Sample records for electron ray tracing

  1. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    NASA Technical Reports Server (NTRS)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM/Fourier series hybrid approach. The presentation will give background remarks about the MSFC mini Lunar SEM concept and electron optics modeling, followed by a description of the alternate field modeling techniques that were tried, along with their incorporation into a ray-trace simulation. Next, the validation of this simulation against commercially available software will be discussed using an example lens as a test case. Then, the efficacy of aberration assessment using direct ray-tracing will be demonstrated, using this same validation case. The discussion will include practical error checks of the field solution. Finally, the ray-trace assessment of the MSFC mini Lunar SEM concept will be shown and discussed. The authors believe this presentation will be of general interest to practitioners of modeling and simulation, as well as those with a general optics background. Because electron optics and photon optics share many basic concepts (e.g., lenses, images, aberrations, etc.), the appeal of this presentation need not be restricted to just those interested in charged particle optics.

  2. Comparing TID simulations using 3-D ray tracing and mirror reflection

    NASA Astrophysics Data System (ADS)

    Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.

    2016-04-01

    Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.

  3. Analysis of the Effect of Electron Density Perturbations Generated by Gravity Waves on HF Communication Links

    NASA Astrophysics Data System (ADS)

    Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.

    2017-12-01

    In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.

  4. Ionospheric Tomography Using Faraday Rotation of Automatic Dependant Surveillance Broadcast UHF Signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.

    2013-12-01

    The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.

  5. Measurement of Trace Constituents by Electron-Excited X-Ray Microanalysis with Energy-Dispersive Spectrometry.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-06-01

    Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.

  6. Application of relativistic electrons for the quantitative analysis of trace elements

    NASA Astrophysics Data System (ADS)

    Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.

    1984-04-01

    Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.

  7. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon

    2010-07-27

    X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.

  8. Inverse photoelectron spectrometer with magnetically focused electron gun

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1991-01-01

    An inverse photoelectron spectrometer is described which is based on the design of a magnetically focused low energy electron gun. The magnetic lens extends its field over a relatively large segment of the electron trajectory, which could provide a better focusing effect on a high-current-density low-velocity electron beam, providing the magnetic field in the vicinity of the target is reduced sufficiently to preserve the collinearity of the beam. In order to prove the concept, ray tracing is conducted using the Herrmannsfeldt program for solving electron trajectories in electrostatic and magnetostatic focusing systems. The program allows the calculation of the angles of the electron trajectories with the z axis, at the target location. The results of the ray-tracing procedure conducted for this gun are discussed. Some of the advantages of the magnetic focusing are also discussed.

  9. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.

    PubMed

    Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P

    2011-12-01

    Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.

  10. Spacecraft observations of man-made whistler-mode signals near the electron gyrofrequency

    NASA Technical Reports Server (NTRS)

    Dunckel, N.; Helliwell, R. A.

    1977-01-01

    The reported investigation extends the range of whistler-mode wave observations to a wave frequency/electron gyrofrequency ratio of about 0.9, where an abrupt cutoff is observed. This cutoff can be explained entirely in terms of accessibility and hence, if there is damping, it must be limited to normalized frequencies above 0.9. In connection with a study of the behavior of the signal intensity, ray tracings were carried out at 80 kHz. The ray-tracing calculations were carried out with the aid of a computer program written by Walter (1969) and modified by Angerami (1970).

  11. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  12. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  13. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  14. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying wave instrument (e.g. OGO, ISEE 1, DE 1, POLAR, CLUSTER, Van Allen Probes). The method can be easily extended to make tomographic measurements of magnetospheric electron and ion density by analyzing a series of whistlers observed along the satellite orbit.

  15. Field modeling and ray-tracing of a miniature scanning electron microscope beam column.

    PubMed

    Loyd, Jody S; Gregory, Don A; Gaskin, Jessica A

    2017-08-01

    A miniature scanning electron microscope (SEM) focusing column design is introduced and its potential performance assessed through an estimation of parameters that affect the probe radius, to include source size, spherical and chromatic aberration, diffraction and space charge broadening. The focusing column, a critical component of any SEM capable of operating on the lunar surface, was developed by the NASA Marshall Space Flight Center and Advanced Research Systems. The ray-trace analysis presented uses a model of the electrostatic field (within the focusing column) that is first calculated using the boundary element method (BEM). This method provides flexibility in modeling the complex electrode shapes of practical electron lens systems. A Fourier series solution of the lens field is then derived within a cylindrical domain whose boundary potential is provided by the BEM. Used in this way, the Fourier series solution is an accuracy enhancement to the BEM solution, allowing sufficient precision to assess geometric aberrations through direct ray-tracing. Two modes of operation with distinct lens field solutions are described. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Characterization With Scanning Electron Microscopy/Energy-Dispersive X-ray Spectrometry of Microtraces From the Ligature Mean in Hanging Mechanical Asphyxia: A Series of Forensic Cases.

    PubMed

    Maghin, Francesca; Andreola, Salvatore Ambrogio; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Zoja, Riccardo

    2018-03-01

    The authors applied scanning electron microscopy with energy-dispersive x-ray spectrometry to the furrow derived from hanging means. The study was conducted with the purpose to detect possible extraneous microtraces, deriving from the ligature, that could have had an interaction with the cutaneous biological matrix, thanks to a transfert mechanism, in the proximities of the lesion.Fifteen cutaneous samples of the furrow and an equal number of fragments of graphite tape, directly positioned on the lesion produced by the ligature mean and used as a "conductor" of possible traces, were analyzed using scanning electron microscopy with energy-dispersive x-ray spectrometry.The research of microscopic traces on the furrow using this technique highlights extraneous traces leading to 3 main categories: natural fabrics, and synthetic and metallic materials, excluding possible environmental pollutants. The analysis, run on 7 hanging deaths, made available by the judicial authority, found a morphological and compositional compatibility with the traces found on the cutaneous furrow produced during hanging.The technique used in this study is innovative in the pathological-forensic field, and can be considered useful in clarifying and studying this typology of asphyxia leading to a specific ligature material, when missing, or attributing the cause of death to hanging when the furrow is not macroscopically obvious.

  17. OPTICAL TRANSCRIBING OSCILLOSCOPE

    DOEpatents

    Kerns, Q.A.

    1961-09-26

    A device is designed for producing accurate graphed waveforms of very fast electronic pulses. The fast pulse is slowly tracked on a cathode ray tube and a pair of photomultiplier tubes, exposed to the pulse trace, view separate vertical portions thereof at each side of a fixed horizontal reference. Each phototube produces an output signal indicative of vertical movement of the exposed trace, which simultaneous signals are compared in a difference amplifier. The amplifier produces a difference signal which, when applied to the cathode ray tube, maintains the trace on the reference. A graphic recorder receives the amplified difference signal at an x-axis input, while a y-axis input is synchronized with the tracking time of the cathode ray tube and therefore graphs the enlarged waveshape.

  18. A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation

    DOE PAGES

    Shi, Xianbo; Reininger, Ruben; Sanchez del Rio, Manuel; ...

    2014-05-15

    A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared withSHADOWresults pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version ofSRWin one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the codemore » is considerably faster than the multi-electron version ofSRWand is therefore a useful tool for beamline design and optimization.« less

  19. Corrosion phenomena in electron, proton and synchrotron X-ray microprobe analysis of Roman glass from Qumran, Jordan

    NASA Astrophysics Data System (ADS)

    Janssens, K.; Aerts, A.; Vincze, L.; Adams, F.; Yang, C.; Utui, R.; Malmqvist, K.; Jones, K. W.; Radtke, M.; Garbe, S.; Lechtenberg, F.; Knöchel, A.; Wouters, H.

    1996-04-01

    A series of 89 glass fragments of Roman glass are studied using electron, proton and synchrotron radiation induced X-ray emission from microscopic areas on the sample surface. The glass originates from Qumran, Jordan and was buried for 1900 years. The weathering layers that result from the extended contact with ground water have been studied, next to the trace composition of the original glass of these pieces. The latter information indicates that at Qumran, large quantities of glass objects were being used in Ancient times. Cross-sectional profiles of the glass show a complex migration behaviour of various groups of major and trace elements.

  20. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    NASA Astrophysics Data System (ADS)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  1. Ray-tracing studies and path-integrated gains of ELF unducted whistler mode waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Goertz, C. K.

    1983-01-01

    Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.

  2. High frequency RF waves

    NASA Astrophysics Data System (ADS)

    Horton, William; Brookman, M.; Goniche, M.; Peysson, Y.; Ekedahl, A.

    2017-10-01

    ECH and LHCD- are scattered by the density and magnetic field turbulence from drift waves as measured in and Tore Supra-WEST, EAST and DIII-D. Ray equations give the spreading from plasma refraction from the antenna through the core plasma until and change the parallel phase velocity evolves to where RF waves are absorbed by the electrons. Extensive LH ray tracing and absorption has been reported using the coupled CP3O ray tracing and LUKE electron phase space density code with collisionless electron-wave resonant absorption. In theory and simulations are shown for the ray propagation with the resulting electron distributions along with the predicted X ray distribution that compared to the measured X-ray spectrum. Lower-hybrid is essential for steady-state operation in tokamaks with control of the high-energy electrons intrinsic to tokamaks confinement and heating. The record steady tokamak plasma is Tore Supra a steady 6 minute steady state plasma with 1 Gigajoule energy passing through the plasma. WEST is repeating the experiments with ITER shaped separatrix and divertor chamber and EAST achieved comparable long-pulse plasmas. Results are presented from an IFS-3D spectral code with a pair of inside-outside LHCD antennas and a figure-8 magnetic separatrix are presented. Scattering of the slow wave into the fast wave wave is explored showing the RF scattering from drift wave dne and dB increases the core penetration may account the measured broad X-ray spectrum. Work supported by the DoE through Grants to the Institute for Fusion Studies [DE-FG02-04ER54742], ARLUT and General Atomics, San Diego, California, USA and the IRFM at Cadarache by the Comissariat Energie Atomique, France.

  3. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  4. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments

    NASA Astrophysics Data System (ADS)

    Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.

    2015-11-01

    The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.

  5. Detection of titanium in human tissues after craniofacial surgery.

    PubMed

    Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N

    1997-04-01

    Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.

  6. Total Dose Survivability of Hubble Electronic Components

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2017-01-01

    A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.

  7. Detection and modeling of the acoustic perturbation produced by the launch of the Space Shuttle using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Bowling, T. J.; Calais, E.; Dautermann, T.

    2010-12-01

    Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.

  8. Applications of Coherent Radiation from Electrons traversing Crystals

    NASA Astrophysics Data System (ADS)

    Überall, H.

    2000-04-01

    Historically, the first types of coherent radiation from electrons traversing crystals studied were coherent bremsstrahlung (CB: Dyson and Überall 1955; Überall 1956, 1962) and channeling radiation (CR: Kumakhov, 1976) which produce quasimonochromatic X-rays and γ-rays, as well as parametric X-rays (Baryshevsky and Feranchuk, 1983). Related non-crystal sources are transition radiation and synchrotron radiation. We here present a comparison of radiation types from these sources, and we discuss a series of their possible applications, namely (a) CR: X-ray lithography, angiography, structure analysis of macromolecules, and trace element analysis, and (b) for CB: Radiography, use as a neutron source, elemental analysis, radiation therapy, and radioisotope production for commercial or medical use. CR and CB are very intense sources, needing only low-energy, moderately-priced electron linacs for their generation, hence competing with (or surpassing) more conventional X-ray sources intensity-wise and from a cost standpoint.

  9. CYBER 200 Applications Seminar

    NASA Technical Reports Server (NTRS)

    Gary, J. P. (Compiler)

    1984-01-01

    Applications suited for the CYBER 200 digital computer are discussed. Various areas of application including meteorology, algorithms, fluid dynamics, monte carlo methods, petroleum, electronic circuit simulation, biochemistry, lattice gauge theory, economics and ray tracing are discussed.

  10. Technical Note: A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-12-01

    To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.

  11. Using the USU ionospheric model to predict radio propagation through a simulated ionosphere

    NASA Astrophysics Data System (ADS)

    Huffines, Gary R.

    1990-12-01

    To evaluate the capabilities of communication, navigation, and defense systems utilizing electromagnetic waves which interact with the ionosphere, a three-dimensional ray tracing program was used. A simple empirical model (Chapman function) and a complex physical model (Schunk and Sojka model) were used to compare the representation of ionospheric conditions. Four positions were chosen to test four different features of the Northern Hemispheric ionosphere. It seems that decreasing electron density has little or no effect on the horizontal components of the ray path while increasing electron density causes deviations in the ray path. It was also noted that rays in the physical model's mid-latitude trough region escaped the ionosphere for all frequencies used in this study.

  12. Three dimensional ray tracing Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1982-01-01

    Ray tracing of the Jovian magnetosphere in the low frequency range (1+40 MHz) has resulted in a new understanding of the source mechanism for Io dependent decametric radiation (DAM). Our three dimensional ray tracing computer code has provided model DAM arcs at 10 deg. intervals of Io longitude source positions for the full 360 deg of Jovian system III longitude. In addition, particularly interesting arcs were singled out for detailed study and modelling. Dependent decametric radiation arcs are categorized according to curvature--the higher curvature arcs are apparently due to wave stimulation at a nonconstant wave normal angle, psi. The psi(f) relationship has a signature that is common to most of the higher curvature arcs. The low curvature arcs, on the other hand, are adequately modelled with a constant wave normal angle of close to 90 deg. These results imply that for higher curvature arcs observed for from Jupiter (to diminish spacecraft motion effects) the electrons providing the gyroemission are relativistically beamed.

  13. How Long Can the Hubble Space Telescope Operate Reliably?

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Lum, G.; Haskins, D. N.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    Total ionizing dose exposure of electronic parts in the Hubble Space Telescope is analyzed using 3-D ray trace and Monte Carlo simulations. Results are discussed along with other potential failure mechanisms for science operations.

  14. Assimilative model for ionospheric dynamics employing delay, Doppler, and direction of arrival measurements from multiple HF channels

    NASA Astrophysics Data System (ADS)

    Fridman, Sergey V.; Nickisch, L. J.; Hausman, Mark; Zunich, George

    2016-03-01

    We describe the development of new HF data assimilation capabilities for our ionospheric inversion algorithm called GPSII (GPS Ionospheric Inversion). Previously existing capabilities of this algorithm included assimilation of GPS total electron content data as well as assimilation of backscatter ionograms. In the present effort we concentrated on developing assimilation tools for data related to HF propagation channels. Measurements of propagation delay, angle of arrival, and the ionosphere-induced Doppler from any number of known propagation links can now be utilized by GPSII. The resulting ionospheric model is consistent with all assimilated measurements. This means that ray tracing simulations of the assimilated propagation links are guaranteed to be in agreement with measured data within the errors of measurement. The key theoretical element for assimilating HF data is the raypath response operator (RPRO) which describes response of raypath parameters to infinitesimal variations of electron density in the ionosphere. We construct the RPRO out of the fundamental solution of linearized ray tracing equations for a dynamic magnetoactive plasma. We demonstrate performance and internal consistency of the algorithm using propagation delay data from multiple oblique ionograms (courtesy of Defence Science and Technology Organisation, Australia) as well as with time series of near-vertical incidence sky wave data (courtesy of the Intelligence Advanced Research Projects Activity HFGeo Program Government team). In all cases GPSII produces electron density distributions which are smooth in space and in time. We simulate the assimilated propagation links by performing ray tracing through GPSII-produced ionosphere and observe that simulated data are indeed in agreement with assimilated measurements.

  15. Initial results from a multi-point mapping observation of thundercloud high-energy radiation in coastal area of Japan sea

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Enoto, T.; Furuta, Y.; Nakazawa, K.; Yuasa, T.; Okuda, K.; Makishima, K.; Nakano, T.; Umemoto, D.; Tsuchiya, H.

    2017-12-01

    On-ground detections of Thunderstorm Radiation Bursts (TRB) which mainly consist of bremsstrahlung gamma rays with energy extending up to 20 MeV indicate powerful electron accelerations inside thunderclouds or along lightning discharge paths (e.g. Torii et al., 2002, Tsuchiya et al., 2007, Dwyer et al., 2004). In order to resolve time variation and structure of the electron accelerators, we have constructed a multi-point mapping observation network with the aim of tracing gamma rays from moving thunderclouds since 2015. In fiscal 2016, we developed low cost and small size detectors dedicated to our observation. The data acquisition system records energy and timing of individual gamma-ray photons by 4-ch and 50 MHz sampling electrical boards (9.5 cm x 9.5 cm), coupled with BGO scintillator crystals. The systems were installed in portable water-proof boxes. We operated 10 detectors in two areas (Ishikawa and Niigata) along the coast of Japan Sea from October 2016 to April 2017. During this period, detectors in Ishikawa detected in total 10 TRBs lasting for several minutes associated with passage of a thundercloud. Our previous single-site measurement at Niigata, has recorded 1.4 TRBs per year on average in 2006-2015. Therefore, our new multi-point observation detected 7 times as many events as the previous system. One of the TRB gamma-ray spectra was fitted well by a cutoff power-law model. We performed a Monte Carlo simulation, and revealed that this spectrum was explained as bremsstrahlung of a monochromatic 15 MeV electron beam generated at an altitude of 500 m. We also succeeded in tracing gamma rays from an identical moving thundercloud with two detectors, demonstrating performance of the multi-point observation. In addition, we detected "short TRBs" lasting for a few hundred milliseconds associated with lightning discharges from four independent detectors placed 500 m apart simultaneously, in January and February 2017 at Niigata. The results in 2016-2017 winter season are proving that our multi-point observation can firmly detect a large number of TRBs and trace gamma rays from thunderstorms.

  16. Transmission electron microscope studies of extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  17. Recent advances in X-ray microanalysis in dermatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forslind, B.; Grundin, T.G.; Lindberg, M.

    1985-01-01

    Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less

  18. Magnetospheric ray tracing studies. [Jupiter's decametric radiation

    NASA Technical Reports Server (NTRS)

    Six, N. F.

    1982-01-01

    Using a model of Jupiter's magnetized plasma environment, radiation raypaths were calculated with a three-dimension ray tracing program. It is assumed that energetic particles produce the emission in the planet's auroral zone at frequencies just above the electron gyrofrequencies. This radiation is generated in narrow sheets defined by the angle of a ray with respect to the magnetic field line. By specifying the source position: latitude, longitude, and radial distance from the planet, signatures in the spectrum of frequency versus time seen by Voyager 1 and 2 were duplicated. The frequency range and the curvature of the decametric arcs in these dynamic spectra are the result of the geometry of the radiation sheets (imposed by the plasma and by the B-field) and illumination of Voyager 1 and 2 as the rotating magnetosphere mimics a pulsar.

  19. The detection of sulphur in contamination spots in electron probe X-ray microanalysis

    USGS Publications Warehouse

    Adler, I.; Dwornik, E.J.; Rose, H.J.

    1962-01-01

    Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.

  20. Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Shaftan, T.

    To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering groupmore » with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.« less

  1. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens.

    PubMed

    Gómez-Correa, J E; Coello, V; Garza-Rivera, A; Puente, N P; Chávez-Cerda, S

    2016-03-10

    Ray tracing in spherical Luneburg lenses has always been represented in 2D. All propagation planes in a 3D spherical Luneburg lens generate the same ray tracing, due to its radial symmetry. A geometry without radial symmetry generates a different ray tracing. For this reason, a new ray tracing method in 3D through spherical and elliptical Luneburg lenses using 2D methods is proposed. The physics of the propagation is shown here, which allows us to make a ray tracing associated with a vortex beam. A 3D ray tracing in a composite modified Luneburg lens that represents the human eye lens is also presented.

  2. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  3. Correction of the spectral calibration of the Joint European Torus core light detecting and ranging Thomson scattering diagnostic using ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawke, J.; Scannell, R.; Maslov, M.

    2013-10-15

    This work isolated the cause of the observed discrepancy between the electron temperature (T{sub e}) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the stray light filters transmission functions due to the variations in the incidence angles of the collected photons impacted plasma measurements. To correct for this identified source of error, correction factors were developed using ray tracing models for the calibration and operational states of the diagnostic. Themore » application of these correction factors resulted in an increase in the observed T{sub e}, resulting in the partial if not complete removal of the observed discrepancy in the measured T{sub e} between the JET core LIDAR TS diagnostic, High Resolution Thomson Scattering, and the Electron Cyclotron Emission diagnostics.« less

  4. Trace-metal sources and their release from mine wastes: examples from humidity cell tests of hardrock mine waste and from Warrior Basin coal

    USGS Publications Warehouse

    Diehl, S.F.; Smith, Kathleen S.; Desborough, G.A.; White, W.W.; Lapakko, K.A.; Goldhaber, Martin B.; Fey, David L.

    2003-01-01

    To assess the potential impact of metal and acid contamination from mine-waste piles, it is important to identify the mineralogic source of trace metals and their mode of occurrence. Microscopic analysis of mine-waste samples from both hard-rock and coalmine waste samples demonstrate a microstructural control, as well as mineralogic control, on the source and release of trace metals into local water systems. The samples discussed herein show multiple periods of sulfide mineralization with varying concentrations of trace metals. In the first case study, two proprietary hard-rock mine-waste samples exposed to a series of humidity cell tests (which simulate intense chemical weathering conditions) generated acid and released trace metals. Some trace elements of interest were: arsenic (45-120 ppm), copper (60-320 ppm), and zinc (30-2,500 ppm). Untested and humidity cell-exposed samples were studied by X-ray diffraction, scanning electron microscope with energy dispersive X-ray (SEM/EDX), and electron microprobe analysis. Studies of one sample set revealed arsenic-bearing pyrite in early iron- and magnesium-rich carbonate-filled microveins, and iron-, copper-, arsenic-, antimony-bearing sulfides in later crosscutting silica-filled microveins. Post humidity cell tests indicated that the carbonate minerals were removed by leaching in the humidity cells, exposing pyrite to oxidative conditions. However, sulfides in the silica-filled veins were more protected. Therefore, the trace metals contained in the sulfides within the silica-filled microveins may be released to the surface and (or) ground water system more slowly over a greater time period. In the second case study, trace metal-rich pyrite-bearing coals from the Warrior Basin, Alabama were analyzed. Arsenic-bearing pyrite was observed in a late-stage pyrite phase in microfaults and microveins that crosscut earlier arsenic.

  5. Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation

    NASA Astrophysics Data System (ADS)

    Psiaki, M. L.

    2014-12-01

    A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.

  6. Electromagnetic cascades in pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1981-01-01

    The development of pair photon cascades initiated by high energy electrons above a pulsar polar cap is simulated numerically. The calculation uses the energy of the primary electron, the magnetic field strength, and the period of rotation as parameters and follows the curvature radiation emitted by the primary, the conversion of this radiation e(+) - e(-) pairs in the intense fields, and the quantized synchrotron radiation by the secondary pairs. A recursive technique allows the tracing of an indefinite number of generations using a Monte Carlo method. Gamma ray and pair spectra are calculated for cascades in different parts of the polar cap and with different acceleration models. It is found that synchrotron radiation from secondary pairs makes an important contribution to the gamma ray spectrum above 25 MeV, and that the final gamma ray and pair spectra are insensitive to the height of the accelerating region, as long as the acceleration of the primary electrons is not limited by radiation reaction.

  7. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    DOE PAGES

    Ma, T.; Chen, H.; Patel, P. K.; ...

    2016-08-18

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. We describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.Published by AIP Publishing

  8. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    PubMed

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  9. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  10. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  11. Development of multifunctional nanoparticles towards applications in non-invasive magnetic resonance imaging and axonal tracing.

    PubMed

    Du, Yan; Qin, Yubo; Li, Zizhen; Yang, Xiuying; Zhang, Jingchang; Westwick, Harrison; Tsai, Eve; Cao, Xudong

    2017-12-01

    A multifunctional nanobiomaterial has been developed by deliberately combining functions of superparamagnetism, fluorescence, and axonal tracing into one material. Superparamagnetic iron oxide nanoparticles were first synthesized and coated with a silica layer to prevent emission quenching through core-dye interactions; a fluorescent molecule, fluorescein isothiocyanate, was doped inside second layer of silica shell to improve photo-stability and to enable further thiol functionalization. Subsequently, biotinylated dextran amine, a sensitive axonal tracing reagent, was immobilized on the thiol-functionalized nanoparticle surfaces. The resulting nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, magnetic resonance imaging and fluorescence confocal microscopy. In vitro cell experiments using both undifferentiated and differentiated Neuro-2a cells showed that the cells were able to take up the nanoparticles intracellularly and that the nanoparticles showed good biocompatibilities. In summary, this new material demonstrated promising performances for both optical and magnetic resonance imaging modalities, suggesting its promising potentials in applications such as in non-invasive imaging, particularly in neuronal tracing.

  12. Virtual Ionosonde Construction by using ITS and IRI-2012 models

    NASA Astrophysics Data System (ADS)

    Kabasakal, Mehmet; Toker, Cenk

    2016-07-01

    Ionosonde is a kind of radar which is used to examine several properties of the ionosphere, including the electron density and drift velocity. Ionosonde is an expensive device and its installation requires special expertise and a proper area clear of sources of radio interference. In order to overcome the difficulties of installing an ionosonde hardware, the target of this study is to construct a virtual ionosonde based on communication channel models where the model parameters are determined by ray tracing obtained by the PHaRLAP software and the International Reference Ionosphere (IRI-2012) model. Although narrowband high frequency (HF) communication models have been widely used to represent the behaviour of the radio channel, they are applicable to a limited set of actual propagation conditions and wideband models are needed to better understand the HF channel. In 1997, the Institute for Telecommunication Science (ITS) developed a wideband HF ionospheric model, the so-called ITS model, however, it has some restrictions in real life applications. The ITS model parameters are grouped into two parts; the deterministic and the stochastic parameters. The deterministic parameters are the delay time (tau _{c}) of each reflection path based on the penetration frequency (f _{p}), the height (h _{0}) of the maximum electron density and the half thickness (sigma) of the reflective layer. The stochastic parameters, delay spread (sigma _{tau}), delay rise time (sigma _{c}), Doppler spread (sigma _{D}), Doppler shift (f _{s}), are to calculate the impulse response of the channel. These parameters are generally difficult to obtain and are based on the measured data which may not be available in all cases. In order to obtain these parameters, we propose to integrate the PHaRLAP ray tracing toolbox and the IRI-2012 model. When Total Electron Content (TEC) estimates obtained from GNSS measurements are input to IRI-2012, the model generates electron density profiles close to the actual profiles, which are used for ray tracing between the user defined geographical coordinates. Then, ITS model parameters are obtained from both ray tracing and also the IRI-2012 model. Finally, an ionosonde signal waveform is transmitted through the channel obtained from the ITS model to generate the ionogram. As an application, oblique sounding between two points is simulated with ITS channel model. M-sequence, Barker sequence and complementary sequences are used as sounding waveforms. The effects of channel on the oblique ionogram and sounding waveform characteristics are also investigated.

  13. Ray tracing method for the evaluation of grazing incidence x-ray telescopes described by spatially sampled surfaces.

    PubMed

    Yu, Jun; Shen, Zhengxiang; Sheng, Pengfeng; Wang, Xiaoqiang; Hailey, Charles J; Wang, Zhanshan

    2018-03-01

    The nested grazing incidence telescope can achieve a large collecting area in x-ray astronomy, with a large number of closely packed, thin conical mirrors. Exploiting the surface metrological data, the ray tracing method used to reconstruct the shell surface topography and evaluate the imaging performance is a powerful tool to assist iterative improvement in the fabrication process. However, current two-dimensional (2D) ray tracing codes, especially when utilized with densely sampled surface shape data, may not provide sufficient accuracy of reconstruction and are computationally cumbersome. In particular, 2D ray tracing currently employed considers coplanar rays and thus simulates only these rays along the meridional plane. This captures axial figure errors but leaves other important errors, such as roundness errors, unaccounted for. We introduce a semianalytic, three-dimensional (3D) ray tracing approach for x-ray optics that overcomes these shortcomings. And the present method is both computationally fast and accurate. We first introduce the principles and the computational details of this 3D ray tracing method. Then the computer simulations of this approach compared to 2D ray tracing are demonstrated, using an ideal conic Wolter-I telescope for benchmarking. Finally, the present 3D ray tracing is used to evaluate the performance of a prototype x-ray telescope fabricated for the enhanced x-ray timing and polarization mission.

  14. Electron-excited energy dispersive x-ray spectrometry in the variable pressure scanning electron microscope (EDS/VPSEM): it's not microanalysis anymore!

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2015-10-01

    X-ray spectra suffer significantly degraded spatial resolution when measured in the variable-pressure scanning electron microscope (VPSEM, chamber pressure 1 Pa to 2500 Pa) as compared to highvacuum SEM (operating pressure < 10 mPa). Depending on the gas path length, electrons that are scattered hundreds of micrometers outside the focused beam can contribute 90% or more of the measured spectrum. Monte Carlo electron trajectory simulation, available in NIST DTSA-II, models the gas scattering and simulates mixed composition targets, e.g., particle on substrate. The impact of gas scattering at the major (C > 0.1 mass fraction), minor (0.01 <= C <= 0.1), and trace (C < 0.01) constituent levels can be estimated. NIST DTSA-II for Java-platforms is available free at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  15. Carbonate and sulfate minerals in the Chassigny meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1991-01-01

    SO2 and CO2 from pyrolysis and combustion of bulk Chassigny and infrared traces of sulfate and carbonate minerals have been previously reported. Using scanning electron microscopy (SEM) and energy-dispersive x ray spectrometry (EDS), portions of these samples are searched, and a Ca-sulfate/carbonate association is confirmed.

  16. Electron-rich triphenylamine-based sensors for picric acid detection.

    PubMed

    Chowdhury, Aniket; Mukherjee, Partha Sarathi

    2015-04-17

    This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

  17. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  18. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Kappler, Andreas

    2014-05-01

    Microbe-mineral interactions occur in diverse modern environments, from the deep sea and subsurface rocks to soils and surface aquatic environments. They may have played a central role in the geochemical cycling of major (e.g., C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth's history. Such interactions include electron transfer at the microbe-mineral interface that left traces in the rock record. Geomicrobiology consists in studying interactions at these organic-mineral interfaces in modern samples and looking for traces of past microbe-mineral interactions recorded in ancient rocks. Specific tools are required to probe these interfaces and to understand the mechanisms of interaction between microbes and minerals from the scale of the biofilm to the nanometer scale. In this review, we focus on recent advances in electron microscopy, in particular in cryoelectron microscopy, and on a panel of electrochemical and synchrotron-based methods that have recently provided new understanding and imaging of the microbe-mineral interface, ultimately opening new fields to be explored.

  19. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  20. Reverse ray tracing for transformation optics.

    PubMed

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  1. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.

    PubMed

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-29

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  2. Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  3. Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1984-01-01

    Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.

  4. Computer programs simplify optical system analysis

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The optical ray-trace computer program performs geometrical ray tracing. The energy-trace program calculates the relative monochromatic flux density on a specific target area. This program uses the ray-trace program as a subroutine to generate a representation of the optical system.

  5. Tracing Chromospheric Evaporation in Radio and Soft X-rays

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.

    1997-01-01

    There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.

  6. A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Karsten, Sven; Bokarev, Sergey I.; Aziz, Saadullah G.; Ivanov, Sergei D.; Kühn, Oliver

    2017-06-01

    Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of atoms in complex environments. Despite working on energy scales that are much larger than those corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering spectra [Karsten et al., J. Phys. Chem. Lett. 8, 992 (2017)], based on ground state molecular dynamics accompanied with state-of-the-art calculations of electronic excitation energies and transition dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed simulation protocol using gas phase and bulk water as examples. The specific spectroscopic features stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic energy gaps and transition dipole correlation functions. The observed tendencies are explained on the basis of a simple harmonic model, and the involved approximations are discussed. The method represents a step forward over the conventional approaches that treat the system in full complexity and provides a reasonable starting point for further improvements.

  7. A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy.

    PubMed

    Karsten, Sven; Bokarev, Sergey I; Aziz, Saadullah G; Ivanov, Sergei D; Kühn, Oliver

    2017-06-14

    Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of atoms in complex environments. Despite working on energy scales that are much larger than those corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering spectra [Karsten et al., J. Phys. Chem. Lett. 8, 992 (2017)], based on ground state molecular dynamics accompanied with state-of-the-art calculations of electronic excitation energies and transition dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed simulation protocol using gas phase and bulk water as examples. The specific spectroscopic features stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic energy gaps and transition dipole correlation functions. The observed tendencies are explained on the basis of a simple harmonic model, and the involved approximations are discussed. The method represents a step forward over the conventional approaches that treat the system in full complexity and provides a reasonable starting point for further improvements.

  8. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    ERIC Educational Resources Information Center

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-01-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…

  9. THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.

    2010-07-16

    Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less

  10. The weathering of a sulfide orebody: Speciation and fate of some potential contaminants

    USGS Publications Warehouse

    Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.

    2009-01-01

    Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.

  11. Ray Tracing with Virtual Objects.

    ERIC Educational Resources Information Center

    Leinoff, Stuart

    1991-01-01

    Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)

  12. Parallel Ray Tracing Using the Message Passing Interface

    DTIC Science & Technology

    2007-09-01

    software is available for lens design and for general optical systems modeling. It tends to be designed to run on a single processor and can be very...Cameron, Senior Member, IEEE Abstract—Ray-tracing software is available for lens design and for general optical systems modeling. It tends to be designed to...National Aeronautics and Space Administration (NASA), optical ray tracing, parallel computing, parallel pro- cessing, prime numbers, ray tracing

  13. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    PubMed

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  14. Improved backward ray tracing with stochastic sampling

    NASA Astrophysics Data System (ADS)

    Ryu, Seung Taek; Yoon, Kyung-Hyun

    1999-03-01

    This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.

  15. Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.

    PubMed

    Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A

    2002-12-23

    Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.

  16. Modeling a 400 Hz Signal Transmission Through the South China Sea Basin

    DTIC Science & Technology

    2009-03-01

    TRACING ..........................8 1. General Ray Theory and the Eikonal Approximation .....................8 2. Hamiltonian Ray Tracing...HAMILTONIAN RAY TRACING 1. General Ray Theory and the Eikonal Approximation In general, modeling acoustic propagation through the ocean necessitates... eikonal and represents the phase component of the solution. Since solutions of constant phase represent wave fronts, and rays travel in a direction

  17. 2-Dimensional B-Spline Algorithms with Applications to Ray Tracing in Media of Spatially-Varying Refractive Index

    DTIC Science & Technology

    2007-08-01

    In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods

  18. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    NASA Astrophysics Data System (ADS)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  19. Improved electron probe microanalysis of trace elements in quartz

    USGS Publications Warehouse

    Donovan, John J.; Lowers, Heather; Rusk, Brian G.

    2011-01-01

    Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.

  20. High-sensitivity ESCA instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, R.D.; Herglotz, H.K.; Lee, J.D.

    1973-01-01

    A new electron spectroscopy for chemical analysis (ESCA) instrument has been developed to provide high sensitivity and efficient operation for laboratory analysis of composition and chemical bonding in very thin surface layers of solid samples. High sensitivity is achieved by means of the high-intensity, efficient x-ray source described by Davies and Herglotz at the 1968 Denver X-Ray Conference, in combination with the new electron energy analyzer described by Lee at the 1972 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. A sample chamber designed to provide for rapid introduction and replacement of samples has adequate facilities for various sample treatmentsmore » and conditiouing followed immediately by ESCA analysis of the sample. Examples of application are presented, demonstrating the sensitivity and resolution achievable with this instrument. Its usefulness in trace surface analysis is shown and some chemical shifts'' measured by the instrument are compared with those obtained by x-ray spectroscopy. (auth)« less

  1. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    NASA Astrophysics Data System (ADS)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.

  2. Chemical fingerprinting and source tracing of obsidian: the central Mediterranean trade in black gold.

    PubMed

    Tykot, Robert H

    2002-08-01

    Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.

  3. Computer program for optical systems ray tracing

    NASA Technical Reports Server (NTRS)

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  4. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Astrophysics Data System (ADS)

    Wong, H. K.

    1994-03-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  5. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  6. Analytical SuperSTEM for extraterrestrial materials research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried outmore » with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.« less

  7. Synthetic Image Generator Model; Application of View Angle Dependent Reflectivity Components and Performance Evaluation in the Visible Region

    DTIC Science & Technology

    1993-02-01

    3.1.2. Modeling of Environment ....................... 6 3.1.3. Ray Tracing and Radiosity ..................... 8 3.2. Reflectivity Review...SIG modeling is dependent on proper treatment of its effects. 3.1.3 Ray Tracing and Radiosity Prior to reviewing reflectivity, a brief look is made of...methods of applying complex theoretical energy propagation algorithms. Two such methods are ray tracing and radiosity (Goral, et al, 1984). Ray tracing is a

  8. CosApps: Simulate gravitational lensing through ray tracing and shear calculation

    NASA Astrophysics Data System (ADS)

    Coss, David

    2017-12-01

    Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.

  9. Computer ray tracing speeds.

    PubMed

    Robb, P; Pawlowski, B

    1990-05-01

    The results of measuring the ray trace speed and compilation speed of thirty-nine computers in fifty-seven configurations, ranging from personal computers to super computers, are described. A correlation of ray trace speed has been made with the LINPACK benchmark which allows the ray trace speed to be estimated using LINPACK performance data. The results indicate that the latest generation of workstations, using CPUs based on RISC (Reduced Instruction Set Computer) technology, are as fast or faster than mainframe computers in compute-bound situations.

  10. Simulation of radiation damping in rings, using stepwise ray-tracing methods

    DOE PAGES

    Meot, F.

    2015-06-26

    The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less

  11. Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study

    NASA Technical Reports Server (NTRS)

    Elthon, Donald

    1988-01-01

    The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.

  12. Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls

    PubMed Central

    Zhou, Chenming

    2017-01-01

    At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995

  13. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  14. Quantitative determination of occupation sites of trace Co substituted for multiple Fe sites in M-type hexagonal ferrite using statistical beam-rocking TEM-EDXS analysis.

    PubMed

    Ohtsuka, Masahiro; Muto, Shunsuke; Tatsumi, Kazuyoshi; Kobayashi, Yoshinori; Kawata, Tsunehiro

    2016-04-01

    The occupation sites and the occupancies of trace dopants in La/Co co-doped Sr-M-type ferrite, SrFe12O19, were quantitatively and precisely determined by beam-rocking energy-dispersive X-ray spectroscopy (EDXS) on the basis of electron-channeling effects. Because the Co atoms, in particular, should be partially substituted for the five crystallographically inequivalent sites, which could be key parameters in improving the magneto-crystalline anisotropy, it is difficult yet intriguing to discover their occupation sites and occupancies without using the methods of large-scale facilities, such as neutron diffraction and synchrotron radiation. In the present study, we tackled this problem by applying an extended statistical atom location by channeling enhanced microanalysis method, using conventional transmission electron microscopy, EDXS and dynamical electron elastic/inelastic scattering theories. The results show that the key occupation sites of Co were the 2a, 4f1 and 12k sites. The quantified occupancies of Co were consistent with those of the previous study, which involved a combination of neutron diffraction and extended X-ray absorption fine structure analysis, as well as energetics considerations based on by first-principles calculations. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Interaction of acidic trace gases with ice from a surface science perspective

    NASA Astrophysics Data System (ADS)

    Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.

    2016-12-01

    Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to enhanced surface disorder at environmentally relevant conditions.

  16. Cosmic ray particle dosimetry and trajectory tracing. [cosmic ray track analysis for Apollo 17 BIOCORE

    NASA Technical Reports Server (NTRS)

    Cruty, M. R.; Benton, E. V.; Turnbill, C. E.; Philpott, D. E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.

  17. Validation of Ray Tracing Code Refraction Effects

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.

    2008-01-01

    NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.

  18. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2016-09-01

    We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

  19. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  20. Hard X-ray Emission From A Flare-related Jet

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  1. Studying the precision of ray tracing techniques with Szekeres models

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.; Hannestad, S.

    2015-07-01

    The simplest standard ray tracing scheme employing the Born and Limber approximations and neglecting lens-lens coupling is used for computing the convergence along individual rays in mock N-body data based on Szekeres swiss cheese and onion models. The results are compared with the exact convergence computed using the exact Szekeres metric combined with the Sachs formalism. A comparison is also made with an extension of the simple ray tracing scheme which includes the Doppler convergence. The exact convergence is reproduced very precisely as the sum of the gravitational and Doppler convergences along rays in Lemaitre-Tolman-Bondi swiss cheese and single void models. This is not the case when the swiss cheese models are based on nonsymmetric Szekeres models. For such models, there is a significant deviation between the exact and ray traced paths and hence also the corresponding convergences. There is also a clear deviation between the exact and ray tracing results obtained when studying both nonsymmetric and spherically symmetric Szekeres onion models.

  2. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  3. Real time ray tracing based on shader

    NASA Astrophysics Data System (ADS)

    Gui, JiangHeng; Li, Min

    2017-07-01

    Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.

  4. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  5. The vectorization of a ray tracing program for image generation

    NASA Technical Reports Server (NTRS)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  6. Reverse radiance: a fast accurate method for determining luminance

    NASA Astrophysics Data System (ADS)

    Moore, Kenneth E.; Rykowski, Ronald F.; Gangadhara, Sanjay

    2012-10-01

    Reverse ray tracing from a region of interest backward to the source has long been proposed as an efficient method of determining luminous flux. The idea is to trace rays only from where the final flux needs to be known back to the source, rather than tracing in the forward direction from the source outward to see where the light goes. Once the reverse ray reaches the source, the radiance the equivalent forward ray would have represented is determined and the resulting flux computed. Although reverse ray tracing is conceptually simple, the method critically depends upon an accurate source model in both the near and far field. An overly simplified source model, such as an ideal Lambertian surface substantially detracts from the accuracy and thus benefit of the method. This paper will introduce an improved method of reverse ray tracing that we call Reverse Radiance that avoids assumptions about the source properties. The new method uses measured data from a Source Imaging Goniometer (SIG) that simultaneously measures near and far field luminous data. Incorporating this data into a fast reverse ray tracing integration method yields fast, accurate data for a wide variety of illumination problems.

  7. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  8. PROTON MICROPROBE ANALYSIS OF TRACE-ELEMENT VARIATIONS IN VITRINITES IN THE SAME AND DIFFERENT COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.

    1987-01-01

    The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.

  9. SolarPILOT | Concentrating Solar Power | NREL

    Science.gov Websites

    tools. Unlike exclusively ray-tracing tools, SolarPILOT runs the analytical simulation engine that uses engine alongside a ray-tracing core for more detailed simulations. The SolTrace simulation engine is

  10. Stray Light Analysis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Based on a Small Business Innovation Research contract from the Jet Propulsion Laboratory, TracePro is state-of-the-art interactive software created by Lambda Research Corporation to detect stray light in optical systems. An image can be ruined by incidental light in an optical system. To maintain image excellence from an optical system, stray light must be detected and eliminated. TracePro accounts for absorption, specular reflection and refraction, scattering and aperture diffraction of light. Output from the software consists of spatial irradiance plots and angular radiance plots. Results can be viewed as contour maps or as ray histories in tabular form. TracePro is adept at modeling solids such as lenses, baffles, light pipes, integrating spheres, non-imaging concentrators, and complete illumination systems. The firm's customer base includes Lockheed Martin, Samsung Electronics and other manufacturing, optical, aerospace, and educational companies worldwide.

  11. The Alba ray tracing code: ART

    NASA Astrophysics Data System (ADS)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  12. Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan

    NASA Astrophysics Data System (ADS)

    Sandanbata, Osamu; Watada, Shingo; Satake, Kenji; Fukao, Yoshio; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime

    2018-04-01

    Ray tracing, which has been widely used for seismic waves, was also applied to tsunamis to examine the bathymetry effects during propagation, but it was limited to linear shallow-water waves. Green's law, which is based on the conservation of energy flux, has been used to estimate tsunami amplitude on ray paths. In this study, we first propose a new ray tracing method extended to dispersive tsunamis. By using an iterative algorithm to map two-dimensional tsunami velocity fields at different frequencies, ray paths at each frequency can be traced. We then show that Green's law is valid only outside the source region and that extension of Green's law is needed for source amplitude estimation. As an application example, we analyzed tsunami waves generated by an earthquake that occurred at a submarine volcano, Smith Caldera, near Torishima, Japan, in 2015. The ray-tracing results reveal that the ray paths are very dependent on its frequency, particularly at deep oceans. The validity of our frequency-dependent ray tracing is confirmed by the comparison of arrival angles and travel times with those of observed tsunami waveforms at an array of ocean bottom pressure gauges. The tsunami amplitude at the source is nearly twice or more of that just outside the source estimated from the array tsunami data by Green's law.

  13. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES.

    PubMed

    Cheng, Guihong; He, Man; Peng, Hanyong; Hu, Bin

    2012-01-15

    A fast and simple method for analysis of trace amounts of Cr(III), Cu(II), Pb(II) and Zn(II) in environmental and biological samples was developed by combining magnetic solid phase extraction (MSPE) with inductively coupled plasma-optical emission spectrometry (ICP-OES) detection. Dithizone modified silica-coated magnetic Fe(3)O(4) nanoparticles (H(2)Dz-SCMNPs) were prepared and used for MSPE of trace amounts of Cr(III), Cu(II), Pb(II) and Zn(II). The prepared magnetic nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The factors affecting the extraction of the target metal ions such as pH, sample volume, eluent, and interfering ions had been investigated and the adsorption mechanism of the target metals on the self-prepared H(2)Dz-SCMNPs was investigated by FT-IR and X-ray photo electron spectroscopy (XPS). Under the optimized conditions, the detection limits of the developed method for Cr(III), Cu(II), Pb(II) and Zn(II) were 35, 11, 62, and 8ngL(-1), respectively, with the enrichment factor of 100. The relative standard deviations (RSDs, c=10μgL(-1), n=7) were in the range of 1.7-3.1% and the linear range was 0.1-100μgL(-1). The proposed method had been validated by two certified reference materials (GSBZ50009-88 environmental water and GBW07601 human hair), and the determined values were in good agreement with the certified values. The method was also applied for the determination of trace metals in real water and human hair samples with recoveries in the range of 85-110% for the spiked samples. The developed MSPE-ICP-OES method has the advantages of simplicity, rapidity, selectivity, high extraction efficiency and is suitable for the analysis of samples with large volume and complex matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Multifunctional Metallosupramolecular Materials

    DTIC Science & Technology

    2011-02-28

    supramolecular polymers based on 16 and Zn(NTf2)2 using small- angle X - ray scattering (SAXS) and transmission electron microscopy (TEM), carried out by...The SAXS data (Figure 13a) show multiple strong Bragg diffraction maxima at integer multiples of the scattering vector of the primary diffraction ...a minor amount of residual double bonds in the poly(ethylene-co-butylene) core. The metallopolymers 16·[Zn(NTf2)2] x exhibit similar traces, but do

  15. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.

    PubMed

    Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang

    2013-04-01

    An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

  16. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  17. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model

    PubMed Central

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-01-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991

  18. The hoard of Beçin—non-destructive analysis of the silver coins

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Schreiner, M.; Mäder, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2010-05-01

    We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis—PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys.

  19. Using AORSA to simulate helicon waves in DIII-D

    NASA Astrophysics Data System (ADS)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2015-12-01

    Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.

  20. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-10-24

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less

  1. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for anisotropic ray tracing. x. Chapter 4 presents the data reduction of the P matrix of a crystal waveplate. The diattenuation is embedded in the singular values of P. The retardance is divided into two parts: (A) The physical retardance induced by OPLs and surface interactions, and (B) the geometrical transformation induced by geometry of a ray path, which is calculated by the geometrical transform Q matrix. The Q matrix of an anisotropic intercept is derived from the generalization of s- and p-bases at the anisotropic intercept; the p basis is not confined to the plane of incidence due to the anisotropic refraction or reflection. Chapter 5 shows how the multiple P matrices associated with the eigenmodes resulting from propagation through multiple anisotropic surfaces can be combined into one P matrix when the multiple modes interfere in their overlapping regions. The resultant P matrix contains diattenuation induced at each surface interaction as well as the retardance due to ray propagation and total internal reflections. The polarization aberrations of crystal waveplates and crystal polarizers are studied in Chapter 6 and Chapter 7. A wavefront simulated by a grid of rays is traced through the anisotropic system and the resultant grid of rays is analyzed. The analysis is complicated by the ray doubling effects and the partially overlapping eigen-wavefronts propagating in various directions. The wavefront and polarization aberrations of each eigenmode can be evaluated from the electric field distributions. The overall polarization at the plane of interest or the image quality at the image plane are affected by each of these eigen-wavefronts. Isotropic materials become anisotropic due to stress, strain, or applied electric or magnetic fields. In Chapter 8, the P matrix for anisotropic materials is extended to ray tracing in stress birefringent materials which are treated as spatially varying anisotropic materials. Such simulations can predict the spatial retardance variation throughout the stressed optical component and its effects on the point spread function and modulation transfer function for different incident polarizations. The anisotropic extension of the P matrix also applies to other anisotropic optical components, such as anisotropic diffractive optical elements and anisotropic thin films. It systematically keeps track of polarization transformation in 3D global Cartesian coordinates of a ray propagating through series of anisotropic and isotropic optical components with arbitrary orientations. The polarization ray tracing calculus with this generalized P matrix provides a powerful tool for optical ray trace and allows comprehensive analysis of complex optical system. (Abstract shortened by UMI.).

  2. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE PAGES

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...

    2017-07-01

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  3. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  4. Light ray tracing through a leaf cross section

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Silva, L. F.

    1973-01-01

    A light ray, incident at about 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's equations and Snell's law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The ray is also drawn through the same leaf cross section with cell wall and air as the only optical mediums. The values of the reflection and transmission found from the ray tracing tests agree closely with the experimental results obtained using a Beckman Dk-2A Spectroreflector.

  5. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    NASA Astrophysics Data System (ADS)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  6. Time-resolved atomic inner-shell spectroscopy

    NASA Astrophysics Data System (ADS)

    Drescher, M.; Hentschel, M.; Kienberger, R.; Uiberacker, M.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, Th.; Kleineberg, U.; Heinzmann, U.; Krausz, F.

    2002-10-01

    The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9-0.9+1.0fs of M-shell vacancies of krypton in such a pump-probe experiment.

  7. Ray tracing through a hexahedral mesh in HADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, G L; Aufderheide, M B

    In this paper we describe a new ray tracing method targeted for inclusion in HADES. The algorithm tracks rays through three-dimensional tetrakis hexahedral mesh objects, like those used by the ARES code to model inertial confinement experiments.

  8. Fast kinematic ray tracing of first- and later-arriving global seismic phases

    NASA Astrophysics Data System (ADS)

    Bijwaard, Harmen; Spakman, Wim

    1999-11-01

    We have developed a ray tracing algorithm that traces first- and later-arriving global seismic phases precisely (traveltime errors of the order of 0.1 s), and with great computational efficiency (15 rays s- 1). To achieve this, we have extended and adapted two existing ray tracing techniques: a graph method and a perturbation method. The two resulting algorithms are able to trace (critically) refracted, (multiply) reflected, some diffracted (Pdiff), and (multiply) converted seismic phases in a 3-D spherical geometry, thus including the largest part of seismic phases that are commonly observed on seismograms. We have tested and compared the two methods in 2-D and 3-D Cartesian and spherical models, for which both algorithms have yielded precise paths and traveltimes. These tests indicate that only the perturbation method is computationally efficient enough to perform 3-D ray tracing on global data sets of several million phases. To demonstrate its potential for non-linear tomography, we have applied the ray perturbation algorithm to a data set of 7.6 million P and pP phases used by Bijwaard et al. (1998) for linearized tomography. This showed that the expected heterogeneity within the Earth's mantle leads to significant non-linear effects on traveltimes for 10 per cent of the applied phases.

  9. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. SU-F-T-555: Accurate Stereotactic Cone TMRs Converted from PDDs Scanned with Ray Trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H; Zhong, H; Qin, Y

    Purpose: To investigate whether the accuracy of TMRs for stereotactic cones converted from PDDs scanned with Ray Trace can be improved, when compared against the TMRs converted from the traditional PDDs. Methods: Ray Trace measurement in Sun Nuclear 3D Scanner is for accurate scan of small field PDDs. The system detects the center of field at two depths, for example, at 3 and 20 cm in our study, and then performs scan along the line passing the two centers. With both Ray Trace and the traditional method, PDDs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5more » mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac, using Edge detectors. The formalism of converting PDD to TMR given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring cone Scp and Sc. Continuous direct measurement of TMR by filling/draining water to/from the tank and spot measurement by moving the tank and detector were also performed with the same equipment, using 100 cm SDD. Results: For 6XFFF energy and all the cones, TMRs converted from Ray Trace were very close to the continuous and spot measurement, while TMRs converted from traditional PDDs had larger deviation. Along the central axis beyond dmax, 1.7% of TMR data points calculated from Ray Trace had more 3% deviation from measurement, with maximal deviation of 5.2%. Whereas, 34% of TMR points calculated from traditional PDDs had more than 3% deviation, with maximum of 5.7%. In this initial study, Ray Trace scans for 10XFFF beam were noisy, further measurement is warranted. Conclusion: The Ray Trace could improve the accuracy of PDDs measurement and the calculated TMRs for stereotactic cones, which was within 3% of the measured TMRs.« less

  11. Increasing the Efficiency of Electron Microprobe Measurements of Minor and Trace Elements in Rutile

    NASA Astrophysics Data System (ADS)

    Neill, O. K.; Mattinson, C. G.; Donovan, J.; Hernández Uribe, D.; Sains, A.

    2016-12-01

    Minor and trace element contents of rutile, an accessory mineral found in numerous lithologic settings, has many applications for interpreting earth systems. While these applications vary widely, they share a need for precise and accurate elemental measurements. The electron microprobe can be used to measure rutile compositions, although long X-ray counting times are necessary to achieve acceptable precision. Continuum ("background") intensity can be estimated using the iterative Mean Atomic Number (MAN) method of Donovan and Tingle (1996), obviating the need for direct off-peak background measurements, and reducing counting times by half. For this study, several natural and synthetic rutiles were measured by electron microprobe. Data was collected once but reduced twice, using off-peak and an MAN background corrections, allowing direct comparison of the two methods without influence of other variables (counting time, analyte homogeneity, beam current, calibration standards, etc.). These measurements show that, if a "blank" correction (Donovan et al., 2011, 2016) is used, minor and trace elements of interest can be measured in rutile using the MAN background method in half the time of traditional off-peak measurements, without sacrificing accuracy or precision (Figure 1). This method has already been applied to Zr-in-rutile thermometry of ultra-high pressure metamorphic rocks from the North Qaidam terrane in northwest China. Finally, secondary fluorescence of adjacent phases by continuum X-rays can lead to artificially elevated concentrations. For example, when measuring Zr, care should be taken to avoid analytical spots within 100 microns of zircon or baddeleyite crystals. References: 1) J.J. Donovan and T.N Tingle (1996) J. Microscopy, 2(1), 1-7 2) J.J. Donovan, H.A. Lowers, and B.G. Rusk (2011) Am. Mineral., 96, 274­282 3) J.J. Donovan, J.W. Singer and J.T. Armstrong (2016) Am. Mineral., 101, 1839-1853 4) G.L. Lovizotto et al. (2009) Chem. Geol., 261, 346-369

  12. Effects of a descending lithospheric slab on yield estimates of underground nuclear tests. Final technical report, 8 Mar 88-31 Aug 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormier, V.F.; Kim, W.; Mandal, B.

    A method for computing seismic wavefields in a high-frequency approximation is proposed based on the integration of the kinematic ray tracing equations and a new set of differential equations for the dynamic properties of the wavefront, which the authors call the vicinity ray tracing (VRT) equations. These equations are directly obtained from the Hamiltonian in ray centered coordinates, using no paraxial approximations. This system is comparable to the standard dynamic ray tracing (DRT) system, but it is specified by fewer equations (four versus eight in 3-D) and only requires the specification of velocity and its first spacial derivative along amore » ray. The VRT equations describe the trajectory of a ray in ray centered coordinates of a reference ray. Quantities obtained from vicinity ray tracing can be used to determine wavefront curvature, geometric spreading, travel time to a receiver near the reference ray, and the KMAH index of the reference ray with greater numerical precision than is possible by differencing kinematically traced rays. Since second spatial derivatives of velocity are not required by the new technique, parameterization of the medium is simplified, and reflection and transmission of beams can be calculated by applying Snell's law to both vicinity and central rays. Conversation relations between VRT and DRT can be used to determine the paraxial vicinity of DRT, in which the errors of the paraxial approximations of DRT remain small. Because no paraxial approximations are made, the superposition of the Gaussian beams define from the vicinity rays should exhibit a much slower breakdown in accuracy as the scale length of the medium given by V/Delta v approaches the beamwidth.« less

  13. High-efficiency photorealistic computer-generated holograms based on the backward ray-tracing technique

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Chen, Zhidong; Sang, Xinzhu; Li, Hui; Zhao, Linmin

    2018-03-01

    Holographic displays can provide the complete optical wave field of a three-dimensional (3D) scene, including the depth perception. However, it often takes a long computation time to produce traditional computer-generated holograms (CGHs) without more complex and photorealistic rendering. The backward ray-tracing technique is able to render photorealistic high-quality images, which noticeably reduce the computation time achieved from the high-degree parallelism. Here, a high-efficiency photorealistic computer-generated hologram method is presented based on the ray-tracing technique. Rays are parallelly launched and traced under different illuminations and circumstances. Experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional point cloud CGH, the computation time is decreased to 24 s to reconstruct a 3D object of 100 ×100 rays with continuous depth change.

  14. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G.; Di Giugno, R.; Miracoli, R.

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less

  15. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis.

    PubMed

    Liu, Qun; Hendrickson, Wayne A

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an "anomalous" component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  16. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  17. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  18. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.

  19. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  20. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  1. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

    DOE PAGES

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob; ...

    2017-09-29

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less

  2. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less

  3. Ray Tracing Methods in Seismic Emission Tomography

    NASA Astrophysics Data System (ADS)

    Chebotareva, I. Ya.

    2018-03-01

    Highly efficient approximate ray tracing techniques which can be used in seismic emission tomography and in other methods requiring a large number of raypaths are described. The techniques are applicable for the gradient and plane-layered velocity sections of the medium and for the models with a complicated geometry of contrasting boundaries. The empirical results obtained with the use of the discussed ray tracing technologies and seismic emission tomography results, as well as the results of numerical modeling, are presented.

  4. Improved EPMA Trace Element Accuracy Using a Matrix Iterated Quantitative Blank Correction

    NASA Astrophysics Data System (ADS)

    Donovan, J. J.; Wark, D. A.; Jercinovic, M. J.

    2007-12-01

    At trace element levels below several hundred PPM, accuracy is more often the limiting factor for EPMA quantification rather than precision. Modern EPMA instruments equipped with low noise detectors, counting electronics and large area analyzing crystals can now routinely achieve sensitivities for most elements in the 10 to 100 PPM levels (or even lower). But due to various sample and instrumental artifacts in the x-ray continuum, absolute accuracy is often the limiting factor for ultra trace element quantification. These artifacts have various mechanisms, but are usually attributed to sample artifacts (e.g., sample matrix absorption edges)1, detector artifacts (e.g., Ar or Xe absorption edges) 2 and analyzing crystal artifacts (extended peak tails preventing accurate determination of the true background and ¡§negative peaks¡¨ or ¡§holes¡¨ in the x-ray continuum). The latter being first described3 by Self, et al. and recently documented for the Ti kÑ in quartz geo-thermometer. 4 Ti (ka) Ti (ka) Ti (ka) Ti (ka) Ti (ka) Si () O () Total Average: -.00146 -.00031 -.00180 .00013 .00240 46.7430 53.2563 99.9983 Std Dev: .00069 .00075 .00036 .00190 .00117 .00000 .00168 .00419 The general magnitude of these artifacts can be seen in the above analyses of Ti ka in a synthetic quartz standard. The values for each spectrometer/crystal vary systematically from ¡V18 PPM to + 24 PPM. The exact mechanism for these continuum ¡§holes¡¨ is not known but may be related to secondary lattice diffraction occurring at certain Bragg angles depending on crystal mounting orientation for non-isometric analyzing crystals5. These x-ray continuum artifacts can produce systematic errors at levels up to 100 PPM or more depending on the particular analytical situation. In order to correct for these inaccuracies, a ¡§blank¡¨ correction has been developed that applies a quantitative correction to the measured x-ray intensities during the matrix iteration, by calculating the intensity contribution from the systematic quantitative offset from a known (usually zero level) blank standard. Preliminary results from this new matrix iterated trace element blank correction demonstrate that systematic errors can be reduced to single digit PPM levels for many situations. 1B.W. Robinson, N.G. Ware and D.G.W. Smith, 1998. "Modern Electron-Microprobe Trace-Element Analysis in Mineralogy". In Cabri, L.J. and Vaughan, D.J., Eds. "Modern Approaches to Ore and Environmental Mineralogy", Short Course 27. Mineralogical Association of Canada, Ottawa 153-180 2Remond, G., Myklebust, R. Fialin, M. Nockolds, C. Phillips, M. Roques-Carmes, C. ¡§Decomposition of Wavelength Dispersive X-ray Spectra¡¨, Journal of Research of the National Institute of Standards and Technology (J. Res. Natl. Inst. Stand. Technol., v. 107, 509-529 (2002) 3Self, P.G., Norrish, K., Milnes, A.R., Graham, J. & Robinson, B.W. (1990): Holes in the Background in XRS. X-ray Spectrom. 19 (2), 59-61 4Wark, DA, and Watson, EB, 2006, TitaniQ: A Titanium-in-Quartz geothermometer: Contributions to Mineralogy and Petrology, 152:743-754, doi: 10.1007/s00410-006-0132-308

  5. Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, N D; Kaiser, T B; Anderson, R W

    2009-09-28

    ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.

  6. Electron cyclotron emission from nonthermal tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.W.; O'Brien, M.R.; Rozhdestvensky, V.V.

    1993-02-01

    Electron cyclotron emission can be a sensitive indicator of nonthermal electron distributions. A new, comprehensive ray-tracing and cyclotron emission code that is aimed at predicting and interpreting the cyclotron emission from tokamak plasmas is described. The radiation transfer equation is solved along Wentzel--Kramers--Brillouin (WKB) rays using a fully relativistic calculation of the emission and absorption from electron distributions that are gyrotropic and toroidally symmetric, but may be otherwise arbitrary functions of the constants of motion. Using a radial array of electron distributions obtained from a bounce-averaged Fokker--Planck code modeling dc electron field and electron cyclotron heating effects, the cyclotron emissionmore » spectra are obtained. A pronounced strong nonthermal cyclotron emission feature that occurs at frequencies relativistically downshifted to second harmonic cyclotron frequencies outside the tokamak is calculated, in agreement with experimental results from the DIII-D [J. L. Luxon and L. G. Davies, Fusion Technol. [bold 8], 441 (1985)] and FT-1 [D. G. Bulyginsky [ital et] [ital al]., in [ital Proceedings] [ital of] [ital the] 15[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating], Dubrovnik, 1988 (European Physical Society, Petit-Lancy, 1988), Vol. 12B, Part II, p. 823] tokamaks. The calculations indicate the presence of a strong loss mechanism that operates on electrons in the 100--150 keV energy range.« less

  7. Computer-based analysis of holography using ray tracing.

    PubMed

    Latta, J N

    1971-12-01

    The application of a ray-tracing methodology to holography is presented. Emphasis is placed on establishing a very general foundation from which to build a general computer-based implementation. As few restrictions as possible are placed on the recording and reconstruction geometry. The necessary equations are established from the construction and reconstruction parameters of the hologram. The aberrations are defined following H. H. Hopkins, and these aberration specification techniques are compared with those used previously to analyze holography. Representative of the flexibility of the ray-tracing approach, two examples are considered. The first compares the answers between a wavefront matching and the ray-tracing analysis in the case of aberration balancing to compensate for chromatic aberrations. The results are very close and establish the basic utility of aberration balancing. Further indicative of the power of a ray tracing, a thick media analysis is included in the computer programs. This section is then used to perform a study of the effects of hologram emulsion shrinkage and methods for compensation. The results of compensating such holograms are to introduce aberrations, and these are considered in both reflection and transmission holograms.

  8. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    PubMed

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Locating trace plutonium in contaminated soil using micro-XRF imaging

    DOE PAGES

    Worley, Christopher G.; Spencer, Khalil J.; Boukhalfa, Hakim; ...

    2014-06-01

    Micro-X-ray fluorescence (MXRF) was used to locate minute quantities of plutonium in contaminated soil. Because the specimen had previously been prepared for analysis by scanning electron microscopy, it was coated with gold to eliminate electron beam charging. However, this significantly hindered efforts to detect plutonium by MXRF. The gold L peak series present in all spectra increased background counts. Plutonium signal attenuation by the gold coating and severe peak overlap from potassium in the soil prevented detection of trace plutonium using the Pu Mα peak. However, the 14.3 keV Pu Lα peak sensitivity was not optimal due to poor transmissionmore » efficiency through the source polycapillary optic, and the instrument silicon drift detector sensitivity quickly declines for peaks with energies above ~10 keV. Instrumental parameters were optimized (eg. using appropriate source filters) in order to detect plutonium. An X-ray beam aperture was initially used to image a majority of the specimen with low spatial resolution. A small region that appeared to contain plutonium was then imaged at high spatial resolution using a polycapillary optic. Small areas containing plutonium were observed on a soil particle, and iron was co-located with the plutonium. Zinc and titanium also appeared to be correlated with the plutonium, and these elemental correlations provided useful plutonium chemical state information that helped to better understand its environmental transport properties.« less

  10. Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Peysson, Y.; Artaud, J.-F.; Ekedahl, A.; Hillairet, J.; Aniel, T.; Basiuk, V.; Goniche, M.; Imbeaux, F.; Mazon, D.; Sharma, P.

    2013-08-01

    Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.

  11. Trisodium phosphate poisoning

    MedlinePlus

    ... the esophagus and the stomach. Chest x-ray ECG (electrocardiogram, or heart tracing) Fluids by IV (through ... in the airways and lungs. Chest x-ray ECG (electrocardiogram, or heart tracing) Fluids by IV (through ...

  12. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  13. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  14. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  15. Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert H.; Legg, Sonya

    2017-10-01

    When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.

  16. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    NASA Astrophysics Data System (ADS)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  17. AXAF FITS standard for ray trace interchange

    NASA Astrophysics Data System (ADS)

    Hsieh, Paul F.

    1993-07-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  18. AXAF FITS standard for ray trace interchange

    NASA Technical Reports Server (NTRS)

    Hsieh, Paul F.

    1993-01-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  19. Ray Tracing Through Non-Imaging Concentrators

    NASA Astrophysics Data System (ADS)

    Greynolds, Alan W.

    1984-01-01

    A generalized algorithm for tracing rays through both imaging and non-imaging radiation collectors is presented. A computer program based on the algorithm is then applied to analyzing various two-stage Winston concentrators.

  20. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    PubMed Central

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  1. The Use of Pro/Engineer CAD Software and Fishbowl Tool Kit in Ray-tracing Analysis

    NASA Technical Reports Server (NTRS)

    Nounu, Hatem N.; Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2009-01-01

    This document is designed as a manual for a user who wants to operate the Pro/ENGINEER (ProE) Wildfire 3.0 with the NASA Space Radiation Program's (SRP) custom-designed Toolkit, called 'Fishbowl', for the ray tracing of complex spacecraft geometries given by a ProE CAD model. The analysis of spacecraft geometry through ray tracing is a vital part in the calculation of health risks from space radiation. Space radiation poses severe risks of cancer, degenerative diseases and acute radiation sickness during long-term exploration missions, and shielding optimization is an important component in the application of radiation risk models. Ray tracing is a technique in which 3-dimensional (3D) vehicle geometry can be represented as the input for the space radiation transport code and subsequent risk calculations. In ray tracing a certain number of rays (on the order of 1000) are used to calculate the equivalent thickness, say of aluminum, of the spacecraft geometry seen at a point of interest called the dose point. The rays originate at the dose point and terminate at a homogenously distributed set of points lying on a sphere that circumscribes the spacecraft and that has its center at the dose point. The distance a ray traverses in each material is converted to aluminum or other user-selected equivalent thickness. Then all equivalent thicknesses are summed up for each ray. Since each ray points to a direction, the aluminum equivalent of each ray represents the shielding that the geometry provides to the dose point from that particular direction. This manual will first list for the user the contact information for help in installing ProE and Fishbowl in addition to notes on the platform support and system requirements information. Second, the document will show the user how to use the software to ray trace a Pro/E-designed 3-D assembly and will serve later as a reference for troubleshooting. The user is assumed to have previous knowledge of ProE and CAD modeling.

  2. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOEpatents

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  3. A data distributed parallel algorithm for ray-traced volume rendering

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.

    1993-01-01

    This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.

  4. Ray tracing: Experience at SRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, M.

    1996-09-01

    SHADOW [B. Lai and F. Cerrina, Nucl. Instrum. Methods A {bold 246}, 337 (1986)] is the primary ray-tracing program used at SRC. Ray tracing provides a tremendous amount of information regarding beamline layout, mirror sizes, resolution, alignment tolerances, and beam size at various locations. It also provides a way to check the beamline design for errors. Two recent designs have been ray traced extensively: an undulator-based, 4-meter, normal-incidence monochromator (NIM) [R. Reininger, M.C. Severson, R.W.C. Hansen, W.R. Winter, M.A. Green, and W.S. Trzeciak, Rev. Sci. Instrum. {bold 66}, 2194 (1995)] and an undulator-based, plane-grating monochromator (PGM) [R. Reininger, S.L. Crossley,more » M.A. Lagergren, M.C. Severson, and R.W.C. Hansen, Nucl. Instrum. Methods A {bold 347}, 304 (1994)]. {copyright} {ital 1996 American Institute of Physics.}« less

  5. Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing

    NASA Astrophysics Data System (ADS)

    Lin, Psang Dain; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  6. Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing

    NASA Astrophysics Data System (ADS)

    Dain Lin, Psang; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  7. Using AORSA to simulate helicon waves in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.

    2015-12-10

    Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less

  8. GEOS satellite tracking corrections for refraction in the ionosphere

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.; Parker, H. C.

    1970-01-01

    The analytic formulations at different elevation angles and at a frequency of 2-GHz for the ionospheric refraction corrections used on the GEOS satellite tracking data are compared. The formulas and ray trace results for elevations greater than 10 deg, where most satellite tracking is done, differ in elevation, range, and range rate by less than 0.4 millidegrees (1.4 arc-seconds), 12 meters, and 12 cm/sec, respectively. In comparison to most operational requirements, this is insignificant. However, for the GEOS Observation Systems Intercomparison Investigation, these differences are equivalent in size to observed differences in system biases for some of the best electronic geodetic tracking systems and are probably contributing to the observed biases. The ray trace results and most of the more detailed analytic correction formulas show that the ionospheric refraction correction for range rate on an overhead pass is a maximum for elevation angles between 15 deg and 30 deg and falls off rapidly for both higher and lower elevation angles, contrary to the effect of the troposphere and to some reports in the literature.

  9. Using AORSA to simulate helicon waves in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola

    2015-01-01

    Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less

  10. Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Lin, Y.; Shiraiwa, S.; Wallace, G. M.; Wright, J. C.; Wukitch, S. J.

    2017-10-01

    High field side (HFS) placement of lower hybrid range of frequencies (LHRF) actuators is attractive from both the standpoint of a more quiescent scrape off layer (SOL) and from the improved LH wave accessibility and penetration to higher electron temperature that results from the higher magnetic field on the HFS. The resulting profiles of LH current drive (LHCD) are also more suitable for advanced tokamak (AT) operation where it is most desirable to provide a significant ( 20-30%) contribution to the total current density with a broad profile extending from r/a 0.5-0.85. Here we re-assess HFS LHCD in the ARC device using a hierarchy of LHCD models that include a combined adjoint plus ray tracing calculation, a ray tracing plus 3D Fokker Planck calculation, and a full-wave plus Fokker Planck simulation. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and a PSFC Theory Grant under DE-FG02-91-ER54109.

  11. Characterizing cosmic-ray propagation in massive star-forming regions: The case of 30 Doradus and the large Magellanic cloud

    DOE PAGES

    Murphy, E. J.; Porter, T. A.; Moskalenko, I. V.; ...

    2012-04-24

    We investigate the propagation characteristics of cosmic-ray (CR) electrons and nuclei in the 30 Doradus (30 Dor) star-forming region in the Large Magellanic Cloud (LMC) using infrared, radio, and γ-ray data and a phenomenological model based on the radio-far-infrared correlation within galaxies. By employing a correlation analysis, we derive an average propagation length of ~100-140 pc for ~3 GeV CR electrons resident in 30 Dor from consideration of the radio and infrared data. Assuming that the observed γ-ray emission toward 30 Dor is associated with the star-forming region, and applying the same methodology to the infrared and γ-ray data, wemore » estimate a ~20 GeV propagation length of 200-320 pc for the CR nuclei. This is approximately twice as large as for ~3 GeV CR electrons, corresponding to a spatial diffusion coefficient that is ~4 times higher, scaling as (R/GV) δ with δ ≈ 0.7-0.8 depending on the smearing kernel used in the correlation analysis. This value is in agreement with the results found by extending the correlation analysis to include ~70 GeV CR nuclei traced by the 3-10 GeV γ-ray data (δ ≈ 0.66 ± 0.23). Using the mean age of the stellar populations in 30 Dor and the results from our correlation analysis, we estimate a diffusion coefficient D R ≈ (0.9-1.0) × 10 27(R/GV) 0.7 cm 2 s –1. We also compare the values of the CR electron propagation length and surface brightness for 30 Dor and the LMC as a whole with those of entire disk galaxies. We find that the trend of decreasing average CR propagation distance with increasing disk-averaged star formation activity holds for the LMC, and extends down to single star-forming regions, at least for the case of 30 Dor.« less

  12. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    NASA Astrophysics Data System (ADS)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.

  13. Can We Trace "Arbitrary" Rays to Locate an Image Formed by a Thin Lens?

    ERIC Educational Resources Information Center

    Suppapittayaporn, Decha; Panijpan, Bhinyo; Emarat, Narumon

    2010-01-01

    After learning how to trace the principal rays [Fig. 1(i)] through a thin lens in order to form the image in the conventional way, students sometimes ask whether it is possible to use other rays emanating from the object to form exactly the same image--for example, the two arbitrary rays shown in Fig. 1(ii). The answer is a definite yes, and this…

  14. Combined visualization for noise mapping of industrial facilities based on ray-tracing and thin plate splines

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, Mikhail; Ovsiannikov, Sergei

    2017-01-01

    The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.

  15. Photorealistic 3D omni-directional stereo simulator

    NASA Astrophysics Data System (ADS)

    Reiners, Dirk; Cruz-Neira, Carolina; Neumann, Carsten

    2015-03-01

    While a lot of areas in VR have made significant advances, visual rendering in VR is often not quite keeping up with the state of the art. There are many reasons for this, but one way to alleviate some of the issues is by using ray tracing instead of rasterization for image generation. Contrary to popular belief, ray tracing is a realistic, competitive technology nowadays. This paper looks at the pros and cons of using ray tracing and demonstrates the feasibility of employing it using the example of a helicopter flight simulator image generator.

  16. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten

    2015-11-01

    The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.

  17. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  18. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  19. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-09-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  20. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; hide

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  1. Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation.

    PubMed

    Prospathopoulos, John M; Voutsinas, Spyros G

    2007-09-01

    The determination of appropriate sound speed profiles in the modeling of near-ground propagation using a ray tracing method is investigated using a ray tracing model which is capable of performing axisymmetric calculations of the sound field around an isolated source. Eigenrays are traced using an iterative procedure which integrates the trajectory equations for each ray launched from the source at a specific direction. The calculation of sound energy losses is made by introducing appropriate coefficients to the equations representing the effect of ground and atmospheric absorption and the interaction with the atmospheric turbulence. The model is validated against analytical and numerical predictions of other methodologies for simple cases, as well as against measurements for nonrefractive atmospheric environments. A systematic investigation for near-ground propagation in downward and upward refractive atmosphere is made using experimental data. Guidelines for the suitable simulation of the wind velocity profile are derived by correlating predictions with measurements.

  2. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.

    PubMed

    Schedin, Staffan; Hallberg, Per; Behndig, Anders

    2016-01-20

    We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.

  3. Fast solar radiation pressure modelling with ray tracing and multiple reflections

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart

    2018-05-01

    Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The pixel array resolution tests show that the dimensions of the components have to be considered when choosing the spacing of the pixel in order not to miss some components of the satellite in ray tracing. This paper presents the first systematic and quantitative study of the secondary and higher order intersection effects. It shows conclusively the effect is non-negligible for certain classes of misson.

  4. SXRF determination of trace elements in chondrule rims in the unequilibrated CO3 chondrite, ALH A77307

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Bajt, Sasa; Sutton, Steve R.; Papike, J. J.

    1993-01-01

    The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five chondrule rims in the CO3 chondrite ALH A77307 (3.0) using the synchrotron x-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory were determined. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The high concentrations of the highly volatile elements Se and Ga and moderately volatile Zn (1.5 to 2 x CO) in rims show that matrix is the major reservoir of volatile elements in ALH A77307.

  5. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  6. Simple-to-Complex Transformation in Liquid Rubidium.

    PubMed

    Gorelli, Federico A; De Panfilis, Simone; Bryk, Taras; Ulivi, Lorenzo; Garbarino, Gaston; Parisiades, Paraskevas; Santoro, Mario

    2018-05-18

    We investigated the atomic structure of liquid Rb along an isothermal path at 573 K, up to 23 GPa, by X-ray diffraction measurements. By raising the pressure, we observed a liquid-liquid transformation from a simple metallic liquid to a complex one. The transition occurs at 7.5 ± 1 GPa which is slightly above the first maximum of the T-P melting line. This transformation is traced back to the density-induced hybridization of highest electronic orbitals leading to the accumulation of valence electrons between Rb atoms and to the formation of interstitial atomic shells, a behavior that Rb shares with Cs and is likely to be common to all alkali metals.

  7. Simulation of Mirror Electron Microscopy Caustic Images in Three-Dimensions

    NASA Astrophysics Data System (ADS)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    A full, three-dimensional (3D) ray tracing approach is developed to simulate the caustics visible in mirror electron microscopy (MEM). The method reproduces MEM image contrast resulting from 3D surface relief. To illustrate the potential of the simulation methods, we study the evolution of crater contrast associated with a movie of GaAs structures generated by the droplet epitaxy technique. Specifically, we simulate the image contrast resulting from both a precursor stage and the final crater morphology which is consistent with an inverted pyramid consisting of (111) facet walls. The method therefore facilities the study of how self-assembled quantum structures evolve with time and, in particular, the development of anisotropic features including faceting.

  8. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Q.; Hendrickson, W.

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those thatmore » can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.« less

  9. Correlation between Charge Contrast Imaging and the Distribution of Some Trace Level Impurities in Gibbsite

    NASA Astrophysics Data System (ADS)

    Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.

    2000-01-01

    Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.

  10. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  11. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    DOE PAGES

    David, C.; Karvinen, P.; Sikorski, M.; ...

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less

  12. A ``perfect'' Late Phase Flare Loop: X-ray And Radio Studies

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    We present observations of a GOES X3.1 class flare which occurred on the 24th August 2002. The event was observed by a number of instruments including RHESSI, TRACE and NoRH. This flare is particularly interesting due to its position and orientation on the west limb of the Sun. The flare appears to be perpendicular to the line of sight making it possible to ascertain the geometrical parameters of the post flare arcade loops. We investigate the decay phase of the flare by comparing X-ray and radio observations of the post flare arcade loops with models of soft x-ray and thermal gyrosynchrotron emission to characterise the electron distribution present within the loop. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  13. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  14. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  15. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  16. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  17. Electron Bernstein Wave Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B.; Bell, G. L.; Bers, A.; Bigelow, T. S.; Carter, M. D.; Harvey, R. W.; Ram, A. K.; Rasmussen, D. A.; Smirnov, A. P.; Wilgen, J. B.; Wilson, J. R.

    2003-12-01

    Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to ˜ 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving ⩾ 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high β NSTX plasmas.

  18. The X-Ray Polarization of the Accretion Disk Coronae of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Banafsheh; Krawczynski, Henric; Malzac, Julien

    2017-11-01

    Hard X-rays observed in Active Galactic Nuclei (AGNs) are thought to originate from the Comptonization of the optical/UV accretion disk photons in a hot corona. Polarization studies of these photons can help to constrain the corona geometry and the plasma properties. We have developed a ray-tracing code that simulates the Comptonization of accretion disk photons in coronae of arbitrary shapes, and use it here to study the polarization of the X-ray emission from wedge and spherical coronae. We study the predicted polarization signatures for the fully relativistic and various approximate treatments of the elemental Compton scattering processes. We furthermore use the code to evaluate the impact of nonthermal electrons and cyclo-synchrotron photons on the polarization properties. Finally, we model the NuSTAR observations of the Seyfert I galaxy Mrk 335 and predict the associated polarization signal. Our studies show that X-ray polarimetry missions such as NASA’s Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer proposed to ESA will provide valuable new information about the physical properties of the plasma close to the event horizon of AGN black holes.

  19. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry.

    PubMed

    Asadpour-Zeynali, Karim; Mollarasouli, Fariba

    2017-06-15

    This work introduces a new electrochemical sensor based on polyvinyl pyrrolidone capped CoFe 2 O 4 @CdSe core-shell modified electrode for a rapid detection and highly sensitive determination of rifampicin (RIF) by square wave adsorptive stripping voltammetry. The new PVP capped CoFe 2 O 4 @CdSe with core-shell nanostructure was synthesized by a facile synthesis method for the first time. PVP can act as a capping and etching agent for protection of the outer surface nanoparticles and formation of a mesoporous shell, respectively. Another important feature of this work is the choice of the ligand (1,10-phenanthroline) for precursor cadmium complex that works as a chelating agent in order to increase optical and electrical properties and stability of prepared nanomaterial. The nanoparticles have been characterized by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-vis, photoluminescence (PL) spectroscopy, FT-IR, and cyclic voltammetry techniques. The PL spectroscopy study of CoFe 2 O 4 @CdSe has shown significant PL quenching by the formation of CoFe 2 O 4 core inside CdSe, this shows that CoFe 2 O 4 NPs are efficient electron acceptors with the CdSe. It is clearly observed that the biosensor can significantly enhance electrocatalytic activity towards the oxidation of RIF, under the optimal conditions. The novelty of this work arises from the new synthesis method for the core-shell of CoFe 2 O 4 @CdSe. Then, the novel electrochemical biosensor was fabricated for ultra-trace level determination of rifampicin with very low detection limit (4.55×10 -17 M) and a wide linear range from 1.0×10 -16 to 1.0×10 -7 M. The fabricated biosensor showed high sensitivity and selectivity, good reproducibility and stability. Therefore, it was successfully applied for the determination of ultra-trace RIF amounts in biological and pharmaceutical samples with satisfactory recovery data. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Unusual whistler with very large dispersion near the magnetopause: Geotail observation and ray-tracing modeling

    NASA Astrophysics Data System (ADS)

    Nagano, I.; Wu, X.-Y.; Yagitani, S.; Miyamura, K.; Matsumoto, H.

    1998-06-01

    A case of highly dispersed (~860 s1/2) whistler-like ELF (700-960 Hz) wave was detected with the waveform capture (WFC) receiver aboard the Geotail satellite during a dayside magnetopause skimming. Features of the single event distinguish it from the usual falling tone discrete emissions. By ray-tracing and full-wave calculation, the accessibility of the waves from a ground source of a distorted model magnetosphere were investigated. We propose that a lightning discharge at high latitudes is the most plausible source of the event via a special propagation effect revealed by the ray tracing. We demonstrate that the observed large wavenormal angle with respect to the geomagnetic field, the unusually large level of dispersion, and the lack of the expected nose frequency might be attributable to the frequency-dependent nonducted paths to the satellite. The rare occurrence may partly be caused by the Landau damping by the convecting suprathermal electron beams of several hundred eV. It is also shown that the multiple-hop magnetospherically reflected (MR) whistlers from middle latitudes, though being refracted to higher L shells by the plasmapause, are unable to reach the outer magnetosphere. Interhemisphere ducted propagation is possible for ELF waves along a narrow, modestly (15% or more) enhanced flux tube and shows an upper cutoff frequency governed by the high-latitude minimum-magnetic field ``horns'' regions and the duct enhancement and diameter. A full-wave calculation also implies no lower-frequency cutoff in the upward ionospheric transmission of lightning radiation down to 200 Hz. Because of the complexity of the various effects that influence the propagation from a ground source and the very low occurrence, effective whistler mode waves diagnostics of the highly variable outer magnetosphere are at present beyond our reach.

  1. Experimental evaluation of radiosity for room sound-field prediction.

    PubMed

    Hodgson, Murray; Nosal, Eva-Marie

    2006-08-01

    An acoustical radiosity model was evaluated for how it performs in predicting real room sound fields. This was done by comparing radiosity predictions with experimental results for three existing rooms--a squash court, a classroom, and an office. Radiosity predictions were also compared with those by ray tracing--a "reference" prediction model--for both specular and diffuse surface reflection. Comparisons were made for detailed and discretized echograms, sound-decay curves, sound-propagation curves, and the variations with frequency of four room-acoustical parameters--EDT, RT, D50, and C80. In general, radiosity and diffuse ray tracing gave very similar predictions. Predictions by specular ray tracing were often very different. Radiosity agreed well with experiment in some cases, less well in others. Definitive conclusions regarding the accuracy with which the rooms were modeled, or the accuracy of the radiosity approach, were difficult to draw. The results suggest that radiosity predicts room sound fields with some accuracy, at least as well as diffuse ray tracing and, in general, better than specular ray tracing. The predictions of detailed echograms are less accurate, those of derived room-acoustical parameters more accurate. The results underline the need to develop experimental methods for accurately characterizing the absorptive and reflective characteristics of room surfaces, possible including phase.

  2. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  3. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less

  4. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  5. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  6. Effect of the equivalent refractive index on intraocular lens power prediction with ray tracing after myopic laser in situ keratomileusis.

    PubMed

    Canovas, Carmen; van der Mooren, Marrie; Rosén, Robert; Piers, Patricia A; Wang, Li; Koch, Douglas D; Artal, Pablo

    2015-05-01

    To determine the impact of the equivalent refractive index (ERI) on intraocular lens (IOL) power prediction for eyes with previous myopic laser in situ keratomileusis (LASIK) using custom ray tracing. AMO B.V., Groningen, the Netherlands, and the Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Retrospective data analysis. The ERI was calculated individually from the post-LASIK total corneal power. Two methods to account for the posterior corneal surface were tested; that is, calculation from pre-LASIK data or from post-LASIK data only. Four IOL power predictions were generated using a computer-based ray-tracing technique, including individual ERI results from both calculation methods, a mean ERI over the whole population, and the ERI for normal patients. For each patient, IOL power results calculated from the four predictions as well as those obtained with the Haigis-L were compared with the optimum IOL power calculated after cataract surgery. The study evaluated 25 patients. The mean and range of ERI values determined using post-LASIK data were similar to those determined from pre-LASIK data. Introducing individual or an average ERI in the ray-tracing IOL power calculation procedure resulted in mean IOL power errors that were not significantly different from zero. The ray-tracing procedure that includes an average ERI gave a greater percentage of eyes with an IOL power prediction error within ±0.5 diopter than the Haigis-L (84% versus 52%). For IOL power determination in post-LASIK patients, custom ray tracing including a modified ERI was an accurate procedure that exceeded the current standards for normal eyes. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The Gaussian Laser Angular Distribution in HYDRA's 3D Laser Ray Trace Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepke, Scott M.

    In this note, the angular distribution of rays launched by the 3D LZR ray trace package is derived for Gaussian beams (npower==2) with bm model=3±. Beams with bm model=+3 have a nearly at distribution, and beams with bm model=-3 have a nearly linear distribution when the spot size is large compared to the wavelength.

  8. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2014-12-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the interface oxic - anoxic zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that produced by modern large, mat-forming, sulphide-oxidizing bacteria, belonging mostly to Trichichnus-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  9. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-04-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  10. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System.

    PubMed

    McBriarty, Martin E; Soltis, Jennifer A; Kerisit, Sebastien; Qafoku, Odeta; Bowden, Mark E; Bylaska, Eric J; De Yoreo, James J; Ilton, Eugene S

    2017-05-02

    The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH) 3 ] to nanoparticulate iron oxyhydroxide minerals in the presence of uranyl (UO 2 ) 2+ (aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.

  11. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH)3] to nanoparticulate iron oxyhydroxide minerals in themore » presence of uranyl (UO 2) 2+(aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.« less

  12. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in nanomaterials using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities or dopants affect the properties of the host phase. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic contaminants. The reductive transformation of ferrihydrite (Fe(OH)3) to nano-particulate iron oxyhydroxide minerals in the presencemore » of uranyl (UO2)2+(aq) resulted in the preferential incorporation of U into goethite (a-FeOOH) over lepidocrocite (g-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. Using this model system, we demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations of traditional shell-by-shell EXAFS modeling, enabling the detailed analysis of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multi-phase nano-systems.« less

  13. Fossilized bioelectric wire – the trace fossil Trichichnus

    PubMed Central

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-01-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  15. SolTrace | Concentrating Solar Power | NREL

    Science.gov Websites

    NREL packaged distribution or from source code at the SolTrace open source project website. NREL Publications Support FAQs SolTrace open source project The code uses Monte-Carlo ray-tracing methodology. The -tracing capabilities. With the release of the SolTrace open source project, the software has adopted

  16. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique

    NASA Astrophysics Data System (ADS)

    Shi, Shengxian; Ding, Junfei; New, T. H.; Soria, Julio

    2017-07-01

    This paper presents a dense ray tracing reconstruction technique for a single light-field camera-based particle image velocimetry. The new approach pre-determines the location of a particle through inverse dense ray tracing and reconstructs the voxel value using multiplicative algebraic reconstruction technique (MART). Simulation studies were undertaken to identify the effects of iteration number, relaxation factor, particle density, voxel-pixel ratio and the effect of the velocity gradient on the performance of the proposed dense ray tracing-based MART method (DRT-MART). The results demonstrate that the DRT-MART method achieves higher reconstruction resolution at significantly better computational efficiency than the MART method (4-50 times faster). Both DRT-MART and MART approaches were applied to measure the velocity field of a low speed jet flow which revealed that for the same computational cost, the DRT-MART method accurately resolves the jet velocity field with improved precision, especially for the velocity component along the depth direction.

  17. Synchrotron-induced X-ray fluorescence from rat bone and lumber vertebra of different age groups

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Takeda, Tohoru; Tromba, Giuliana; Gigante, Giovanni E.

    2009-02-01

    The fluorescence spectra from rat bones of different age groups (8, 56 and 78 weeks) and lumber vertebra were measured with 8, 10 and 12 keV synchrotron X-rays. We have utilized the new hard X-ray micro-spectroscopy beamline facility, X27A, available at NSLS with a primary beam spot size of the order of ˜10 μm. With this spatial resolution and high flux throughput, X-ray fluorescent intensities for Ca and other trace elements were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. Regarding the lumber vertebra, we acquired the fluorescence spectra from the left, right and middle portions and calcium accumulation was evaluated and compared with the other samples. We have identified the major trace elements of Ca, Ni, Fe and Zn and minor trace elements of Ti, Cr and Mn in the sample. The percentage of scattered radiation and trace element contributions from these samples were highlighted at different energies.

  18. Backward and forward Monte Carlo method for vector radiative transfer in a two-dimensional graded index medium

    NASA Astrophysics Data System (ADS)

    Qian, Lin-Feng; Shi, Guo-Dong; Huang, Yong; Xing, Yu-Ming

    2017-10-01

    In vector radiative transfer, backward ray tracing is seldom used. We present a backward and forward Monte Carlo method to simulate vector radiative transfer in a two-dimensional graded index medium, which is new and different from the conventional Monte Carlo method. The backward and forward Monte Carlo method involves dividing the ray tracing into two processes backward tracing and forward tracing. In multidimensional graded index media, the trajectory of a ray is usually a three-dimensional curve. During the transport of a polarization ellipse, the curved ray trajectory will induce geometrical effects and cause Stokes parameters to continuously change. The solution processes for a non-scattering medium and an anisotropic scattering medium are analysed. We also analyse some parameters that influence the Stokes vector in two-dimensional graded index media. The research shows that the Q component of the Stokes vector cannot be ignored. However, the U and V components of the Stokes vector are very small.

  19. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  20. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  1. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE PAGES

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; ...

    2006-01-01

    Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  2. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn

    Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less

  3. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma

    DOE PAGES

    Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; ...

    2015-09-05

    Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less

  4. Polarized reflectance and transmittance properties of windblown sea surfaces.

    PubMed

    Mobley, Curtis D

    2015-05-20

    Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.

  5. Ray tracing on the MPP

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1987-01-01

    Generating graphics to faithfully represent information can be a computationally intensive task. A way of using the Massively Parallel Processor to generate images by ray tracing is presented. This technique uses sort computation, a method of performing generalized routing interspersed with computation on a single-instruction-multiple-data (SIMD) computer.

  6. Publications - GMC 265 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 265 Publication Details Title: X-ray fluorescence trace element data of the U.S. Bureau of Clautice, K.H., 1996, X-ray fluorescence trace element data of the U.S. Bureau of Mines Idaho Gulch (Tofty

  7. Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range

    NASA Astrophysics Data System (ADS)

    Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina

    2018-02-01

    High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.

  8. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  9. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B 4C) coating especially optimized for the LCLS FEL conditions was deposited onmore » all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B 4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  10. Electron-excited energy dispersive X-ray spectrometry at high speed and at high resolution: silicon drift detectors and microcalorimeters.

    PubMed

    Newbury, Dale E

    2006-12-01

    Two recent developments in X-ray spectrometer technology provide dramatic improvements in analytical capabilities that impact the frontiers of electron microscopy. Silicon drift detectors (SDD) use the same physics as silicon (lithium) energy dispersive spectrometers [Si(Li) EDS] but differ in design: only 10% of the thickness of the Si(Li) EDS with an anode area below 0.1 mm2 and a complex rear surface electrode pattern that creates a lateral internal charge collection field. The SDD equals or betters the Si(Li) EDS in most measures of performance. For output versus input count rate, the SDD exceeds the Si(Li) EDS by a factor of 5 to 10 for the same resolution. This high throughput can benefit analytical measurements that are count limited, such as X-ray mapping and trace measurements. The microcalorimeter EDS determines the X-ray energy by measuring the temperature rise in a metal absorber. Operating at 100 mK, the microcalorimeter EDS achieves resolution of 2-5 eV over a photon energy range of 200 eV to 10 keV in energy dispersive operation, eliminating most peak interference situations and providing high peak-to-background to detect low fluorescence yield peaks. Chemical bonding effects on low energy (< 2 keV) peak shapes can be measured.

  11. Effect of parallel refraction on magnetospheric upper hybrid waves

    NASA Technical Reports Server (NTRS)

    Engel, J.; Kennel, C. F.

    1984-01-01

    Large amplitude (not less than 10 mV/m) electrostatic plasma waves near the upper hybrid (UH) frequency have been observed from 0 to 50 deg magnetic latitude (MLAT) during satellite plasma-pause crossings. A three-dimensional numerical ray-tracing calculation, based on an electron distribution measured during a GEOS 1 dayside intense upper-hybrid wave event, suggests how UH waves might achieve such large amplitudes away from the geomagnetic equator. Refractive effects largely control the wave amplification and, in particular, the unavoidable refraction due to parallel geomagnetic field gradients restricts growth to levels below those observed. However, a cold electron density gradient parallel to the field can lead to upper hybrid wave growth that can account for the observed emission levels.

  12. Spectrum simulation in DTSA-II.

    PubMed

    Ritchie, Nicholas W M

    2009-10-01

    Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.

  13. Subterahertz gyrotron developments for collective Thomson scattering in LHDa)

    NASA Astrophysics Data System (ADS)

    Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  14. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less

  15. The Laser Level as an Optics Laboratory Tool

    ERIC Educational Resources Information Center

    Kutzner, Mickey

    2013-01-01

    For decades now, the laser has been used as a handy device for performing ray traces in geometrical optics demonstrations and laboratories. For many ray- trace applications, I have found the laser level 3 to be even more visually compelling and easy for student use than the laser pointer.

  16. Chamber Optics for Testing Passive Remote Sensing Vapor Detectors

    DTIC Science & Technology

    1993-11-01

    BIOLOGICAL A DEFENSE AGENCY Aberden Proving Ground , Maryland 21010-6423 S4 2 18 94-05616 Best Available Copy Disclaimer The findings in this report are...were tried; ray tracing proved to be the most useful. Rays were iteratively traced through every element using the following paraxial equations. 8 U

  17. Improvements of the Ray-Tracing Based Method Calculating Hypocentral Loci for Earthquake Location

    NASA Astrophysics Data System (ADS)

    Zhao, A. H.

    2014-12-01

    Hypocentral loci are very useful to reliable and visual earthquake location. However, they can hardly be analytically expressed when the velocity model is complex. One of methods numerically calculating them is based on a minimum traveltime tree algorithm for tracing rays: a focal locus is represented in terms of ray paths in its residual field from the minimum point (namely initial point) to low residual points (referred as reference points of the focal locus). The method has no restrictions on the complexity of the velocity model but still lacks the ability of correctly dealing with multi-segment loci. Additionally, it is rather laborious to set calculation parameters for obtaining loci with satisfying completeness and fineness. In this study, we improve the ray-tracing based numerical method to overcome its advantages. (1) Reference points of a hypocentral locus are selected from nodes of the model cells that it goes through, by means of a so-called peeling method. (2) The calculation domain of a hypocentral locus is defined as such a low residual area that its connected regions each include one segment of the locus and hence all the focal locus segments are respectively calculated with the minimum traveltime tree algorithm for tracing rays by repeatedly assigning the minimum residual reference point among those that have not been traced as an initial point. (3) Short ray paths without branching are removed to make the calculated locus finer. Numerical tests show that the improved method becomes capable of efficiently calculating complete and fine hypocentral loci of earthquakes in a complex model.

  18. Determining Hypocentral Parameters for Local Earthquakes in 1-D Using a Genetic Algorithm and Two-point ray tracing

    NASA Astrophysics Data System (ADS)

    Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.

    2005-12-01

    This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing

  19. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  20. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    NASA Astrophysics Data System (ADS)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  1. Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet

    NASA Astrophysics Data System (ADS)

    Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.

    2017-12-01

    Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.

  2. Mid-Frequency Reverberation Measurements with Full Companion Environmental Support

    DTIC Science & Technology

    2014-12-30

    acoustic modeling is based on measured stratification and observed wave amplitudes on the New Jersey shelf during the SWARM experiment.3 Ray tracing is...wave model then gives quantitative results for the clutter. 2. Swarm NLIW model and ray tracing Nonlinear internal waves are very common on the...receiver in order to give quantitative clutter to reverberation. To picture the mechanism, a set of rays was launched from a source at range zero and

  3. Verification technology of remote sensing camera satellite imaging simulation based on ray tracing

    NASA Astrophysics Data System (ADS)

    Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun

    2017-08-01

    Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.

  4. The effects of atmospheric refraction on the accuracy of laser ranging systems

    NASA Technical Reports Server (NTRS)

    Zanter, D. L.; Gardner, C. S.; Rao, N. N.

    1976-01-01

    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric.

  5. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Acero, F.; Aloisio, R.; Amans, J.; Amato, E.; Antonelli, L. A.; Aramo, C.; Armstrong, T.; Arqueros, F.; Asano, K.; Ashley, M.; Backes, M.; Balazs, C.; Balzer, A.; Bamba, A.; Barkov, M.; Barrio, J. A.; Benbow, W.; Bernlöhr, K.; Beshley, V.; Bigongiari, C.; Biland, A.; Bilinsky, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blasi, P.; Blazek, J.; Boisson, C.; Bonanno, G.; Bonardi, A.; Bonavolontà, C.; Bonnoli, G.; Braiding, C.; Brau-Nogué, S.; Bregeon, J.; Brown, A. M.; Bugaev, V.; Bulgarelli, A.; Bulik, T.; Burton, M.; Burtovoi, A.; Busetto, G.; Böttcher, M.; Cameron, R.; Capalbi, M.; Caproni, A.; Caraveo, P.; Carosi, R.; Cascone, E.; Cerruti, M.; Chaty, S.; Chen, A.; Chen, X.; Chernyakova, M.; Chikawa, M.; Chudoba, J.; Cohen-Tanugi, J.; Colafrancesco, S.; Conforti, V.; Contreras, J. L.; Costa, A.; Cotter, G.; Covino, S.; Covone, G.; Cumani, P.; Cusumano, G.; D'Ammando, F.; D'Urso, D.; Daniel, M.; Dazzi, F.; De Angelis, A.; De Cesare, G.; De Franco, A.; De Frondat, F.; de Gouveia Dal Pino, E. M.; De Lisio, C.; de los Reyes Lopez, R.; De Lotto, B.; de Naurois, M.; De Palma, F.; Del Santo, M.; Delgado, C.; della Volpe, D.; Di Girolamo, T.; Di Giulio, C.; Di Pierro, F.; Di Venere, L.; Doro, M.; Dournaux, J.; Dumas, D.; Dwarkadas, V.; Díaz, C.; Ebr, J.; Egberts, K.; Einecke, S.; Elsässer, D.; Eschbach, S.; Falceta-Goncalves, D.; Fasola, G.; Fedorova, E.; Fernández-Barral, A.; Ferrand, G.; Fesquet, M.; Fiandrini, E.; Fiasson, A.; Filipovíc, M. D.; Fioretti, V.; Font, L.; Fontaine, G.; Franco, F. J.; Freixas Coromina, L.; Fujita, Y.; Fukui, Y.; Funk, S.; Förster, A.; Gadola, A.; Garcia López, R.; Garczarczyk, M.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; Grabarczyk, T.; Graciani, R.; Graham, J.; Grandi, P.; Granot, J.; Green, A. J.; Griffiths, S.; Gunji, S.; Hakobyan, H.; Hara, S.; Hassan, T.; Hayashida, M.; Heller, M.; Helo, J. C.; Hinton, J.; Hnatyk, B.; Huet, J.; Huetten, M.; Humensky, T. B.; Hussein, M.; Hörandel, J.; Ikeno, Y.; Inada, T.; Inome, Y.; Inoue, S.; Inoue, T.; Inoue, Y.; Ioka, K.; Iori, M.; Jacquemier, J.; Janecek, P.; Jankowsky, D.; Jung, I.; Kaaret, P.; Katagiri, H.; Kimeswenger, S.; Kimura, S.; Knödlseder, J.; Koch, B.; Kocot, J.; Kohri, K.; Komin, N.; Konno, Y.; Kosack, K.; Koyama, S.; Kraus, M.; Kubo, H.; Kukec Mezek, G.; Kushida, J.; La Palombara, N.; Lalik, K.; Lamanna, G.; Landt, H.; Lapington, J.; Laporte, P.; Lee, S.; Lees, J.; Lefaucheur, J.; Lenain, J.-P.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, M.; Lucarelli, F.; Luque-Escamilla, P. L.; López-Coto, R.; Maccarone, M. C.; Maier, G.; Malaguti, G.; Mandat, D.; Maneva, G.; Mangano, S.; Marcowith, A.; Martí, J.; Martínez, M.; Martínez, G.; Masuda, S.; Maurin, G.; Maxted, N.; Melioli, C.; Mineo, T.; Mirabal, N.; Mizuno, T.; Moderski, R.; Mohammed, M.; Montaruli, T.; Moralejo, A.; Mori, K.; Morlino, G.; Morselli, A.; Moulin, E.; Mukherjee, R.; Mundell, C.; Muraishi, H.; Murase, K.; Nagataki, S.; Nagayoshi, T.; Naito, T.; Nakajima, D.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nievas-Rosillo, M.; Nikołajuk, M.; Nishijima, K.; Noda, K.; Nogues, L.; Nosek, D.; Novosyadlyj, B.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohm, S.; Okumura, A.; Ong, R. A.; Orito, R.; Orlati, A.; Ostrowski, M.; Oya, I.; Padovani, M.; Palacio, J.; Palatka, M.; Paredes, J. M.; Pavy, S.; Pe'er, A.; Persic, M.; Petrucci, P.; Petruk, O.; Pisarski, A.; Pohl, M.; Porcelli, A.; Prandini, E.; Prast, J.; Principe, G.; Prouza, M.; Pueschel, E.; Pühlhofer, G.; Quirrenbach, A.; Rameez, M.; Reimer, O.; Renaud, M.; Ribó, M.; Rico, J.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodríguez Vázquez, J. J.; Romano, P.; Romeo, G.; Rosado, J.; Rousselle, J.; Rowell, G.; Rudak, B.; Sadeh, I.; Safi-Harb, S.; Saito, T.; Sakaki, N.; Sanchez, D.; Sangiorgi, P.; Sano, H.; Santander, M.; Sarkar, S.; Sawada, M.; Schioppa, E. J.; Schoorlemmer, H.; Schovanek, P.; Schussler, F.; Sergijenko, O.; Servillat, M.; Shalchi, A.; Shellard, R. C.; Siejkowski, H.; Sillanpää, A.; Simone, D.; Sliusar, V.; Sol, H.; Stanič, S.; Starling, R.; Stawarz, Ł.; Stefanik, S.; Stephan, M.; Stolarczyk, T.; Szanecki, M.; Szepieniec, T.; Tagliaferri, G.; Tajima, H.; Takahashi, M.; Takeda, J.; Tanaka, M.; Tanaka, S.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Terada, Y.; Tescaro, D.; Teshima, M.; Testa, V.; Thoudam, S.; Tokanai, F.; Torres, D. F.; Torresi, E.; Tosti, G.; Townsley, C.; Travnicek, P.; Trichard, C.; Trifoglio, M.; Tsujimoto, S.; Vagelli, V.; Vallania, P.; Valore, L.; van Driel, W.; van Eldik, C.; Vandenbroucke, J.; Vassiliev, V.; Vecchi, M.; Vercellone, S.; Vergani, S.; Vigorito, C.; Vorobiov, S.; Vrastil, M.; Vázquez Acosta, M. L.; Wagner, S. J.; Wagner, R.; Wakely, S. P.; Walter, R.; Ward, J. E.; Watson, J. J.; Weinstein, A.; White, M.; White, R.; Wierzcholska, A.; Wilcox, P.; Williams, D. A.; Wischnewski, R.; Wojcik, P.; Yamamoto, T.; Yamamoto, H.; Yamazaki, R.; Yanagita, S.; Yang, L.; Yoshida, T.; Yoshida, M.; Yoshiike, S.; Yoshikoshi, T.; Zacharias, M.; Zampieri, L.; Zanin, R.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A.; Zech, A.; Zechlin, H.; Zhdanov, V.; Ziegler, A.; Zorn, J.

    2017-05-01

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (I.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

  6. Molray--a web interface between O and the POV-Ray ray tracer.

    PubMed

    Harris, M; Jones, T A

    2001-08-01

    A publicly available web-based interface is presented for producing high-quality ray-traced images and movies from the molecular-modelling program O [Jones et al. (1991), Acta Cryst. A47, 110-119]. The interface allows the user to select O-plot files and set parameters to create standard input files for the popular ray-tracing renderer POV-Ray, which can then produce publication-quality still images or simple movies. To ensure ease of use, we have made this service available to the O user community via the World Wide Web. The public Molray server is available at http://xray.bmc.uu.se/molray.

  7. Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry.

    PubMed

    Asselineau, Charles-Alexis; Zapata, Jose; Pye, John

    2015-06-01

    A stochastic optimisation method adapted to illumination and radiative heat transfer problems involving Monte-Carlo ray-tracing is presented. A solar receiver shape optimisation case study illustrates the advantages of the method and its potential: efficient receivers are identified using a moderate computational cost.

  8. Magnetic porous β-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples.

    PubMed

    Zhang, Wenmin; Lin, Mingxia; Wang, Meili; Tong, Ping; Lu, Qiaomei; Zhang, Lan

    2017-06-23

    Microcystins (MCs) are cyclic heptapeptide toxins and tumor promoters produced by cyanobacteria, which threaten the health of humans. In this study, magnetic porous β-cyclodextrin polymer (Fe 3 O 4 @SiO 2 @P-CDP) was synthesized and characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectrometry, X-ray diffraction, nitrogen adsorption porosimetry and vibrating sample magnetometer. The synthesized Fe 3 O 4 @SiO 2 @P-CDP particles were then used for magnetic solid-phase extraction (MSPE) of MCs from environmental water samples, and exhibited excellent extraction performance, especially for MC-RR. Coupled with high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), a simple, efficient and sensitive method for determination of trace levels of MCs was established. After the optimization of conditions, wide linear ranges (2.0-1000pgmL -1 ), good linearity (r 2 ≥0.9996) and acceptable repeatability (RSD≤9.4%, n=5) were obtained. The limits of detection (LODs, S/N=3) and limits of quantification (LOQs, S/N=10) for three MCs (MC-LR, MC-RR and MC-YR) were in the range of 1.0-2.0pgmL -1 and 2.0-5.0pgmL -1 , respectively. Typical water samples were analyzed by the developed method, and trace levels of MC-LR and MC-RR were detected. The results demonstrate that the developed method has great potential for the determination of MCs in complicated matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. As-Received, Ozone Cleaned and Ar+ Sputtered Surfaces of Hafnium Oxide Grown by Atomic Layer Deposition and Studied by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Herman, Jacob A.; Wallace, Robert

    2012-06-27

    In this study, X-ray photoelectron spectroscopy (XPS) characterization was performed on 47 nm thick hafnium oxide (HfO{sub 2}) films grown by atomic layer deposition using TEMA-Hf/H{sub 2}O at 250 C substrate temperature. HfO{sub 2} is currently being studied as a possible replacement for Silicon Oxide (SiO{sub 2}) as a gate dielectric in electronics transistors. XPS spectra were collected on a Physical Electronics Quantum 2000 Scanning ESCA Microprobe using a monochromatic Al K{sub a} X-ray (1486.7 eV) excitation source. The sample was analyzed under the following conditions: as received, after UV irradiation for five minutes, and after sputter cleaning with 2more » kV Ar{sup +} ions for 180 seconds. Survey scans showed carbon, oxygen, and hafnium as the major species in the film, while the only minor species of argon and carbide was detected after sputtering. Adventitious carbon initially composed approximately 18.6 AT% of the surface, but after UV cleaning it was reduced to 2.4 AT%. This demonstrated that that the majority of carbon was due to adventitious carbon. However, after 2 kV Ar{sup +} sputtering there was still only trace amounts of carbon at {approx}1 AT%, Some of this trace carbon is now in the form of a carbide due to the interaction with Ar{sup +} used for sputter cleaning. Furthermore, the stoiciometric ratio of oxygen and hafnium is consistent with a high quality HfO{sub 2} film.« less

  10. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  11. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  12. Coaxial carbon plasma gun deposition of amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  13. Improved algorithm of ray tracing in ICF cryogenic targets

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin

    2016-10-01

    The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.

  14. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.

    2014-05-01

    Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  15. Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT

    2016-05-06

    Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less

  16. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  17. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in themore » Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.« less

  18. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  19. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'.

    PubMed

    Morina, Filis; Vidović, Marija; Srećković, Tatjana; Radović, Vesela; Veljović-Jovanović, Sonja

    2017-12-01

    We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.

  20. Spatial separation of electrons and holes for enhancing the gas-sensing property of a semiconductor: ZnO/ZnSnO3 nanorod arrays prepared by a hetero-epitaxial growth

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin

    2018-04-01

    The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.

  1. Annular Focused Electron/Ion Beams for Combining High Spatial Resolution with High Probe Current.

    PubMed

    Khursheed, Anjam; Ang, Wei Kean

    2016-10-01

    This paper presents a proposal for reducing the final probe size of focused electron/ion beam columns that are operated in a high primary beam current mode where relatively large final apertures are used, typically required in applications such as electron beam lithography, focused ion beams, and electron beam spectroscopy. An annular aperture together with a lens corrector unit is used to replace the conventional final hole-aperture, creating an annular ring-shaped primary beam. The corrector unit is designed to eliminate the first- and second-order geometric aberrations of the objective lens, and for the same probe current, the final geometric aberration limited spot size is predicted to be around a factor of 50 times smaller than that of the corresponding conventional hole-aperture beam. Direct ray tracing simulation is used to illustrate how a three-stage core lens corrector can be used to eliminate the first- and second-order geometric aberrations of an electric Einzel objective lens.

  2. Transition zone structure beneath Ethiopia from 3-D fast marching pseudo-migration stacking

    NASA Astrophysics Data System (ADS)

    Benoit, M. H.; Lopez, A.; Levin, V.

    2008-12-01

    Several models for the origin of the Afar hotspot have been put forth over the last decade, but much ambiguity remains as to whether the hotspot tectonism found there is due to a shallow or deeply seated feature. Additionally, there has been much debate as to whether the hotspot owes its existence to a 'classic' mantle plume feature or if it is part of the African Superplume complex. To further understand the origin of the hotspot, we employ a new receiver function stacking method that incorporates a fast-marching three- dimensional ray tracing algorithm to improve upon existing studies of the mantle transition zone structure. Using teleseismic data from the Ethiopia Broadband Seismic Experiment and the EAGLE (Ethiopia Afar Grand Lithospheric Experiment) experiment, we stack receiver functions using a three-dimensional pseudo- migration technique to examine topography on the 410 and 660 km discontinuities. Previous methods of receiver function pseudo-migration incorporated ray tracing methods that were not able to ray trace through highly complicated 3-D structure, or the ray tracing techniques only produced 3-D time perturbations associated 1-D rays in a 3-D velocity medium. These previous techniques yielded confusing and incomplete results for when applied to the exceedingly complicated mantle structure beneath Ethiopia. Indeed, comparisons of the 1-D versus 3-D ray tracing techniques show that the 1-D technique mislocated structure laterally in the mantle by over 100 km. Preliminary results using our new technique show a shallower then average 410 km discontinuity and a deeper than average 660 km discontinuity over much of the region, suggested that the hotspot has a deep seated origin.

  3. Non-singular acoustic cloak derived by the ray tracing method with rotationally symmetric transformations

    PubMed Central

    Wu, Linzhi

    2016-01-01

    Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884

  4. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  5. Effective algorithm for ray-tracing simulations of lobster eye and similar reflective optical systems

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír; Hudec, René; Němcová, Šárka

    2016-06-01

    The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.

  6. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    NASA Astrophysics Data System (ADS)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  7. Software to model AXAF-I image quality

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees; Feng, Chen

    1995-01-01

    A modular user-friendly computer program for the modeling of grazing-incidence type x-ray optical systems has been developed. This comprehensive computer software GRAZTRACE covers the manipulation of input data, ray tracing with reflectivity and surface deformation effects, convolution with x-ray source shape, and x-ray scattering. The program also includes the capabilities for image analysis, detector scan modeling, and graphical presentation of the results. A number of utilities have been developed to interface the predicted Advanced X-ray Astrophysics Facility-Imaging (AXAF-I) mirror structural and thermal distortions with the ray-trace. This software is written in FORTRAN 77 and runs on a SUN/SPARC station. An interactive command mode version and a batch mode version of the software have been developed.

  8. Multilayer X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  9. Publications - GMC 264 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 264 Publication Details Title: X-ray fluorescence trace element data of the following U.S for more information. Bibliographic Reference Werdon, M.B., 1996, X-ray fluorescence trace element . Bureau of Mines hard rock mineral pulp samples from the Colville mining district: West Kivliktort

  10. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences.

    PubMed

    Strange, Richard W; Feiters, Martin C

    2008-10-01

    Using X-ray absorption spectroscopy (XAS) the binding modes (type and number of ligands, distances and geometry) and oxidation states of metals and other trace elements in crystalline as well as non-crystalline samples can be revealed. The method may be applied to biological systems as a 'stand-alone' technique, but it is particularly powerful when used alongside other X-ray and spectroscopic techniques and computational approaches. In this review, we highlight how biological XAS is being used in concert with crystallography, spectroscopy and computational chemistry to study metalloproteins in crystals, and report recent applications on relatively rare trace elements utilised by living organisms and metals involved in neurodegenerative diseases.

  11. Electromagnetic ray tracing model for line structures.

    PubMed

    Tan, C B; Khoh, A; Yeo, S H

    2008-03-17

    In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.

  12. Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver

    NASA Astrophysics Data System (ADS)

    Blázquez, R.; Carballo, J.; Silva, M.

    2016-05-01

    One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.

  13. X-ray mask and method for providing same

    DOEpatents

    Morales, Alfredo M [Pleasanton, CA; Skala, Dawn M [Fremont, CA

    2004-09-28

    The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

  14. X-ray mask and method for providing same

    DOEpatents

    Morales, Alfredo M.; Skala, Dawn M.

    2002-01-01

    The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

  15. Comparison of matrix method and ray tracing in the study of complex optical systems

    NASA Astrophysics Data System (ADS)

    Anterrieu, Eric; Perez, Jose-Philippe

    2000-06-01

    In the context of the classical study of optical systems within the geometrical Gauss approximation, the cardinal elements are efficiently obtained with the aid of the transfer matrix between the input and output planes of the system. In order to take into account the geometrical aberrations, a ray tracing approach, using the Snell- Descartes laws, has been implemented in an interactive software. Both methods are applied for measuring the correction to be done to a human eye suffering from ametropia. This software may be used by optometrists and ophthalmologists for solving the problems encountered when considering this pathology. The ray tracing approach gives a significant improvement and could be very helpful for a better understanding of an eventual surgical act.

  16. Ray tracing analysis of overlapping objects in refraction contrast imaging.

    PubMed

    Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Sakurai, Takashi; Kondoh, Takeshi; Katafuchi, Tetsuro; Sugimura, Kazuro; Kitazawa, Sohei; Kitazawa, Riko; Maeda, Sakan; Tamura, Shinichi

    2005-08-01

    We simulated refraction contrast imaging in overlapping objects using the ray tracing method. The easiest case, in which two columnar objects (blood vessels) with a density of 1.0 [g/cm3], run at right angles in air, was calculated. For absorption, we performed simulation using the Snell law adapted to the object's boundary. A pair of bright and dark spot results from the interference of refracted X-rays where the blood vessels crossed. This has the possibility of increasing the visibility of the image.

  17. Simulation and optimization of volume holographic imaging systems in Zemax.

    PubMed

    Wissmann, Patrick; Oh, Se Baek; Barbastathis, George

    2008-05-12

    We present a new methodology for ray-tracing analysis of volume holographic imaging (VHI) systems. Using the k-sphere formulation, we apply geometrical relationships to describe the volumetric diffraction effects imposed on rays passing through a volume hologram. We explain the k-sphere formulation in conjunction with ray tracing process and describe its implementation in a Zemax UDS (User Defined Surface). We conclude with examples of simulation and optimization results and show proof of consistency and usefulness of the proposed model.

  18. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  19. Spatial imaging in the soft x-ray region (20--304 A) utilizing the astigmatism of a grazing incidence concave grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nudelfuden, A.; Solanki, R.; Moos, H.W.

    1985-03-15

    Soft x-ray (20--304--A) astigmatic line shapes were measured in order to evaluate the spatial imaging properties of a Rowland mounted concave grating in grazing incidence. The practicability of coarse 1-D spatial imaging in the soft x-ray region is demonstrated. Spatial resolution equivalent to approx.4 cm at a source distance of 2 m can be achieved with practical parameters (e.g., sensitivity and time resolution) for a fusion diagnostic spectrograph. The results are compared to computer-generated ray tracings and found to be in good agreement. The ray tracing program which models the grazing incidence optics is discussed.

  20. Neutron activation analyses and half-life measurements at the usgs triga reactor

    NASA Astrophysics Data System (ADS)

    Larson, Robert E.

    Neutron activation of materials followed by gamma spectroscopy using high-purity germanium detectors is an effective method for making measurements of nuclear beta decay half-lives and for detecting trace amounts of elements present in materials. This research explores applications of neutron activation analysis (NAA) in two parts. Part 1. High Precision Methods for Measuring Decay Half-Lives, Chapters 1 through 8 Part one develops research methods and data analysis techniques for making high precision measurements of nuclear beta decay half-lives. The change in the electron capture half-life of 51Cr in pure chromium versus chromium mixed in a gold lattice structure is explored, and the 97Ru electron capture decay half-life are compared for ruthenium in a pure crystal versus ruthenium in a rutile oxide state, RuO2. In addition, the beta-minus decay half-life of 71mZn is measured and compared with new high precision findings. Density Functional Theory is used to explain the measured magnitude of changes in electron capture half-life from changes in the surrounding lattice electron configuration. Part 2. Debris Collection Nuclear Diagnostic at the National Ignition Facility, Chapters 9 through 11 Part two explores the design and development of a solid debris collector for use as a diagnostic tool at the National Ignition Facility (NIF). NAA measurements are performed on NIF post-shot debris collected on witness plates in the NIF chamber. In this application NAA is used to detect and quantify the amount of trace amounts of gold from the hohlraum and germanium from the pellet present in the debris collected after a NIF shot. The design of a solid debris collector based on material x-ray ablation properties is given, and calculations are done to predict performance and results for the collection and measurements of trace amounts of gold and germanium from dissociated hohlraum debris.

  1. Ionospheric tomography using Faraday rotation of Automatic Dependent Surveillance Broadcast (UHF) signals Ionospheric Measurement From ADS-B Signals

    NASA Astrophysics Data System (ADS)

    Cushley, Alex Clay

    The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).

  2. Refractive and relativistic effects on ITER low field side reflectometer design.

    PubMed

    Wang, G; Rhodes, T L; Peebles, W A; Harvey, R W; Budny, R V

    2010-10-01

    The ITER low field side reflectometer faces some unique design challenges, among which are included the effect of relativistic electron temperatures and refraction of probing waves. This paper utilizes GENRAY, a 3D ray tracing code, to investigate these effects. Using a simulated ITER operating scenario, characteristics of the reflected millimeter waves after return to the launch plane are quantified as a function of a range of design parameters, including antenna height, antenna diameter, and antenna radial position. Results for edge/SOL measurement with both O- and X-mode polarizations using proposed antennas are reported.

  3. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  4. Characterisation of mineral deposition systems associated with rock art in the Kimberley region of northwest Australia.

    PubMed

    Green, Helen; Gleadow, Andrew; Finch, Damien

    2017-10-01

    This data article contains mineralogical and chemical data from mineral accretions sampled from rock art shelters in the Kimberley region of north west Australia. The accretions were collected both on and off pigment and engraved rock art of varying styles observed in the Kimberley with an aim of providing a thorough understanding of the formation and preservation of such materials in the context of dating [1]. This contribution includes processed powder X-ray Diffraction data, Scanning Electron Microscopy energy dispersive spectroscopy data, and Laser Ablation ICP-MS trace element mapping data.

  5. Analysis Of The Boeing FEL Mirror Measurements

    NASA Astrophysics Data System (ADS)

    Knapp, Charles E.; Viswanathan, Vriddhachalam K.; Appert, Quentin D.

    1989-07-01

    The aberrations have been measured for the finished mirrors that are part of the Burst Mode ring resonator of the Free Electron Laser (FEL) being constructed at the Boeing Aerospace Company in Seattle, Washington. This paper presents analysis of these measurements using the GLAD code, a diffraction ray-tracing code. The diffraction losses within the resonator due to the aberrations are presented. The analysis was conducted in two different modes, a paraxial approximation and a full 3-D calculation, and good agreement between the two approaches is shown. Finally, a proposed solution to the problems caused by the aberrations is presented and analyzed.

  6. LOFAR discovery of radio emission in MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Bonafede, A.; Brüggen, M.; Rafferty, D.; Zhuravleva, I.; Riseley, C. J.; van Weeren, R. J.; Farnes, J. S.; Vazza, F.; Savini, F.; Wilber, A.; Botteon, A.; Brunetti, G.; Cassano, R.; Ferrari, C.; de Gasperin, F.; Orrú, E.; Pizzo, R. F.; Röttgering, H. J. A.; Shimwell, T. W.

    2018-05-01

    We present results from LOFAR and GMRT observations of the galaxy cluster MACS J0717.5+3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sources of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.

  7. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    PubMed Central

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  8. Negative dysphotopsia: Causes and rationale for prevention and treatment.

    PubMed

    Holladay, Jack T; Simpson, Michael J

    2017-02-01

    To determine the cause of negative dysphotopsia using standard ray-tracing techniques and identify the primary and secondary causative factors. Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Experimental study. Zemax ray-tracing software was used to evaluate pseudophakic and phakic eye models to show the location of retinal field images from various visual field objects. Phakic retinal field angles (RFAs) were used as a reference for the perceived field locations for retinal images in pseudophakic eyes. In a nominal acrylic pseudophakic eye model with a 2.5 mm diameter pupil, the maximum RFA from rays refracted by the intraocular lens (IOL) was 85.7 degrees and the minimum RFA for rays missing the optic of the IOL was 88.3 degrees, leaving a dark gap (shadow) of 2.6 degrees in the extreme temporal field. The width of the shadow was more prominent for a smaller pupil, a larger angle kappa, an equi-biconvex or plano-convex IOL shape, and a smaller axial distance from iris to IOL and with the anterior capsule overlying the nasal IOL. Secondary factors included IOL edge design, material, diameter, decentration, tilt, and aspheric surfaces. Standard ray-tracing techniques showed that a shadow is present when there is a gap between the retinal images formed by rays missing the optic of the IOL and rays refracted by the IOL. Primary and secondary factors independently affected the width and location of the gap (or overlap). The ray tracing also showed a constriction and double retinal imaging in the extreme temporal visual field. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. (U) Second-Order Sensitivity Analysis of Uncollided Particle Contributions to Radiation Detector Responses Using Ray-Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorite, Jeffrey A.

    The Second-Level Adjoint Sensitivity System (2nd-LASS) that yields the second-order sensitivities of a response of uncollided particles with respect to isotope densities, cross sections, and source emission rates is derived in Refs. 1 and 2. In Ref. 2, we solved problems for the uncollided leakage from a homogeneous sphere and a multiregion cylinder using the PARTISN multigroup discrete-ordinates code. In this memo, we derive solutions of the 2nd-LASS for the particular case when the response is a flux or partial current density computed at a single point on the boundary, and the inner products are computed using ray-tracing. Both themore » PARTISN approach and the ray-tracing approach are implemented in a computer code, SENSPG. The next section of this report presents the equations of the 1st- and 2nd-LASS for uncollided particles and the first- and second-order sensitivities that use the solutions of the 1st- and 2nd-LASS. Section III presents solutions of the 1st- and 2nd-LASS equations for the case of ray-tracing from a detector point. Section IV presents specific solutions of the 2nd-LASS and derives the ray-trace form of the inner products needed for second-order sensitivities. Numerical results for the total leakage from a homogeneous sphere are presented in Sec. V and for the leakage from one side of a two-region slab in Sec. VI. Section VII is a summary and conclusions.« less

  10. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    DOE PAGES

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; ...

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-lm-thickmore » inserts with 0.4-lm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. In conclusion, the data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch’s membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.« less

  11. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    PubMed

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  12. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    PubMed Central

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.

    2017-01-01

    Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236

  13. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-lm-thickmore » inserts with 0.4-lm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. In conclusion, the data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch’s membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.« less

  14. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  15. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  16. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  17. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  18. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  19. Efficient calculation of luminance variation of a luminaire that uses LED light sources

    NASA Astrophysics Data System (ADS)

    Goldstein, Peter

    2007-09-01

    Many luminaires have an array of LEDs that illuminate a lenslet-array diffuser in order to create the appearance of a single, extended source with a smooth luminance distribution. Designing such a system is challenging because luminance calculations for a lenslet array generally involve tracing millions of rays per LED, which is computationally intensive and time-consuming. This paper presents a technique for calculating an on-axis luminance distribution by tracing only one ray per LED per lenslet. A multiple-LED system is simulated with this method, and with Monte Carlo ray-tracing software for comparison. Accuracy improves, and computation time decreases by at least five orders of magnitude with this technique, which has applications in LED-based signage, displays, and general illumination.

  20. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. Electronic supplementary information (ESI) available: SEM micrographs of porous PE with and without maleated PE, X-ray micro-computed tomogram of porous extruded PE, FTIR spectra of GO, XPS wide spectra of untreated and GO immobilized PE and Raman spectra of PE and GO. See DOI: 10.1039/c6nr01356b

  1. Determination by ray-tracing of the regions where mid-latitude whistlers exit from the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Strangeways, H. J.

    1981-03-01

    The size and position of the regions in the bottomside ionosphere through which downcoming whistlers emerge are estimated using ray-tracing calculations in both summer day and winter night models of the magnetospheric plasma. Consideration is given to the trapping of upgoing whistler-mode waves through both the base and the side of ducts. It is found that for downcoming rays which were trapped in the duct in the summer day model, the limited range of wave-normal angles which can be transmitted from the lower ionosphere to free space below causes the size of the exit point to be considerably smaller than the region of incidence. The exit point is found to be approximately 100 km in size, which agrees with ground-based observations of fairly narrow trace whistlers. For rays trapped in the duct in the winter night model, it is found that the size of the exit point is more nearly the same as the range of final latitudes of the downcoming rays in the lower ionosphere.

  2. Simulated annealing two-point ray tracing

    NASA Astrophysics Data System (ADS)

    Velis, Danilo R.; Ulrych, Tadeusz J.

    We present a new method for solving the two-point seismic ray tracing problem based on Fermat's principle. The algorithm overcomes some well known difficulties that arise in standard ray shooting and bending methods. Problems related to: (1) the selection of new take-off angles, and (2) local minima in multipathing cases, are overcome by using an efficient simulated annealing (SA) algorithm. At each iteration, the ray is propagated from the source by solving a standard initial value problem. The last portion of the raypath is then forced to pass through the receiver. Using SA, the total traveltime is then globally minimized by obtaining the initial conditions that produce the absolute minimum path. The procedure is suitable for tracing rays through 2D complex structures, although it can be extended to deal with 3D velocity media. Not only direct waves, but also reflected and head-waves can be incorporated in the scheme. One important advantage is its simplicity, in as much as any available or user-preferred initial value solver system can be used. A number of clarifying examples of multipathing in 2D media are examined.

  3. Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.

    2018-01-01

    We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.

  4. TransFit: Finite element analysis data fitting software

    NASA Technical Reports Server (NTRS)

    Freeman, Mark

    1993-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission support team has made extensive use of geometric ray tracing to analyze the performance of AXAF developmental and flight optics. One important aspect of this performance modeling is the incorporation of finite element analysis (FEA) data into the surface deformations of the optical elements. TransFit is software designed for the fitting of FEA data of Wolter I optical surface distortions with a continuous surface description which can then be used by SAO's analytic ray tracing software, currently OSAC (Optical Surface Analysis Code). The improved capabilities of Transfit over previous methods include bicubic spline fitting of FEA data to accommodate higher spatial frequency distortions, fitted data visualization for assessing the quality of fit, the ability to accommodate input data from three FEA codes plus other standard formats, and options for alignment of the model coordinate system with the ray trace coordinate system. TransFit uses the AnswerGarden graphical user interface (GUI) to edit input parameters and then access routines written in PV-WAVE, C, and FORTRAN to allow the user to interactively create, evaluate, and modify the fit. The topics covered include an introduction to TransFit: requirements, designs philosophy, and implementation; design specifics: modules, parameters, fitting algorithms, and data displays; a procedural example; verification of performance; future work; and appendices on online help and ray trace results of the verification section.

  5. Submicron hard X-ray fluorescence imaging of synthetic elements.

    PubMed

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7−3946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Aloisio, R.; Amato, E.

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observedmore » by XMM-Newton , whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  7. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Aloisio, R.; Amans, J.

    Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  8. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946

    DOE PAGES

    Acero, F.; Aloisio, R.; Amans, J.; ...

    2017-05-09

    Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  9. SU-D-206-02: Evaluation of Partial Storage of the System Matrix for Cone Beam Computed Tomography Using a GPU Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, D; Cote, G; Mascolo-Fortin, J

    2016-06-15

    Purpose: Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersections between the photons’ trajectories and the object, also called ray-tracing or system matrix computation. This work evaluates different ways to store the system matrix, aiming to reconstruct dense image grids in reasonable time. Methods: We propose an optimized implementation of the Siddon’s algorithm using graphics processing units (GPUs) with a novel data storage scheme. The algorithm computes a part of the system matrix on demand, typically, for one projection angle. The proposed method was enhanced with accelerating options: storage of larger subsets of themore » system matrix, systematic reuse of data via geometric symmetries, an arithmetic-rich parallel code and code configuration via machine learning. It was tested on geometries mimicking a cone beam CT acquisition of a human head. To realistically assess the execution time, the ray-tracing routines were integrated into a regularized Poisson-based reconstruction algorithm. The proposed scheme was also compared to a different approach, where the system matrix is fully pre-computed and loaded at reconstruction time. Results: Fast ray-tracing of realistic acquisition geometries, which often lack spatial symmetry properties, was enabled via the proposed method. Ray-tracing interleaved with projection and backprojection operations required significant additional time. In most cases, ray-tracing was shown to use about 66 % of the total reconstruction time. In absolute terms, tracing times varied from 3.6 s to 7.5 min, depending on the problem size. The presence of geometrical symmetries allowed for non-negligible ray-tracing and reconstruction time reduction. Arithmetic-rich parallel code and machine learning permitted a modest reconstruction time reduction, in the order of 1 %. Conclusion: Partial system matrix storage permitted the reconstruction of higher 3D image grid sizes and larger projection datasets at the cost of additional time, when compared to the fully pre-computed approach. This work was supported in part by the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 432290).« less

  10. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  11. Exploiting Data Similarity to Reduce Memory Footprints

    DTIC Science & Technology

    2011-01-01

    leslie3d Fortran Computational Fluid Dynamics (CFD) application 122. tachyon C Parallel Ray Tracing application 128.GAPgeofem C and Fortran Simulates...benefits most from SBLLmalloc; LAMMPS, which shows moderate similarity from primarily zero pages; and 122. tachyon , a parallel ray- tracing application...similarity across MPI tasks. They primarily are zero- pages although a small fraction (≈10%) are non-zero pages. 122. tachyon is an image rendering

  12. Flowfield computer graphics

    NASA Technical Reports Server (NTRS)

    Desautel, Richard

    1993-01-01

    The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).

  13. Ray tracing simulation of aero-optical effect using multiple gradient index layer

    NASA Astrophysics Data System (ADS)

    Yang, Seul Ki; Seong, Sehyun; Ryu, Dongok; Kim, Sug-Whan; Kwon, Hyeuknam; Jin, Sang-Hun; Jeong, Ho; Kong, Hyun Bae; Lim, Jae Wan; Choi, Jong Hwa

    2016-10-01

    We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.

  14. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  15. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.

    PubMed

    Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A

    2016-06-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd.

  16. Quantitative Determining of Ultra-Trace Aluminum Ion in Environmental Samples by Liquid Phase Microextraction Assisted Anodic Stripping Voltammetry.

    PubMed

    Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang

    2018-05-10

    Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.

  17. Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets

    PubMed Central

    Jeong, Won-Ki; Beyer, Johanna; Hadwiger, Markus; Vazquez, Amelio; Pfister, Hanspeter; Whitaker, Ross T.

    2011-01-01

    Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized volume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that our interactive workflow is faster and easier to use for the reconstruction of complex neural processes. PMID:19834227

  18. Cleaning of copper traces on circuit boards with excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Wesner, D. A.; Mertin, M.; Lupp, F.; Kreutz, E. W.

    1996-04-01

    Cleaning of Cu traces on circuit boards is studied using pulsed excimer laser radiation (pulse width ˜ 20 ns, wavelength 248 nm), with the goal of improving the properties of the Cu surface for soldering and bonding. Traces with well-defined oxide overlayers are cleaned by irradiation in air using ≤ 10 3 laser pulses at fluences per pulse of ≤ 2 J cm -2. After treatment the surface morphology is analyzed using optical microscopy, optical profilometry, and scanning electron microscopy, while the chemical state of the surface is investigated with X-ray photoelectron (XPS) spectroscopy. Ellipsometry is used to determine the oxide overlayer thickness. Prior to cleaning samples exhibit a contamination overlayer about 15-25 nm in thickness containing Cu 2O and C. Cleaning reduces the overlayer thickness to ≤ 10 nm by material removal. The process tends to be self-limiting, since the optical reflectivity of the oxidized Cu surface for laser radiation is smaller than that of the cleaned surface. Additionally, the interaction with the laser radiation results in surface segregation of a minor alloy component out of the bulk (e.g. Zn), which may help to passivate the surface for further chemical reactions.

  19. A Thermo-Optic Propagation Modeling Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less

  20. Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng

    2017-05-01

    Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.

  1. The Search for Efficiency in Arboreal Ray Tracing Applications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, M.; Disney, M.; Chen, J. M.; Gomez-Dans, J.; Kelbe, D.; van Aardt, J. A.; Lewis, P.

    2016-12-01

    Forest structure significantly impacts a range of abiotic conditions, including humidity and the radiation regime, all of which affect the rate of net and gross primary productivity. Current forest productivity models typically consider abstract media to represent the transfer of radiation within the canopy. Examples include the representation forest structure via a layered canopy model, where leaf area and inclination angles are stratified with canopy depth, or as turbid media where leaves are randomly distributed within space or within confined geometric solids such as blocks, spheres or cones. While these abstract models are known to produce accurate estimates of primary productivity at the stand level, their limited geometric resolution restricts applicability at fine spatial scales, such as the cell, leaf or shoot levels, thereby not addressing the full potential of assimilation of data from laboratory and field measurements with that of remote sensing technology. Recent research efforts have explored the use of laser scanning to capture detailed tree morphology at millimeter accuracy. These data can subsequently be used to combine ray tracing with primary productivity models, providing an ability to explore trade-offs among different morphological traits or assimilate data from spatial scales, spanning the leaf- to the stand level. Ray tracing has a major advantage of allowing the most accurate structural description of the canopy, and can directly exploit new 3D structural measurements, e.g., from laser scanning. However, the biggest limitation of ray tracing models is their high computational cost, which currently limits their use for large-scale applications. In this talk, we explore ways to more efficiently exploit ray tracing simulations and capture this information in a readily computable form for future evaluation, thus potentially enabling large-scale first-principles forest growth modelling applications.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechsig, U.; Follath, R.; Reiche, S.

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-raymore » pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.« less

  3. Analytical Investigation Of Pigments, Ground Layer And Media Of Cartonnage Fragments From Greek Roman Period

    NASA Astrophysics Data System (ADS)

    Afifi, Hala. A. M.

    Some cartonnage fragments from Hawara, Fayoum Excavation were examined to identify pigments, media and grounds. It belonged to the Greek-Roman period. They were studied by X-ray diffraction (XRD), Energy dispersive X ray analysis (EDS) equipped with Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). These techniques were used to identify the composition and morphology of grounds, nature of pigments and media used in cartonnage fragments. The coarse ground layer was composed of calcite and traces of quartz. The fine ground layer used under the pigments directly was composed of calcite only. Carbon black was used as black pigment while lead oxide as red pigment, showing the influence of Roman and Greek pigments on Egyptian art in these later periods. Blue colorant was identified as cuprorivaite and yellow pigment was goethite. Animal glue was used in the four pigments as medium colored.

  4. Use of Computer-Generated Holograms in Security Hologram Applications

    NASA Astrophysics Data System (ADS)

    Bulanovs, A.; Bakanas, R.

    2016-10-01

    The article discusses the use of computer-generated holograms (CGHs) for the application as one of the security features in the relief-phase protective holograms. An improved method of calculating CGHs is presented, based on ray-tracing approach in the case of interference of parallel rays. Software is developed for the calculation of multilevel phase CGHs and their integration in the application of security holograms. Topology of calculated computer-generated phase holograms was recorded on the photoresist by the optical greyscale lithography. Parameters of the recorded microstructures were investigated with the help of the atomic-force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results of the research have shown highly protective properties of the security elements based on CGH microstructures. In our opinion, a wide use of CGHs is very promising in the structure of complex security holograms for increasing the level of protection against counterfeit.

  5. Ionospheric tomography using ADS-B signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noël, J.-M.

    2014-07-01

    Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.

  6. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  7. Ray tracing study of rising tone EMIC-triggered emissions

    NASA Astrophysics Data System (ADS)

    Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole

    2017-04-01

    ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.

  8. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeratunga, S K

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can bemore » easily shared between these two code frameworks and concludes with a set of recommendations for its development.« less

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-11-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have "cooled" to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  10. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆

    PubMed Central

    Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.

    2013-01-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  11. Modeling, Materials, and Metrics: The Three-m Approach to FCS Signature Solutions

    DTIC Science & Technology

    2002-05-07

    calculations. These multiple levels will be incorporated into the MuSES software. The four levels are described as follows: "* Radiosity - Deterministic...view-factor-based, all-diffuse solution. Very fast. Independent of user position. "* Directional Reflectivity - Radiosity with directional incident...target and environment facets (view factor with BRDF). Last ray cast bounce = radiosity solution. "* Multi-bounce path trace - Rays traced from observer

  12. Ray tracing the Wigner distribution function for optical simulations

    NASA Astrophysics Data System (ADS)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  13. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    PubMed

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

  14. Reflectance model of a plant leaf

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Silva, L.

    1973-01-01

    A light ray, incident at 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's Equations and Snell's Law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The above ray is also drawn through the same leaf cross section considering cell wall and air as the only optical mediums. The values of the reflection and transmission found from ray tracing agree closely with the experimental results obtained using a Beckman DK-2A Spectroreflectometer. Similarly a light ray, incident at about 60 deg to the normal, is drawn through the palisade cells of a soybean leaf to illustrate the pathway of light, incident at an oblique angle, through the palisade cells.

  15. Preparation and Characterization of Cellulose Microcrystalline (MCC) from Fiber of Empty Fruit Bunch Palm Oil

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Yurnaliza; Veronicha; Irmadani; Sitompul, S.

    2017-03-01

    Alpha cellulose which was isolated from cellulose of fiber empty fruit bunch palm oil was hidrolized with hydrochloric acid (2,5N) at 80°C to produce microcrystalline cellulose (MCC). Microcrystalline cellulose is an important additional ingredient in the pharmaceutical, food, cosmetics, and structural composites. In this study, MCC, alpha cellulose, and cellulose were characterized and thereafter were compared. Characterizations were made using some equipment such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and thermogravimetry analyzer (TGA). X-ray diffraction and infrared spectroscopy were studied to determine crystallinity and molecular structure of MCC, where scanning electron microscopy images were conducted for information about morfology of MCC. Meanwhile, thermal resistance of MCC was determined using thermogravimetry analyzer (TGA). From XRD and FTIR, the obtained results showed that the crystalline part was traced on MCC, where the -OH and C-O groups tended to reduced as alpha cellulose has changed to MCC. From SEM the image showed the reduction of particle size of MCC, while the thermal resistance of MCC was found lower as compared with cellulose and alpha cellulose as well, which was attributed to the lower molecular weight of MCC.

  16. High-pressure swing system for measurements of radioactive fission gases in air samples

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.

    1999-01-01

    Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.

  17. Multi-scale virtual view on the precessing jet SS433

    NASA Astrophysics Data System (ADS)

    Monceau-Baroux, R.; Porth, O.; Meliani, Z.; Keppens, R.

    2014-07-01

    Observations of SS433 infer how an X-ray binary gives rise to a corkscrew patterned relativistic jet. XRB SS433 is well known on a large range of scales for wich we realize 3D simulation and radio mappings. For our study we use relativistic hydrodynamic in special relativity using a relativistic effective polytropic index. We use parameters extracted from observations to impose thermodynamical conditions of the ISM and jet. We follow the kinetic and thermal energy content, of the various ISM and jet regions. Our simulation follows simultaneously the evolution of the population of electrons which are accelerated by the jet. The evolving spectrum of these electrons, together with an assumed equipartition between dynamic and magnetic pressure, gives input for estimating the radio emission from our simulation. Ray tracing according to a direction of sight then realizes radio mappings of our data. Single snapshots are realised to compare with VLA observation as in Roberts et al. 2008. A radio movie is realised to compare with the 41 days movie made with the VLBA instrument. Finaly a larger scale simulation explore the discrepancy of opening angle between 10 and 20 degree between the large scale observation of SS433 and its close in observation.

  18. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  19. Pressure-induced multiband superconductivity in pyrite PtB i2 with perfect electron-hole compensation

    NASA Astrophysics Data System (ADS)

    Chen, Xuliang; Shao, Dexi; Gu, Chuanchuan; Zhou, Yonghui; An, Chao; Zhou, Ying; Zhu, Xiangde; Chen, Tong; Tian, Mingliang; Sun, Jian; Yang, Zhaorong

    2018-05-01

    We report on the discovery of pressure-induced superconductivity in the compensated semimetal pyrite PtB i2 , which exhibits extreme magnetoresistance (XMR) and nontrivial band structure at ambient pressure. The appearance of superconductivity, first observed at PC˜13 GPa with an onset critical temperature TC of ˜2.2 K , is accompanied by a pronounced enhancement of the density of electrons and holes based on Hall-effect measurements. Upon further compression, TC remains almost unchanged up to 50.0 GPa; remarkably, the perfect electron-hole compensation still holds, while the carrier mobility greatly reduces. No evident trace of structural phase transitions is detected through synchrotron x-ray diffraction over the measured pressure range of 1.5-51.2 GPa. These results highlight a multiband characteristic of the observed superconductivity, making pyrite PtB i2 unique among the compensated XMR materials where the pressure-induced superconductivity usually links to structural transitions and carrier imbalance.

  20. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  1. Fine particles in the soufriere eruption plume.

    PubMed

    Woods, D C; Chuan, R L

    1982-06-04

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the 17 April 1979 eruption of Soufriere Volcano and in the low-level effluents on 15 May 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive x-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  2. Fine particles in the Soufriere eruption plume

    NASA Technical Reports Server (NTRS)

    Woods, D. C.; Chuan, R. L.

    1982-01-01

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the April 17, 1979 eruption of Soufriere Volcano and in the low-level effluents on May 15, 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive X-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  3. Propagation studies using a theoretical ionosphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.K.

    1973-03-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray-tracing pron predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra--Rowe D-region model, and the Groves' neutral atmospheric model are used throughout ihis work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long-distance high-frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted. (auth) (STAR)

  4. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    USGS Publications Warehouse

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that enriched trace elements above were largely derived from mafic tuffs, in addition to a minor amount from the Kandian Oldland. ?? 2010 Elsevier B.V.

  5. TIM, a ray-tracing program for METATOY research and its dissemination

    NASA Astrophysics Data System (ADS)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  6. Imaging trace element distributions in single organelles and subcellular features

    DOE PAGES

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; ...

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro-and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (whichmore » some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. In conclusion, it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.« less

  7. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    NASA Astrophysics Data System (ADS)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  8. X-ray absorption spectroscopy and photoluminescence study of rare earth ions doped strontium sulphide phosphors

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Gautam, Sanjeev; Kumar, Vinay; Brajpuriya, R.; Kumar, Ravi; Singh, Nafa; Chae, Keun Hwa

    2013-01-01

    We present here the electronic structure and photoluminescence properties of Sm (0.1-1.0 mol%) doped SrS phosphors. The doping in SrS was probed by near-edge X-ray absorption fine structure (NEXAFS) at M5,4-edges of Sm in total electron yield mode. The simulated absorption edges using atomic multiplet calculations were correlated with experimental results, which clearly reveal the presence of trivalent state of Sm in SrS matrix. However, for Sm (1 mol%), very minor traces of Sm2+ were also observed, which have been explained by comparing the NEXAFS spectra in total electron and florescence yield mode. The PL emission of SrS:Sm comprises of three sharp bands at 567, 602 and 650 nm owing to the well-known intra 4f transitions from 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2) levels of Sm3+ ions in SrS host. The effect of Ce co-doping on SrS:Sm phosphors was also investigated, which exhibits characteristic PL emission of independent ions at their respective excitation wavelengths. However, at an excitation wavelength of 393 nm, SrS:Ce,Sm exhibits the simultaneous characteristic PL emission of both ions spanning into blue-green-red region. The CIE chromaticity coordinates also clearly show the influence of excitation wavelengths on the emission colour of SrS:Ce,Sm.

  9. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  10. Mathematic models for a ray tracing method and its applications in wireless optical communications.

    PubMed

    Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

    2010-08-16

    This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

  11. Thermal radiation characteristics of nonisothermal cylindrical enclosures using a numerical ray tracing technique

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1990-01-01

    Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.

  12. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    PubMed

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  13. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  14. MARXS: A Modular Software to Ray-trace X-Ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam

    2017-12-01

    To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.

  15. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia.

    PubMed

    Emmanuel, R; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S; Prakash, P

    2014-08-30

    The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Holographic particle detection

    NASA Technical Reports Server (NTRS)

    Bowen, Theodore

    1988-01-01

    The feasibility was studied of developing a novel particle track detector based on the detection of 1p-1s emission radiation from electron bubbles in liquid helium. The principles, design, construction, and initial testing of the detection system have been described in previous reports. The main obstacle encountered was the construction of the liquid-helium tight infrared windows. Despite numerous efforts in testing and redesigning the windows, the problem of window leakage at low temperature persisted. Due to limited time and resources, attention was switched to investigating the possibility of using room-temperature liquid as the detection medium. A possible mechanism was the detection of de-excitation radiation emitted from localized electrons in common liquids where electrons exhibit low mobilities, as suggested in the previous report. The purity of the liquid is critical in this method as the dissolved impurities (such as oxygen), even in trace amounts, will act as scavengers of electrons. Another mechanism is discussed whereby the formation of the superoxide ions by electron scavenging behavior of dissolved oxygen is exploited to detect the track of ionizing particles. An experiment to measure the ionization current produced in a liquid by a pulsed X-ray beam in order to study propertiies of the ions is also reported.

  17. Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2017-10-01

    Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.

  18. New Generation of ELF/VLF Wave Injection Experiments for HAARP

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.; Watkins, B. J.

    2016-12-01

    We present a ray tracing study to investigate the feasibility of a new generation of wave injection experiments from HAARP transmitter (L 4.9). Highly successful whistler mode wave injection experiments from SIPLE station, Antarctica, have established the importance of such experiments to study magnetospheric wave-particle interactions, and for cold and hot plasma diagnostics [Helliwell and Katsufrakis, 1974; Carpenter and Miller, 1976; Sonwalkar et al., 1997]. Modulated heating experiments from HAARP have shown that it is possible to launch ELF/VLF waves into the magnetosphere that can be observed on the ground after one-, two-, and multi-hop ducted propagation [Inan et al., 2004]. Recent research has also shown that ionospheric heating experiments using HAARP can lead to the formation of magnetospheric ducts [e.g. Milikh et al., 2010; Fallen et al., 2011]. Collectively, these results indicate that the HAARP (or similar) transmitter can be used first to form ducts on nearby L shells, and then to inject and trap transmitter generated ELF/VLF waves in those ducts. Ray tracing studies using a model magnetosphere shows that ELF/VLF waves in a few kilohertz range can be trapped in ducts with L shells near the HAARP transmitter. For example, 1.5 kHz waves injected from L shell = 4.9 and altitude = 200 km can be trapped in ducts located within 0.3 L of the transmitter L-shell. The duct parameters needed for ray-trapping are typically duct width dL 0.1-0.3 and duct enhancement factor dNe/Ne 10-20% or more. The location of plasmapause with respect to transmitter plays a role in the nature of trapping. The duct locations and parameters required for trapping ELF/VLF waves inside the ducts are consistent with past observations of ducts generated by the HAARP transmitter. Ray tracing calculations provide trapped wave normal angles, time delays, resonant energetic electron energy, estimates of wave intensity inside the duct, on the ground, and on satellites such DEMETER, Van Allen probe, and planned DSX. We discuss the potential of a new generation of wave injection experiments from HAARP transmitter to investigate: duct and ELF/VLF generation by high power HF transmitters, whistler mode wave propagation and wave particle interactions, and cold and hot plasma diagnostics.

  19. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  20. Substrate preparation effects on defect density in molecular beam epitaxial growth of CdTe on CdTe (100) and (211)B

    DOE PAGES

    Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...

    2017-07-01

    Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less

  1. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  2. Itinerant density wave instabilities at classical and quantum critical points

    DOE PAGES

    Feng, Yejun; van Wezel, Jasper; Wang, Jiyang; ...

    2015-07-27

    Charge ordering in metals is a fundamental instability of the electron sea, occurring in a host of materials and often linked to other collective ground states such as superconductivity. What is difficult to parse, however, is whether the charge order originates among the itinerant electrons or whether it arises from the ionic lattice. Here in this study we employ high-resolution X-ray diffraction, combined with high-pressure and low-temperature techniques and theoretical modelling, to trace the evolution of the ordering wavevector Q in charge and spin density wave systems at the approach to both thermal and quantum phase transitions. The non-monotonic behaviourmore » of Q with pressure and the limiting sinusoidal form of the density wave point to the dominant role of the itinerant instability in the vicinity of the critical points, with little influence from the lattice. Fluctuations rather than disorder seem to disrupt coherence.« less

  3. Thermal Characterization of the Air Force Institute of Technology Solar Simulation Thermal Vacuum Chamber

    DTIC Science & Technology

    2014-03-27

    mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to

  4. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  5. Simulations of Plasmasheet Electrons in a Model Magnetosphere with AMIE Potentials: Implications for Diffuse Aurora

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Schulz, M.; Lu, G.

    2001-12-01

    We obtain distributions of precipitating electrons by tracing drift shells of plasmasheet electrons in the limit of strong pitch angle diffusion in Dungey's model magnetosphere, which consists of a dipolar magnetic field plus a uniform southward field. Under strong pitch-angle diffusion particles drift so as to conserve an adiabatic invariant Λ equal to the enclosed phase-space volume (i.e., the cube of the particle momentum p times the occupied flux-tube volume per unit magnetic flux). In the past we applied a quiescent Stern-Volland electric-field model with a cross-tail potential drop of 25 kV and added to it a storm-associated Brice-Nishida cross-magnetospheric electric field with impulses to represent substorm effects. For the present study we use the more realistic Assimilative Model of Ionospheric Electrodynamics (AMIE). We use an analytical expansion to express the AMIE ionospheric potential as a function of latitude and magnetic local time. We map this AMIE potential to latitudes >= 50^o to magnetospheric field lines with (L \\ge 2.5) in Dungey's magnetic field model. We trace the bounce-averaged drift motion of representative plasmasheet electrons for values of \\Lambda corresponding to energies of 0.25-64 keV on field lines of equatorial radial distance r = 6 R_E (L = 5.7), which maps to \\approx 65^o$ latitude in the ionosphere. We use the simulation results to map stormtime phase space distributions taking into account loss due to precipitation. We consider 2 models of electron scattering: (1) the limit of strong scattering everywhere, and (2) an MLT-dependent scattering that is less than everywhere strong in the plasma sheet. From the phase space distributions we calculate the total precipitating electron energy flux into the ionosphere. For this study we focus on the October 19, 1998, storm. We compare qualitatively the simulated energy flux with X-ray intensity from Polar/PIXIE images during this storm.

  6. ROSAT EUV and soft X-ray studies of atmospheric composition and structure in G191-B2B

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Fleming, T. A.; Finley, D. S.; Koester, D.; Diamond, C. J.

    1993-01-01

    Previous studies of the hot DA white dwarf GI91-B2B have been unable to determine whether the observed soft X-ray and EUV opacity arises from a stratified hydrogen and helium atmosphere or from the presence of trace metals in the photosphere. New EUV and soft X-ray photometry of this star, made with the ROSAT observatory, when analyzed in conjunction with the earlier data, shows that the stratified models cannot account for the observed fluxes. Consequently, we conclude that trace metals must be a substantial source of opacity in the photosphere of G191-B2B.

  7. Agreement between total corneal astigmatism calculated by vector summation and total corneal astigmatism measured by ray tracing using Galilei double Scheimpflug analyzer.

    PubMed

    Feizi, Sepehr; Delfazayebaher, Siamak; Ownagh, Vahid; Sadeghpour, Fatemeh

    To evaluate the agreement between total corneal astigmatism calculated by vector summation of anterior and posterior corneal astigmatism (TCA Vec ) and total corneal astigmatism measured by ray tracing (TCA Ray ). This study enrolled a total of 204 right eyes of 204 normal subjects. The eyes were measured using a Galilei double Scheimpflug analyzer. The measured parameters included simulated keratometric astigmatism using the keratometric index, anterior corneal astigmatism using the corneal refractive index, posterior corneal astigmatism, and TCA Ray . TCA Vec was derived by vector summation of the astigmatism on the anterior and posterior corneal surfaces. The magnitudes and axes of TCA Vec and TCA Ray were compared. The Pearson correlation coefficient and Bland-Altman plots were used to assess the relationship and agreement between TCA Vec and TCA Ray , respectively. The mean TCA Vec and TCA Ray magnitudes were 0.76±0.57D and 1.00±0.78D, respectively (P<0.001). The mean axis orientations were 85.12±30.26° and 89.67±36.76°, respectively (P=0.02). Strong correlations were found between the TCA Vec and TCA Ray magnitudes (r=0.96, P<0.001). Moderate associations were observed between the TCA Vec and TCA Ray axes (r=0.75, P<0.001). Bland-Altman plots produced the 95% limits of agreement for the TCA Vec and TCA Ray magnitudes from -0.33 to 0.82D. The 95% limits of agreement between the TCA Vec and TCA Ray axes was -43.0 to 52.1°. The magnitudes and axes of astigmatisms measured by the vector summation and ray tracing methods cannot be used interchangeably. There was a systematic error between the TCA Vec and TCA Ray magnitudes. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  8. Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device

    DOE PAGES

    Pablant, N. A.; Satake, S.; Yokoyama, M.; ...

    2016-01-28

    An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less

  9. Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Gegout, P.; Biancale, R.; Soudarin, L.

    2011-10-01

    The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.

  10. AXAF-1 high-resolution mirror assembly image model and comparison with x-ray ground-test image

    NASA Astrophysics Data System (ADS)

    Zissa, David E.

    1999-09-01

    The completed High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) was tested at the X-ray Calibration Facility (XRCF) at the NASA- Marshall Space Flight Center (MSFC) in 1997. The MSFC image model was developed during the development of AXAF-I. The MSFC model is a detailed ray-trace model of the as-built HRMA optics and the XRCF teste conditions. The image encircled-energy distributions from the model are found to general agree well with XRCF test data nd the preliminary Smithsonian Astrophysical Observatory (SAO) model. MSFC model effective-area result generally agree with those of the preliminary SAO model. Preliminary model effective-area results were reported by SAO to be approximately 5-13 percent above initial XRCF test results. The XRCF test conditions are removed from the MSFC ray-trace model to derive an on-orbit prediction of the HRMA image.

  11. Distance measurement based on light field geometry and ray tracing.

    PubMed

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  12. 3D Laser Imprint Using a Smoother Ray-Traced Power Deposition Method

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.

    2017-10-01

    Imprinting of laser nonuniformities in directly-driven icf targets is a challenging problem to accurately simulate with large radiation-hydro codes. One of the most challenging aspects is the proper construction of the complex and rapidly changing laser interference structure driving the imprint using the reduced laser propagation models (usually ray-tracing) found in these codes. We have upgraded the modelling capability in our massively-parallel fastrad3d code by adding a more realistic EM-wave interference structure. This interference model adds an axial laser speckle to the previous transverse-only laser structure, and can be impressed on our improved smoothed 3D raytrace package. This latter package, which connects rays to form bundles and performs power deposition calculations on the bundles, is intended to decrease ray-trace noise (which can mask or add to imprint) while using fewer rays. We apply this improved model to 3D simulations of recent imprint experiments performed on the Omega-EP laser and the Nike laser that examined the reduction of imprinting due to very thin high-Z target coatings. We report on the conditions in which this new model makes a significant impact on the development of laser imprint. Supported by US DoE/NNSA.

  13. Spatial investigation of some uranium minerals using nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.

    2018-01-01

    In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.

  14. Physicochemical characterization of raw materials and co-products from the titanium dioxide industry.

    PubMed

    Gázquez, M J; Bolívar, J P; García-Tenorio, R; Vaca, F

    2009-07-30

    The present study was conducted to characterize several raw materials and co-products from the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology and physical composition. The main objective was to gain basic information for the future potential application of these co-products in fields such as agriculture, construction, civil engineering, etc. Microscopic studies were performed by applying scanning electron microscopy with X-ray microanalysis (SEM-XRMA) while the mineralogical compositions were analysed by means of the X-ray diffraction (XRD) technique. The concentrations of major elements such as Na, Al, Si, Ca, Ti, Fe, S and K were determined by X-ray fluorescence (XRF), while heavy metals and other trace elements were determined by ICP-MS. The physicochemical characterization of the raw materials used in the titanium dioxide industry, in addition to the characterization of the co-products generated, has enabled the evaluation of the degree of fractionation of different elements and compounds between the different co-products, as well as the control of the possible variations in the physicochemical composition of the raw materials throughout the time and the study of the influence of these variations in the characteristics of the obtained co-products. As a main conclusion of our study, it is possible to indicate that the levels of the pollutant elements associated to the co-products analysed were, in general, within safe limits and, therefore, they could potentially be used in composites as fertilizers or for building materials in road construction, etc. Nevertheless, for the specific application of each of these co-products in agriculture, construction and civil engineering, additional studies need to be performed to evaluate their appropriateness for the proposed application, together with specific studies on their health and environmental impact.

  15. Spatial investigation of some uranium minerals using nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.

    2018-06-01

    In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.

  16. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  17. Fluorescence turn-on sensing of trace cadmium ions based on EDTA-etched CdTe@CdS quantum dot.

    PubMed

    Wang, Si-Nan; Zhu, Jian; Li, Xin; Li, Jian-Jun; Zhao, Jun-Wu

    2018-05-01

    Cadmium-caused environmental pollution and diseases have always been worldwide problems. Thus it is extremely urgent to establish a cheap, rapid, simple and selective detection method for trace cadmium in drinking water. In this study, a fluorescence "turn-on" method based on ethylene diamine tetraacetic acid (EDTA)-etched CdTe@CdS quantum dots (QDs) was designed to detect Cd 2+ . High resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were utilized for chemical and structural characterization of the as-prepared QDs. Based on chemical etching of EDTA on the surface of CdTe@CdS QDs, specific Cd 2+ recognition sites were produced, and then results in fluorescence quenching. The introduction of Cd 2+ could identify these sites and restore the fluorescence of the EDTA-QDs system. Under the optimum conditions, the nanoprobe shows a linear response range from 0.05 to 9 μM with a very low detection limit of 0.032 μM. In addition, the reported fluorescence probe in this work displays a good selectivity for trace Cd 2+ over other metal ions and an admirable practicability in real water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The measurement of trace elements in interplanetary dust and cometary particles by ultra-high sensitivity INAA

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.

    1989-01-01

    Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).

  19. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    NASA Astrophysics Data System (ADS)

    Omidi, Fariborz; Behbahani, Mohammad; Kalate Bojdi, Majid; Shahtaheri, Seyed Jamaleddin

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe3O4@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe3O4@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe3O4@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe3O4@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L-1 and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g-1. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results.

  20. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  1. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    PubMed

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.

  2. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    PubMed

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH) 2 , CuCO 3 , and Zn 5 (CO 3 ) 2 (OH) 6 , and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    PubMed

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and <4%, respectively. The adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  4. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boerner, M.; Frank, A.; Pelka, A.

    2012-04-15

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10{sup 18} cm{sup -3}, the maximal one is 2 x 10{sup 20} cm{sup -3}. Furthermore, it provides a resolution of the electron density in space of 50 {mu}m and in time of 0.5 ns for one image with amore » customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.« less

  5. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  6. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  7. Solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery mine, near Edgemont, South Dakota

    USGS Publications Warehouse

    Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.

    2013-01-01

    This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.

  8. Analysis of elemental composition of porcelains unearthed from Waguantan kiln site by PIXE-RBS

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Zhang, K.; Xia, C. D.; Liu, M. T.; Zhu, J. J.; An, Z.; Bai, B.

    2015-03-01

    A method combining proton-induced X-ray emission spectrometry (PIXE) and Rutherford backscattering spectrometry (RBS) was used to determine the composition of 61 porcelain shards from the Yuan Dynasty (1271-1368 A.D.) unearthed from the Waguantan kiln site at Tianzhu County in Guizhou Province, China. Based on our previous experimental setup, an electron gun device with a LaB6 crystal cathode was installed to solve the problem created when the incident proton beams generated electric charge accumulations on the surfaces of the insulating porcelain samples, which induced a large bremsstrahlung background. The use of the electron gun has largely eliminated the large bremsstrahlung background and has therefore improved the detection limits for elements, especially for trace elements, and made it possible to determine the origin of the porcelains based on the trace elements. Major and trace elemental compositions of the porcelain bodies and glazes measured by PIXE and RBS were analyzed by the factor analysis method. The factor analysis showed that a few pieces of porcelain with a style similar to the porcelain of the Longquan kiln among the unearthed porcelains from the Waguantan kiln site did not have obvious differences in elemental compositions from other remaining porcelains unearthed from the Waguantan kiln site, indicating that the pieces of unearthed porcelain with the Longquan kiln style did in fact belong to the product fired locally by imitating the model of the Longquan celadon with local raw materials. This result therefore indicated that the Longquan kiln technology that originated from the Five Dynasties (907-960 A.D.) had been propagated to the Waguantan kiln site of Guizhou Province in the Yuan Dynasty.

  9. Biodegradable polymer based ternary blends for removal of trace metals from simulated industrial wastewater.

    PubMed

    Prakash, N; Arungalai Vendan, S

    2016-02-01

    The ternary blends consisting of Chitosan (CS), Nylon 6 (Ny 6) and Montmorillonite clay (MM clay) were prepared by the solution blending method with glutaraldehyde. The prepared ternary blends were characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo gravimetric analysis (TGA), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bondings were established between chitosan, nylon 6 and montmorillonite clay. TGA showed the thermal stability of the blend is enhanced by glutaraldehyde as Crosslink agent. Results of XRD indicated that the relative crystalline of the pure chitosan film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend was rough and heterogenous. Further, it confirms the interaction between the functional groups of the blend components. The extent of removal of the trace metals was found to be almost the same. The removal of these metals at different pH was also done and the maximum removal of the metals was observed at pH 4.5 for both trace metals. Adsorption studies and kinetic analysis have also been made. Moreover, the protonation of amine groups is induced an electrostatic repulsion of cations. When the pH of the solution was more than 5.5, the sorption rate began to decrease. Besides, the quantity of adsorbate on absorbent was fitted as a function in Langmuir and Freundlich isotherm. The sorption kinetics was tested for pseudo first order and pseudo second order reaction. The kinetic experimental data correlated with the second order kinetic model and rate constants of sorption for kinetic models were calculated and accordingly, the correlation coefficients were obtained. Copyright © 2016. Published by Elsevier B.V.

  10. Color Composite Image of the Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  11. Arcus: An Overview of the Soft X-ray Grating Explorer

    NASA Astrophysics Data System (ADS)

    Smith, Randall; Arcus Collaboration

    2018-01-01

    The Arcus MIDEX Explorer, which NASA selected for a Phase A study in August 2017, provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedented sensitivity. Its capabilities include spectral resolution >2500 and effective areas in the range 200-600 cm^2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest and mission operations are straightforward, as most observations will be long (~100 ksec), uninterrupted, and pre-planned.

  12. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    PubMed

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  13. SU-F-T-53: Treatment Planning with Inhomogeneity Correction for Intraoperative Radiotherapy Using KV X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Ghaly, M; Souri, S

    Purpose: The current standard in dose calculation for intraoperative radiotherapy (IORT) using the ZEISS Intrabeam 50 kV x-ray system is based on depth dose measurements in water and no heterogeneous tissue effect has been taken into account. We propose an algorithm for pre-treatment planning including inhomogeneity correction based on data of depth dose measurements in various tissue phantoms for kV x-rays. Methods: Direct depth dose measurements were made in air, water, inner bone and cortical bone phantoms for the Intrabeam 50 kV x-rays with a needle applicator. The data were modelled by a function of power law combining exponential withmore » different parameters. Those phantom slabs used in the measurements were scanned to obtain CT numbers. The x-ray beam initiated from the source isocenter is ray-traced through tissues. The corresponding doses will be deposited/assigned at different depths. On the boundary of tissue/organ changes, the x-ray beam will be re-traced in new tissue/organ starting at an equivalent depth with the same dose. In principle, a volumetric dose distribution can be generated if enough directional beams are traced. In practice, a several typical rays traced may be adequate in providing estimates of maximum dose to the organ at risk and minimum dose in the target volume. Results: Depth dose measurements and modeling are shown in Figure 1. The dose versus CT number is shown in Figure 2. A computer program has been written for Kypho-IORT planning using those data. A direct measurement through 2 mm solid water, 2 mm inner bone, and 1 mm solid water yields a dose rate of 7.7 Gy/min. Our calculation shows 8.1±0.4 Gy/min, consistent with the measurement within 5%. Conclusion: The proposed method can be used to more accurately calculate the dose by taking into account the heterogeneous effect. The further validation includes comparison with Monte Carlo simulation.« less

  14. Analysis of stray radiation for infrared optical system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Tingcheng; Liao, Zhibo; Mu, Shengbo; Du, Jianxiang; Wang, Xiangdong

    2016-10-01

    Based on the theory of radiation energy transfer in the infrared optical system, two methods for stray radiation analysis caused by interior thermal radiation in infrared optical system are proposed, one of which is important sampling method technique using forward ray trace, another of which is integral computation method using reverse ray trace. The two methods are discussed in detail. A concrete infrared optical system is provided. Light-tools is used to simulate the passage of radiation from the mirrors and mounts. Absolute values of internal irradiance on the detector are received. The results shows that the main part of the energy on the detector is due to the critical objects which were consistent with critical objects obtained by reverse ray trace, where mirror self-emission contribution is about 87.5% of the total energy. Corresponding to the results, the irradiance on the detector calculated by the two methods are in good agreement. So the validity and rationality of the two methods are proved.

  15. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  16. Method for position emission mammography image reconstruction

    DOEpatents

    Smith, Mark Frederick

    2004-10-12

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  17. 49 CFR Appendix A to Part 1511 - Aviation Security Infrastructure Fee

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... final acceptance testing. This includes such equipment as Metal Detection Devices, Hand Wands, X-ray... such equipment as Metal Detection Devices, Hand Wands, X-ray screening machines, Explosives Trace... as test objects and X-ray radiation surveys, electricity costs and maintenance contract costs...

  18. CORFIG- CORRECTOR SURFACE DESIGN SOFTWARE

    NASA Technical Reports Server (NTRS)

    Dantzler, A.

    1994-01-01

    Corrector Surface Design Software, CORFIG, calculates the optimum figure of a corrector surface for an optical system based on real ray traces. CORFIG generates the corrector figure in the form of a spline data point table and/or a list of polynomial coefficients. The number of spline data points as well as the number of coefficients is user specified. First, the optical system's parameters (thickness, radii of curvature, etc.) are entered. CORFIG will trace the outermost axial real ray through the uncorrected system to determine approximate radial limits for all rays. Then, several real rays are traced backwards through the system from the image to the surface that originally followed the object, within these radial limits. At this first surface, the local curvature is adjusted on a small scale to direct the rays toward the object, thus removing any accumulated aberrations. For each ray traced, this adjustment will be different, so that at the end of this process the resultant surface is made up of many local curvatures. The equations that describe these local surfaces, expressed as high order polynomials, are then solved simultaneously to yield the final surface figure, from which data points are extracted. Finally, a spline table or list of polynomial coefficients is extracted from these data points. CORFIG is intended to be used in the late stages of optical design. The system's design must have at least a good paraxial foundation. Preferably, the design should be at a stage where traditional methods of Seidel aberration correction will not bring about the required image spot size specification. CORFIG will read the system parameters of such a design and calculate the optimum figure for the first surface such that all of the original parameters remain unchanged. Depending upon the system, CORFIG can reduce the RMS image spot radius by a factor of 5 to 25. The original parameters (magnification, back focal length, etc.) are maintained because all rays upon which the corrector figure is based are traced within the bounds of the original system's outermost ray. For this reason the original system must have a certain degree of integrity. CORFIG optimizes the corrector surface figure for on-axis images at a single wavelength only. However, it has been demonstrated many times that CORFIG's method also significantly improves the quality of field images and images formed from wavelengths other than the center wavelength. CORFIG is written completely in VAX FORTRAN. It has been implemented on a DEC VAX series computer under VMS with a central memory requirement of 55 K bytes. This program was developed in 1986.

  19. Modeling UV Radiation Feedback from Massive Stars. I. Implementation of Adaptive Ray-tracing Method and Tests

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M1 closure relation. Although the ART and M1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.

  20. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolski, Jeffrey S.; Barlow, David B.; Macek, Robert J.

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improvedmore » model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.« less

  1. Vanadium Geochemistry of Oil Sands Fluid Petroleum Coke.

    PubMed

    Nesbitt, Jake A; Lindsay, Matthew B J

    2017-03-07

    Vanadium has previously been linked to elevated toxicity of leachates derived from oil sands petroleum coke. However, geochemical controls on V mobility within coke deposits remain poorly constrained. Detailed examinations of porewater and solid-phase V geochemistry were therefore performed on oil sands fluid petroleum coke deposits in Alberta, Canada. Sample collection focused on both active and reclaimed deposits, which contained more than 3 × 10 7 m 3 of fluid petroleum coke. Dissolved V concentrations were highest (up to 3.0 mg L -1 ) immediately below the water table but decreased rapidly with increasing depth. This trend corresponded to a transition from mildly acidic (pH 6-7) and oxic conditions to mildly alkaline (pH 7-8.5) and anoxic conditions. Scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and micro-X-ray fluorescence (μXRF) mapping revealed coke particles exhibited an internal structure characterized by successive concentric layers. The outer margins of these layers were characterized by elevated V, Fe, Si, and Al concentrations, indicating the presence of inorganic phases. Micro-X-ray absorption near-edge structure (μXANES) spectroscopy revealed that V speciation was dominated by V(IV) porphyrins except at outer margins of layers, where octahedrally coordinated V(III) was a major component. Minor to trace V(V) was also detected within fluid petroleum coke particles.

  2. Some current advances in biophysical applications of ionizing radiation for health preservation

    NASA Astrophysics Data System (ADS)

    Watt, D. E.

    1987-03-01

    Radiation Physics is a subject of major importance in application to health preservation through investigative, diagnostic, analytical and therapeutic procedures for clinical purposes. Its benefits are enormous and well-established. However there are also hazards and so it is important for health preservation purposes to establish quantitatively the degree of risk undergone by persons exposed to radiation in the natural environment, in their occupations and in medical treatment. In this paper a brief indication is given of the extensive utilisation of the unique properties of radiation in biomedical application. This is followed by fuller discussion on new developments in our understanding of radiation damage mechanisms in radiotherapy and radiological protection. An example is given in biomedical research into the role of trace elements in gallstone formation using neutron activation anaysis, proton induced X-ray emission and X-ray fluorescence analysis as complementary techniques for maximising sensitivity in multielemental analysis by induced radiation. Procedures are described for measuring radiation effect, at bone/ tissue and lung/air interfaces, due to the uptake of radioactive material from the natural environment. Finally a topical subject in nuclear medicine viz. the possible advantages and hazards of Auger electron cascades resulting from inner shell vacancies in electron capture nuclides, is examined in the light of new evidence.

  3. Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng

    2016-12-01

    We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.

  4. Sura heating facility transmissions to the CASSIOPE/e-POP satellite

    NASA Astrophysics Data System (ADS)

    James, H. G.; Frolov, V. L.; Andreeva, E. S.; Padokhin, A. M.; Siefring, C. L.

    2017-02-01

    Throughout a nighttime pass of the CASSIOPE satellite at an altitude of about 1300 km above the Sura heating facility, transmission of O-mode radiation from Sura to the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument on CASSIOPE was maintained. Also, during this pass, continuous VHF/UHF transmission from the e-POP Coherent Electromagnetic Radio Tomography radio beacon to three coordinated ground receivers in the Sura vicinity was achieved. Tomography of the VHF/UHF received wave data based on total electron content permitted the two-dimensional distribution of ionospheric ambient electron plasma frequency fpe to be determined in the latitude-altitude space between Sura and CASSIOPE. The foF2 values about 0.1 MHz above the Sura pump frequency of 4.3 MHz were measured by the tomography. We examine the question of whether the observations can be explained on the basis of classic propagation in a smooth ionosphere. Tracing of rays from Sura toward CASSIOPE orbital locations finds most rays reflected away from the topside by the patchy ionospheric structure in bottomside fpe. It is concluded that O-mode ducting in underdense field-aligned irregularities is responsible for maintaining the transionospheric transmission across the 2 min pass. O- to Z-mode "radio-window" conversion in the F region bottomside is not required to explain these data.

  5. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Nithiya, S.; Shinyjoy, E.; Kavitha, L.

    Synthetic calcium hydroxyapatite (HAP,Ca10(PO4)6(OH)2) is a well-known bioceramic material used in orthopaedic and dental applications because of its excellent biocompatibility and bone-bonding ability. Substitution of trace elements, such as Sr, Mg and Zn ions into the structure of calcium phosphates is the subject of widespread investigation. In this paper, we have reported the synthesis of Sr, Mg and Zn co-substituted nanohydroxyapatite by soft solution freezing method. The effect of pH on the morphology of bioceramic nanomaterial was also discussed. The in vitro bioactivity of the as-synthesized bioceramic nanomaterial was determined by soaking it in SBF for various days. The as-synthesized bioceramic nanomaterial was characterized by Fourier transform infrared spectroscopy, X- ray diffraction analysis, Scanning electron microscopy and Energy dispersive X-ray analysis and Transmission electron microscopic techniques respectively. The results obtained in our study have revealed that pH 10 was identified to induce the formation of mineralized nanohydroxyapatite. It is observed that the synthesis of bioceramic nanomaterial not only support the growth of apatite layer on its surface but also accelerate the growth which is evident from the in vitro studies. Therefore, mineralized nanohydroxyapatite is a potential candidate in bone tissue engineering.

  6. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Thor, Jasper J.; Madsen, Anders

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  7. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE PAGES

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  8. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    PubMed Central

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786

  9. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  10. Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions

    NASA Astrophysics Data System (ADS)

    Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.

    2016-07-01

    We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.

  11. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  12. Structural and morphological study of Fe-doped Bi-based superconductor

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  13. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    NASA Astrophysics Data System (ADS)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  14. Preparation and Characterization of Self-Reinforced Antibacterial and Oil-Resistant Paper Using a NaOH/Urea/ZnO Solution.

    PubMed

    Jiao, Li; Ma, Jinxia; Dai, Hongqi

    2015-01-01

    This paper describes self-reinforced antibacterial and oil-resistant properties that were successfully prepared by surface selective dissolution of filter paper in a NaOH/Urea/ZnO (weight ratio of 8:12:0.25) aqueous solution. The effect of the processing time on the mechanical properties of this paper was evaluated at -12°C. The paper morphologies were characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oil-resistance and antibacterial properties of the produced paper were also investigated. Excellent mechanical properties were observed for an optimized handling time. The tensile and burst strengths of the modified paper were in excess of 100% of the original. Meanwhile, the treated paper was completely oil-resistant within 24 h and demonstrated good antibacterial properties when exposed to Staphylococcus aureus. The traces of residual zinc oxide were found to be safe for food.

  15. Preparation and Characterization of Self-Reinforced Antibacterial and Oil-Resistant Paper Using a NaOH/Urea/ZnO Solution

    PubMed Central

    Jiao, Li; Ma, Jinxia; Dai, Hongqi

    2015-01-01

    This paper describes self-reinforced antibacterial and oil-resistant properties that were successfully prepared by surface selective dissolution of filter paper in a NaOH/Urea/ZnO (weight ratio of 8:12:0.25) aqueous solution. The effect of the processing time on the mechanical properties of this paper was evaluated at -12°C. The paper morphologies were characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oil-resistance and antibacterial properties of the produced paper were also investigated. Excellent mechanical properties were observed for an optimized handling time. The tensile and burst strengths of the modified paper were in excess of 100% of the original. Meanwhile, the treated paper was completely oil-resistant within 24 h and demonstrated good antibacterial properties when exposed to Staphylococcus aureus. The traces of residual zinc oxide were found to be safe for food. PMID:26465917

  16. Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Light Source; Yashchuk, Valeriy V; Kirschman, Jonathan L.

    2008-07-14

    The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performancemore » and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation.« less

  17. Topics in polarization ray tracing for image projectors

    NASA Astrophysics Data System (ADS)

    Rosenbluth, Alan E.; Gallatin, Gregg; Lai, Kafai; Seong, Nakgeuon; Singh, Rama N.

    2005-08-01

    Many subtle effects arise when tracing polarization along rays that converge or diverge to form an image. This paper concentrates on a few examples that are notable for the challenges they pose in properly analyzing vector imaging problems. A striking example is the Federov-Imbert shift, in which coating phase-shifts cause a reflected beam to actually be deviated "sideways" out of the plane of incidence. A second example involving groups of coated surfaces is the correction of contrast loss from skew-angle depolarization in the optics of data projectors that use reflective polarization-modulating light valves. We show that phase-controlled coatings can collectively correct the contrast loss by exploiting a symmetry that arises when the coatings are operated in double-pass (due to use of reflective light valves). In lowest order, this symmetry causes any ellipticity that the coatings may introduce in the polarization of illuminating skew-rays to cancel in the return pass from the light valve back through the optics. Even beyond this first order reversibility result, we have shown elsewhere that, for NA less than about 0.2, the computation involved in calculating beam contrast can be reduced to the equivalent of tracing a single ray. We show here that the Federov-Imbert shift can be derived in a straightforward way using this formalism. Even a non-polarizing system will show vector effects when the numerical aperture is sufficiently high, as in photolithographic lenses. Wavefront quality in these deep-UV lenses is of order λ/100, and simulations to account for the complexities of the image transfer steps during IC manufacture must be accurate to better than a part in 1E2 or 1E3; hence small polarization distortions in the superposed image rays become very significant. An interesting source of such distortions is spatial dispersion in CaF2 lens elements, which gives rise to intrinsic birefringence at the ppm level. Polarization ray tracing must then contend with the phenomenon of double refraction, wherein a given ray splits into two rays each time it passes through an element, giving rise in principle to an exponentially extended family of rays in the exit pupil. However, we show that it is possible to merge each coherent family of rays into a single plane-wave component of the image. (This is joint work with colleagues at Carl Zeiss SMT.1) Generalizing beyond the analysis of birefringence, such a plane-wave component can be identified with the particular subset of rays that are converged through a common pupil point and transferred to the image after diffracting from the object points within an isoplanatic patch. Thin-film amplitude transfer coefficients implicitly take into account the prismatic change in beam-width that occurs when such a ray bundle refracts through a lens surface, but these coefficients do not include the focusing effect arising from power in the surfaces; hence polarization ray-tracing by sequential application of thin-film transfer coefficients does not by itself provide the correct amplitude distribution over the pupil.

  18. Cosmic-ray tracing

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia

    2018-04-01

    Active galactic nuclei are firm favourites to be revealed as the source of cosmic rays, but solid evidence has proven elusive. A model taking both local and global nuclei propagation into account may help to close the deal.

  19. The Birth of Elementary-Particle Physics.

    ERIC Educational Resources Information Center

    Brown, Laurie M.; Hoddeson, Lillian

    1982-01-01

    Traces the origin and development of particle physics, concentrating on the roles of cosmic rays and theory. Includes charts highlighting significant events in the development of cosmic-ray physics and quantum field theory. (SK)

  20. Imaging electron flow from collimating contacts in graphene

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  1. Teaching: the Wave Mechanics of McLeods' Stringy Electron, Explicit Nucleons, and Through-the-Earth Projections of Constellations' Stick Figures

    NASA Astrophysics Data System (ADS)

    McLeod, Roger David; McLeod, David Matthew

    2012-02-01

    This shows how Hooke's law, for electron, proton and neutron, 2D and 3D, strings, builds electromagnetic string-waves, extending, and pleasing, Schr"odinger. These are composed of spirally linked, parallel, north-pole oriented, neutrino and antineutrino strings, stable by magnetic repulsions. Their Dumbo Proton is antineutrino-scissor cut, and compressed in the vicinity of a neutron star, where electrostatic marriage occurs with a neutrino-scissor cut, and compressed, electron, so a Mickey Neutron emerges. Strings predict: electron charge is - 1/3 e, Dumbo P is 25 % longer than Mickey N, and Hooke says relaxing springs fuel three, separate, non-eternal, inflations, after Big Bangs. Gravity is strings, longitudinally linked. Einstein says Herman Grid's black diagonals prove human vision reads its information from algebraically-signed electromagnetic field distributions, (diffraction) patterns, easily known by ray-tracing, not requiring difficult Spatial Fourier Transformation. High-schoolers understand its application to Wave Mechanics, agreeing that positive-numbered probabilities do not enter, to possibly displease God. Detected stick-figure forms of constellations: like Phoenix, Leo, Canis Major, and especially Orion, fool some observers into false beliefs in things like UFHumanoids, or Kokopelli, Pele and Pamola!

  2. The case for electron re-acceleration at galaxy cluster shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  3. The case for electron re-acceleration at galaxy cluster shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  4. The case for electron re-acceleration at galaxy cluster shocks

    DOE PAGES

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...

    2017-01-04

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  5. Control system of neoclassical tearing modes in real time on HL-2A tokamak.

    PubMed

    Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong

    2017-11-01

    The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

  6. Control system of neoclassical tearing modes in real time on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong

    2017-11-01

    The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

  7. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    PubMed

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  8. Characterization of Limestone as Raw Material to Hydrated Lime

    NASA Astrophysics Data System (ADS)

    Salem Hwidi, Rajeb; Nuraiti Tengku Izhar, Tengku; Saad, Farah Naemah Mohd

    2018-03-01

    In Malaysia, limestone is essentially important for the economic growth as raw materials in the industry sector. Nevertheless, a little attention was paid to the physical, chemical, mineralogical, and morphological properties of the limestone using X-ray fluorescence (X-RF), X-ray diffraction (X-RD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM-EDS) respectively. Raw materials (limestone rocks) were collected from Bukit Keteri area, Chuping, Kangar, Perlis, Malaysia. Lab crusher and lab sieved were utilized to prepare five different size of ground limestone at (75 µm, 150 µm, 225 µm, 300, and 425 µm) respectively. It is found that the main chemical composition of bulk limestone was Calcium oxide (CaO) at 97.58 wt.% and trace amount of MnO, Al2O3, and Fe2O3 at 0.02%, 0.35%, and 0.396% respectively. XRD diffractograms showed characteristic peaks of calcite and quartz. Furthermore, main FTIR absorption bands at 1,419, 874.08 and 712.20 cm-1 indicated the presence of calcite. The micrographs showed clearly the difference of samples particle size. Furthermore, EDS peaks of Ca, O, and C elements confirmed the presence of CaCO3 in the samples.

  9. Antiproton identification below threshold with the AMS-02 RICH detector

    NASA Astrophysics Data System (ADS)

    Li, Zi-Yuan; Delgado Mendez, Carlos Jose; Giovacchini, Francesca; Haino, Sadakazu; Hoffman, Julia

    2017-05-01

    The Alpha Magnetic Spectrometer (AMS-02), which is installed on the International Space Station (ISS), has been collecting data successfully since May 2011. The main goals of AMS-02 are the search for cosmic anti-matter, dark matter and the precise measurement of the relative abundance of elements and isotopes in galactic cosmic rays. In order to identify particle properties, AMS-02 includes several specialized sub-detectors. Among these, the AMS-02 Ring Imaging Cherenkov detector (RICH) is designed to provide a very precise measurement of the velocity and electric charge of particles. We describe a method to reject the dominant electron background in antiproton identification with the use of the AMS-02 RICH detector as a veto for rigidities below 3 GV. A ray tracing integration method is used to maximize the statistics of p¯ with the lowest possible e- background, providing 4 times rejection power gain for e- background with respect to only 3% of p¯ signal efficiency loss. By using the collected cosmic-ray data, e- contamination can be well suppressed within 3% with β ≈ 1, while keeping 76% efficiency for p¯ below the threshold. Supported by China Scholarship Council (CSC) under Grant No.201306380027.

  10. Pt thermal atomic layer deposition for silicon x-ray micropore optics.

    PubMed

    Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa

    2018-04-20

    We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10  nm and Pt ∼20  nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2  nm rms to 2.2±0.2  nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

  11. K-Shell Photoabsorption and Photoionisation of Trace Elements I. Isoelectronic Sequences With Electron Number 3< or = N < or = 11

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.

    2016-01-01

    Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars.Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements.Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential.Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3< or = N< or = 11. The Na sequence (N=11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]) and those containing 3d orbitals, which will be crucial when considering sequences with N 11.Conclusions. It is found that the [2s/u] configurations must be included in the target representations of species with N> 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.

  12. Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver

    NASA Astrophysics Data System (ADS)

    Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.

    2016-05-01

    This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.

  13. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.

  14. Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations

    NASA Astrophysics Data System (ADS)

    Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.

    2018-02-01

    The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.

  15. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  16. Investigation of impurity transport using laser blow-off technique in the HL-2A Ohmic and ECRH plasmas

    NASA Astrophysics Data System (ADS)

    Kai, Zhang; Zheng-Ying, Cui; Ping, Sun; Chun-Feng, Dong; Wei, Deng; Yun-Bo, Dong; Shao-Dong, Song; Min, Jiang; Yong-Gao, Li; Ping, Lu; Qing-Wei, Yang

    2016-06-01

    Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating (ECRH) are studied in the HL-2A tokamak by laser blow-off (LBO) technique. The progression of aluminium ions as the trace impurity is monitored by soft x-ray (SXR) and bolometer detector arrays with good temporal and spatial resolutions. Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed. Based on the numerical simulation with one-dimensional (1D) impurity transport code STRAHL, the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot. The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case, and that the convection velocity V changes from negative (inward) for the Ohmic case to partially positive (outward) for the ECRH case. The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.

  17. Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses

    PubMed Central

    Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.

    2010-01-01

    Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573

  18. Measurement techniques for trace metals in coal-plant effluents: A brief review

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  19. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    PubMed

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  20. GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes

    NASA Astrophysics Data System (ADS)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  1. Tracing the transition of a macro electron shuttle into nonlinear response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chulki; Prada, Marta; Qin, Hua

    We present a study on a macroscopic electron shuttle in the transition from linear to nonlinear response. The shuttle consists of a classical mechanical pendulum situated between two capacitor plates. The metallic pendulum enables mechanical transfer of electrons between the plates, hence allowing to directly trace electron shuttling in the time domain. By applying a high voltage to the plates, we drive the system into a controlled nonlinear response, where we observe period doubling.

  2. Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.

    2018-06-01

    Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.

  3. Analytical approximations to the Hotelling trace for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  4. X-radiography of trace fossils in limestones and dolostones from the Jurassic Smackover Formation, south Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, R.A.; Castleman, S.P.; King, D.T. Jr.

    X-radiography has been useful in studying biogenic sedimentary structures in unconsolidated sediments but the technique has not been applied often to the study of hard carbonate rock. The authors have applied x-radiography to the study of the lower part of the Smackover to enhance the complete petrologic description of the rock. The lower Smackover has many dense micrite intervals and intervals of monotonous, thin graded beds. Parts of the lower Smackover is also dolomitized. None of the above rocks contains significant amount of skeletal debris and trace fossils are not generally obvious in an etched slab of core. In limestone,more » they have detected well-preserved trace fossils by x-radiography, however. The dolostones show no traces using our method. In limestones, the traces are marked by minute amounts of finely divided iron sulfides. This causes a slight density difference resulting in greater x-ray absorption. They recognize two main trace-fossil types: a Thalassinoides best seen in slabs cut parallel to bedding and a Zoophycos best seen in slabs cut perpendicular to bedding. The technique requires a slab cut 8 mm thick with parallel flat surfaces and a medical x-ray unit using accelerating voltages of 66 kV and 10 mas. Traces are most successfully imaged on industrial-quality films.« less

  5. Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment.

    PubMed

    Yang, Meng; Wang, Cheng; Yang, Zhao-Ping; Yan, Nan; Li, Feng-Ying; Diao, Yi-Wei; Chen, Min-Dong; Li, Hui-Ming; Wang, Jin-Hua; Qian, Xin

    2018-05-30

    Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as 'hotspots', and high-risk areas were delineated from risk maps. These 'hotspots' and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening 'hotspots' and priority areas of concern for cost-efficient health risk management. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Viewer Makes Radioactivity "Visible"

    NASA Technical Reports Server (NTRS)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  7. RAY-UI: A powerful and extensible user interface for RAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgärtel, P., E-mail: peter.baumgaertel@helmholtz-berlin.de; Erko, A.; Schäfers, F.

    2016-07-27

    The RAY-UI project started as a proof-of-concept for an interactive and graphical user interface (UI) for the well-known ray tracing software RAY [1]. In the meantime, it has evolved into a powerful enhanced version of RAY that will serve as the platform for future development and improvement of associated tools. The software as of today supports nearly all sophisticated simulation features of RAY. Furthermore, it delivers very significant usability and work efficiency improvements. Beamline elements can be quickly added or removed in the interactive sequence view. Parameters of any selected element can be accessed directly and in arbitrary order. Withmore » a single click, parameter changes can be tested and new simulation results can be obtained. All analysis results can be explored interactively right after ray tracing by means of powerful integrated image viewing and graphing tools. Unlimited image planes can be positioned anywhere in the beamline, and bundles of image planes can be created for moving the plane along the beam to identify the focus position with live updates of the simulated results. In addition to showing the features and workflow of RAY-UI, we will give an overview of the underlying software architecture as well as examples for use and an outlook for future developments.« less

  8. A computer program to trace seismic ray distribution in complex two-dimensional geological models

    USGS Publications Warehouse

    Yacoub, Nazieh K.; Scott, James H.

    1970-01-01

    A computer program has been developed to trace seismic rays and their amplitudes and energies through complex two-dimensional geological models, for which boundaries between elastic units are defined by a series of digitized X-, Y-coordinate values. Input data for the program includes problem identification, control parameters, model coordinates and elastic parameter for the elastic units. The program evaluates the partitioning of ray amplitude and energy at elastic boundaries, computes the total travel time, total travel distance and other parameters for rays arising at the earth's surface. Instructions are given for punching program control cards and data cards, and for arranging input card decks. An example of printer output for a simple problem is presented. The program is written in FORTRAN IV language. The listing of the program is shown in the Appendix, with an example output from a CDC-6600 computer.

  9. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    PubMed Central

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave breast imaging. Optical distortions imposed by the imaging tank and coupling bath diminished the effectiveness of the ray tracing approach; however, calibration through image registration techniques reliably produced scans of submillimeter accuracy. Tests of the system with breast-shaped phantoms demonstrated the successful implementation of the scanner for the intended application. PMID:22755695

  10. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  11. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    NASA Astrophysics Data System (ADS)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is investigated bridging the gap from atoms and molecules to solids introduced to intense FEL radiation. Beyond the basic interest in many-particle dynamics in finite systems, these studies are of enormous practical relevance for upcoming research at X-ray FELs. Here, realizing the dream of coherent imaging of the structure of single bio-molecules in the gas phase with atomic resolution is critically dependent on ultra-fast dynamics initiated by the pulse. In other words, it is reduced to the simple question of whether the molecule is first imaged and then destroyed or vice versa! During the preparation of this Editorial, the first lasing at the Stanford Linac Coherent Light Source (LCLS) was achieved at a photon energy of about 8 keV - a further milestone in this exciting revolution in the science related to light.

  12. Ray-tracing analysis of intraocular lens power in situ.

    PubMed

    Olsen, Thomas; Funding, Mikkel

    2012-04-01

    To describe a method for back-solving the power of an intraocular lens (IOL) in situ based on laser biometry and ray-tracing analysis of the pseudophakic eye. University Eye Clinic, Aarhus Hospital, Aarhus, Denmark. Evaluation of diagnostic test or technology. This study comprised pseudophakic eyes with an IOL power ranging from -2.00 to +36.00 diopters (D). Preoperatively, the corneal radius was measured with conventional autokeratometry and the axial length (AL) with optical biometry. After surgery, the position of the IOL was recorded using laser interferometry. Based on the postoperative refraction and the biometric measurements, a ray-tracing analysis was performed back-solving for the power of the IOL in situ. The analysis was performed assuming pupil diameters from 0.0 to 8.0 mm with and without correction for the Stiles-Crawford effect. The study evaluated 767 pseudophakic eyes (583 patients). Assuming a 3.0 mm pupil, the mean prediction error between the labeled and the calculated IOL power (± 1 standard deviation [SD]) was -0.26 D ± 0.65 (SD) (range -2.4 to +1.8 D). The prediction error showed no bias with IOL power or with AL. The calculated IOL power depended on the assumed pupil size and the Stiles-Crawford effect. However, the latter had a modulatory effect on the prediction error for large pupil diameters (>5.0 mm) only. The optics of the pseudophakic eye can be accurately described using exact ray tracing and modern biometric techniques. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Analysis of elemental concentration censored distributions in breast malignant and breast benign neoplasm tissues

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Góźdź, S.; Majewska, U.; Pajek, M.

    2007-07-01

    The total reflection X-ray fluorescence method was applied to study the trace element concentrations in human breast malignant and breast benign neoplasm tissues taken from the women who were patients of Holycross Cancer Centre in Kielce (Poland). These investigations were mainly focused on the development of new possibilities of cancer diagnosis and therapy monitoring. This systematic comparative study was based on relatively large (˜ 100) population studied, namely 26 samples of breast malignant and 68 samples of breast benign neoplasm tissues. The concentrations, being in the range from a few ppb to 0.1%, were determined for thirteen elements (from P to Pb). The results were carefully analysed to investigate the concentration distribution of trace elements in the studied samples. The measurements of concentration of trace elements by total reflection X-ray fluorescence were limited, however, by the detection limit of the method. It was observed that for more than 50% of elements determined, the concentrations were not measured in all samples. These incomplete measurements were treated within the statistical concept called left-random censoring and for the estimation of the mean value and median of censored concentration distributions, the Kaplan-Meier estimator was used. For comparison of concentrations in two populations, the log-rank test was applied, which allows to compare the censored total reflection X-ray fluorescence data. Found statistically significant differences are discussed in more details. It is noted that described data analysis procedures should be the standard tool to analyze the censored concentrations of trace elements analysed by X-ray fluorescence methods.

  14. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    PubMed Central

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  15. Assessment of the geoavailability of trace elements from minerals in mine wastes: analytical techniques and assessment of selected copper minerals

    USGS Publications Warehouse

    Driscoll, Rhonda; Hageman, Phillip L.; Benzel, William M.; Diehl, Sharon F.; Adams, David T.; Morman, Suzette; Choate, LaDonna M.

    2012-01-01

    In this study, four randomly selected copper-bearing minerals were examined—azurite, malachite, bornite, and chalcopyrite. The objectives were to examine and enumerate the crystalline and chemical properties of each of the minerals, to determine which, if any, of the Cu-bearing minerals might adversely affect systems biota, and to provide a multi-procedure reference. Laboratory work included use of computational software for quantifying crystalline and amorphous material and optical and electron imaging instruments to model and project crystalline structures. Chemical weathering, human fluid, and enzyme simulation studies were also conducted. The analyses were conducted systematically: X-ray diffraction and microanalytical studies followed by a series of chemical, bio-leaching, and toxicity experiments.

  16. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    NASA Astrophysics Data System (ADS)

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-08-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth.

  17. Combined PIXE and SEM study of the behaviour of trace elements in gel formed around implant coated with bioactive glass

    NASA Astrophysics Data System (ADS)

    Oudadesse, H.; Irigaray, J. L.; Barbotteau, Y.; Brun, V.; Moretto, Ph.

    2002-05-01

    Bioactive glasses are used as coating biomaterials to facilitate anchorage of metallic prostheses implanted into the body. The aim of this work is to study the behavior of gel formed in contact with alloys and BVA and BVH bioactive glasses implanted. Cylinders of metallic implants composed by Ti, Al and V, are coated with bioactive glass. Three sheep were implanted for different time length: 3, 6 and 12 months in the femoral epiphysis. Results obtained with particle induced X-ray emission and scanning electron microscopy show that BVA coating induces a better contact between the metallic implant and bone. On the other hand, BVH coating prevents corrosion from the metallic implant.

  18. 77 FR 22067 - Proposed Collection of Information: Trace Request for Electronic Funds Transfer (EFT) Payment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Electronic Funds Transfer (EFT) Payment; and Trace Request Direct Deposit AGENCY: Financial Management... collection. By this notice, the Financial Management Service solicits comments concerning forms FMS-150.1... comments to Financial Management Service, 3700 East West Highway, Records and Information Management Branch...

  19. Cause and Effects of Fluorocarbon Degradation in Electronics and Opto-Electronic Systems

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer E.; Canham, John S.

    2002-01-01

    Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.

  20. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  1. Simulation and optimization of the SIRIUS IPE soft x-ray beamline

    NASA Astrophysics Data System (ADS)

    Meyer, Bernd C.; Rocha, Tulio C. R.; Luiz, Sergio A. L.; C. Pinto, Artur; Westfahl, Harry

    2017-08-01

    The soft X-ray beamline IPE is one of the first phase SIRIUS beamlines at the LNLS, Brazil. Divided into two branches, IPE is designed to perform ambient pressure X-ray photo-electron spectroscopy (AP-XPS) and high resolution resonant inelastic X-ray scattering (RIXS) for samples in operando/environmental conditions inside cells and liquid jets. The aim is to maximize the photon flux in the energy range 200-1400 eV generated by an elliptically polarizing undulator source (EPU) and focus it to a 1 μm vertical spot size at the RIXS station and 10 μm at the AP-XPS station. In order to achieve the required resolving power (40.000 at 930 eV) for RIXS both the dispersion properties of the plane grating monochromator (PGM) and the thermal deformation of the optical elements need special attention. The grating parameters were optimized with the REFLEC code to maximize the efficiency at the required resolution. Thermal deformation of the PGM plane mirror limits the possible range of cff parameters depending of the photon energy used. Hence, resolution of the PGM and thermal deformation effects define the boundary conditions of the optical concept and the simulations of the IPE beamline. We compare simulations performed by geometrical ray-tracing (SHADOW) and wave front propagation (SRW) and show that wave front diffraction effects (apertures, optical surface error profiles) has a small effect on the beam spot size and shape.

  2. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  3. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  4. Elimination of 'ghost'-effect-related systematic error in metrology of X-ray optics with a long trace profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Irick, Steve C.; MacDowell, Alastair A.

    2005-04-28

    A data acquisition technique and relevant program for suppression of one of the systematic effects, namely the ''ghost'' effect, of a second generation long trace profiler (LTP) is described. The ''ghost'' effect arises when there is an unavoidable cross-contamination of the LTP sample and reference signals into one another, leading to a systematic perturbation in the recorded interference patterns and, therefore, a systematic variation of the measured slope trace. Perturbations of about 1-2 {micro}rad have been observed with a cylindrically shaped X-ray mirror. Even stronger ''ghost'' effects show up in an LTP measurement with a mirror having a toroidal surfacemore » figure. The developed technique employs separate measurement of the ''ghost''-effect-related interference patterns in the sample and the reference arms and then subtraction of the ''ghost'' patterns from the sample and the reference interference patterns. The procedure preserves the advantage of simultaneously measuring the sample and reference signals. The effectiveness of the technique is illustrated with LTP metrology of a variety of X-ray mirrors.« less

  5. Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum.

    PubMed

    Ajab, Huma; Dennis, John Ojur; Abdullah, Mohd Azmuddin

    2018-07-01

    A novel synthesis and characterization of cellulose, hydroxyapatite and chemically-modified carbon electrode (Cellulose-HAp-CME) composite was reported for the analysis of trace Pb(II) ions detection and its validation in blood serum. The Field Emission Scanning Electron Microscopy (FESEM) analyses showed that the composite retained the orderly porous structure but with scattered particle size agglomeration. The Fourier Transform Infrared Spectroscopy (FTIR) spectra suggested the presence of functional groups associated with the bending and stretching of carbon bonds and intermolecular H-bonding. X-ray Diffraction (XRD) analyses further elucidated that the crystallite size could have influenced the properties of the electrode. Based on Thermo-gravimetric Analysis (TGA/DTG), the composites showed thermal stability with more than 60% residual content at 700°C. The sensor was successfully developed for trace Pb(II) ions detection in complex medium such as blood serum, in the physiologically relevant range of 10-60ppb, with resulting Limit of Detection (LOD) of 0.11±0.36ppb and Limit of Quantification (LOQ) of 0.36±0.36ppb. The newly fabricated electrode could be advantageous as a sensing platform with favourable electrochemical characteristics for robust, in situ and rapid environmental and clinical analyses of heavy metal ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The Buccaneer software for automated model building. 1. Tracing protein chains.

    PubMed

    Cowtan, Kevin

    2006-09-01

    A new technique for the automated tracing of protein chains in experimental electron-density maps is described. The technique relies on the repeated application of an oriented electron-density likelihood target function to identify likely C(alpha) positions. This function is applied both in the location of a few promising ;seed' positions in the map and to grow those initial C(alpha) positions into extended chain fragments. Techniques for assembling the chain fragments into an initial chain trace are discussed.

  7. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.

    2009-06-15

    Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work,more » we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.« less

  8. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  9. Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont

    USGS Publications Warehouse

    Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.

    2009-01-01

    Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.

  10. Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B. M.; Wilson, J. R.; Wilgen, J. B.; Bell, G. L.; Bigelow, T. S.; Rasmussen, D. A.; Ram, A. K.; Bers, A.; Harvey, R. W.

    2002-11-01

    Recent studies of EBWs, via mode conversion (MC) to X-mode electromagnetic radiation on the CDX-U and NSTX spherical torus (ST) plasmas, support the use of EBWs to measure the Te profile and allow local heating and current drive in ST plasmas. An in-vessel antenna with a local adjustable limiter has successfully controlled the density scale length at the MC layer in CDX-U increasing the MC by an order of magnitude to ˜ 100%. A similar technique on NSTX has so far increased MC efficiency fivefold to ˜ 50%. Both results are in good agreement with theoretical predictions. Experiments focused on achieving >= 80% MC on NSTX are planned for the coming year. Ray tracing and Fokker-Planck modeling support the design of a ˜ 1 MW EBW heating and current drive system for NSTX that will assist plasma startup, locally heat electrons, drive non-inductive current and may suppress tearing modes or other MHD that limit high β operation.

  11. Morphological, structural and thermal studies of gallium nitride ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indrakanti, Rajani; Rao, V. Brahmaji; Kiran, C. Udaya

    2016-05-06

    We report the synthesis and Characterization of III-V doped Nano ferrite Ga{sub (2x+2)}N Fe{sub 2(49-x)}O{sub 3} for x=1 and x=5 by Sol-Gel method. The Morphological, structural and Thermal characterisation studies are done by using Transmission Electron Microscopy, Energy Dispersive X-ray Analysis, Selected Area Electron Diffraction, Thermo-Gravimetric Analysis and Differential Thermal Analysis. Using the Sci-Finder software we could not trace any reports related to GaNFe{sub 2}O{sub 3} in the literature. It has been observed from our studies that the particles are in the Cylindrical and the Globular structure. The particle diameter values from the Histograms are in good agreement with themore » XRD values that were communicated by us earlier. The SAED and the EDAX studies reveal the confirmation of the composition and also that the synthesized Ferrite exhibits crystalline nature. The TG-DTA results show that the compound indicates constant sample weight.« less

  12. Superhydrophobic NiTi shape memory alloy surfaces fabricated by anodization and surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Ou, Shih-Fu; Wang, Kuang-Kuo; Hsu, Yen-Chi

    2017-12-01

    This paper describes the fabrication of superhydrophobic NiTi shape memory alloy (SMA) surfaces using an environmentally friendly method based on an economical anodizing process. Perfluorooctyltriethoxysilane was used to reduce the surface energy of the anodized surfaces. The wettability, morphology, composition, and microstructure of the surfaces were investigated by scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The surface of the treated NiTi SMA exhibited superhydrophobicity, with a water contact angle of 150.6° and sliding angle of 8°. The anodic film on the NiTi SMA comprised of TiO2 and NiO, as well as traces of TiCl3. In addition, before the NiTi SMA was anodized, it underwent a surface mechanical attrition treatment to grain-refine its surface. This method efficiently enhanced the growth rate of the anodic oxide film, and improved the hydrophobic uniformity of the anodized NiTi-SMA-surface.

  13. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  14. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  15. Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic H.; Bejger, Michał; Różańska, Agata; Straub, Odele; Paumard, Thibaut; Fortin, Morgane; Madej, Jerzy; Majczyna, Agnieszka; Gourgoulhon, Eric; Haensel, Paweł; Zdunik, Leszek; Beldycki, Bartosz

    2018-03-01

    Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding the validity of the ATM24 code.

  16. Ray tracing evaluation of a technique for correcting the refraction errors in satellite tracking data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.

    1978-01-01

    Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.

  17. Ray tracing for inhomogeneous media applied to the human eye

    NASA Astrophysics Data System (ADS)

    Diaz-Gonzalez, G.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.

    2017-08-01

    Inhomogeneous or gradient index media exhibit a refractive index varying with the position. This kind of media are very interesting because they can be found in both synthetic as well as real life optical devices such as the human lens. In this work we present the development of a computational tool for ray tracing in refractive optical systems. Particularly, the human eye is used as the optical system under study. An inhomogeneous medium with similar characteristics to the human lens is introduced and modeled by the so-called slices method. The useful of our proposal is illustrated by several graphical results.

  18. A complete ray-trace analysis of the Mirage toy

    NASA Astrophysics Data System (ADS)

    Adhya, Sriya; Noé, John W.

    2007-06-01

    The `Mirage' (Opti-Gone International) is a well-known optics demonstration (PIRA index number 6A20.35) that uses two opposed concave mirrors to project a real image of a small object into space. We studied image formation in the Mirage by standard 2x2 matrix methods and by exact ray tracing, with particular attention to additional real images that can be observed when the mirror separation is increased beyond one focal length. We find that the three readily observed secondary images correspond to 4, 6, or 8 reflections, respectively, contrary to previous reports.

  19. Design of the soft x-ray tomography beamline at Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yi-Jr, E-mail: su.yj@nsrrc.org.tw; Fu, Huang-Wen; Chung, Shih-Chun

    2016-07-27

    The optical design of the varied-line-spacing plane-grating monochromator for transmission full-field imaging of frozen-hydrated biological samples at NSRRC is presented. This monochromator consists of a plane mirror and three interchangeable gratings with groove densities 600, 1200 and 2400 l/mm to cover the energy range 260 – 2600 eV. The groove parameters of the varied-line-spacing plane gratings are designed to minimize the effect of coma and spherical aberration to maintain the exit slit in focus for any value of incident angle. All parameters of optical components at the beamline are verified with a ray-tracing method. In the beamline design, the calculatedmore » results from the ray-tracing codes and the expected performances are discussed.« less

  20. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    PubMed

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  1. Observations of acoustic ray detection by aircraft wake vortices

    DOT National Transportation Integrated Search

    1972-03-15

    Acoustic ray deflection by aircraft wake vortex flow has been observed during landing operations of large aircraft. The phenomenon has been used to detect and locate vortex traces in a plane perpendicular to the runway centerline. The maximum deflect...

  2. GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparingmore » theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.« less

  3. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  4. Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile

    NASA Astrophysics Data System (ADS)

    Grubor, D. P.; Ulić, D. M. Å.; Žigman, V.

    2008-06-01

    The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004-2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≍2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10-5 W/m2 at 0.1-0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m-3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m-3 is obtained. The β parameter is found to range from 0.30-0.49 1/km and the reflection height H' to vary from 74-63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well.

  5. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  6. Chandra imaging of the kpc extended outflow in 1H 0419-577

    NASA Astrophysics Data System (ADS)

    Di Gesu, L.; Costantini, E.; Piconcelli, E.; Kaastra, J. S.; Mehdipour, M.; Paltani, S.

    2017-12-01

    The Seyfert 1 galaxy 1H 0419-577 hosts a kpc extended outflow that is evident in the [O III] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a 30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least 16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [O III] outflow. Our spectral analysis indicates that one of the possible explanations for the extended emission is thermal emission from a low-density (nH 10-3 cm-3) hot plasma (Te 0.22 keV). If this is the case, we may be witnessing the cooling of a shock-heated wind bubble. In this scenario, the [O III] emission line and the X-ray/UV absorption lines may trace cooler clumps that are entrained in the hot outflow. Alternatively, the extended emission could be to due to a blend of emission lines from a photoionized gas component having a hydrogen column density of NH 2.1 × 1022 cm-2 and an ionization parameter of log ξ 1.3. Because the source is viewed almost edge-on we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.

  7. Amorphous silica maturation in chemically weathered clastic sediments

    NASA Astrophysics Data System (ADS)

    Liesegang, Moritz; Milke, Ralf; Berthold, Christoph

    2018-03-01

    A detailed understanding of silica postdepositional transformation mechanisms is fundamental for its use as a palaeobiologic and palaeoenvironmental archive. Amorphous silica (opal-A) is an important biomineral, an alteration product of silicate rocks on the surface of Earth and Mars, and a precursor material for stable silica phases. During diagenesis, amorphous silica gradually and gradationally transforms to opal-CT, opal-C, and eventually quartz. Here we demonstrate the early-stage maturation of several million year old opal-A from deeply weathered Early Cretaceous and Ordovician sedimentary rocks of the Great Artesian Basin (central Australia). X-ray diffraction, scanning electron microscopy, and electron probe microanalyses show that the mineralogical maturation of the nanosphere material is decoupled from its chemical properties and begins significantly earlier than micromorphology suggests. Non-destructive and locally highly resolved X-ray microdiffraction (μ-XRD2) reveals an almost linear positive correlation between the main peak position (3.97 to 4.06 Å) and a new asymmetry parameter, AP. Heating experiments and calculated diffractograms indicate that nucleation and growth of tridymite-rich nanodomains induce systematic peak shifts and symmetry variations in diffraction patterns of morphologically juvenile opal-A. Our results show that the asymmetry parameter traces the early-stage maturation of amorphous silica, and that the mineralogical opal-A/CT stage extends to smaller d-spacings and larger FWHM values than previously suggested.

  8. Structure, glass transition temperature and spectroscopic properties of 10Li2O-xP2O5-(89-x)TeO2-1CuO (5≤x≤25 mol%) glass system.

    PubMed

    Upender, G; Babu, J Chinna; Mouli, V Chandra

    2012-04-01

    X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), infrared (IR), Raman, electron paramagnetic resonance (EPR) and optical absorption studies on 10Li2O-xP2O5-(89-x)TeO2-1CuO glasses (where x=5, 10, 15, 20 and 25 mol%) have been carried out. The amorphous nature of the glasses was confirmed using XRD and FESEM measurements. The glass transition temperature (Tg) of glass samples have been estimated from DSC traces and found that the Tg increases with increasing P2O5 content. Both the IR and Raman studies have been showed that the present glass system consists of [TeO3], [TeO4], [PO3] and [PO4] units. The spin-Hamiltonian parameters such as g∥, g⊥, and A∥ have been determined from EPR spectra and it was found that the Cu2+ ion is present in tetragonal distorted octahedral site with [Formula: see text] as the ground state. Bonding parameters and bonding symmetry of Cu2+ ions have been calculated by correlating EPR and optical data and were found to be composition dependent. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  10. Mineralogical, micromorphological and geochemical transformations in the initial steps of the weathering process of charnockite from the Caparaó Range, southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno

    2014-12-01

    X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.

  11. Tracing contacts of TB patients in Malaysia: costs and practicality.

    PubMed

    Atif, Muhammad; Sulaiman, Syed Azhar Syed; Shafie, Asrul Akmal; Ali, Irfhan; Asif, Muhammad

    2012-01-01

    Tuberculin skin testing (TST) and chest X-ray are the conventional methods used for tracing suspected tuberculosis (TB) patients. The purpose of the study was to calculate the cost incurred by Penang General Hospital on performing one contact tracing procedure using an activity based costing approach. Contact tracing records (including the demographic profile of contacts and outcome of the contact tracing procedure) from March 2010 until February 2011 were retrospectively obtained from the TB contact tracing record book. The human resource cost was calculated by multiplying the mean time spent (in minutes) by employees doing a specific activity by their per-minute salaries. The costs of consumables, Purified Protein Derivative vials and clinical equipment were obtained from the procurement section of the Pharmacy and Radiology Departments. The cost of the building was calculated by multiplying the area of space used by the facility with the unit cost of the public building department. Straight-line deprecation with a discount rate of 3% was assumed for the calculation of equivalent annual costs for the building and machines. Out of 1024 contact tracing procedures, TST was positive (≥10 mm) in 38 suspects. However, chemoprophylaxis was started in none. Yield of contact tracing (active tuberculosis) was as low as 0.5%. The total unit cost of chest X-ray and TST was MYR 9.23 (2.90 USD) & MYR 11.80 (USD 3.70), respectively. The total cost incurred on a single contact tracing procedure was MYR 21.03 (USD 6.60). Our findings suggest that the yield of contact tracing was very low which may be attributed to an inappropriate prioritization process. TST may be replaced with more accurate and specific methods (interferon gamma release assay) in highly prioritized contacts; or TST-positive contacts should be administered 6H therapy (provided that the chest radiography excludes TB) in accordance with standard protocols. The unit cost of contact tracing can be significantly reduced if radiological examination is done only in TST or IRGA positive contacts.

  12. Transient electromagnetic scattering by a radially uniaxial dielectric sphere: Debye series, Mie series and ray tracing methods

    NASA Astrophysics Data System (ADS)

    Yazdani, Mohsen

    Transient electromagnetic scattering by a radially uniaxial dielectric sphere is explored using three well-known methods: Debye series, Mie series, and ray tracing theory. In the first approach, the general solutions for the impulse and step responses of a uniaxial sphere are evaluated using the inverse Laplace transformation of the generalized Mie series solution. Following high frequency scattering solution of a large uniaxial sphere, the Mie series summation is split into the high frequency (HF) and low frequency terms where the HF term is replaced by its asymptotic expression allowing a significant reduction in computation time of the numerical Bromwich integral. In the second approach, the generalized Debye series for a radially uniaxial dielectric sphere is introduced and the Mie series coefficients are replaced by their equivalent Debye series formulations. The results are then applied to examine the transient response of each individual Debye term allowing the identification of impulse returns in the transient response of the uniaxial sphere. In the third approach, the ray tracing theory in a uniaxial sphere is investigated to evaluate the propagation path as well as the arrival time of the ordinary and extraordinary returns in the transient response of the uniaxial sphere. This is achieved by extracting the reflection and transmission angles of a plane wave obliquely incident on the radially oriented air-uniaxial and uniaxial-air boundaries, and expressing the phase velocities as well as the refractive indices of the ordinary and extraordinary waves in terms of the incident angle, optic axis and propagation direction. The results indicate a satisfactory agreement between Debye series, Mie series and ray tracing methods.

  13. Viscosity in the thermosphere: Evidence from gravity wave, neutral wind and direct lab measurements that the standard viscosity coefficients are too large in the thermosphere; and implication for gravity wave propagation in the thermosphere

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon; Crowley, Geoff

    2017-04-01

    In this paper, we review measurements of 1) gravity waves (GWs) observed as traveling ionospheric disturbances (TIDs) at z 283 km by the TIDDBIT sounder on 30 October 2007, and 2) simultaneous rockets measurements of in-situ neutral winds at z 320-385 km. The neutral wind contains a 100 m/s peak at z 325 km in the same direction as the GWs, but oppositely-directed to the diurnal tides. We hypothesize that several of the TIDDBIT GWs propagated upwards and created this neutral wind peak. Using an anelastic GW ray trace model which includes thermospheric dissipation from molecular viscosity and thermal conductivity with mu proportional to the temperature to the power of 0.7, we forward ray trace the GWs from z_i=220 km. Surprisingly, the GWs dissipate below z 260 km, well below the altitude they were observed. Furthermore, none of the GWs could have propagated high-enough to create the neutral wind peak. In our opinion, this constitutes a significant discrepancy between observations and GW dissipative theory. We perform sensitivity experiments to rule out background temperature and wind effects as being the cause. We propose a modification to the formula for mu, and show that this yields ray trace results that agree reasonably well with the observations. We examine papers and reports for laboratory experiments which measured mu at low pressures, and find similar results. We conclude that the standard formulas for mu routinely used in thermospheric models must be modified in the thermosphere to account for this important effect. We also show preliminary GW ray trace results using this modified formula for mu, and compare with previous theoretical results.

  14. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  15. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    NASA Astrophysics Data System (ADS)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  16. Wave-current interaction study in the Gulf of Alaska for detection of eddies by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.

    1994-01-01

    High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale eddy. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the eddy was not clearly visible, but the wave refraction in the eddy area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave current interaction. These observations are simulated by a ray-tracing model which incorporates a surface current field associated with the eddy. The numerical results of the model show that the waves are refracted and diverge in the eddy field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.

  17. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  18. For AAPT: Teaching the Wave Mechanics of McLeods' Stringy Electron, Explicit Nucleons, and Through-the-Earth Projections of Constellations' Stick Figures

    NASA Astrophysics Data System (ADS)

    McLeod, David Matthew

    2011-11-01

    McLeods' NEF11#22 submission is from their same-title INVITED presentation at Frontiers in Optics 2011, San Jose, CA. It shows how Hooke's law for electron, proton and neutron strings build electromagnetic waves from strings. These are composed of spirally linked, parallel, north-pole oriented, neutrino and antineutrino strings, stable because of magnetic repulsions. Their Dumbo Proton is antineutrino-scissor cut, and compressed in the vicinity of a neutron star, where electrostatic marriage occurs with a neutrino-scissor cut, and compressed, electron, so a Mickey Neutron emerges. Strings then predict electron charge is -- 1/3 e, Dumbo P is 25 % longer than Mickey N, and Hooke says relaxing springs fuel three separate inflations after each Big Bang oscillation. Gravity can be strings longitudinally linked. Einstein says Herman Grid's black diagonals prove human vision reads its information from algebraically-signed electromagnetic field diffraction patterns known by ray-tracing, not difficult Spatial Fourier Transformation. High-schoolers understand its application to Wave Mechanics, and agree that positive-numbered probabilities do not enter to possibly displease God. Stick figure constellations detected, like Phoenix, Leo, Canis Major, and especially Orion, fool some observers into false beliefs in things like UFHumanoids, or Kokopelli, Pele and Pamola!

  19. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  20. SolTrace Publications | Concentrating Solar Power | NREL

    Science.gov Websites

    : International Solar Energy Conference, 15-18 March 2003, Kohala Coast, Hawaii. New York: American Society of ;General Ray-Tracing Procedure," Journal of the Optical Society of America, Vol. 52, June, pp. 672-678 Brightness Profiles," Journal of Solar Energy Engineering, Vol. 124, May, pp. 198-204. Steele, C.R

Top