave mixing, interfering destructively with electron stimulated Raman scattering and suppressing it, which in turn suppresses the mixing process. The effect occurs in the steady-state case and not under transient conditions. The results account in a simple manner for the generation of the Stokes radiation in barium vapor as a result of different transitions, depending on the duration of the pump pulse.

  18. Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Weerawarne, Darshana L.

    Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.

  19. Utilization of a Vircator to drive a High Power Relativistic Klystron Amplifier

    NASA Astrophysics Data System (ADS)

    Gardelle, J.; Bardy, J.; Cassany, B.; Desanlis, T.; Eyl, P.; Galtié, A.; Modin, P.; Voisin, L.; Balleyguier, P.; Gouard, P.; Donohue, J.

    2002-11-01

    At CESTA, we have been producing electron beams for some fifteen years by using induction accelerators and pulse diodes. First we had performed Frre-Electron Lasers experiments and we are currently studying the production of High-Power microwaves in the S-band. Among the possible sources we have chosen to perform Relativistic Klystron (RK) experiments with a pulse diode capable of generating a 700kV, 15 kA, 100 ns annular electron beam. In an amplifier configuration, we are testing the idea of using a Vircator as the driver for the first cavity of the klystron. This Vircator uses a simple electrical generator (Marx capacitor bank) which operates in the S-band in the GW class. By reducing the power level to about 100 MW, a 200 ns reliable and reproducible input driver pulse is obtained. First, we present the results of a preliminary experiment for which a coaxial cavity has been built in order to be fed by the Vircator emission at 2.45 GHz. Secondly, we give the experimental results in an oscillator configuration which corresponds to the fisrt step of our RK studies. Comparisons with the results of numerical simulations performed with MAGIC and MAFIA will be given for both experiments.

  20. Generation of ionizing radiation from lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2017-01-01

    The work done experimentally explores generation of electron and x-ray radiation in the process of heating and cooling monolithic and iron-doped crystals of lithium niobate. Iron doping to the concentrations in the range of 1023 m3 was carried out by adding ferric oxide into the melt during the process of crystal growth. The research into radiation generation was performed at 1-10 Pa. The speed of heating from -10 to 1070 C was 10-20 degrees a minute. Current pulses appeared at 17, 38, 56, 94, 98, 100, 105, 106, 1070 C with the interval of 1-3 minutes. The obtained electron current increased in direct proportion to the crystal surface area. The maximum current was 3mA at the design voltage 11 kV on the crystal with 14,5x10,5x10 mm3 surface area. The article describes the possibility to control the start of generation by introducing priming pulse. The results achieved are explained by the domain repolarization while heating the crystal and the appearance of electric field local strength. Bias and overcharge currents contribute to the appearance of electric strength, which stimulates breakdown and plasma formation. X-ray radiation appears both at the stage of discharge formation and during electron deceleration on gas and target material.

  1. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  2. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Rakhee; Roy, Amitava; Mitra, S.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less

  3. Microscale heat transfer in fusion welding of glass by ultra-short pulse laser using dual phase lag effects

    NASA Astrophysics Data System (ADS)

    Bag, Swarup

    2018-04-01

    The heat transfer in microscale has very different physical basis than macroscale where energy transport depends on collisions among energy carriers (electron and phonon), mean free path for the lattice (~ 10 – 100 nm) and mean free time between energy carriers. The heat transport is described on the basis of different types of energy carriers averaging over the grain scale in space and collations between them in time scale. The physical bases of heat transfer are developed by phonon-electron interaction for metals and alloys and phonon scattering for insulators and dielectrics. The non-Fourier effects in heating become more and more predominant as the duration of heating pulse becomes extremely small that is comparable with mean free time of the energy carriers. The mean free time for electron – phonon and phonon-phonon interaction is of the order of 1 and 10 picoseconds, respectively. In the present study, the mathematical formulation of the problem is defined considering dual phase lag i.e. two relaxation times in heat transport assuming a volumetric heat generation for ultra-short pulse laser interaction with dielectrics. The relaxation times are estimated based on phonon scattering model. A three dimensional finite element model is developed to find transient temperature distribution using quadruple ellipsoidal heat source model. The analysis is performed for single and multiple pulses to generate the time temperature history at different location and at different instant of time. The simulated results are validated with experiments reported in independent literature. The effect of two relaxation times and pulse width on the temperature profile is studied through numerical simulation.

  4. Attosecond light sources in the water window

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  5. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  6. Laser Sources for Generation of Ultrasound

    NASA Technical Reports Server (NTRS)

    Wagner, James W.

    1996-01-01

    Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.

  7. Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016).

    PubMed

    Khan, Jafar I; Adhikari, Aniruddha; Sun, Jingya; Priante, Davide; Bose, Riya; Shaheen, Basamat S; Ng, Tien Khee; Zhao, Chao; Bakr, Osman M; Ooi, Boon S; Mohammed, Omar F

    2016-05-01

    Selective mapping of surface charge carrier dynamics of InGaN nanowires before and after surface passivation with octadecylthiol (ODT) is reported by O. F. Mohammed and co-workers on page 2313, using scanning ultrafast electron microscopy. In a typical experiment, the 343 nm output of the laser beam is used to excite the microscope tip to generate pulsed electrons for probing, and the 515 nm output is used as a clocking excitation pulse to initiate dynamics. Time-resolved images demonstrate clearly that carrier recombination is significantly slowed after ODT treatment, which supports the efficient removal of surface trap states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Studies in electron phenomena in MOS structures: The pulsed C-V method. M.S. Thesis. Abstract Only

    NASA Technical Reports Server (NTRS)

    Kaplan, G.

    1983-01-01

    The pulse hysteresis capacitance voltage (C-V) provides a straight forward technique for measuring the change of various charges in MOS structures and a tool for investigating the kinetics of various electron phenomena is developed and described. The method can be used for measuring the energy distribution and kinetics of surface states with the resolution of about 1/5 x 10 to the -9 power cm eV. Some transients in an MOS structure, particularly, the thermal generation of minority charge carriers via surface states and the relaxation of minority charge carriers supplied from the inversion layer outside the MOS structure are theoretically investigated. Analytical expressions which clearly present the physics of those electron phenomena are derived.

  9. Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Zhang, Guobo; Li, Song; Gao, Kai; Li, Guangyu; Ain, Quratul; Hafz, Nasr A. M.

    2018-04-01

    By using 25-45 TW ultra-short (30 fs) laser pulses, we report on the effect of the injection gas concentration on the quality of electron beams generated by a laser-driven plasma wakefield acceleration employing the ionization-injection. For a plasma formed from helium-nitrogen gas mixture and depending on the concentration of the nitrogen gas, we could distinguish a clear trend for the quality of the generated electron beams in terms of their peak energy, energy-spread, divergence angle, and beam charge. The results clearly showed that the lower the nitrogen concentration, the better the quality (higher peak energy, smaller energy spread, and smaller emittance) of the generated electron beams. The results are in reasonable agreement with two-dimensional particle-in-cell simulations.

  10. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  11. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  12. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  13. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

    NASA Astrophysics Data System (ADS)

    Ahn, B.; Schötz, J.; Kang, M.; Okell, W. A.; Mitra, S.; Förg, B.; Zherebtsov, S.; Süßmann, F.; Burger, C.; Kübel, M.; Liu, C.; Wirth, A.; Di Fabrizio, E.; Yanagisawa, H.; Kim, D.; Kim, B.; Kling, M. F.

    2017-03-01

    Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) × 1012 W/cm2. Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission.

  14. Experimental station for ultrafast extreme ultraviolet spectroscopy for non-equilibrium dynamics in warm dense matter

    NASA Astrophysics Data System (ADS)

    Lee, Jong-won; Geng, Xiaotao; Jung, Jae Hyung; Cho, Min Sang; Yang, Seong Hyeok; Jo, Jawon; Lee, Chang-lyoul; Cho, Byoung Ick; Kim, Dong-Eon

    2018-07-01

    Recent interest in highly excited matter generated by intense femtosecond laser pulses has led to experimental methods that directly investigate ultrafast non-equilibrium electronic and structural dynamics. We present a tabletop experimental station for the extreme ultraviolet (EUV) spectroscopy used to trace L-edge dynamics in warm dense aluminum with a temporal resolution of a hundred femtoseconds. The system consists of the EUV probe generation part via a high-order harmonic generation process of femtosecond laser pulses with atomic clusters, a beamline with high-throughput optics and a sample-refreshment system of nano-foils utilizing the full repetition rate of the probe, and a flat-field EUV spectrograph. With the accumulation of an order of a hundred shots, a clear observation of the change in the aluminum L-shell absorption was achieved with a temporal resolution of 90 fs in a 600-fs window. The signature of a non-equilibrium electron distribution over a 10-eV range and its evolution to a 1-eV Fermi distribution are observed. This demonstrates the capability of this apparatus to capture the non-equilibrium electron-hole dynamics in highly excited warm dense matter conditions.

  15. Arbitrary waveform modulated pulse EPR at 200 GHz

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  16. OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics

    DTIC Science & Technology

    1997-01-01

    David DiGiovanni, Uziel Koren, and Kevin Dreyer Multiwavelength , 10 GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Traveling...community. The change in slope in the experimental results that led to more rapid progress was due to the invention of an experimental trick which...feed-forward channel equalization for chirped pulse wavelength division multiplexing," Electr. Lett., vol. 33, p. 10-11,(1997). Multiwavelength

  17. Fabrication of nanoparticles and nanostructures using ultrafast laser ablation of silver with Bessel beams

    NASA Astrophysics Data System (ADS)

    Krishna Podagatlapalli, G.; Hamad, Syed; Ahamad Mohiddon, Md; Venugopal Rao, S.

    2015-03-01

    Ablation of silver targets immersed in double distilled water (DDW)/acetone was performed with first order, non-diffracting Bessel beams generated by focusing ultrashort Gaussian pulses (~2 and ~40 fs) through an Axicon. The fabricated Ag dispersions were characterized by UV-visible absorption spectroscopy, transmission electron microscopy and the nanostructured Ag targets were characterized by field emission scanning electron microscopy. Ag colloids prepared with ~2 ps laser pulses at various input pulse energies of ~400, ~600, ~800 and ~1000 µJ demonstrated similar localized surface plasmon resonance (LSPR) peaks appearing near 407 nm. Analogous behavior was observed for Ag colloids prepared in acetone and ablated with ~40 fs pulses, wherein the LSPR peak was observed near 412 nm prepared with input energies of ~600, ~800 and ~1000 µJ. Observed parallels in LSPR peaks, average size of NPs, plasmon bandwidths are tentatively explained using cavitation bubble dynamics and simultaneous generation/fragmentation of NPs under the influence of Bessel beam. Fabricated Ag nanostructures in both the cases demonstrated strong enhancement factors (>106) in surface enhanced Raman scattering studies of the explosive molecule CL-20 (2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) at 5 μM concentration.

  18. Hot-electron surface retention in intense short-pulse laser-matter interactions.

    PubMed

    Mason, R J; Dodd, E S; Albright, B J

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  19. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  20. Observation of ultrahigh-energy electrons by resonance absorption of high-power microwaves in a pulsed plasma.

    PubMed

    Rajyaguru, C; Fuji, T; Ito, H; Yugami, N; Nishida, Y

    2001-07-01

    The interaction of high power microwave with collisionless unmagnetized plasma is studied. Investigation on the generation of superthermal electrons near the critical layer, by the resonance absorption phenomenon, is extended to very high microwave power levels (eta=E(2)(0)/4 pi n(e)kT(e) approximately 0.3). Here E0, n(e), and T(e) are the vacuum electric field, electron density, and electron temperature, respectively. Successive generation of electron bunches having maximum energy of about 2 keV, due to nonlinear wave breaking, is observed. The electron energy epsilon scales as a function of the incident microwave power P, according to epsilon proportional to P0.5 up to 250 kW. The two-dimensional spatial distribution of high energy electrons reveals that they are generated near the critical layer. However, the lower energy component is again produced in the subcritical density region indicating the possibility of other electron heating mechanisms.

Top