Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan
2017-12-27
Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.
Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.
Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J
1996-06-01
The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.
Santos, D M; St Aubin, J; Fallone, B G; Steciw, S
2012-02-01
In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84% of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration. Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields. The FEM model above agreed within 1.5% with the manufacturer supplied fringe magnetic field isoline data. When passive magnetic shields are used, the target current is recoverable to greater than 99% of nominal for shield thicknesses greater than 0.75 mm. The optimized active shield which resulted in 100% target current recovery consists of two thin current rings 110 mm in diameter with 625 and 430 A-turns in each ring. With the length of the passive shield kept constant, the thickness of the shield had to be increased to achieve the same target current within the increased longitudinal magnetic fields. A ≥99% original target current is recovered with passive shield thicknesses >0.75 mm. An active shield consisting of two current rings of diameter of 110 mm with 625 and 430 A-turns fully recovers the loss that would have been caused by the magnetic fields. The minimal passive or active shielding requirements to essentially fully recover the current output of the linac in our parallel-configured linac-MR system have been determined and are easily achieved for practical implementation of the system.
Nakamura, T; Uwamino, Y
1986-02-01
The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2012-01-01
The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
Accelerator shield design of KIPT neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Gohar, Y.
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less
Electron Accelerator Shielding Design of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
Graphene shield enhanced photocathodes and methods for making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Nathan Andrew
Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butson, M
Purpose: Intraoral electron shields used in radiotherapy are designed to minimize radiation exposure to non-treatment tissue. Sites where shields are used include but are not limited to, the treatment of lips, cheeks and ears whilst shielding the underlying oral cavity, tongue, gingival or temporal region. However their use produces an enhancement in dose on the beam side caused by an increase in electron backscatter radiation. This work designs a new shield incorporating copper, aluminium and wax in a step down filter arrangement to minimise backscatter whilst minimizing overall shield thickness. Methods: For electron beams ranging from 6 MeV to 10more » MeV, shields of varying designs and thicknesses were assessed to determine the thinnest shield design that could be produced whilst minimising backscattered radiation to a clinically acceptable level. This was performed with conventional lead and wax shields as well as varying quantities of aluminium and copper foils. Results: From tested shield designs, a new shield design of 4 mm lead, 0.6 mm copper, 1.0 mm aluminium and 1.5 mm wax (3.1 mm added filtration, 7.1 mm total thickness) provided a clinically acceptable (no greater than 110% dose) backscatter and transmission reduction and matched a standard 4.5 mm lead and 10 mm wax (total thickness 14.5 mm) electron shield. Dose enhancement values of no more than 10 % were measured utilising this shield design with a 50 % reduction in shield thickness. Conclusion: The thinner layered shield reduced backscattered radiation dose to less than 10% enhancement for beam energies on 10 MeV and less and will allow easier patient set up. The thinner shields are tolerated better by patients when mucosal reactions occur as they place less physical pressure on these sites during treatment due to their smaller size and thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Ma, B; Kuang, Y
2014-06-15
Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was includedmore » in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
Reliability-Based Electronics Shielding Design Tools
NASA Technical Reports Server (NTRS)
Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.
2007-01-01
Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.
Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.
Wroe, Andrew J
2016-02-01
To evaluate the scattered and secondary radiation fields present in and around a passive proton treatment nozzle. In addition, based on these initial tests and system reliability analysis, to develop, install, and evaluate a radiation shielding structure to protect sensitive electronics against single-event effects (SEE) and improve system reliability. Landauer Luxel+ dosimeters were used to evaluate the radiation field around one of the gantry-mounted passive proton delivery nozzles at Loma Linda University Medical Center's James M Slater, MD Proton Treatment and Research Center. These detectors use optically stimulated luminescence technology in conjunction with CR-39 to measure doses from X-ray, gamma, proton, beta, fast neutron, and thermal neutron radiation. The dosimeters were stationed at various positions around the gantry pit and attached to racks on the gantry itself to evaluate the dose to electronics. Wax shielding was also employed on some detectors to evaluate the usefulness of this material as a dose moderator. To create the scattered and secondary radiation field in the gantry enclosure, a polystyrene phantom was placed at isocenter and irradiated with 250 MeV protons to a dose of 1.3 kGy over 16 hours. Using the collected data as a baseline, a composite shielding structure was created and installed to shield electronics associated with the precision patient positioner. The effectiveness of this shielding structure was evaluated with Landauer Luxel+ dosimeters and the results correlated against system uptime. The measured dose equivalent ranged from 1 to 60 mSv, with proton/photon, thermal neutron, fast neutron, and overall dose equivalent evaluated. The position of the detector/electronics relative to both isocenter and also neutron-producing devices, such as the collimators and first and second scatterers, definitely had a bearing on the dose received. The addition of 1-inch-thick wax shielding decreased the fast neutron component by almost 50%, yet this yielded a corresponding average increase in thermal neutron dose of 150% as there was no Boron-10 component to capture thermal neutrons. Using these data as a reference, a shielding structure was designed and installed to minimize radiation to electronics associated with the patient positioner. The installed shielding reduced the total dose experienced by these electronics by a factor of 5 while additionally reducing the fast and thermal neutron doses by a factor of 7 and 14, respectively. The reduction in radiation dose corresponded with a reduction of SEE-related downtime of this equipment from 16.5 hours to 2.5 hours over a 6-month reporting period. The data obtained in this study provided a baseline for radiation exposures experienced by gantry- and pit-mounted electronic systems. It also demonstrated and evaluated a shielding structure design that can be retrofitted to existing electronic system installations. It is expected that this study will benefit future upgrades and facility designs by identifying mechanisms that may minimize radiation dose to installed electronics, thus improving facility uptime. © The Author(s) 2015.
Magnetic decoupling of the linac in a low field biplanar linac-MR system.
St Aubin, J; Steciw, S; Fallone, B G
2010-09-01
The integration of a low field biplanar magnetic resonance (MR) imager and linear accelerator (linac) causes magnetic interference at the linac due to the MR fringe fields. In order to eliminate this interference, passive and active magnetic shielding designs are investigated. The optimized design of passive magnetic shielding was performed using the finite element method. The design was required to achieve no greater than a 20% electron beam loss within the linac waveguide and electron gun, no greater than 0.06 T at the multileaf collimator (MLC) motors, and generate a distortion of the main MR imaging volume of no greater than 300 ppm. Through the superposition of the analytical solution for a single current carrying wire loop, active shielding designs in the form of three and four sets of coil pairs surrounding the linac waveguide and electron gun were also investigated. The optimized current and coil center locations that yielded the best cancellation of the MR fringe fields at the linac were determined using sequential quadratic programming. Optimized passive shielding in the form of two steel cylinders was designed to meet the required constraints. When shielding the MLC motors along with the waveguide and electron gun, the thickness of the cylinders was less than 1 mm. If magnetically insensitive MLC motors are used, no MLC shielding would be required and the waveguide shield (shielding the waveguide and electron gun) became 1.58 mm thick. In addition, the optimized current and coil spacing for active shielding was determined for both three and four coil pair configurations. The results of the active shielding optimization produced no beam loss within the waveguide and electron gun and a maximum MR field distortion of 91 ppm over a 30 cm diameter spherical volume. Very simple passive and active shielding designs have been shown to magnetically decouple the linac from the MR imager in a low field biplanar linac-MR system. The MLC passive shielding produced the largest distortion of the MR field over the imaging volume. With the use of magnetically insensitive motors, the MR field distortion drops substantially since no MLC shield is required. The active shielding designs yielded no electron beam loss within the linac.
Evaluation of a method to shield a welding electron beam from magnetic interference
NASA Technical Reports Server (NTRS)
Wall, W. A.
1976-01-01
It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin
A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less
Sonier, Marcus; Wronski, Matt; Yeboah, Collins
2015-03-08
Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose pro-files under large-area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central-axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤ 10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ~ 25% occur-ring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
NASA Astrophysics Data System (ADS)
Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.
NASA Technical Reports Server (NTRS)
Atwell, William; Rojdev, Kristina; Aghara, Sukesh; Sriprisan, Sirikul
2013-01-01
In this paper we present a novel space radiation shielding approach using various material lay-ups, called "Graded-Z" shielding, which could optimize cost, weight, and safety while mitigating the radiation exposures from the trapped radiation and solar proton environments, as well as the galactic cosmic radiation (GCR) environment, to humans and electronics. In addition, a validation and verification (V&V) was performed using two different high energy particle transport/dose codes (MCNPX & HZETRN). Inherently, we know that materials having high-hydrogen content are very good space radiation shielding materials. Graded-Z material lay-ups are very good trapped electron mitigators for medium earth orbit (MEO) and geostationary earth orbit (GEO). In addition, secondary particles, namely neutrons, are produced as the primary particles penetrate a spacecraft, which can have deleterious effects to both humans and electronics. The use of "dopants," such as beryllium, boron, and lithium, impregnated in other shielding materials provides a means of absorbing the secondary neutrons. Several examples of optimized Graded-Z shielding layups that include the use of composite materials are presented and discussed in detail. This parametric shielding study is an extension of some earlier pioneering work we (William Atwell and Kristina Rojdev) performed in 20041 and 20092.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less
Shielding small-field high-energy electron beams in cancer treatment
NASA Astrophysics Data System (ADS)
Farahani, M.; Eichmiller, F. C.; McLaughlin, W. L.
1994-04-01
The purpose of this study was to find an effective material that can be prepared quickly and easily prior to small-field electron-beam treatments so that lesions of the head and neck can be treated with minimal irradiation of the surrounding healthy tissue. Conventional preparation of custom anatomical prosthetic radiation shields, which are usually metal alloy masks, has been time-consuming and uncomfortable for the patients. New materials, made from light-body Reprosil TM (L. L. Caulk) filled with fine metal powder consisting of 70% Ag-30% Cu alloy, can be made by blending 90% (w/w) metal powder with 10% polysiloxane base and adding the polymerization catalyst separately. These combinations were mixed to form comfortably fitted shielding composites of different thicknesses. The electron-beam attenuation properties of slabs of this material were studied by irradiating calibrated radiochromic film (GafChromic TM) dosimeters behind different thicknesses of composite samples with small-field 13-, 15- and 18-MeV electron beams from a therapeutic linear accelerator. The results showed that this material can suitably attenuate high-energy electron beams when used in reasonable thicknesses.
Power converter having improved EMI shielding
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2006-06-13
EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Radiation protection design considerations for man in geosynchronous orbits
NASA Technical Reports Server (NTRS)
Rossi, M. L.; Stauber, M. C.
1977-01-01
A description is presented of preliminary studies which have been carried out to identify design requirements and mission constraints imposed by the geosynchronous radiation environment. The radiation species of dominant impact are the trapped electrons and solar flare particles. The criterion used in the conducted shielding design analysis has been to limit the skin dose to 100 rems for 3 months. The analysis included the optimization of an electron/bremsstrahlung shield for residence within the vehicle, the minimization of the dose received in extravehicular activity, and the calculation of special shield requirements for solar flares. An investigation was conducted of the potential benefits accruing from a three-layered composite shield with part of the aluminum layer replaced with a lower atomic number material. The materials considered were polyethylene, carbon, beryllium, and lithium hydride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
Added aluminum shielding to attenuate back scatter electrons from intra-oral lead shields.
Weidlich, G A; Nuesch, C E; Fuery, J J
1996-01-01
An intra-oral lead shield was developed that consists of a lead base with an aluminum layer that is placed upstream of the lead base. Several such shields with various thicknesses of Al layers were manufactured and quantitatively evaluated in 6 MeV and 12 MeV electron radiation by Thermoluminescent dosimetry (TLD) measurements. The clinical relevance was established by using a 5 cm backscatter block down-stream of the lead shield to simulate anatomical structures of the head and a 0.5 cm superflab bolus upstream of the Al layers of the shield to simulate the patient's lip or cheek. The TLDs were placed between the Al layers of the shield and the superflab to determine the intra-oral skin dose. TLD exposure results revealed that 59.8% of the skin dose at 6 MeV and 45.1% of the skin dose at 12 MeV is due to backscattered electrons. Introduction of a 3.0 mm thick Al layer reduces the backscatter contribution to 13.5% of the back scatter dose at 6 MeV and 56.3% of the back scatter dose at 12 MeV electron radiation.
Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun
2018-04-01
We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.
Wronski, Matt; Yeboah, Collins
2015-01-01
Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose profiles under large‐area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central‐axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ∼25% occurring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.‐x, 87.55.D‐ PMID:27074448
Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)
2003-01-01
This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.
Vehicle drive module having improved EMI shielding
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2006-11-28
EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Overview of active methods for shielding spacecraft from energetic space radiation
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W. (Principal Investigator)
2001-01-01
During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.
Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures
NASA Technical Reports Server (NTRS)
Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren
2011-01-01
Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of the regolith materials by about 6%. The findings may be utilized to extend the possibilities of potential candidate materials for lunar habitat structures, will potentially impact the design criteria of future human bases on the moon, and provide some guidelines for future space mission planning with respect to radiation exposure and risks posed on astronauts.
NASA Astrophysics Data System (ADS)
Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao
2018-05-01
Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.
Electromagnetic shielding effectiveness of 3D printed polymer composites
NASA Astrophysics Data System (ADS)
Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.
2017-12-01
We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.
Electronics Shielding and Reliability Design Tools
NASA Technical Reports Server (NTRS)
Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.
2006-01-01
It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L; Wootton, L; Gopan, O
Purpose: Electron therapy for the treatment of ocular lymphomas requires the lens to be shielded to prevent secondary cataracts. This work evaluates the dosimetry under a suspended eyeshield with and without bolus for low energy electron fields. Methods: Film (GafChromic EBT3) dosimetry and relative output factors were measured for 6, 8, and 10 MeV electron energies. A customized 5 cm diameter circle electron orbital cutout was constructed for a 6×6 cm applicator with a lens shield, 1 cm diameter Cerrobend cylinder with 2.2 cm length, suspended from an XV film covering the open field. Relative output factors were measured usingmore » a Scanditronix electron diode in a solid water phantom. Depth dose profiles were collected for bolus thicknesses of 0, 3, and 5 mm in solid water at a source to surface distance (SSD) of 100 cm. These measurements were repeated in a Rando phantom. Results: At 5 mm, the approximate distance of the lens from the surface of the cornea, the estimated dose in solid water under the suspended lens shield was reduced to 16%, 14%, and 13% of the unblocked dose at the same depth, for electron energies of 6, 8, and 10 MeV, respectively. Applying bolus increased estimated doses under the block to 22% for 3-mm and 32% for 5-mm thicknesses for a 6 MeV incident electron beam. This effect is reduced for higher energies where the corresponding values were 15.5% and 18% for 3-mm and 5-mm for an 8 MeV electron beam. Conclusion: The application of bolus to treat superficial eye lesions of the conjunctiva increases lens dose at a depth of 5-mm under the shielding block with decreasing electron energy. Careful selection of electron energy is needed to account for electron scatter under the lens shield with the application of bolus in order to prevent cataracts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P.F.; Kennedy, E.L.; McCormack, R.G.
1992-09-01
The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2015-10-15
The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found thatmore » the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-01-15
The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less
NASA Astrophysics Data System (ADS)
Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch
2017-10-01
Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.
2013-10-01
The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.
Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin
2017-06-28
Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; De Monte, V.; Di Lieto, A.
In the LEReC Cooling Section (CS) the RHIC ions are traveling together with and getting cooled by the LEReC electrons. The required cooling rate sets the limit of 150 urad on tolerable angles of the electrons in the CS. One of the components of overall electron angle is the angle of the e-beam trajectory with respect to the ion beam trajectory. We set the limit for electron trajectory angle to 100 urad. It is critical for preserving small trajectory angle to keep the transverse magnetic field inside the CS drifts within +/- 2.3 mG. The drifts in the CS mustmore » be shielded from the ambient magnetic fields of the RHIC tunnel, which can be as high as 0.5 G, to minimize the transverse field inside the CS vacuum chamber. In this paper we present the final design of the magnetic shielding of the LEReC CS and discuss the results of tests dedicated to studies of the shielding effectiveness.« less
Electronic structures of elements according to ionization energies.
Zadeh, Dariush H
2017-11-28
The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanier, M; Wronski, M; Yeboah, C
The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus onmore » top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.« less
The influence of space charge shielding on dielectric multipactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.; Liu, G. Z.; Tang, C. X.
2009-05-15
A model of space charge influenced by multipactor electrons and plasma has been established. The positive space charge potential/field for vacuum dielectric multipactor is analytically studied. After considering the plasma, the positive space charge field is further shielded, and multipactor saturates at higher surface accumulated field, compared with that for only considering multipactor electrons. The negative space charge potential/field for dielectric breakdown at high pressure is analyzed. It is found that the negative potential can be nonmonotonously varied, forming a minimum potential well.
Griessbach, Irmgard; Lapp, Markus; Bohsung, Jörg; Gademann, Günther; Harder, Dietrich
2005-12-01
Shielded p-silicon diodes, frequently applied in general photon-beam dosimetry, show certain imperfections when applied in the small photon fields occurring in stereotactic or intensity modulated radiotherapy (IMRT), in electron beams and in the buildup region of photon beam dose distributions. Using as a study object the shielded p-silicon diode PTW 60008, well known for its reliable performance in general photon dosimetry, we have identified these imperfections as effects of electron scattering at the metallic parts of the shielding. In order to overcome these difficulties a new, unshielded diode PTW 60012 has been designed and manufactured by PTW Freiburg. By comparison with reference detectors, such as thimble and plane-parallel ionization chambers and a diamond detector, we could show the absence of these imperfections. An excellent performance of the new unshielded diode for the special dosimetric tasks in small photon fields, electron beams and build-up regions of photon beams has been observed. The new diode also has an improved angular response. However, due to its over-response to low-energy scattered photons, its recommended range of use does not include output factor measurements in large photon fields, although this effect can be compensated by a thin auxiliary lead shield.
New method for shielding electron beams used for head and neck cancer treatment.
Farahani, M; Eichmiller, F C; McLaughlin, W L
1993-01-01
Shields and stents of metals with high atomic number, which are custom cast in molds from the melt, are the materials most widely used to protect surrounding tissues during treatment of skin or oral lesions with therapeutic electron beams. An improved fabrication method is to mix a polysiloxane-metal composite, which is readily cast at room temperature by combining a metal-powder/polysiloxane resin mixture with a hardening catalyst. The purpose of the present study is to compare the shielding effectiveness of two different metal-polysiloxane composites with that of conventional cast Lipowitz metal (50.1% Bi, 26.6% Pb, 13.3% Sn, 10% Cd). Also, a 2(3) factorial experiment was run to investigate the effects and interactions of metal particle size (20-microns vs 100-microns diameter), the atomic weight of the metal (304 stainless steel vs 70% Ag, 30% Cu alloy), and the presence or absence of a layer of unfilled polymer added to the forward-scatter side of the shield. The composites of different thicknesses were made by blending 90% (w/w) metal powder separately with 10% polysiloxane base and catalyst. A thin GafChromic dosimeter film was placed between the shielding material and a polystyrene base to measure the radiation shielding effect of composite disc samples irradiated with a 6-MeV electron beam normal to the flat surface of the disc. The results show that composite shields with the metal of higher atomic weight and density (Ag-Cu) combined with an additional unfilled layer are more effective than the stainless-steel composite with a similar additional unfilled layer, in terms of diminishing the dose at the surface of the polystyrene backing material.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen
2014-09-01
As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.
Power converter connection configuration
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2008-11-11
EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
1987-12-29
when the air or gas stream contains particulate matter. b. Pulverized materials passing through chutes or pneumatic conveyors . c. Nonconductive power...Hanover NH, 1971, AD 722 221. 146.Oakley, R.J., "Surface Transfer Impedance and Cable Shielding Design ," Wire Journal, Vol 4, No. 3, March 1971, pp...including considerations of grounding, bonding, and shielding in all phases of design , construction, operation, and maintenance of electronic equipment
Effective radiation reduction in Space Station and missions beyond the magnetosphere
NASA Technical Reports Server (NTRS)
Jordan, Thomas M.; Stassinopoulos, E. G.
1989-01-01
This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).
Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe
2018-05-01
A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William
2011-01-01
A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.
SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, C; Singh, A; AlDahlawi, I
Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layersmore » of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.« less
Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K
2009-06-07
Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.
Electroless shielding of plastic electronic enclosures
NASA Astrophysics Data System (ADS)
Thompson, D.
1985-12-01
The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.
NASA Astrophysics Data System (ADS)
Wang, Guo-hui; He, Man-li; Jiang, Dan-feng; He, Fan; Chang, Shu-quan; Dai, Yao-dong
2017-11-01
According to the requirements for neutron shielding and flame retardant properties of some nuclear devices, a new kind of polymer composite materials based on ethylene and vinyl acetate (EVA) polymer have been studied. EVA is the copolymer of ethylene and vinyl acetate, It can be used as materials for applications due to its flexibility, good processability, and low cost. Insulating EVA can be used for cable sheath, automotive sound damping and many other appication. Boron nitride (BN), zinc borate (ZB), magnesium hydroxide (MH) and EVA consisted the compounds with the properties of neutron shielding and flame retardant. With increasing of the contents of BN and ZB, the neutron shielding performance of materials increased up to 33.08%. With the increasing contents of MH and ZB as flame retardant, oxygen index of material have been improved. The elongation at break and tensile strength of material decreased with the increasing of filler powders. Sheet E was chosen and modified by electron beam accelerator in different doses. After modification by electron beam irradiation the sheets showed varying degrees of transformation in the OI, neutron shielding rate and mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duwel, D; Lamba, M; Elson, H
Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations.more » Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Lihua, E-mail: xiaolihua@git.edu.cn; School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083; Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003
2016-04-28
The structural, electronic, magnetic, and optical properties of GdB{sub 6} are studied using the first-principles calculations. Calculated values for magnetic and optical properties and lattice constant are found to be consistent with previously reported experimental results. The calculated results show that GdB{sub 6} is a perfect near-infrared absorption/reflectance material that could serve as a solar radiation shielding material for windows with high visible light transmittance, similar to LaB{sub 6}, which is assigned to its plasma oscillation and a collective oscillation (volume plasmon) of carrier electrons. It was found that the magnetic 4f electrons of Gd are not relevant to themore » important optical properties of GdB{sub 6}. These theoretical studies serve as a reference for future studies.« less
Dong, Mengge; Xue, Xiangxin; Kumar, Ashok; Yang, He; Sayyed, M I; Liu, Shan; Bu, Erjun
2018-02-15
A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa. Copyright © 2017 Elsevier B.V. All rights reserved.
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
Shielding Requirements for an Energy-Recovery Linac Free Electron Laser
2011-12-01
Radiofrequency TLD Thermo Luminescent Dosimeter xviii THIS PAGE INTENTIONALLY LEFT BLANK xix ACKNOWLEDGMENTS I would like to first thank Professor...FOR AN ENERGY- RECOVERY LINAC FREE ELECTRON LASER by Robert E. Peterson December 2011 Thesis Co-Advisors: William B. Colson Keith...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Shielding Requirements for an Energy-Recovery Linac Free Electron Laser 5. FUNDING NUMBERS 6
Shields-1, A SmallSat Radiation Shielding Technology Demonstration
NASA Technical Reports Server (NTRS)
Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.
2015-01-01
The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware
ERIC Educational Resources Information Center
National Bureau of Standards (DOC), Washington, DC.
Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…
NASA Technical Reports Server (NTRS)
Tripathi, Ram K.
2016-01-01
This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated membrane structure (EIMS) in both charged and uncharged configurations. The amount of charge shielding behind and around the EIMS was studied for different combinations of membrane structure voltages and electron energies. Both passive and active shielding were observed, with active shielding capable of deflecting nearly all incoming electrons. The pattern of charge distribution around the structure was studied as well as the stability of the structures in the charge flow. The charge deflection experiments illustrate that the EIMS remain inflated during charge deflection, but will experience small amplitude oscillations. Investigations were performed to determine a potential cause of the vibrations. It is postulated these vibrations are due to the charge flux causing local membrane charge distribution changes. As the membrane structure inflation pressure is changed, the shape responds, and causes the observed sustained vibration. Having identified this phenomenon is important when considering electrostatically inflated membrane structures (EIMS) in a space environment. Additionally, this project included a study of membrane material impacts, specifically the impact of membrane thickness. Extremely thin materials presented new challenges with vacuum preparation techniques and rapid charging. The thinner and lighter membrane materials were successfully inflated using electrostatic forces in a vacuum chamber. However, care must be taken when varying the potentials of such lighter structures as the currents can cause local heating and melting of the very thin membranes. Lastly, a preliminary analysis is performed to study rough order of magnitude power requirements for using EIMS for radiation shielding. The EIMS power requirement becomes increasingly more challenging as the spacecraft voltage is increased. As a result, the emphasis is on the deflection of charges away from the spacecraft rather than totally stopping them. This significantly alleviates the initial power requirements. With modest technological development(s) active shielding is emerging to be a viable option.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesler, Stefan
2002-09-19
Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code.more » The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.« less
Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY
2011-11-22
The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.
NASA Astrophysics Data System (ADS)
Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.
2006-04-01
An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
De Vries, Rowen J; Marsh, Steven
2015-11-08
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.
Marsh, Steven
2015-01-01
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566
1981-06-01
hollow with most of the electrons moving near the outer circumference of the plasma channel. CaF2:Mn thermoluminescent dosimeter ( TLD ) radiation...dose measurements with the TLDs shielded all around with 0.76 mm aluminum and back-shielded with 4.72 mm aluminum (so as to eliminate electron ...27.3 INJECTION AND PROPAGATION OF ~1ULTIPLE RELATIVISTIC ELECTRON BEAMS INTO PREFORMED PLASMA CHANNELS FOR HIGH-POWER X-RAY PRODUCTION F. J
Gamma rays shielding parameters for white metal alloys
NASA Astrophysics Data System (ADS)
Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir
2018-05-01
In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.
NASA Astrophysics Data System (ADS)
Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M. A.; Miah, M. M. H.; Bradley, D. A.
2017-11-01
Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble 'Carrara' imported from Italy is suitable to be used as radiation shielding material.
Magnetic radiation shielding - An idea whose time has returned?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1991-01-01
One solution to the problem of shielding crew from particulate radiation in space is to use active electromagnetic shielding. Practical types of shield include the magnetic shield, in which a strong magnetic field diverts charged particles from the crew region, and the magnetic/electrostatic plasma shield, in which an electrostatic field shields the crew from positively charged particles, while a magnetic field confines electrons from the space plasma to provide charge neutrality. Advances in technology include high-strength composite materials, high-temperature superconductors, numerical computational solutions to particle transport in electromagnetic fields, and a technology base for construction and operation of large superconducting magnets. These advances make electromagnetic shielding a practical alternative for near-term future missions.
NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations
NASA Astrophysics Data System (ADS)
de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.
2017-02-01
We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.
de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M
2017-02-14
We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
Cosmic Ray Interactions in Shielding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.
2011-09-08
This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less
NASA Astrophysics Data System (ADS)
Berneking, Arne; Trinchero, Riccardo; Ha, YongHyun; Finster, Felix; Cerello, Piergiorgio; Lerche, Christoph; Shah, Nadim Jon
2017-05-01
This paper focuses on the design and the characterization of a frequency-selective shield for positron emission tomography (PET) detector modules of hybrid magnetic resonance-PET scanners, where the shielding of the PET cassettes is located close to the observed object. The proposed shielding configuration is designed and optimized to guarantee a high shielding effectiveness (SE) of up to 60 dB for B1-fields at the Larmor frequency of 64 MHz, thus preventing interactions between the radio-frequency (RF) coil and PET electronics. On the other hand, the shield is transparent to the gradient fields with the consequence that eddy-current artifacts in the acquired EPI images are significantly reduced with respect to the standard solid-shield configuration. The frequency-selective behavior of the shield is characterized and validated via simulation studies with CST MICROWAVE STUDIO in the megahertz and kilohertz range. Bench measurements with an RF coil built in-house demonstrated the high SE at the Larmor frequency. Moreover, measurements on a 4-T human scanner confirmed the abolishment of eddy current artifact and also provided an understanding of where the eddy currents occur with respect to the sequence parameters. Simulations and measurements for the proposed shielding concept were compared with a solid copper shielding configuration.
Application of a dummy eye shield for electron treatment planning
Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik
2013-01-01
Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by –19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. PMID:22915776
Neutronics Studies for the Nab Experiment
NASA Astrophysics Data System (ADS)
Scott, Elizabeth; Nab Collaboration
2017-09-01
The Nab experiment at the Spallation Neutron Source at ORNL aims to measure the neutron beta decay electron-neutrino correlation coefficient ``a'' and the Fierz interference term ``b'' with competitive precision. In Nab, the parameter ``a'' is extracted from the proton momentum and electron energy using an asymmetric magnetic spectrometer and two large-area highly pixelated Si detectors . To achieve 10-3 accuracy, there must be low background rates compared to our 1 kHz signal rates. The background is primarily reduced by using coincidence detection of the electron and photon from the decay. However, further reduction is still necessary. Neutron and gamma rates in the Si detectors can lead to false coincidences. The majority of this background radiation can be reduced by well designed collimation and shielding. The collimation design was done with McStas and the background shielding with MCNP6 (Monte Carlo N-Particle 6). Neutrons are absorbed by 6Li -loaded materials or borated polyethylene and gammas close to spectrometer with non magnetic materials such as lead and stainless steel. I will present the shielding design and MCNP6 results.
Kumar, P P; Henschke, K; Mandal, K P; Nibhanupudy, J R; Patel, I S
1977-04-01
This paper describes the problems and solutions in using 18 MeV linear accelerator, with minimum 6 MeV electron capability, for total skin irradiation for mycosis fungoides. The 6 MeV electron energy can be degraded to acceptable electron energy of 3.2 MeV by interposing a plexiglass sheet of 9.6 mm in the beam. To minimize the bremsstrahlung, the degrading plexiglass should be kept away from the machine head. A wide area with uniform dose distribution over single plane can be achieved by using dual fields but homogenous dose distribution over irregular body surface cannot be achieved mainly because of self-shielding. The nails and the ocular lens can be easily shielded from the low energy electrons with 1.5 mm lead shield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Richard Dean; Thom, Robert Anthony
A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectablemore » to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.« less
[A study of magnetic shielding design for a magnetic resonance imaging linac system].
Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming
2017-12-01
One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.
Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites
NASA Astrophysics Data System (ADS)
Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun
2016-03-01
Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.
Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar
2018-06-15
This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.
NASA Astrophysics Data System (ADS)
Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar
2018-06-01
This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing-Xiao, E-mail: drliu-shi@dlpu.edu.cn; Institute of Multidisciplinary Research for Advanced Material, Tohoku University, Sendai, 980-8577,Japan; Shi, Fei
2013-10-15
In order to further improve the near-infrared shielding properties of cesium tungsten bronze (Cs{sub x}WO{sub 3}) for solar filter applications, Cs{sub x}WO{sub 3} particles were prepared by solvothermal reaction method and the effects of nitrogen annealing on the microstructure and near-infrared shielding properties of Cs{sub x}WO{sub 3} were investigated. The obtained Cs{sub x}WO{sub 3} samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and spectrophotometer. The results indicate that nanosheet-like Cs{sub x}WO{sub 3} particles with hexagonal structure began to transform into nanorods after annealed at temperature higher than 600 °C. The near-infrared shielding propertiesmore » of Cs{sub x}WO{sub 3} particles could be further improved by N{sub 2} annealing at 500–700 °C. Particularly, the 500 °C-annealed Cs{sub x}WO{sub 3} samples in the N{sub 2} atmosphere showed best near-infrared shielding properties. It was suggested that the excellent near-infrared shielding ability of the 500 °C-annealed Cs{sub x}WO{sub 3} samples is correlated with its minimum O/W atomic ratio and most oxygen vacancies. Highlights: • N{sub 2} annealing could further improve the near-infrared (NIR) shielding of Cs{sub x}WO{sub 3}. • Effects of N{sub 2} annealing on microstructure and NIR shielding of Cs{sub x}WO{sub 3} were studied. • The 500 °C-N{sub 2}-annealed Cs{sub x}WO{sub 3} exhibited minimum O/W ratio and most oxygen vacancies. • The 500 °C-N{sub 2}-annealed Cs{sub x}WO{sub 3} particles exhibited best NIR shielding properties.« less
Development of an NPS Middle Ultraviolet Spectrograph (Mustang) Electronic Interface
1991-12-01
connecting coaxial shield ................................ 140 xiii Figure 7-12 Encode Command Signal (top) and Video Data Signal (bottom) after connecting...coaxial shield ................................................ 142 Figure 7-13 Data Ready Signal (top) and Video Data Signal (bottom) after...connecting coaxial shield ....................................................... 142 Figure 7-14 Word Clock (top) and Gated Enable Signal Rising Edge (bottom
NASA Astrophysics Data System (ADS)
Spirou, S. V.; Tsialios, P.; Loudos, G.
2015-09-01
In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.
Radiological Protection Studies for NGLS XTOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shanjie; Santana-Leitner, Mario; Rokni, Sayed
The X-ray transport, optics and diagnostic system (XTOD) starts from the end of bending magnets sending electrons to the main dump and ends at the end wall separating the accelerator tunnel from the user experimental hall (hereafter referred as EH wall), as shown in Figure 1. Figure 1.a shows the general schematic and Figure 1.b shows the initial layout with possible shielding components. This document summarizes the extensive studies on the shielding and collimator system design necessary to meet the radiation protection requirements.
NASA Astrophysics Data System (ADS)
Yasmin, Sabina; Barua, Bijoy Sonker; Khandaker, Mayeen Uddin; Chowdhury, Faruque-Uz-Zaman; Rashid, Md. Abdur; Bradley, David A.; Olatunji, Michael Adekunle; Kamal, Masud
2018-06-01
Following the rapid growing economy, the Bangladeshi dwellers are replacing their traditional (mud-, bamboo-, and wood-based) houses to modern multistoried buildings, where different types of glasses are being used as decorative as well as structural materials due to their various advantageous properties. In this study, we inquire the protective and dosimetric capability of commercial glasses for ionizing radiation. Four branded glass samples (PHP-Bangladesh, Osmania-Bangladesh, Nasir-Bangladesh, and Rider-China) of same thickness and color but different elemental weight fractions were analyzed for shielding and dosimetric properties. The chemical composition of the studied material was evaluated by EDX technique. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the attenuation coefficients of the studied materials for 59 keV, 661 keV, 1173 keV and 1332 keV photon energies. A number of shielding parameters- half value layer (HVL), radiation protection efficiency (RPE) and effective atomic number (Zeff) were also evaluated. The data were compared with the available literature (where applicable) to understand its shielding capability relative to the standard materials such as lead. Among the studied brands, Rider (China) shows relatively better indices to be used as ionizing radiation shielding material. The obtained, Zeff of the studied glass samples showed comparable values to the TLD-200 dosimeter, thus considered suitable for environmental radiation monitoring purposes.
Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens
2008-01-01
The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli
2017-02-01
The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared to the ferrite, the pitting corrosion occurred at the ferrite and austenite interface or within the austenite.
Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani
2015-01-01
To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively mitigating discharge channel erosion as a life-limiting mechanism.
Results from Preliminary Checks on AmBe Neutron Source Number 71
2011-02-01
radiation and additional lead shielding was used to shield against gamma radiation emissions. Electronic dosimeters , the MGP DMC2000GN and Thermo EPD...DMC2000GN (S/N: 007395) and EPD-N2 (S/N: 07106323) electronic dosimeters were employed as these both are able to measure and record gamma and neutron...the AN/VDR-2 gamma radiation meter and Meridian Model 5085 neutron meter to confirm this and electronic dosimeters would be worn by personnel to
Nanocomposites in Multifuntional Structures for Spacecraft Platforms
NASA Astrophysics Data System (ADS)
Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.
2012-07-01
The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasso, A.; Ferrari, A.; Ferrari, A.
In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less
Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.
1982-04-01
Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.
NASA Astrophysics Data System (ADS)
Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana
2018-01-01
Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.
Indoor Fast Neutron Generator for Biophysical and Electronic Applications
NASA Astrophysics Data System (ADS)
Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.
2018-05-01
This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.
Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung
Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less
Hartman, Joshua D; Beran, Gregory J O
2014-11-11
First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.
1998-01-01
The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.
Method for reducing measurement errors of a Langmuir probe with a protective RF shield
NASA Astrophysics Data System (ADS)
Riaby, V.; Masherov, P.; Savinov, V.; Yakunin, V.
2018-04-01
Probe measurements were conducted in the middle cross-section of an inductive, low-pressure xenon plasma using a straight cylindrical Langmuir probe with a bare metal shield that protected the probe from radio frequency interference. As a result, reliable radial distributions of the plasma parameters were obtained. Subsequent analyses of these measurements revealed that the electron energy distribution function (EEDF) deviated substantially from the Maxwellian functions and that this deviation depended on the length of the probe shield. To evaluate the shield's influence on the measurement results, in addition to the probe (which was moved radially as its shield length varied in the range of lsh1 = lmax-0), an additional L-shaped probe was inserted at a different location. This probe was moved differently from the first probe and provided confirmational measurements in the common special position where lsh1 = 0 and lsh2 ≠ 0. In this position, the second shield decreased all the plasma parameters. A comparison of the probe datasets identified the principles of the relationships between measurement errors and EEDF distortions caused by the bare probe shields. This dependence was used to correct the measurements performed using the first probe by eliminating the influence of its shield. Physical analyses based on earlier studies showed that these peculiarities are caused by a short-circuited double-probe effect that occurs in bare metal probe protective shields.
NASA Astrophysics Data System (ADS)
Barthel, Joseph; Sarigul-Klijn, Nesrin
2018-03-01
Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.
DOT National Transportation Integrated Search
2002-08-09
This document mandates standard lightning protection, transient protection, electrostatic discharge (ESD), grounding, bonding and shielding configurations and procedures for new facilities, facility modifications, facility up grades, new equipment in...
Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.
Eklund, Karin; Ahnesjö, Anders
2010-11-01
Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode were shown to give comparable, or better, results than the traditionally used shielded diode. Spectra calculated for photon fields in water can be directly used for modeling the response of unshielded silicon diodes with plastic encapsulations. Unshielded diodes used together with appropriate corrections can replace shielded diodes in photon dose measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wroe, A; Slater, J; McAuley, G
Purpose: To design, implement and evaluate a shielding system that will reduce out-of-field dose experienced by the patient and associated electronic systems in passively scattered proton therapy treatment. Methods: A multi-stage neutron shielding system was retrofitted to the Gantry 1 treatment nozzle at Loma Linda University Medical Center. The system uses multiple borated polyethylene plates staged after the primary beam modifying devices to attenuate and absorb neutrons produced by such devices. This arrangement locates increasing levels of shielding between the sources of secondary particles in the nozzle and the patient. Additionally, the design of this shielding structure allows it tomore » be easily retrofitted to an existing proton nozzle system without impacting design or treatment beam characteristics. The effectiveness of the shielding was evaluated both through experimental measurements and Geant4 Monte Carlo simulations. Results: Measurements were completed with Landauer Luxel+ dosimeters that use optically stimulated luminescence and CR-39 to detect fast neutrons, thermal neutrons, protons, photons and beta particles. Measurements of a 250 MeV proton beam indicated that the shielding system reduced out-of-field dose to the patient by almost half with dose equivalent values at 50 and 40 cm from the field edge decreasing from 0.965 and 1.262 mSv/Gy to 0.596 and 0.777 mSv/Gy respectively. The installation of the multi-stage shielding system also reduced dose equivalent experienced by electronic systems installed in the treatment room by up to 80%. Geant4 simulations were also used to evaluate the neutron fluence at various positions in the treatment room as well as provide information on microdosimetry spectra within the patient and treatment room. Conclusion: The shielding system described above proved to be an effective an inexpensive method of reducing out-of-field doses to the patient and electronic systems and can be easily retrofitted to existing passive scattering nozzles.« less
NASA Astrophysics Data System (ADS)
Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David
2012-10-01
We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.
NASA Astrophysics Data System (ADS)
Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong
2011-10-01
Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.
Hagen, E.C.; Hudson, C.L.
1995-07-25
A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The influence of quantum shielding on the Ramsauer-Townsend phenomena for the total electron-atom polarisation collision cross-section is investigated in partially ionised strongly coupled semiclassic plasmas. The result shows that the quantum shielding effect changes the position of the Ramsauer energy in partially ionised strongly coupled plasmas. It is also found that the quantum shielding effect enhances the total electron-atom collision cross-section when the collision energy is greater than the Ramsauer energy; however, it suppresses the collision cross-section when the collision energy is smaller than the Ramsauer energy. In addition, it is shown that the plasma screening effect significantly changes the position of the Ramsauer energy and the influence of plasma screening on the magnitude of the collision cross-section is more significant near the Ramsauer energy domain. The variations of the Ramsauer energy and the collision cross-section due to the quantum shielding effect are also discussed.
Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira
2012-12-07
Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields
NASA Astrophysics Data System (ADS)
Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K.
2017-01-01
Bi2O3 filled Isophthalic resin based polymer composites of different weight % (0, 5, 10, 20, 30, 40, 50 & 60) were fabricated by open mould cast technique. Gamma attenuation study was carried out using NaI (Tl) gamma ray spectrometer for Cs-137. The shielding parameters such as attenuation coefficient, HVL & λ were investigated. The distribution of the filler within the matrix was studied using Scanning Electron Microscopy. X ray diffractometer and Fourier Transform Infrared Spectroscopy were employed to study the structural changes if any. The thermal stability and mechanical strength of the composites were investigated using TGA & UTM respectively. Dielectric properties and AC conductivity were also studied using LCR meter. The composites are found to be thermally stable upto 200 °C. There were no such structural changes observed and all the composites show very low conductivity. The mechanical strength of the composites was found to increase upon adding the bismuth oxide with a slight decrease when the concentration of the filler exceeds 40 wt%. Attenuation results reveal that, the shielding efficiency increases with the increase of the filler wt% and are comparable to those of the conventional shielding materials. Hence, Bi2O3 filled composites can be used for gamma shielding applications.
Analysis of Broadband Metamaterial Shielding for Counter-Directed Energy Weapons
2017-06-01
SHIELDING FOR COUNTER-DIRECTED ENERGY WEAPONS by Chester H. Hewitt III June 2017 Thesis Advisor: Dragoslav Grbovic Second Reader: James H...COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF BROADBAND METAMATERIAL SHIELDING FOR COUNTER-DIRECTED ENERGY WEAPONS 5. FUNDING NUMBERS 6...high-power microwave (HPM) directed- energy weapons (DEWs), which can disrupt electronics remotely with great accuracy without the need to inflict
NASA Astrophysics Data System (ADS)
Bohmann, Jonathan A.; Weinhold, Frank; Farrar, Thomas C.
1997-07-01
Nuclear magnetic shielding tensors computed by the gauge including atomic orbital (GIAO) method in the Hartree-Fock self-consistent-field (HF-SCF) framework are partitioned into magnetic contributions from chemical bonds and lone pairs by means of natural chemical shielding (NCS) analysis, an extension of natural bond orbital (NBO) analysis. NCS analysis complements the description provided by alternative localized orbital methods by directly calculating chemical shieldings due to delocalized features in the electronic structure, such as bond conjugation and hyperconjugation. Examples of NCS tensor decomposition are reported for CH4, CO, and H2CO, for which a graphical mnemonic due to Cornwell is used to illustrate the effect of hyperconjugative delocalization on the carbon shielding.
Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline
NASA Astrophysics Data System (ADS)
Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.
2016-10-01
Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.
Fabrication of Regolith-Derived Radiation Shield Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mantovani, James G.; Townsend, Ivan
2015-01-01
Mars and asteroids have little or no atmosphere, and do not possess a magnetosphere that can protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE) as does the Earth. These types of space radiation present one of the highest risks to a human crew during interplanetary journeys and to onboard electronics. This project aims to evaluate the effectiveness of carbonaceous asteroid materials as a potential radiation shielding material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Fedotov, A.; Gassner, D.
The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.
Two-stage free electron laser research
NASA Astrophysics Data System (ADS)
Segall, S. B.
1984-10-01
KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.
Ordiales, J M; Nogales, J M; Vano, E; López-Mínguez, J R; Alvarez, F J; Ramos, J; Martínez, G; Sánchez, R M
2017-04-25
The aim of this study was to evaluate the occupational radiation dose in interventional cardiology by using a shielding drape on the patient. A random study with and without the protective material was conducted. The following control parameters were registered: demographic data, number of stents, contrast media volume, fluoroscopy time, number of cine images, kerma-area product and cumulative air kerma. Occupational dose data were obtained by electronic active dosemeters. No statistically significant differences in the analysed control parameters were registered. The median dose value received by the interventional cardiologist was 50% lower in the group with a shielding drape with a statistically significant p-value <0.001. In addition, the median value of the maximum scatter radiation dose was 31% lower in this group with a statistically significant p-value <0.001. This study showed that a shielding drape is a useful tool for reducing the occupational radiation dose in a cardiac catheterisation laboratory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Neutron Shielding Effectiveness of Multifunctional Composite Materials
2013-03-01
greater degree of flexibility in design and engineering of specialized space vehicle shielding applications compared to aluminum. A new design for...photon/electron transport. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding...of 37.8%. The reaction of interest is 64Zn(n,p)64Cu, where 64Cu has a half-life of 12.7 hours [5]. When this reaction occurs a positron
Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints
NASA Astrophysics Data System (ADS)
Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin
2018-04-01
The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Transparent Metal-Salt-Filled Polymeric Radiation Shields
NASA Technical Reports Server (NTRS)
Edwards, David; Lennhoff, John; Harris, George
2003-01-01
"COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.
a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.
NASA Astrophysics Data System (ADS)
Brooks, George Alfred
Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1.5 (+OR-) 0.5) day('-1). Improved statistics from 1976 gave (1.48 (+OR-) 0.34) day('-1). If this number could be further reduced--by additional shielding, for example--then the experiment would be easier. However, data taken in 1975 with varying thicknesses of Pb on top of the sandwich detector and in 1976 with an additional 1' of Fe on the roof showed that there is no significant advantage to having more Pb or Fe in those areas. The accelerator may also be a source of background. When the accelerator is operating, neutrons from the beam stop can penetrate the Fe shielding to produce an excessive trigger rate (energetic neutrons) or on excessive dead time (thermal neutrons), especially in the more massive ANTI required for the full scale experiment. However, data taken in 1974 with 10(mu)A accelerator current and 4m Fe as beam stop shielding, and in 1976 with 100 (mu)A and 5m Fe, showed that the neutron flux was well under control. The ultimate configuration requires much higher beam currents, but also calls for additional Fe so that neutrons will not be a problem. In both 1974 and 1976 there were no electron events remaining in the accelerator data following subtraction of cosmic ray background. This fact can be used to set an upper limit on the elastic scattering cross section for (nu)(,e):. (sigma)(,exp) < 38 (sigma)(,V-A) with 90% confidence. The results of these studies determined the amount of shielding required for a full scale neutrino experiment, established the need for a very efficient active anticoincidence, and aided the design of a 14.4 metric ton sandwich detector of flash chamber modules and plastic scintillator slabs. Developmental work for the full scale detector system began in 1977, and some of the subsequent construction work is still in progress. However, the Neutrino Facility has been prepared, and portions of the sandwich detector have been installed. The first information on neutrino -electron elastic scattering could be available by the middle of 1982.
Gamma shielding properties of Tamoxifen drug
NASA Astrophysics Data System (ADS)
Kanberoglu, Gulsah Saydan; Oto, Berna; Gulebaglan, Sinem Erden
2017-02-01
Tamoxifen (MW=371 g/mol) is an endocrine therapeutic drug widely prescribed as chemopreventive in women to prevent and to treat all stages of breast cancer. It is also being studied for other types of cancer. In this study, we have calculated some gamma shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) for Tamoxifen drug. The values of μρ were calculated using WinXCom computer program and then the values of Zeff and Nel were derived using μρ values in the wide energy range (1 keV - 100 GeV).
NASA Astrophysics Data System (ADS)
Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.
2018-05-01
Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.
Maldonado, Alejandro F; Aucar, Gustavo A; Melo, Juan I
2014-09-01
The nuclear magnetic shieldings of Si, Ge, and Sn in MH(4-n) Y(n) (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1-4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the "heavy atom effect on vicinal heavy atom" (HAVHA), in more detail. We found that the main electronic mechanism is the spin-orbit or σ p (T(3)) correction, although other corrections such as σ p (S(1)) and σ p (S(3)) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.
NASA Astrophysics Data System (ADS)
Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.
2011-02-01
A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (˜0.7 g/cm2). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe extended mission. For the upcoming EJSM mission with an expected launch date of 2020, the transport suite is used to compute the depth dose profile for the traditional aluminum silicon as a standard shield target combination, as well as simulating the shielding response of a high charge number (Z) material such as tantalum (Ta). Finally, a shield optimization algorithm is discussed which can guide the instrument designers and fabrication personnel with the choice of graded-Z shield selection and analysis.
NASA Technical Reports Server (NTRS)
Atwell, William; Koontz, Steve; Reddell, Brandon; Rojdev, Kristina; Franklin, Jennifer
2010-01-01
Both crew and radio-sensitive systems, especially electronics must be protected from the effects of the space radiation environment. One method of mitigating this radiation exposure is to use passive-shielding materials. In previous vehicle designs such as the International Space Station (ISS), materials such as aluminum and polyethylene have been used as parasitic shielding to protect crew and electronics from exposure, but these designs add mass and decrease the amount of usable volume inside the vehicle. Thus, it is of interest to understand whether structural materials can also be designed to provide the radiation shielding capability needed for crew and electronics, while still providing weight savings and increased useable volume when compared against previous vehicle shielding designs. In this paper, we present calculations and analysis using the HZETRN (deterministic) and FLUKA (Monte Carlo) codes to investigate the radiation mitigation properties of these structural shielding materials, which includes graded-Z and composite materials. This work is also a follow-on to an earlier paper, that compared computational results for three radiation transport codes, HZETRN, HETC, and FLUKA, using the Feb. 1956 solar particle event (SPE) spectrum. In the following analysis, we consider the October 1989 Ground Level Enhanced (GLE) SPE as the input source term based on the Band function fitting method. Using HZETRN and FLUKA, parametric absorbed doses at the center of a hemispherical structure on the lunar surface are calculated for various thicknesses of graded-Z layups and an all-aluminum structure. HZETRN and FLUKA calculations are compared and are in reasonable (18% to 27%) agreement. Both codes are in agreement with respect to the predicted shielding material performance trends. The results from both HZETRN and FLUKA are analyzed and the radiation protection properties and potential weight savings of various materials and materials lay-ups are compared.
NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal
2016-07-27
National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.
Geant4 calculations for space radiation shielding material Al2O3
NASA Astrophysics Data System (ADS)
Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir
2015-07-01
Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.
Mannan, Javed; Amin, Sanjiv B
2017-03-01
Objective This study aims to perform a meta-analysis of randomized studies to evaluate if chest shielding during phototherapy is associated with decreased incidence of patent ductus arteriosus (PDA) in premature infants. Design/Methods We used published guidelines for the meta-analysis of clinical trials. The search strategy included electronic searches of CINAHL, CENTRAL Cochrane Library, MEDLINE, PubMed, and abstracts presented at the Pediatric Academic Societies. Inclusion criteria were randomized controlled trials (RCTs), quasi-RCTs or cluster RCTs published in English and involving chest shielding during phototherapy in premature infants with PDA as an outcome. Exclusion criteria involved case reports, case series, and multiple publications from the same author. Heterogeneity testing using Q statistics was performed to evaluate the variance between studies. Results Two RCTs met study criteria. There was heterogeneity (I 2 : 55.4%) between the two trials. Meta-analysis of RCTs using the random effect model demonstrated that chest shielding during phototherapy was associated with decreased incidence of PDA (odds ratio: 0.47, 95% confidence interval: 0.23-0.96). There was no publication bias on Eggers test. Heterogeneity was seen in gestational age, gender, prophylactic use of postnatal indomethacin, duration of phototherapy, and assessment of PDA. Conclusion Chest shielding during phototherapy may be associated with decreased incidence of PDA among premature infants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
[The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].
Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao
2016-01-01
The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.
Hagen, Edward C.; Hudson, Charles L.
1995-01-01
A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).
Photoneutron radiation field of ducts in barrier of 15 MV medical electron accelerators
NASA Astrophysics Data System (ADS)
Deng, Lei; Zhou, Ning; Chen, Yi-shui; Tu, Yu
2017-11-01
Shielding body of the high-energy medical electron accelerators is always penetrated by ducts, which would influence the shielding capability of local barrier. In order to quantitatively analyze the duct's impact on shielding of the photoneutron from 15 MV accelerators, the ambient dose equivalent rate and energy spectrum at the center of a typical duct and the external mouth of duct were calculated based on MCNP program for the first time. The results demonstrate that leakage neutrons at the external mouth of duct are mainly thermal neutron, and its dose rate is decreased with the increase of the intersection angle between duct and wall as well as the reduction of duct diameter. When a duct in a diameter no more than 30 cm penetrates the wall unidirectionally and the inclined Angle (θ) is 60°, neutron dose rate at the external mouth of duct could meet the requirements of protection. At last, according to the calculation results, some suggestions are proposed for the shielding design of ducts in walls.
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender
2017-01-01
Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).
Human exposure in low Earth orbit
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F.
1984-01-01
Human exposure to trapped electrons and protons in low Earth orbit (LEO) is evaluated on a basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. Detailed shielding studies should be performed before final design considerations. A sample impact assessment is discussed on the basis of presently accepted allowable exposure limits. A brief discussion is given on the anticipated impact of an ongoing reassessment of allowable exposure limits.
Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material
NASA Astrophysics Data System (ADS)
Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.
2016-12-01
Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.
Detection of shielded nuclear material in a cargo container
NASA Astrophysics Data System (ADS)
Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.
2006-06-01
The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.
Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang W., E-mail: lxwluck@gmail.co; Devaraju, M.K.; Yin, Shu
2010-07-15
Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidationmore » catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.« less
Cotton-Mouton effect and shielding polarizabilities of ethylene: An MCSCF study
NASA Astrophysics Data System (ADS)
Coriani, Sonia; Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve
1997-03-01
The static hypermagnetizabilities and nuclear shielding polarizabilities of the carbon and hydrogen atoms of ethylene have been computed using multiconfigurational linear-response theory and a finite-field method, in a mixed analytical-numerical approach. Extended sets of magnetic-field-dependent basis functions have been employed in large MCSCF calculations, involving active spaces giving rise to a few million configurations in the finite-field perturbed symmetry. The convergence of the observables with respect to the extension of the basis set as well as the effect of electron correlation have been investigated. Whereas for the shielding polarizabilities we can compare with other published SCF results, the ab initio estimates for the static hypermagnetizabilities and the observable to which they are related - the Cotton-Mouton constant, - are presented for the first time.
NASA Astrophysics Data System (ADS)
Prabakaran, T.; Prabhakar, M.; Sathiya, P.
This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.
Space ultra-vacuum facility and method of operation
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Inventor)
1988-01-01
A wake shield space processing facility (10) for maintaining ultra-high levels of vacuum is described. The wake shield (12) is a truncated hemispherical section having a convex side (14) and a concave side (24). Material samples (68) to be processed are located on the convex side of the shield, which faces in the wake direction in operation in orbit. Necessary processing fixtures (20) and (22) are also located on the convex side. Support equipment including power supplies (40, 42), CMG package (46) and electronic control package (44) are located on the convex side (24) of the shield facing the ram direction. Prior to operation in orbit the wake shield is oriented in reverse with the convex side facing the ram direction to provide cleaning by exposure to ambient atomic oxygen. The shield is then baked-out by being pointed directed at the sun to obtain heating for a suitable period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P.F.; Heyen, K.K.; McCormack, R.G.
1987-10-01
Because of developments in electronics technology, the need for electromagnetic shielding has increased. To reduce the cost of this shielding, new materials are needed. The U.S. Army Corps of Engineers, Fort Worth District (FWD), and the U.S. Army Construction Engineering Research Laboratory (USA-CERL) have developed composite materials that use standard, construction-grade, aluminum foil-backed gypsum board in combination with either a metal mesh or lead foil. Special seams for these composites were designed by U.S. Gypsum Company. USA-CERL evaluated the adequacy of each material and seam design by using radio-frequency antennas and receivers to measure its shielding effectiveness when mounted inmore » the wall of a shielded room. These evaluations showed that the composite panels met the specified requirement of 60 decibels (dB) of shielding. The composites were also shown to be adequate for most communications security applications. However, the addition of a seam decreased shielding by as much as 10 dB.« less
NASA Astrophysics Data System (ADS)
Arun prakash, V. R.; Rajadurai, A.
2016-10-01
In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.
Space radiation shielding studies for astronaut and electronic component risk assessment
NASA Astrophysics Data System (ADS)
Fuchs, Jordan; Gersey, Brad; Wilkins, Richard
The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.
Evaluation of Radiation Shielding Properties of the Polyvinyl Alcohol/Iron Oxide Polymer Composite
Srinivasan, K.; Samuel, E. James Jabaseelan
2017-01-01
Context: Lead is the conventional shielding material against gamma/X-rays. It has some limitations such as toxic, high density, nonflexibility, and also bremsstrahlung production during electron interaction. It may affect the accuracy of radiotherapy outcome. Aims: To theoretically analyze the radiation shielding properties of flexible polyvinyl alcohol/iron oxide polymer composite with five different concentrations of magnetite over the energy range of 15 KeV–20 MeV. Subjects and Methods: Radiological properties were calculated based on the published literature. Attenuation coefficients of pure elements are generated with the help of WinXCOM database. Results: Effective atomic numbers and electron density are increased with the concentration of magnetite. On the other hand, the number of electrons per gram decreased. Mass attenuation coefficient (μ/ϼ) and linear attenuation coefficients (μ) are higher in the lower energy <100 KeV, and their values decreased when the energy increased. Computed tomography numbers (CT) show the significant variation between the concentrations in <60 KeV. Half-value layer and tenth-value layers are directly proportional to the energy and indirectly proportional to the concentration of magnetite. Transmission curve, relaxation length (ƛ), kinetic energy released in the matter, and elemental weight fraction are also calculated and the results are discussed. Conclusions: 0.5% of the magnetite gives superior shielding properties compared with other concentrations. It may be due to the presence of 0.3617% of Fe. Elemental weight fraction, atomic number, photon energy, and mass densities are the important parameters to understand the shielding behavior of any material. PMID:29296043
Electron beam welding of copper-Monel facilitated by circular magnetic shields
NASA Technical Reports Server (NTRS)
Lamb, J. N.
1966-01-01
High permeability, soft magnetic rings are placed on both sides of electron beam weld seams in copper-Monel circular joint. This eliminates deflection of the electron beam caused by magnetic fields present in the weld area.
Xu, Yadong; Yang, Yaqi; Yan, Ding-Xiang; Duan, Hongji; Zhao, Guizhe; Liu, Yaqing
2018-06-06
Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe 3 O 4 ) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe 3 O 4 and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe 3 O 4 over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an "absorb-reflect-reabsorb" process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe 3 O 4 @rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE R ) is only 2.4 dB and the power coefficient of reflectivity ( R) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding.
Mitigation strategies against radiation-induced background for space astronomy missions
NASA Astrophysics Data System (ADS)
Davis, C. S. W.; Hall, D.; Keelan, J.; O'Farrell, J.; Leese, M.; Holland, A.
2018-01-01
The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission is a major upcoming space-based X-ray observatory due to be launched in 2028 by ESA, with the purpose of mapping the early universe and observing black holes. Background radiation is expected to constitute a large fraction of the total system noise in the Wide Field Imager (WFI) instrument on ATHENA, and designing an effective system to reduce the background radiation impacting the WFI will be crucial for maximising its sensitivity. Significant background sources are expected to include high energy protons, X-ray fluorescence lines, 'knock-on' electrons and Compton electrons. Due to the variety of the different background sources, multiple shielding methods may be required to achieve maximum sensitivity in the WFI. These techniques may also be of great interest for use in future space-based X-ray experiments. Simulations have been developed to model the effect of a graded-Z shield on the X-ray fluorescence background. In addition the effect of a 90nm optical blocking filter on the secondary electron background has been investigated and shown to modify the requirements of any secondary electron shielding that is to be used.
A new e-beam application in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Sadat, Theo; Malcolm, Fiona
2005-10-01
The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.
Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing
2017-08-01
Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim
2015-09-15
The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies.more » In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.« less
Electronically shielded solid state charged particle detector
Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.
Electronically shielded solid state charged particle detector
Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.
Effects of electrons and protons on science instruments
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The radiation effects on typical science instruments according to the Jupiter trapped radiation design restraint model are described, and specific aspects of the model where an improved understanding would be beneficial are suggested. The spacecraft design used is the TOPS 12L configuration. Ionization and displacement damage are considered, and damage criteria are placed on the most sensitive components. Possible protective measures are mentioned: selecting components as radiation resistant as possible, using a difference in desired and undesired signal shapes for electronic shielding, orienting and locating the component on the spacecraft for better shielding, and adding passive shields to protect specific components. Available options are listed in decreasing order of attractiveness: attempt to lower the design restraints without compromising the success of the missions, trade off experiment objectives for increased reliability, alter the trajectory, and remove sensitive instruments from the payload.
LPT. Shield test facility test building interior (TAN646). Camera points ...
LPT. Shield test facility test building interior (TAN-646). Camera points down into interior of north pool. Equipment on wall is electronical bus used for post-1970 experiment. Personnel ladder at right. INEEL negative no. HD-40-9-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demissie, Taye B., E-mail: taye.b.demissie@uit.no; Komorovsky, Stanislav; Repisky, Michal
2015-10-28
We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results formore » the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.« less
NASA Astrophysics Data System (ADS)
Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar
2018-05-01
This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.
Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, P; Schwegler, E; Galli, G
2008-11-14
We study the proton nuclear magnetic resonance ({sup 1}H-NMR) of a model system consisting of liquid water in infinite carbon nanotubes (CNT). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory (DFT) with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water confined in (14,0) and (19,0) CNTs with diameters d = 11 {angstrom} and 14.9 {angstrom}, respectively. We find that confinement within the CNT leads to a large ({approx} -23 ppm) upfield shift relative tomore » bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.« less
NASA Astrophysics Data System (ADS)
Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren
2012-07-01
In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially useful structural strength. I n addition, Martian regolith, while not as efficient as polyethylene at reducing proton energy as a function of shield thickness, compares well with polyethylene at shielding the 200 MeV protons. These preliminary results indicate that native Martian regolith has promising properties as a habitat material for future human missions. Future work studying the shielding effectiveness and radiation tolerance will also be discussed.
NASA Astrophysics Data System (ADS)
Obaid, Shamsan S.; Sayyed, M. I.; Gaikwad, D. K.; Pawar, Pravina. P.
2018-07-01
In the present work, the mass attenuation coefficient μ/ρ is investigated experimentally and theoretically for seven rocks (olivine basalt, green marble, jet black granite, telphone black granite, cuddapah limestone, white marble and pink marble). The rock samples were collected from different places of India. The mass attenuation coefficients of the samples were measured experimentally at photon energies of radioisotopes Co57 (122 keV), Ba133 (356 keV), 22Na (511 and 1275 keV), Cs137 (662 keV), Mn54 (840 keV), and Co60 (1330 keV). Theoretically, the simulation results of μ/ρ using both XCOM and MCNP5 codes were compared with experimental results and a satisfactory agreement was observed. Total atomic cross sections (σt,a) electronic cross sections (σt,e), effective atomic number (Zeff), electron density (Ne) and half value layer (HVL) were evaluated using the obtained μ/ρ values for investigated rocks. The HVL values for the selected rocks were compared with some common shielding concretes. Moreover, by Geometric Progression method (G-P) exposure buildup factor (EBF) and energy absorption buildup factor (EABF) values were calculated for incident photon energy 0.015-15 MeV up to penetration depths of 40 mean free paths. The results show that among the studied rocks pink marble possesses superior shielding properties for γ-ray. This work was carried out to explore the advantage of utilizing the selected rocks in engineering structures and building construction to shield gamma-rays.
Sprayed shielding of plastic-encapsulated electronic modules
NASA Technical Reports Server (NTRS)
Muller, A. N.
1969-01-01
Metallic coating directly sprayed on electronic modules provides simple and reliable lightweight protection against radio frequency interference. A plasma arc may be used. Aluminum and copper are the most effective metals.
Detection of Shielded Nuclear Material in a Cargo Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Jones; D. R. Norman; K. J. Haskell
The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presentedmore » for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved« less
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-05-01
The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.
Electronic Warfare Test and Evaluation (Essai et evaluation en matiere de guerre electronique)
2012-12-01
Largest known chamber is 80 x 76 x 21 m. Shielding and quiet zones Usually ≥100 dB over at least 0.5 – 18 GHz. TEMPEST grade. Quiet zones: one or...accommodated as an afterthought. The highest level of RF/EO/IR/UV security control is offered by TEMPEST -grade aircraft-sized anechoic chambers. 6.9.7 SUT...aircraft-sized, RF- and laser-shielded anechoic chamber, shielded rooms, and an EW Sub-System Test Laboratory, all TEMPEST grade. It is co-located with the
Gulati, Neetu M; Pitek, Andrzej S; Steinmetz, Nicole F; Stewart, Phoebe L
2017-03-09
Nanoparticles offer great potential in drug delivery and imaging, but shielding strategies are necessary to increase circulation time and performance. Structure-function studies are required to define the design rules to achieve effective shielding. With several formulations reaching clinical testing and approval, the ability to assess and detail nanoparticle formulations at the single particle level is becoming increasingly important. To address this need, we use cryo-electron tomography (cryo-ET) to investigate stealth-coated nanoparticles. As a model system, we studied the soft matter nanotubes formed by tobacco mosaic virus (TMV) coated with human serum albumin (SA) stealth proteins. Cryo-ET and subtomogram averaging allow for visualization of individual SA molecules and determination of their orientations relative to the TMV surface, and also for measurement of the surface coverage provided by added stealth proteins. This information fills a critical gap in the understanding of the structural morphology of stealth-coated nanoparticles, and therefore cryo-ET may play an important role in guiding the development of future nanoparticle-based therapeutics.
Radiation Shielding Study of Advanced Data and Power Management Systems (ADPMS) Housing Using Geant4
NASA Astrophysics Data System (ADS)
Garcia, F.; Kurvinen, K.; Brander, T.; Orava, R.; Heino, J.; Virtanen, A.; Kettunen, H.; Tenhunen, M.
2008-02-01
A design goal for current space system is to reduce the mass used to enclose components of the spacecraft. One potential target is to reduce the mass of electronics and its housings. The use of composite materials, especially CFRP (Carbon Fiber Reinforced Plastic) is a well known and vastly used approach to mass reduction. A design goal, cost reduction, has increased the use of commercial (non-space qualified) electronics. These commercial circuits and other components cannot tolerate as high radiation levels as space qualified components. Therefore, the use of standard electronics components poses a challenge in terms of the radiation protection capability of the ADPMS housings. The main goal of this study is to provide insight on the radiation shielding protection produced by different configurations of CFRP tungsten laminates of epoxies and cyanate esters and then to compare them to the protection given by the commonly used aluminum. For a spacecraft operating in LEO and MEO orbits the main components of the space radiation environment are energetic electrons and protons, therefore in our study we will compare the experimental and simulation results of the radiation attenuation of different types of laminates for those particles. At the same time the experimental data has been used to validate the Geant4 model of the laminates, which can be used for future optimizations of the laminate structures.
Gamma ray shielding properties of PbO-Li2O-B2O3 glasses
NASA Astrophysics Data System (ADS)
Kumar, Ashok
2017-07-01
The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li2O-0.40 B2O3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb3B4O9 has been found to be the most effective shield.
Noise propagation issues in Belle II pixel detector power cable
NASA Astrophysics Data System (ADS)
Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.
2018-04-01
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.
2009-01-01
Hybrid closed bore x-ray∕MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (≈1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789
Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A
2009-05-01
Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.
Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher
2016-01-01
Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects. According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, R.; Srivastava, S.K., E-mail: sunit@chem.iitkgp.ernet.in
Graphical abstract: Probable scheme to demonstrate the mechanism of PnHMAg showing enhanced EMI shielding compared to PnHM. - Highlights: • Hollow polyaniline microsphere (PnHM) exhibits superior properties due to its enhanced surface to volume ratio. • PnHMAg has been used in developing efficient sensor for the detection of sugar. • Presence of Ag nanoparticles enhances the electrical conductivity of PnHMAg resulting in the improvement of electromagnetic interference shielding in both X- and S-band regions. • Such properties could be harnessed effectively for development of devices for commercial as well as national purposes. - Abstract: The present study is focused onmore » synthesis of polyaniline hollow microspheres (PnHM) nanocomposites of silver (Ag) i.e., PnHMAg by emulsion polymerization of aniline and Tollen’s reagent as a source for Ag nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of PnHMAg indicated presence of silver nanoparticles dispersed on polyaniline surface. The electrical conductivity of PnHMAg is increased by ∼6 times compared to PnHM. Cyclic voltammogram of PnHM in sugar sensing exhibits characteristics redox peaks at ∼0.09 (sugar) and ∼0.53 V (polyaniline). Interestingly, PnHMAg showed a single peak at ∼−0.18 V with increased intensity (∼5 times) indicating its high sugar sensing ability. PnHMAg also exhibits high shielding efficiency of 19.5 dB (11.2 GHz) due to the presence of highly conducting Ag nanoparticles. TEM studies confirmed that Ag nanoparticles are well distributed on PnHM. As a result, a continuous electronic path is developed due to enhanced interconnectivity of PnHM.« less
Gamma ray shielding characteristic of BiZnBo-SLS and PbZnBo-SLS glass
NASA Astrophysics Data System (ADS)
Syuhada Ahmad, Nor; Shahrim Mustafa, Iskandar; Mansor, Ishak; Malik, Muhammad Fadhirul Izwan bin Abdul; Ain Nabilah Razali, Nur; Nordin, Sufiniza
2018-05-01
The radiation shielding and optical properties of x [RmOn] (0.5‑x) [ZnO] 0.2 [B2O3] 0.3 [SLS], where RmOn are Bi2O3 and PbO with x = 0.05, 0.10, 0.20, 0.30, 0.40, and 0.45 have been prepared by using the melt-quenching method at 1200 °C and was investigated on their physical, structural and gamma ray shielding properties. Field-emission scanning electron microscope (FESEM) data revealed that the particle morphologies is aggregated and irregular in shapes and size. Energy dispersive x-ray spectroscopy (EDS) elemental mapping data confirmed that all mentioned element all present on the prepared glass. Soda Lime Silica (SLS) that is mainly composed of SiO2 has been utilized in this study as the source of SiO2 for fabrication of glass system. From the result, the density and molar volume of both glass samples increased as Bi2O3 and PbO content increased. The gamma ray shielding properties, such as linear attenuation and mass attenuation coefficient, were increased while half value layer (HVL) and mean free path (MFP) were decreased as the increased in Bi2O3 and PbO concentrations. It is recognized that the mass attenuation coefficient value of Bi2O3 and PbO glass are slightly different. From this study, it can be concluded that from the non-toxicity and shielding point of view, the bismuth glass is a good shield to gamma radiation as compared to lead glass.
Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin
2016-01-01
Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578
Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2016-07-05
(29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Plasma ignition and steady state simulations of the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.
2014-02-01
The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.
A magnetic field cloak for charged particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.
Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less
A magnetic field cloak for charged particle beams
Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; ...
2017-10-02
Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less
Electron-proton spectrometer design summary
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) will be placed aboard the Skylab in order to provide data from which electron and proton radiation dose can be determined. The EPS has five sensors, each consisting of a shielded silicon detector. These provide four integral electron channels and five integral proton channels from which can be deduced four differential proton increments.
Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin
2018-05-30
Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Imai, T.; Kobayashi, N.
2005-01-15
The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less
Numerical analysis of magnetic field in superconducting magnetic energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanamaru, Y.; Amemiya, Y.
1991-09-01
This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES formore » reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.« less
Shielded helix traveling wave cathode ray tube deflection structure
Norris, Neil J.; Hudson, Charles L.
1992-01-01
Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.
NASA Astrophysics Data System (ADS)
Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi
2016-11-01
Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... Declaration and Signature for Electronic and Magnetic Made Filing; Form 8453-FE, U.S. Estate or Trust... information or copies of the form and instructions should be directed to Gerald J. Shields, Internal Revenue....Shields@irs.gov . SUPPLEMENTARY INFORMATION: Title: Employment Tax Declaration for an IRS e-file Return...
Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.
Ki, Dae-Han; Jung, Young-Dae
2013-04-21
The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.
Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator
NASA Astrophysics Data System (ADS)
Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin
2017-09-01
The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case
aperture size exists, where the SE has its minimum.
SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research
NASA Astrophysics Data System (ADS)
Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.
2014-03-01
Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.
Shielding analysis of the Microtron MT-25 bunker using the MCNP-4C code and NCRP Report 51.
Casanova, A O; López, N; Gelen, A; Guevara, M V Manso; Díaz, O; Cimino, L; D'Alessandro, K; Melo, J C
2004-01-01
A cyclic electron accelerator Microtron MT-25 will be installed in Havana, Cuba. Electrons, neutrons and gamma radiation up to 25 MeV can be produced in the MT-25. A detailed shielding analysis for the bunker is carried out using two ways: the NCRP-51 Report and the Monte Carlo Method (MCNP-4C Code). The walls and ceiling thicknesses are estimated with dose constraints of 0.5 and 20 mSv y(-1), respectively, and an area occupancy factor of 1/16. Both results are compared and a preliminary bunker design is shown. Copyright 2004 Oxford University Press
Shielding calculations for the National Synchrotron Light Source-II experimental beamlines
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2013-01-01
Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Ingham Institute, Liverpool, Aus
Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0Tmore » MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.« less
Shielded helix traveling wave cathode ray tube deflection structure
Norris, N.J.; Hudson, C.L.
1992-12-15
Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.
Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles
NASA Technical Reports Server (NTRS)
Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas;
2009-01-01
A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Yazgan, Çağrı
2017-09-01
Purpose. Nearly all Cobalt-60 teletherapy machines were removed around the world during the last two decades. The remaining ones are being used for experimental purposes. However, the rooms of these teletherapy machines are valuable because of lack of space in radiotherapy clinics. In order to place a new technology treatment machine in one of these rooms, one should re-shield the room since it was designed only for 1.25 MeV gamma beams on average. Mostly, the vendor of the new machine constructs the new shielding of the room using their experience. However, every radiotherapy room has different surrounding work areas and it would be wise to shield the room considering these special conditions. Also, the shield design goal of the clinic may be much lower than the International Atomic Energy Agency (IAEA) or the local association accepts. The study shows re-shielding of a Cobalt-60 room, specific to the clinic, using Monte Carlo simulations. Materials & Methods: First, a 6 MV Tomotherapy machine, then a 10 MV conventional linear accelerator (LINAC) was placed inside the Cobalt-60 teletherapy room. The photon flux outside the room was simulated using Monte Carlo N-Particle (MCNP6.1) code before and after re-shielding. For the Tomotherapy simulation, flux distributions around the machine were obtained from the vendor and implemented as the source of the model. The LINAC model was more generic with the 10 MeV electron source, the tungsten target, first and secondary collimators. The aim of the model was to obtain the maximum (40x40 cm2) open field at the isocenter. Two different simulations were carried out for gantry angles 90o and 270o. The LINAC was placed in the room such that the primary walls were A' (Gantry 270o) and C' (Gantry 90o) (figure 1). The second part of the study was to model the re-shielding of the room for Tomotherapy and for the conventional LINAC, separately. The aim was to investigate the recommended shielding by the vendors. Left side of the room was adjacent to a LINAC room with 2 meters thick concrete wall (figure 1). No shielding was necessary for that wall. Behind wall A-A' there was an outdoors forbidden area; behind wall B-B' was the contouring room for the doctors; and the control room was behind wall C-C' (figure 1). After some modifications, the final shielding was designed. Results: The photon flux distributions outside the room before and after the re-shielding were compared. The re-shielding of Tomotherapy reduced the flux down to 1.89 % on average with respect to pre-shielding (table 1). For the conventional LINAC case; after re-shielding, the photon flux in the control room -which corresponds to gantry 90°- decreased down to 0.57% with respect to pre-shielding (table 2). The photon flux behind wall A' -which corresponds to gantry 270°- decreased down to 2.46%. Everybody was all safe behind wall B' even before re-shielding.
NASA Technical Reports Server (NTRS)
Reagan, J. B.; Imhof, W. L.; Gaines, E. E.
1977-01-01
The energetic electron environment at the geosynchronous orbit is responsible for a variety of adverse charging effects on spacecraft components. The most serious of these is the degradation and failure of a complementary-metal-oxide-semiconductor (CMOS) electronic components as a result of internal charge-buildup induced by the energetic electrons. Efforts to accurately determine the expected lifetime of these components in this orbit are hampered by the lack of detailed knowledge of the electron spectrum and intensity, particularly of the more penetrating energies greater than 1.5 MeV. This problem is illustrated through the calculation of the dose received by a CMOS device from the energetic electrons and associated bremsstrahlung as a function of aluminum shielding thickness using the NASA AE-6 and the Aerospace measured electron environments. Two computational codes which were found to be in good agreement were used to perform the calculations. For a given shielding thickness the dose received with the two radiation environments differ by as much as a factor of seven with a corresponding variation in lifetime of the CMOS.
Electronic structure and static dipole polarizability of C60@C240
NASA Astrophysics Data System (ADS)
Zope, Rajendra R.
2008-04-01
The electronic structure of C60@C240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C240 shell almost completely shields the inner C60 as inferred from the practically identical values of dipole polarizability of the C60@C240 onion (449 Å3) and that of the isolated C240 fullerene (441 Å3). The C60@C240 is thus a near-perfect Faraday cage.
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic
2017-10-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan
Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs andmore » Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.« less
Beam line shielding calculations for an Electron Accelerator Mo-99 production facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal
2016-05-03
The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less
NASA Technical Reports Server (NTRS)
Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)
2014-01-01
Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.
Papadopoulos, A G; Charistos, N D; Muñoz-Castro, A
2017-06-20
The induced shielding cone is one of the most characteristic aspects of aromatic species. Herein, we explore its behavior under different orientations of the applied magnetic field by evaluating the overall and dissected π- and σ-electron contributions. Our results shed light onto the orientation dependence behavior of the shielding cone, unraveling a characteristic pattern upon rotation of the aromatic ring. This pattern decreases the long range of the magnetic response, such that it resembles the behavior under constant molecular tumbling in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Charge-Dissipative Electrical Cables
NASA Technical Reports Server (NTRS)
Kolasinski, John R.; Wollack, Edward J.
2004-01-01
Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.
Noise propagation issues in Belle II pixel detector power cable
Iglesias, M.; Arteche, F.; Echeverria, I.; ...
2018-04-26
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation issues in Belle II pixel detector power cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, M.; Arteche, F.; Echeverria, I.
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Shielded transient self-interaction of a bunch entering a circle from a straight path
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R.; Bohn, C.L.; Bisognano, J.J.
1997-08-01
Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straightmore » path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.« less
Curing Composite Materials Using Lower-Energy Electron Beams
NASA Technical Reports Server (NTRS)
Byrne, Catherine A.; Bykanov, Alexander
2004-01-01
In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately equal to 41 cm) thick, without a ceiling. The success of the present method depends on the use of a cationic epoxy as the matrix material in the prepreg tape, heating the prepreg tape to a temperature of 50 C immediately prior to layup, and exposing the workpiece to an electron-beam dose of approximately 2 Mrad. Experiments have shown that structures fabricated by the present method have the same mechanical properties as those of nominally identical structures fabricated by the prior method with electron beams of 3 to 4 MeV.
A computational NMR study on zigzag aluminum nitride nanotubes
NASA Astrophysics Data System (ADS)
Bodaghi, Ali; Mirzaei, Mahmoud; Seif, Ahmad; Giahi, Masoud
2008-12-01
A computational nuclear magnetic resonance (NMR) study is performed to investigate the electronic structure properties of the single-walled zigzag aluminum nitride nanotubes (AlNNTs). The chemical-shielding (CS) tensors are calculated at the sites of Al-27 and N-15 nuclei in three structural forms of AlNNT including H-saturated, Al-terminated, and N-terminated ones. The structural forms are firstly optimized and then the calculated CS tensors in the optimized structures are converted to chemical-shielding isotropic (CSI) and chemical-shielding anisotropic (CSA) parameters. The calculated parameters reveal that various Al-27 and N-15 nuclei are divided into some layers with equivalent electrostatic properties; furthermore, Al and N can act as Lewis base and acid, respectively. In the Al-terminated and N-terminated forms of AlNNT, in which one mouth of the nanotube is terminated by aluminum and nitrogen nuclei, respectively, just the CS tensors of the nearest nuclei to the mouth of the nanotube are significantly changed due to removal of saturating hydrogen atoms. Density functional theory (DFT) calculations are performed using GAUSSIAN 98 package of program.
Evaluating activation of the shielding walls of a treatment room using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Lee, D.-Y.; Kim, J.-H.
2018-05-01
This study investigates the radiation activation process in a medical linear accelerator, which creates a photon beam with the energy acquired from accelerated electrons. The concrete shielding walls used in conjunction with a medical linear accelerator occupy the largest portion of facility decommissioning costs. Therefore, to evaluate the activation of the shielding wall, this study simulated the operation of a linear accelerator with high-energy photon beams (10, 15, and 20 MV). The results of the simulations showed that the high-energy photon beams produced a large number of neutrons in the areas around the linear accelerator head. Several radionuclides were identified, and their half-lives and radioactivity levels were calculated. Half-lives ranged from 2.62 hours to 3.68E+06 years, and the radioactivity levels of most of the radionuclides were found to satisfy their respective clearance requirements. These results indicate that photon beams of 15 MV or lower satisfy the clearance requirements for decommissioning a linear accelerator facility, whereas those of 20 MV or higher lie partially above the regulatory clearance levels.
Oppenheimer, F.F.
1959-06-01
A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)
Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha
2004-09-22
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.
Cukras, Janusz; Sadlej, Joanna
2011-09-14
We employ state-of-the-art methods and basis sets to study the effect of inserting the Xe atom into the water molecule and the water dimer on their NMR parameters. Our aim is to obtain predictions for the future experimental investigation of novel xenon complexes by NMR spectroscopy. Properties such as molecular structure and energetics have been studied by supermolecular approaches using HF, MP2, CCSD, CCSD(T) and MP4 methods. The bonding in HXeOH···H(2)O complexes has been analyzed by Symmetry-Adapted Perturbation Theory to provide the intricate insight into the nature of the interaction. We focus on vibrational spectra, NMR shielding and spin-spin coupling constants-experimental signals that reflect the electronic structures of the compounds. The parameters have been calculated at electron-correlated and Dirac-Hartree-Fock relativistic levels. This study has elucidated that the insertion of the Xe atom greatly modifies the NMR properties, including both the electron correlation and relativistic effects, the (129)Xe shielding constants decrease in HXeOH and HXeOH···H(2)O in comparison to Xe atom; the (17)O, as a neighbour of Xe, is deshielded too. The HXeOH···H(2)O complex in its most stable form is stabilized mainly by induction and dispersion energies. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faddegon, B.A.; Villarreal-Barajas, J.E.; Mt. Diablo Regional Cancer Center, 2450 East Street, Concord, California
2005-11-15
The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for amore » particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm{sup 2} inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm{sup 3} voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum of 5.6% at 21 MeV. Contributions from the collimator effect were largest for the large field size, high beam energy, and shallow depths, reaching a maximum of 4.7% at 21 MeV. Both shielding contributions and the collimator effect need to be taken into account to achieve an accuracy of 2%. FAST takes explicit account of the shielding contributions. With the collimator effect set to that of the largest field in the FAST calculation, the difference in dose on the central axis (product of ROF and PDD) between FAST and full simulation was generally under 2%. The maximum difference of 2.5% exceeded the statistical precision of the calculation by four standard deviations. This occurred at 18 MeV for the 2.5x2.5 cm{sup 2} field. The differences are due to the method used to account for the collimator effect.« less
Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K
2015-02-05
The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Exploring the Feasibility of Electrostatic Shielding for Spacecrafts
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.
Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.
Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming
2018-04-11
Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.
Magnetic properties and core electron binding energies of liquid water
NASA Astrophysics Data System (ADS)
Galamba, N.; Cabral, Benedito J. C.
2018-01-01
The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.
NASA Astrophysics Data System (ADS)
Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.
2013-02-01
A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.
Production of medical radioactive isotopes using KIPT electron driven subcritical facility.
Talamo, Alberto; Gohar, Yousry
2008-05-01
Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.
Konishi, Yuki; Hayashi, Hiroaki; Takegami, Kazuki; Fukuda, Ikuma; Ueno, Junji
2014-01-01
A cloud chamber is a detector that can visualize the tracks of charged particles. Hayashi, et al. suggested a visualization experiment in which X-rays generated by diagnostic X-ray equipment were directed into a cloud chamber; however, there was a problem in that the wall of the cloud chamber scattered the incoming X-rays. In this study, we developed a new cloud chamber with entrance windows. Because these windows are made of thin film, we were able to direct the X-rays through them without contamination by scattered X-rays from the cloud chamber wall. We have newly proposed an experiment in which beta-particles emitted from radioisotopes are directed into a cloud chamber. We place shielding material in the cloud chamber and visualize the various shielding effects seen with the material positioned in different ways. During the experiment, electrons scattered in the air were measured quantitatively using GM counters. We explained the physical phenomena in the cloud chamber using Monte Carlo simulation code EGS5. Because electrons follow a tortuous path in air, the shielding material must be placed appropriately to be able to effectively block their emissions. Visualization of the tracks of charged particles in this experiment proved effective for instructing not only trainee radiological technologists but also different types of healthcare professionals.
Benchmark solution for the Spencer-Lewis equation of electron transport theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapol, B.D.
As integrated circuits become smaller, the shielding of these sensitive components against penetrating electrons becomes extremely critical. Monte Carlo methods have traditionally been the method of choice in shielding evaluations primarily because they can incorporate a wide variety of relevant physical processes. Recently, however, as a result of a more accurate numerical representation of the highly forward peaked scattering process, S/sub n/ methods for one-dimensional problems have been shown to be at least as cost-effective in comparison with Monte Carlo methods. With the development of these deterministic methods for electron transport, a need has arisen to assess the accuracy ofmore » proposed numerical algorithms and to ensure their proper coding. It is the purpose of this presentation to develop a benchmark to the Spencer-Lewis equation describing the transport of energetic electrons in solids. The solution will take advantage of the correspondence between the Spencer-Lewis equation and the transport equation describing one-group time-dependent neutron transport.« less
NMR Shielding in Metals Using the Augmented Plane Wave Method
2015-01-01
We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148
Space radiation hazards to Project Skylab photographic film, phase 2
NASA Technical Reports Server (NTRS)
Hill, C. W.; Neville, C. F.
1971-01-01
The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.
Shielding synchrotron light sources: Advantages of circular shield walls tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less
Shielding synchrotron light sources: Advantages of circular shield walls tunnels
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.
2016-04-26
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less
Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft
NASA Astrophysics Data System (ADS)
Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi
2017-12-01
In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.
High-energy photon interrogation for nonproliferation applications
NASA Astrophysics Data System (ADS)
Jones, J. L.; Blackburn, B. W.; Watson, S. M.; Norman, D. R.; Hunt, A. W.
2007-08-01
There is an immediate need for technologies that can successfully address homeland security challenges related to the inspection of commercial rail, air and maritime-cargo container inspections for nuclear and radiological devices. The pulsed photonuclear assessment (PPA) technology, developed through collaboration between Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL) and the Idaho Accelerator Center (IAC) has demonstrated the ability to detect shielded/unshielded nuclear material primarily through the analysis of delayed neutrons and gamma-rays produced via photonuclear reactions. Because of current food irradiation limitations, however, most active photon (i.e. bremsstrahlung) interrogation studies have been performed with electron beam energies at or below 10 MeV. While this energy limit currently applies to cargo inspections, the World Health Organization has indicated that higher energy electron beam operations could be considered for future operations. Clinical applications using photon energies well in excess of 10 MeV are already well established. Notwithstanding the current limitation of 10 MeV, there is a definite advantage in using higher photon energies for cargo inspections. At higher energies, several phenomena contribute to increased sensitivity in regards to detecting shielded nuclear material. Two of the most important are: (1) increased ability for source photons to penetrate shielding; and (2) enhanced signature production via increased (γ,n) and (γ,f) cross-sections in materials such as 235U and 239Pu directly leading to faster inspection throughput. Experimental assessments have been conducted for various electron beam energies from 8 to 25 MeV. Increases of up to three orders of magnitude in delayed signatures have been measured over these energy ranges. Through the continued investigation into PPA-based inspection applications using photon energies greater than 10 MeV, higher detection sensitivities with potentially lower delivered dose to cargo and increased throughput may be realized.
SU-E-J-200: Operation of An Electron Accelerator On An Integrated MR-Linac System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harasimowicz, J; Roberts, D; Shinton, I
2015-06-15
Purpose: An integrated MRI guided radiotherapy system poses a challenge of operating a linear accelerator in the presence of a magnetic field as the magnetic force acting on the electrons could Result in radiation source displacement and subsequent reduction of dose output. It was the purpose of this work to test the performance of a linac in the presence of a 1.5T MRI system. Methods: The first experimental MRI guided radiotherapy system at UMC-Utrecht consisting of an Elekta linac rotating around a 1.5T Magnex magnet was examined. A passive magnetic shield was simulated, designed and installed to reduce the influencemore » of the MRI magnet stray field on the electron beamline. The B field inside the shield was measured as a function of gantry angle and measurements of dose rate constancy upon gantry rotation were performed. Results: The magnitude of the magnetic field on the electron beam path without the shield was as high as 70G. It varied by up to 15G with gantry rotation due to the presence of metal beams in the bunker floor which resulted in dose output drop of up to 70% at certain gantry angles. With the prototype shield, field magnitude was reduced to well below 0.5G everywhere along the electron beam path. Field variation with gantry rotation was decreased to below 0.2G and enabled dose output of the linac to be recovered at all gantry angles. The homogeneity of the field inside the MRI magnet has not been compromised. Conclusion: It was demonstrated that the influence of the 1.5T magnet and the bunker design on the linac operation has been minimised. The performance will be further improved on the Elekta Atlantic system which incorporates a newly developed and optimised Philips magnet design and bunker construction. J Harasimowicz, D Roberts, I Shinton and S Sund are employed by Elekta Limited Crawley, H Wang and M Zhong are employed by Elekta Beijing Medical Systems Co. Ltd., J Overweg is employed by Philips Technologie GmbH Forschungslaboratorien.« less
Effective electromagnetic interference shielding for electronic equipment.
Sheedy, Billy
2003-11-01
With the development of tough, durable compounds, plastics are the preferred material for electronic equipment housings. The availability of economical, effective coating materials that can give plastics some of the desirable properties lost in the switch from metals are helping to allow the design of reliable medical equipment.
Mushrooming vulnerability to EMP
NASA Astrophysics Data System (ADS)
Lerner, E. J.
1984-08-01
The electromagnetic pulse (EMP) generated by a single thermonuclear bomb detonated above the continental U.S. could set up electrical fields of 50 kV/m over nearly all of North America. Since the progressively microminiaturized integrated circuits of current military and civilian electronics become more vulnerable with decreasing circuit element size, even shield-protected chips can now be destroyed by the substantially shield-dampened EMP pulses. It is noted as a source of special concern that, as nuclear weapons have evolved, the EMP characteristically generated by them has shifted to increasingly shorter wavelengths, requiring significant redesign of EMP shields devised a decade or more ago. The surge arresters currently employed may not react sufficiently rapidly for existing weapons.
Remanent Activation in the Mini-SHINE Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micklich, Bradley J.
2015-04-16
Argonne National Laboratory is assisting SHINE Medical Technologies in developing a domestic source of the medical isotope 99Mo through the fission of low-enrichment uranium in a uranyl sulfate solution. In Phase 2 of these experiments, electrons from a linear accelerator create neutrons by interacting in a depleted uranium target, and these neutrons are used to irradiate the solution. The resulting neutron and photon radiation activates the target, the solution vessels, and a shielded cell that surrounds the experimental apparatus. When the experimental campaign is complete, the target must be removed into a shielding cask, and the experimental components must bemore » disassembled. The radiation transport code MCNPX and the transmutation code CINDER were used to calculate the radionuclide inventories of the solution, the target assembly, and the shielded cell, and to determine the dose rates and shielding requirements for selected removal scenarios for the target assembly and the solution vessels.« less
A Radiation Shielding Code for Spacecraft and Its Validation
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.
2000-01-01
The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.
Application of Cryocoolers to a Vintage Dilution Refrigerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Richard; Smith, Gary; Ruschman, Mark
2011-06-06
A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiersmore » using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.« less
Choosing a therapy electron accelerator target.
Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K
1979-01-01
Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.
Observations by Juno's Radiation Monitoring Investigation During the First Year at Jupiter
NASA Astrophysics Data System (ADS)
Becker, H. N.; Adumitroaie, V.; Alexander, J. W.; Daubar, I.; Joergensen, J. L.; Denver, T.; Benn, M.; Adriani, A.; Mura, A.; Cicchetti, A.; Noschese, R.; Connerney, J. E. P.; Gladstone, R.; Hue, V.; Versteeg, M.; Santos-Costa, D.; Bolton, S. J.; Levin, S.; Thorne, R. M.
2017-12-01
Juno's Radiation Monitoring (RM) Investigation measures MeV electron fluxes at Jupiter by utilizing the noise signatures of penetrating high-energy particles which are visible in images collected by Juno's heavily shielded star cameras and science instruments. Image processing is used to identify and extract the characteristic signatures of penetrating high-energy electrons and ions and derive count rates which are used to infer external integral electron flux levels [Becker, H.N., et al. (2017), Space Sci Rev, doi: 10.1007/s11214-017-0345-9; Becker H.N. et al. (2017), Geophys. Res. Lett., 44, doi:10.1002/2017GL073091]. The count rate data from each RM instrument represents detection of electrons from within a broad energy channel (e.g. > 5 MeV or > 10 MeV electron sensitivity, determined using Geant4 shielding analysis). Simultaneous observations by the instruments therefore allow study of the external spectra where coordinated measurements are achieved. The spacecraft Stellar Reference Unit (SRU), the Magnetic Field Investigation's Advanced Stellar Compass (ASC) camera head D, and the Jovian Infrared Auroral Mapper (JIRAM) infrared imager are the primary instruments used in RM's collaborative observation campaigns. Penetrating particle signatures and trends across a broader range of Juno instruments and spacecraft housekeeping data also contribute to the analysis. This paper presents an overview of RM measurements of the Jovian high energy particle environment observed during the first eight science orbits of Juno's prime mission.
Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code
NASA Astrophysics Data System (ADS)
Peri, Eyal; Orion, Itzhak
2017-09-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.
Preliminary results of radiation measurements on EURECA
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.
1995-01-01
The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
Steel, Jared; Stewart, Allan; Satory, Philip
2009-09-01
Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased the penumbra width (defined as the lateral distance of the 80% and 20% isodose contours) by 8-10 mm at the depths of 10-20 mm. Mean photon beam penumbra width increased with increased MLC stepping, and the mean MLC penumbra was approximately 1.5 times greater than that across the corresponding Cerrobend shielding. Intraleaf dose discrepancy in the direction orthogonal to the beam edge also increased with MLC stepping. The weighted DDVH comparison techniques allowed the composite dosimetry resulting from the interplay of the abovementioned variables to be ranked. The MLC dosimetry ranked as good or better than that resulting from beam matching with Cerrobend for all except large field overlaps (-2.5 mm gap). The results for the linear-weighted DDVH comparison suggest that optimal MLC abutment dosimetry results from an optical surface gap of around 1 +/- 0.5 mm. Furthermore, this appears reasonably lenient to abutment gap variation, such as that arising from uncertainty in beam markup or other setup errors.
Temperature Control and Noise Reduction in our Compact ADR System for TES Microcalorimeter Operation
NASA Astrophysics Data System (ADS)
Hishi, U.; Fujimoto, R.; Kamiya, K.; Kotake, M.; Ito, H.; Kaido, T.; Tanaka, K.; Hattori, K.
2016-08-01
We have been developing a compact adiabatic demagnetization refrigerator, keeping ground application and future missions in mind. A salt pill fabricated in-house, a superconducting magnet with a passive magnetic shield around it, and a mechanical heat switch are mounted in a dedicated helium cryostat. The detector stage temperature is regulated by PID control of the magnet current, with a dI/dt term added to compensate the temperature rise due to parasitic heat. The temperature fluctuation of the detector stage is 1-2 \\upmu Krms, and the hold time was extended by about 15 % thanks to the dI/dt term. Bundle shields of the harnesses between the cryostat and the analog electronics boxes were connected to the chassis at both ends, and the analog electronics boxes were grounded to the cryostat through the bundle shields. This reduced the readout noise to 16 pA/√{Hz} in the 10-60 kHz range. Using this system, an energy resolution of 3.8 ± 0.2 eV (FWHM) was achieved at 5.9 keV.
Surface density of accumulated electrons on walls in contact with a plasma
NASA Technical Reports Server (NTRS)
De, B. R.
1975-01-01
It is shown that the surface density of accumulated electrons on a wall in contact with a plasma can be expressed as a simple function of the Debye shielding distance in the plasma. The result may have applications to problems involving objects immersed in a space plasma.
Shielded serpentine traveling wave tube deflection structure
Hudson, C.L.; Spector, J.
1994-12-27
A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.
Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Wilkins, Richard; Armendariz, Lupita (Technical Monitor)
2002-01-01
Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.
NASA Astrophysics Data System (ADS)
Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Development of BaO-ZnO-B2O3 glasses as a radiation shielding material
NASA Astrophysics Data System (ADS)
Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.
2017-08-01
The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.
Effect of Trapped Ions on Shielding and Floating Potential of a Dust Grain in a Plasma
NASA Astrophysics Data System (ADS)
Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy
2001-10-01
The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Mott-Smith and Langmuir (1926), calculations have typically neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz (1959) have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with the potential. Under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is different from the results of orbital motion limited theory. Collisions also greatly increase the ion current to the collector, thereby decreasing the floating potential and the grain charge by a factor as large as two to three.
Radiation shielding for gamma stereotactic radiosurgery units
2007-01-01
Shielding calculations for gamma stereotactic radiosurgery units are complicated by the fact that the radiation is highly anisotropic. Shielding design for these devices is unique. Although manufacturers will answer questions about the data that they provide for shielding evaluation, they will not perform calculations for customers. More than 237 such units are now installed in centers worldwide. Centers installing a gamma radiosurgery unit find themselves in the position of having to either invent or reinvent a method for performing shielding design. This paper introduces a rigorous and conservative method for barrier design for gamma stereotactic radiosurgery treatment rooms. This method should be useful to centers planning either to install a new unit or to replace an existing unit. The method described here is consistent with the principles outlined in Report No. 151 from the U.S. National Council on Radiation Protection and Measurements. In as little as 1 hour, a simple electronic spreadsheet can be set up, which will provide radiation levels on planes parallel to the barriers and 0.3 m outside the barriers. PACS numbers: 87.53.Ly, 87.56By, 87.52Tr
Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen
2012-03-01
Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.
Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal
2018-06-12
The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide chemical audience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnside, W
Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are allmore » regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.« less
The synthesis method for design of electron flow sources
NASA Astrophysics Data System (ADS)
Alexahin, Yu I.; Molodozhenzev, A. Yu
1997-01-01
The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.
Study of imaging plate detector sensitivity to 5-18 MeV electrons
NASA Astrophysics Data System (ADS)
Boutoux, G.; Rabhi, N.; Batani, D.; Binet, A.; Ducret, J.-E.; Jakubowska, K.; Nègre, J.-P.; Reverdin, C.; Thfoin, I.
2015-11-01
Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.
Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-08
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.
de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-01
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh
The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1986-12-01
A correct description of the electronic excitations in polyenes demands that electron correlation is accounted for correctly. Very large expansions are necessary including many-electron configurations with at least one, two, three, and four electrons promoted from the Hartree-Fock ground state. The enormous size of such expansions had prohibited accurate computations of the spectra for polyenes with more than ten π electrons. We present a multireference double excitation configuration interaction method (MRD-CI) which allows such computations for polyenes with up to 16 π electrons. We employ a Pariser-Parr-Pople (PPP) model Hamiltonian. For short polyenes with up to ten π electrons our calculations reproduce the excitation energies resulting from full-CI calculations. We extend our calculations to study the low-lying electronic excitations of the longer polyenes, in particular, the gap between the first optically forbidden and the first optically allowed excited singlet state. The size of this gap is shown to depend strongly on the degree of bond alternation and on the dielectric shielding of the Coulomb repulsion between the π electrons.
Realization of the electrical Sentinel 4 detector integration
NASA Astrophysics Data System (ADS)
Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.
2017-09-01
The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and additionally humidity has to be avoided - which does not comply with the usual clean-room atmosphere. This paper describes how in Sentinel 4 the given challenges have been overcome, how the limited load drive capability of the detector component has been considered on a flex length of about 20 cm (7.87 in) and how EMC shielding of the highly sensitive analog signals of the detector has been realized. Also covered are design/manufacturing aspects and a glance on testing results is provided
Energetic Particles Investigation (EPI). [during pre-entry of Galileo Probe in Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Fischer, H. M.; Mihalov, J. D.; Lanzerotti, L. J.; Wibberenz, G.; Rinnert, K.; Gliem, F. O.; Bach, J.
1992-01-01
The EPI instrument operates during the pre-entry phase of the Galileo Probe. The main objective is the study of the energetic particle population in the inner Jovian magnetosphere and in the upper atmosphere. This will be achieved through omnidirectional measurements of electrons, protons, alpha-particles and heavy ions (Z greater than 2) and recording intensity profiles with a spatial resolution of about 0.02 Jupiter radii. Sectored data will also be obtained for electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted circular silicon surface-barrier detectors surrounded by cylindrical tungsten shielding. The lower energy threshold of the particle species investigated during the Probe's pre-entry phase is determined by the material thickness of the Probe's rear heat shield which is required for heat protection of the scientific payload during entry into the Jovian atmosphere. The EPI instrument is combined with the Lightning and Radio Emission Detector and both instruments share one interface of the Probe's power, command, and data unit.
Laser acceleration of protons using multi-ion plasma gaseous targets
Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...
2015-02-01
We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less
Space Radiation Analysis for the Mark III Spacesuit
NASA Technical Reports Server (NTRS)
Atwell, Bill; Boeder, Paul; Ross, Amy
2013-01-01
NASA has continued the development of space systems by applying and integrating improved technologies that include safety issues, lightweight materials, and electronics. One such area is extravehicular (EVA) spacesuit development with the most recent Mark III spacesuit. In this paper the Mark III spacesuit is discussed in detail that includes the various components that comprise the spacesuit, materials and their chemical composition that make up the spacesuit, and a discussion of the 3-D CAD model of the Mark III spacesuit. In addition, the male (CAM) and female (CAF) computerized anatomical models are also discussed in detail. We combined the spacesuit and the human models, that is, we developed a method of incorporating the human models in the Mark III spacesuit and performed a ray-tracing technique to determine the space radiation shielding distributions for all of the critical body organs. These body organ shielding distributions include the BFO (Blood-Forming Organs), skin, eye, lungs, stomach, and colon, to name a few, for both the male and female. Using models of the trapped (Van Allen) proton and electron environments, radiation exposures were computed for a typical low earth orbit (LEO) EVA mission scenario including the geostationary (GEO) high electron environment. A radiation exposure assessment of these mission scenarios is made to determine whether or not the crew radiation exposure limits are satisfied, and if not, the additional shielding material that would be required to satisfy the crew limits.
The Wake Shield Facility: A space experiment platform
NASA Technical Reports Server (NTRS)
Allen, Joseph P.
1991-01-01
Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.
Radiation collimator and systems incorporating same
Norman, Daren R [Idaho Falls, ID; Yoon, Woo Y [Idaho Falls, ID; Jones, James L [Idaho Falls, ID; Haskell, Kevin J [Idaho Falls, ID; Bennett, Brion D [Idaho Falls, ID; Tschaggeny, Charles W [Woods Cross, UT; Jones, Warren F [Idaho Falls, ID
2011-09-13
A collimator including a housing having disposed therein a shield element surrounding a converter core in which a photon beam is generated from electrons emanating from a linear accelerator. A beam channeler longitudinally adjacent the shield element has a beam aperture therethrough coaxially aligned with, and of the same diameter as, an exit bore of the converter core. A larger entry bore in the converter core is coaxial with, and longitudinally separated from, the exit bore thereof. Systems incorporating the collimator are also disclosed.
Radiation-Shielding Polymer/Soil Composites
NASA Technical Reports Server (NTRS)
Sen, Subhayu
2007-01-01
It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.
Mattoo, A K; Pick, U; Hoffman-Falk, H; Edelman, M
1981-01-01
Mild trypsin treatment of Spirodela oligorrhiza thylakoid membranes leads to partial digestion of the rapidly metabolized, surface-exposed, 32,000-dalton protein. Under these conditions, photoreduction of ferricyanide becomes insensitive to diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], an inhibitor of photosystem II electron transport. Preincubation of thylakoids with diuron leads to a conformational change in the 32,000-dalton protein, modifying its trypsin digestion and preventing expression of diuron insensitivity. Finally, light affects the susceptibility of the 32,000-dalton protein to digestion by trypsin. In other experiments, thylakoids specifically depleted in the 32,000-dalton protein were found to be deficient in electron transport at the reducing side of photosystem II but not at the oxidizing side or in photosystem I activities. Thus, the rapidly metabolized 32,000-dalton thylakoid protein in Spirodela chloroplasts fulfills the requirements of the hypothesized "proteinaceous shield" [Renger, G. (1976) Biochim. Biophys. Acta 440, 287-300] regulating electron flow through photosystem II and mediating diuron sensitivity. Images PMID:6940173
NASA Astrophysics Data System (ADS)
Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
NASA Astrophysics Data System (ADS)
Gujral, Parth; Varshney, Swati; Dhawan, S. K.
2016-06-01
Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.
The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.
Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T
2015-02-01
Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.
NASA Astrophysics Data System (ADS)
Gkioulidou, Malamati
The convection electric field resulting from the coupling of the Earth's magnetosphere with the solar wind and interplanetary magnetic field (IMF) drives plasma in the tail plasma sheet earthward. This transport and the resulting energy storage in the near Earth plasma sheet are important for setting up the conditions that lead to major space weather disturbances, such as storms and substorms. Penetration of plasma sheet particles into the near-Earth magnetosphere in response to enhanced convection is crucial to the development of the Region 2 field-aligned current system and large-scale magnetosphere-ionosphere (M-I) coupling, which results in the shielding of the convection electric field. In addition to the electric field, plasma transport is also strongly affected by the magnetic field, which is distinctly different from dipole field in the inner plasma sheet and changes with plasma pressure in maintaining force balance. The goal of this dissertation is to investigate how the plasma transport into the inner magnetosphere is affected by the interplay between plasma, electric field and magnetic field. For this purpose, we conduct simulations using the Rice Convection Model (RCM), which self-consistently calculates the electric field resulting from M-I coupling. In order to quantitatively evaluate the interplay, we improved the RCM simulations by establishing realistic plasma sheet particle sources, by incorporating it with a modified Dungey force balance magnetic field solver (RCM-Dungey runs), and by adopting more realistic electron loss rates. We found that plasma sheet particle sources strongly affect the shielding of the convection electric field, with a hotter and more tenuous plasma sheet resulting in less shielding than a colder and denser one and thus in more earthward penetration of the plasma sheet. The Harang reversal, which is closely associated with the shielding of the convection electric field and the earthward penetration of low-energy protons, is found to be located at lower latitudes and extend more dawnward for a hotter and more tenuous plasma sheet. In comparison with simulation runs under an empirical but not force balance magnetic field from the Tsyganenko 96 model, the simulation results show that transport under force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-earth region, weaker shielding of the penetration electric field and, as a result, more earthward penetration of plasma sheet protons and electrons with their inner edges being closer together and more azimuthally symmetric. To evaluate the effect of electron loss rate on ionospheric conductivity, a major contributing factor to M-I coupling, we run RCM-Dungey with a more realistic, MLT dependent electron loss rate established from observed wave activity. Comparing our results with those using a strong diffusion everywhere rate, we found that under the MLT dependent loss rate, the dawn-dusk asymmetry in the precipitating electron energy fluxes agrees better with statistical DMSP observations. The more realistic loss rate is much weaker than the strong diffusion limit in the inner magnetosphere. This allows high-energy electrons in the inner magnetosphere to remain much longer and produce substantial conductivity at lower latitudes. The higher conductivity at lower latitudes under the MLT dependent loss rate results in less efficient shielding in response to an enhanced convection electric field, and thus to deeper penetration of the ion plasma sheet into the inner magnetosphere than under the strong diffusion everywhere rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lee, J; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul
Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. Themore » gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.« less
Absorbed dose determination using experimental and analytical predictions of x-ray spectra
NASA Astrophysics Data System (ADS)
Edwards, David Lee
1999-10-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.
NASA Astrophysics Data System (ADS)
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.
2016-11-01
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.
Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto
2004-12-01
Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.
NASA Astrophysics Data System (ADS)
Staib, Michael; Bhopatkar, Vallary; Bittner, William; Hohlmann, Marcus; Locke, Judson; Twigger, Jessie; Gnanvo, Kondo
2012-03-01
Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and are operating a compact Muon Tomography Station (MTS) that tracks muons with eight 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a cubic-foot imaging volume. A point-of-closest-approach algorithm applied to reconstructed incident and exiting tracks is used to create a tomographic reconstruction of the material within the active volume. We discuss the performance of this MTS prototype including characterization and commissioning of the GEM detectors and the data acquisition systems. We also present experimental tomographic images of small high-Z objects including depleted uranium with and without shielding and discuss the performance of material discrimination using this method.
NASA Astrophysics Data System (ADS)
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2017-04-01
A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).
Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field
NASA Astrophysics Data System (ADS)
Veselov, Mikhail; Chugunin, Dmitriy
Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.
Fermilab E1039 Radiation Studies to Optimize the Experimental Layout
NASA Astrophysics Data System (ADS)
McNease, Shannon; SeaQuest Collaboration
2017-09-01
Experiment 1039 at Fermi National Accelerator Lab will use the 120 GeV proton beam from the Main Injector to collide with a polarized target to study the spin structure of the nucleon sea quarks. In particular E1039 will measure the asymmetry in the distribution of the muon pairs produced in the Drell-Yan process. In order to polarize the target of frozen NH3 and ND3 a series of vacuum pumps is needed in the high radiation area near the target. This experiment will use the same spectrometer, beam line, and spill structure as E906 along with same shielding with minor upgrades; therefore measurements made by the Fermilab radiation safety team during SeaQuest run can be used for a radiation study. The measurements of thermoluminescent dosimeter badges, and ion chambers are compared with the MARS simulation of the radiation field in SeaQuest to give the amount of radiation in a particular area outside of the shielding. With these three studies a proposal was made for the best placement of the sensitive electronics that is inside the vacuum pump controller, and to see if more protection is needed. This presentation will cover the process of research and calculations of the radiation study and the proposed best place for the controller electronics. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha
2007-10-28
Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the previously published state of the art theoretical potential energy curve for Xe(2), are in excellent agreement with the experiment for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Effect of Trapped Ions on Shielding of a Charged Spherical Object in a Plasma
NASA Astrophysics Data System (ADS)
Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy
2001-04-01
The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Langmuir[1], all calculations have neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz[2] have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with a calculation of the potential. We show that under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is quite different from the Debye form or the results of orbital motion limited theory. Collisions also modify the ion current to the grain, but to a lesser extent. [1]H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 27 (1926). [2]I. Bernstein and I. Rabinowitz, Phys. Fluids 2,112(1959).
Swadling, G. F.; Ross, J. S.; Datte, P.; ...
2016-07-21
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Earth's Radiation Belts: The View from Juno's Cameras
NASA Astrophysics Data System (ADS)
Becker, H. N.; Joergensen, J. L.; Hansen, C. J.; Caplinger, M. A.; Ravine, M. A.; Gladstone, R.; Versteeg, M. H.; Mauk, B.; Paranicas, C.; Haggerty, D. K.; Thorne, R. M.; Connerney, J. E.; Kang, S. S.
2013-12-01
Juno's cameras, particle instruments, and ultraviolet imaging spectrograph have been heavily shielded for operation within Jupiter's high radiation environment. However, varying quantities of >1-MeV electrons and >10-MeV protons will be energetic enough to penetrate instrument shielding and be detected as transient background signatures by the instruments. The differing shielding profiles of Juno's instruments lead to differing spectral sensitivities to penetrating electrons and protons within these regimes. This presentation will discuss radiation data collected by Juno in the Earth's magnetosphere during Juno's October 9, 2013 Earth flyby (559 km altitude at closest approach). The focus will be data from Juno's Stellar Reference Unit, Advanced Stellar Compass star cameras, and JunoCam imager acquired during coordinated proton measurements within the inner zone and during the spacecraft's inbound and outbound passages through the outer zone (L ~3-5). The background radiation signatures from these cameras will be correlated with dark count background data collected at these geometries by Juno's Ultraviolet Spectrograph (UVS) and Jupiter Energetic Particle Detector Instrument (JEDI). Further comparison will be made to Van Allen Probe data to calibrate Juno's camera results and contribute an additional view of the Earth's radiation environment during this unique event.
Onset of ice VII phase during ps laser pulse propagation through liquid water
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; Vaddapally, Rakesh Kumar; Acrhem Team
2015-06-01
Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of 15 different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.
NASA Technical Reports Server (NTRS)
Wyman, C. L.; Griner, D. B.; Hurd, W. A.; Shelton, G. B.; Hunt, G. H.; Fannin, B. B.; Brealt, R. P.; Hawkins, C. A. (Inventor)
1978-01-01
An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus.
Dermentzis, Konstantinos
2010-01-15
Electrostatic shielding zones made of electrode graphite powder were used as a new type of ionic and electronic current sinks. Because of the local elimination of the applied electric field, voltage and current within the zones, ions are led inside them and accumulate there. The current sinks were implemented in electrostatic shielding electrodialysis of a simulated nickel plating rinse water containing 100 mg L(-1) nickel and electrodeionization of a 0.001 M NiSO(4) solution with simultaneous electrochemical regeneration of the ion exchange resin beds. Pure water was obtained with a Ni(2+) ion concentration of less than 0.1 mg L(-1) at a flow rate of 2.02 x 10(-4)dm(3)s(-1) diluate stream and a current density of 30 Am(-2).
Predictions for Radiation Shielding Materials
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.
2002-01-01
Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually increase radiation damage due to penetration properties and nuclear fragmentation. Protecting space-borne microelectronics from single event upsets (SEUs) by transmitted radiation will benefit system reliability and system design cost by using optimal shield materials. Long-term missions on the surface of the Moon or Mars will require the construction of habitats to protect humans during their stay. One approach to the construction is to make structural materials from lunar or Martian regolith using a polymeric material as a binder. The hydrogen-containing polymers are considerably more effective for radiation protection than the regolith, but the combination minimizes the amount of polymer to be transported. We have made composites of simulated lunar regolith with two different polymers, LaRC-SI, a high-performance polyimide thermoset, and polyethylene, a thermoplastic.
75 FR 37384 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
..., semiconducting and magnetic nanosized materials and their assembled structures. Justification for Duty-Free Entry... California, Davis, One Shields Ave., Davis, CA 95616. Instrument: Electron Microscope. Manufacturer: Elionix...
NASA Testing the Webb Telescope's MIRI Thermal Shield
2017-12-08
NASA engineer Acey Herrera recently checked out copper test wires inside the thermal shield of the Mid-Infrared Instrument, known as MIRI, that will fly aboard NASA's James Webb Space Telescope. The shield is designed to protect the vital MIRI instrument from excess heat. At the time of the photo, the thermal shield was about to go through rigorous environmental testing to ensure it can perform properly in the extreme cold temperatures that it will encounter in space. Herrera is working in a thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. As the MIRI shield lead, Herrera along with a thermal engineer and cryo-engineer verify that the shield is ready for testing. On the Webb telescope, the pioneering camera and spectrometer that comprise the MIRI instrument sit inside the Integrated Science Instrument Module flight structure, that holds Webb's four instruments and their electronic systems during launch and operations. Read more: 1.usa.gov/15I0wrS Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac.
St Aubin, J; Steciw, S; Fallone, B G
2010-09-01
Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5 x 10(-5) T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in accelerator frequency was less than a manufacturing tolerance of 10 kHz and is thus not expected to have a noticeable effect on accelerator performance. The amount of beam loss caused by magnetic fringe fields for a linac in a linac-MR system depends on the effectiveness of its magnetic shielding. Despite the best efforts to shield the linac from the magnetic fringe fields, some persistent magnetic field is expected which would result in electron beam loss. This investigation showed that the detuning of the waveguide caused by additional electron beam loss in persistent magnetic fields is not a concern.
Shielded serpentine traveling wave tube deflection structure
Hudson, Charles L.; Spector, Jerome
1994-01-01
A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Huang, Wensheng; Haag, Thomas W.; Kamhawi, Hani
2013-01-01
NASA is presently developing a high-power, high-efficiency, long-lifetime Hall thruster for the Solar Electric Propulsion Technology Demonstration Mission. In support of this task, studies have been performed on the 20-kW NASA-300M Hall thruster to aid in the overall design process. The ability to incorporate magnetic shielding into a high-power Hall thruster was also investigated with the NASA- 300MS, a modified version of the NASA-300M. The inclusion of magnetic shielding would allow the thruster to push existing state-of-the-art technology in regards to service lifetime, one of the goals of the Technology Demonstration Mission. Langmuir probe measurements were taken within the discharge channels of both thrusters in order to characterize differences at higher power levels, as well as validate ongoing modeling efforts using the axisymmetric code Hall2De. Flush-mounted Langmuir probes were also used within the channel of the NASA-300MS to verify that magnetic shielding was successfully applied. Measurements taken from 300 V, 10 kW to 600 V, 20 kW have shown plasma potentials near anode potential and electron temperatures of 4 to 12 eV at the walls near the thruster exit plane of the NASA-300MS, verifying magnetic shielding and validating the design process at this power level. Channel centerline measurements on the NASA-300M from 300 V, 10 kW to 500 V, 20 kW show the electron temperature peak at approximately 0.1 to 0.2 channel lengths upstream of the exit plane, with magnitudes increasing with discharge voltage. The acceleration profiles appear to be centered about the exit plane with a width of approximately 0.3 to 0.4 channel lengths. Channel centerline measurements on the NASA-300MS were found to be more challenging due to additional probe heating. Ionization and acceleration zones appeared to move downstream on the NASA-300MS compared to the NASA-300M, as expected based on the shift in peak radial magnetic field. Additional measurements or alternative diagnostics will be needed to verify peak electron temperatures in the NASA-300MS and compare them with model predictions.
Cargo Container Imaging with Gaseous Detectors
NASA Astrophysics Data System (ADS)
Forest, Tony
2006-10-01
The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.
Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh
2018-01-01
We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.
Polymeric Materials With Additives for Durability and Radiation Shielding in Space
NASA Technical Reports Server (NTRS)
Kiefer, Richard
2011-01-01
Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.
NASA Astrophysics Data System (ADS)
Esposito, A.; Frasciello, O.; Pelliccioni, M.
2017-09-01
ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.
Study electron transport coefficients for Ar, O2 and their mixtures by using EEDF program
NASA Astrophysics Data System (ADS)
Majeed, D. S. Abdul; Hussein, B. J.; Jassim, M. K.
2018-05-01
We calculated the electron transport coefficient in Ar, O2 and their mixtures for ratio of E/N where E denotes the electric field and N the density of gas atoms from 5 – 600 Td 1Td = 10-17 V.cm2. The result and parameters mean energy mobility drift velocity and others are calculated by solving Boltzmann equation. We study these gases because of its importance in thermal plasma such as shielding gas for arc welding of metals and alloys. These results are useful to find best gas mixtures to reach appropriate transport parameter and to derive the same relevant cross section data.
Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmoud; Yousefi, Mohammad; Meskinfam, Masoumeh
2012-06-01
The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers.
A bulk superconducting MgB2 cylinder for holding transversely polarized targets
NASA Astrophysics Data System (ADS)
Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.
2018-02-01
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.
NASA Astrophysics Data System (ADS)
Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj
2018-02-01
Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.
Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology
NASA Astrophysics Data System (ADS)
Haji, Aminoddin; Semnani Rahbar, Ruhollah; Mousavi Shoushtari, Ahmad
2014-08-01
Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH2-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH2-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2-12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH2-MWCNT. The SEM images showed that the NH2-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH2-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH2-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼-18.2 dB about 11 GHz. Proper attachments of NH2-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.
An Investigation of Low Earth Orbit Internal Charging
NASA Technical Reports Server (NTRS)
NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.
2014-01-01
Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a prescribed breakdown strength. For simplicity, the amount of charge lost in the discharge is treated as a random percentage of the total charge between a set maximum and minimum amount so a user can consider partial discharges of insulating materials (small loss of charge) or arcing from a conductor (large loss of charge). We apply the model to electron flux measurements from the NOAA-19 spacecraft to demonstrate that charging can reach levels where electrostatic discharges occur and estimate the magnitude of the discharge.
Viesser, Renan V.
2017-01-01
Effects of electron-donating (R = NH2) and electron-withdrawing (R = NO2) groups on 13C NMR chemical shifts in R-substituted benzene are investigated by molecular orbital analyses. The 13C shift substituent effect in ortho, meta, and para position is determined by the σ bonding orbitals in the aryl ring. The π orbitals do not explain the substituent effects in the NMR spectrum as conventionally suggested in textbooks. The familiar electron donating and withdrawing effects on the π system by NH2 and NO2 substituents induce changes in the σ orbital framework, and the 13C chemical shifts follow the trends induced in the σ orbitals. There is an implicit dependence of the σ orbital NMR shift contributions on the π framework, via unoccupied π* orbitals, due to the fact that the nuclear shielding is a response property. PMID:28989684
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
CHESS upgrade 1995: Improved radiation shielding (abstract)
NASA Astrophysics Data System (ADS)
Finkelstein, K. D.
1996-09-01
The Cornell Electron Storage Ring (CESR) stores electrons and positrons at 5.3 GeV for the production and study of B mesons, and, in addition, it supplies synchrotron radiation for CHESS. The machine has been upgraded for 300 mA operation. It is planned that each beam will be injected in about 5 minutes and that particle beam lifetimes will be several hours. In a cooperative effort, staff members at CHESS and LNS have studied sources in CESR that produce radiation in the user areas. The group has been responsible for the development and realization of new tunnel shielding walls that provide a level of radiation protection from 20 to ≳100 times what was previously available. Our experience has indicated that a major contribution to the environmental radiation is not from photons, but results from neutrons that are generated by particle beam loss in the ring. Neutrons are stopped by inelastic scattering and absorption in thick materials such as heavy concrete. The design for the upgraded walls, the development of a mix for our heavy concrete, and all the concrete casting was done by CHESS and LNS personnel. The concrete incorporates a new material for this application, one that has yielded a significant cost saving in the production of over 200 tons of new wall sections. The material is an artificially enriched iron oxide pellet manufactured in vast quantities from hematite ore for the steel-making industry. Its material and chemical properties (iron and impurity content, strength, size and uniformity) make it an excellent substitute for high grade Brazilian ore, which is commonly used as heavy aggregate in radiation shielding. Its cost is about a third that of the natural ore. The concrete has excellent workability, a 28 day compressive strength exceeding 6000 psi and a density of 220 lbs/cu.ft (3.5 gr/cc). The density is limited by an interesting property of the pellets that is motivated by efficiency in the steel-making application. The pellets are made to be porous, with about 28% of the volume consisting of connected pores of size typically from 1-10 microns. The porosity may have some useful implications for neutron radiation shielding including the possibility of holding a lot more water than a conventional mix, and the opportunity to impregnate the pellets with a good neutron absorber such as boron. This paper will discuss these developments and report the latest results on the effectiveness of the upgraded shielding at Cornell.
NASA Technical Reports Server (NTRS)
Thiemann, H.; Schunk, R. W.
1990-01-01
The interaction between satellite solar arrays and the LEO plasma is presently studied with particle-in-cell simulations in which an electrical potential was suddenly applied to the solar cell interconnector. The consequent temporal response was followed for the real O(+)-electron mass ratio in the cases of 100- and 250-V solar cells, various solar cell thicknesses, and solar cells with secondary electron emission. Larger applied potentials and thinner solar cells lead to greater initial polarization surface charges, and therefore longer discharging and shielding times. When secondary electron emission from the cover glass is brought to bear, however, the potential structure is nearly planar, allowing constant interaction between plasma electrons and cover glass; a large fraction of the resulting secondary electrons is collected by the interconnector, constituting an order-of-magnitude increase in collected current.
Luce, J.S.
1960-04-19
A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B., E-mail: bjtobias@pppl.gov; Domier, C. W.; Luhmann, N. C.
2016-11-15
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...
2016-07-25
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
Design and development of a 40 kV pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com
A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less
Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.
2009-01-01
In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448
NMR parameters in alkali, alkaline earth and rare earth fluorides from first principle calculations.
Sadoc, Aymeric; Body, Monique; Legein, Christophe; Biswal, Mamata; Fayon, Franck; Rocquefelte, Xavier; Boucher, Florent
2011-11-07
(19)F isotropic chemical shifts for alkali, alkaline earth and rare earth of column 3 basic fluorides are measured and the corresponding isotropic chemical shieldings are calculated using the GIPAW method. When using the PBE exchange-correlation functional for the treatment of the cationic localized empty orbitals of Ca(2+), Sc(3+) (3d) and La(3+) (4f), a correction is needed to accurately calculate (19)F chemical shieldings. We show that the correlation between experimental isotropic chemical shifts and calculated isotropic chemical shieldings established for the studied compounds allows us to predict (19)F NMR spectra of crystalline compounds with a relatively good accuracy. In addition, we experimentally determine the quadrupolar parameters of (25)Mg in MgF(2) and calculate the electric field gradients of (25)Mg in MgF(2) and (139)La in LaF(3) using both PAW and LAPW methods. The orientation of the EFG components in the crystallographic frame, provided by DFT calculations, is analysed in terms of electron densities. It is shown that consideration of the quadrupolar charge deformation is essential for the analysis of slightly distorted environments or highly irregular polyhedra. This journal is © the Owner Societies 2011
Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A
2010-01-01
Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...
2016-08-10
We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less
Generalized charge-screening in relativistic Thomas–Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less
A magnetic field cloak for charged particle beams
NASA Astrophysics Data System (ADS)
Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.
2018-01-01
Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.
Pothupitiya Gamage, Sudesh Jayashantha; Yang, Kihun; Braveenth, Ramanaskanda; Raagulan, Kanthasamy; Kim, Hyun Suk; Lee, Yun Seon; Yang, Cheol-Min; Moon, Jai Jung; Chai, Kyu Yun
2017-01-01
A series of multi-walled carbon nanotube (MWCNT) coated carbon fabrics was fabricated using a facile dip coating process, and their performance in electrical conductivity, thermal stability, tensile strength, electromagnetic interference (EMI) and shielding effectiveness (SE) was investigated. A solution of MWCNT oxide and sodium dodecyl sulfate (SDS) in water was used in the coating process. MWCNTs were observed to coat the surfaces of carbon fibers and to fill the pores in the carbon fabric. Electrical conductivity of the composites was 16.42 S cm−1. An EMI shielding effectiveness of 37 dB at 2 GHz was achieved with a single layer of C/C composites, whereas the double layers resulted in 68 dB EMI SE at 2.7 GHz. Fabricated composites had a specific SE of 486.54 dB cm3 g−1 and an absolute SE of approximately 35,000 dB cm2 g−1. According to the above results, MWCNT coated C/C composites have the potential to be used in advanced shielding applications such as aerospace and auto mobile electronic devices.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.
Ki, Dae-Han; Jung, Young-Dae
2012-09-07
The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.
Finite temperature static charge screening in quantum plasmas
NASA Astrophysics Data System (ADS)
Eliasson, B.; Akbari-Moghanjoughi, M.
2016-07-01
The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.
Search for tachyons associated with extensive air showers in the ground level cosmic radiation
NASA Technical Reports Server (NTRS)
Masjed, H. F.; Ashton, F.
1985-01-01
Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.
Onset of ice VII phase during ps laser pulse propagation through liquid water
NASA Astrophysics Data System (ADS)
Kumar, V. Rakesh; Kiran, P. Prem
2017-01-01
Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. The formation of ice VII crystalline structure has been vastly reported during high pressure static compression using diamond anvil cell and propagation of high energy (>50 mJ/pulse) nanosecond laser pulse induced dynamic high pressures through liquid water. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section.
Nomura, Yuki; Yamamoto, Kazuo; Hirayama, Tsukasa; Saitoh, Koh
2018-06-01
We developed a novel sample preparation method for transmission electron microscopy (TEM) to suppress superfluous electric fields leaked from biased TEM samples. In this method, a thin TEM sample is first coated with an insulating amorphous aluminum oxide (AlOx) film with a thickness of about 20 nm. Then, the sample is coated with a conductive amorphous carbon film with a thickness of about 10 nm, and the film is grounded. This technique was applied to a model sample of a metal electrode/Li-ion-conductive-solid-electrolyte/metal electrode for biasing electron holography. We found that AlOx film with a thickness of 10 nm has a large withstand voltage of about 8 V and that double layers of AlOx and carbon act as a 'nano-shield' to suppress 99% of the electric fields outside of the sample. We also found an asymmetry potential distribution between high and low potential electrodes in biased solid-electrolyte, indicating different accumulation behaviors of lithium-ions (Li+) and lithium-ion vacancies (VLi-) in the biased solid-electrolyte.
Umrao, Sima; Gupta, Tejendra K; Kumar, Shiv; Singh, Vijay K; Sultania, Manish K; Jung, Jung Hwan; Oh, Il-Kwon; Srivastava, Anchal
2015-09-09
The electromagnetic interference (EMI) shielding of reduced graphene oxide (MRG), B-doped MRG (B-MRG), N-doped MRG (N-MRG), and B-N co-doped MRG (B-N-MRG) have been studied in the Ku-band frequency range (12.8-18 GHz). We have developed a green, fast, and cost-effective microwave assisted route for synthesis of doped MRG. B-N-MRG shows high electrical conductivity in comparison to MRG, B-MRG and N-MRG, which results better electromagnetic interference (EMI) shielding ability. The co-doping of B and N significantly enhances the electrical conductivity of MRG from 21.4 to 124.4 Sm(-1) because N introduces electrons and B provides holes in the system and may form a nanojunction inside the material. Their temperature-dependent electrical conductivity follows 2D-variable range hopping (2D-VRH) and Efros-Shklovskii-VRH (ES-VRH) conduction model in a low temperature range (T<50 K). The spatial configuration of MRG after doping of B and N enhances the space charge polarization, natural resonance, dielectric polarization, and trapping of EM waves by internal reflection leading to a high EMI shielding of -42 dB (∼99.99% attenuation) compared to undoped MRG (-28 dB) at a critical thickness of 1.2 mm. Results suggest that the B-N-MRG has great potential as a candidate for a new type of EMI shielding material useful in aircraft, defense industries, communication systems, and stealth technology.
SXTF Instrumentation Definition.
1978-05-31
Reference 53. 3.3.2 Multipactor Jectron Sowrces I The multipactor source (Ref 54) has attractive features for application to space - craft charging ...The effect of high 9 energy electrons impinging on the cables can be minimized by shielding them with a sufficient thickness of dielectric . Of the...encountered because of dielectric charging of insulating surfaces, dose and dose rate problems caused by the high energy electron component penetrating
TREE Simulation Facilities, Second Edition, Revision 2
1979-01-01
included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility
NASA Technical Reports Server (NTRS)
Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.
1995-01-01
The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.
Dosimetric evaluation of internal shielding in a high dose rate skin applicator
Granero, Domingo; Perez-Calatayud, Jose; Carmona, Vicente; Pujades, M Carmen; Ballester, Facundo
2011-01-01
Purpose The Valencia HDR applicators are accessories of the microSelectron HDR afterloading system (Nucletron) shaped as truncated cones. The base of the cone is either 2 or 3 cm diameter. They are intended to treat skin lesions, being the typical prescription depth 3 mm. In patients with eyelid lesions, an internal shielding is very useful to reduce the dose to the ocular globe. The purpose of this work was to evaluate the dose enhancement from potential backscatter and electron contamination due to the shielding. Material and methods Two methods were used: a) Monte Carlo simulation, performed with the GEANT4 code, 2 cm Valencia applicator was placed on the surface of a water phantom in which 2 mm lead slab was located at 3 mm depth; b) radiochromic EBT films, used to verify the Monte Carlo results, positioning the films at 1.5, 3, 5 and 7 mm depth, inside the phantom. Two irradiations, with and without the lead shielding slab, were carried out. Results The Monte Carlo results showed that due to the backscatter component from the lead, the dose level raised to about 200% with a depth range of 0.5 mm. Under the lead the dose level was enhanced to about 130% with a depth range of 1 mm. Two millimeters of lead reduce the dose under the slab with about 60%. These results agree with film measurements within uncertainties. Conclusions In conclusion, the use of 2 mm internal lead shielding in eyelid skin treatments with the Valencia applicators were evaluated using MC methods and EBT film dosimetry. The minimum bolus thickness that was needed above and below the shielding was 0.5 mm and 1 mm respectively, and the shielding reduced the absorbed dose delivered to the ocular globe by about 60%. PMID:27877198
Performance study of galactic cosmic ray shield materials
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.
1994-01-01
The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.
NASA Astrophysics Data System (ADS)
Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Li, Guolin
2017-11-01
Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA), which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T) of the transient current of the gas main switch and the dominant frequency (F) of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.
NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water
NASA Astrophysics Data System (ADS)
Bichenkova, Elena V.; Raju, Arun P. A.; Burusco, Kepa K.; Kinloch, Ian A.; Novoselov, Kostya S.; Clarke, David J.
2018-03-01
Polyaromatic carbon is widely held to be strongly diamagnetic and hydrophobic, with textbook van der Waals and ‘π-stacked’ binding of hydrocarbons, which disrupt their self-assembled supramolecular structures. The NMR of organic molecules sequestered by polyaromatic carbon is expected to be dominated by shielding from the orbital diamagnetism of π electrons. We report the first evidence of very different polar and magnetic behavior in water, wherein graphene remained well-dispersed after extensive dialysis and behaved as a 1H-NMR-silent ghost. Magnetic effects dominated the NMR of organic structures which interacted with graphene, with changes in spin-spin coupling, vast increase in relaxation, line broadening and decrease in NMR peak heights when bound to graphene. However, the interactions were weak, reversible and did not disrupt organic self-assemblies reliant on hydrophobic ‘π-stacking’, even when substantially sequestered on the surface of graphene by the high surface area available. Interacting assemblies of aromatic molecules retained their strongly-shielded NMR signals and remained within self-assembled structures, with slower rates of diffusion from association with graphene, but with no further shielding from graphene. Binding to graphene was selective for positively-charged organic assemblies, weaker for non-aromatic and negligible for strongly-negatively-charged molecules, presumably repelled by a negative zeta potential of graphene in water. Stronger binders, or considerable excess of weaker binders readily reversed physisorption, with no evidence of structural changes from chemisorption. The fundamental nature of these different electronic interactions between organic and polyaromatic carbon is considered with relevance to electronics, charge storage, sensor, medical, pharmaceutical and environmental research.
Radiation Effects and Protection for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Parnell, Thomas A.; Watts, John W., Jr.; Armstrong, Tony W.
1998-01-01
Manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles (SEP). These natural radiations impose hazards to manned exploration, but also present some constraints to the design of robotic missions. The hazards to interplanetary flight crews and their uncertainties have been studied recently by a National Research Council Committee (Space Studies Board 1996). Considering the present uncertainty estimates, thick spacecraft shielding would be needed for manned missions, some of which could be accomplished with onboard equipment and expendables. For manned and robotic missions, the effects of radiation on electronics, sensors, and controls require special consideration in spacecraft design. This paper describes the GCR and SEP particle fluxes, secondary particles behind shielding, uncertainties in radiobiological effects and their impact on manned spacecraft design, as well as the major effects on spacecraft equipment. The principal calculational tools and considerations to mitigate the radiation effects are discussed, and work in progress to reduce uncertainties is included.
Radiation Templates of Spent Fuel in Casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanier, Peter
BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, butmore » baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.« less
Polyaniline/Fe3O4-RGO Nanocomposites for Microwave Absorption
NASA Astrophysics Data System (ADS)
Mathew, Jithin; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.; Sabarish Narayanan, B.
2018-02-01
Fe3O4 nanoparticles were synthesized by co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2). Reduced graphene oxide (RGO) was prepared by reducing the graphene oxide, which was synthesized by Hummer’s method, using hydrazine hydrate. Three nanocomposites based on sodium dodecyl benzene sulphonate (SDBS)-doped polyaniline were synthesized through in situ polymerization in the presence of the fillers (i) Fe3O4, (ii) reduced graphene oxide (RGO) and (iii) Fe3O4-decorated RGO respectively. The synthesized PANI and the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Their microstructures, electrical conductivities, and EMI shielding effectiveness were studied. The nanocomposite containing 10 % RGO showed the maximum electrical conductivity and the one with 10 % RGO and 10 % Fe3O4 showed the maximum EMI shielding effectiveness of 7.5 dB for a 1 mm thick sample.
Radiation Dose from Reentrant Electrons
NASA Technical Reports Server (NTRS)
Badhwar, G.D.; Cleghorn, T. E.; Watts, J.
2003-01-01
In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.
NASA Astrophysics Data System (ADS)
Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.
2015-09-01
We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)
2001-01-01
The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.
NASA Astrophysics Data System (ADS)
Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed
2017-02-01
Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.
Comparison of different shielding methods in acquisition of physiological signals.
Yanbing Jiang; Ning Ji; Hui Wang; Xueyu Liu; Yanjuan Geng; Peng Li; Shixiong Chen; Guanglin Li
2017-07-01
Power line interference in the surrounding environment could usually introduce many difficulties when collecting and analyzing physiological signals. Since power line interference is usually several orders of amplitude larger than the physiological electrical signals, methods of suppressing power line interference should be considered during the signal acquisition. Many studies used a hardware or software band-stop filter to suppress power line interference but it could easily cause attenuations and distortions to the signal of interest. In this study, two kinds of methods that used different signals to drive the shields of the electrodes were proposed to reduce the impacts of power line interference. Three channels of two physiological signals (ECG and EMG) were simultaneously collected when the electrodes were not shielded (No-Shield), shielded by ground signals (GND-Shield) and shielded by buffered signals of the corresponding electrodes (Active-Shield), respectively, on a custom hardware platform based on TI ADS1299. The results showed that power line interference would be significantly suppressed when using shielding approaches, and the Active-Shield method could achieve the best performance with a power line interference reduction up to 36dB. The study suggested that the Active-Shield method at the analog front-end was a great candidate to reduce power line interference in routine acquisitions of physiological signals.
The IBA Easy-E-Beam™ Integrated Processing System
NASA Astrophysics Data System (ADS)
Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F.
2011-06-01
IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam™ for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.
The threshold laws for electron-atom and positron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1983-01-01
The Coulomb-dipole theory is employed to derive a threshold law for the lowest energy needed for the separation of three particles from one another. The study focuses on an electron impinging on a neutral atom, and the dipole is formed between an inner electron and the nucleus. The analytical dependence of the transition matrix element on energy is reduced to lowest order to obtain the threshold law, with the inner electron providing a shield for the nucleus. Experimental results using the LAMPF accelerator to produce a high energy beam of H- ions, which are then exposed to an optical laser beam to detach the negative H- ion, are discussed. The threshold level is found to be confined to the region defined by the upper bound of the inverse square of the Coulomb-dipole region. Difficulties in exact experimental confirmation of the threshold are considered.
Active shield technology for space craft protection revisited in new laboratory results and analysis
NASA Astrophysics Data System (ADS)
Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.
2009-04-01
Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025
Accelerator-based validation of shielding codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack
2002-08-12
The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required tomore » validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Holloway, L
Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less
Lauridsen, Clara Bratt; Sanyova, Jana; Simonsen, Kim Pilkjær
2015-11-05
The pigment composition of six painted metal knight shields of the Order of the Elephant dating from the second half of the 20th century belonging to the Danish royal collection were studied using Raman microscopy. By focusing a 785 nm laser with a 50× objective on particles in paint cross sections, it was possible to identify the following 20 compounds: hematite, goethite, chrome red/orange, chrome yellow, zinc chrome yellow, carbon black, toluidine red PR3, chlorinated para red PR4, dinitroaniline orange PO5, phthalocyanine blue PB15, indanthrone blue PB60, ultramarine, Prussian blue, lead white, anatase, rutile, calcium carbonate, barium sulphate, gypsum and dolomite. The components were frequently present in complex pigment mixtures. Additional information was obtained by elemental analysis with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) to identify cobalt blue, zinc white and cadmium red, as well as to indicate the presence of zinc white in some pigment mixtures. The study allowed a comparison between the industrially applied preparation layers and the artistic paint layers applied by the heraldic painter. Differences in the choice of paint and pigment types were observed on the earliest knight shields, demonstrating a general delay of industrial materials into artist paints. Copyright © 2015 Elsevier B.V. All rights reserved.
Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization
Xue, Chao-Hua; Jia, Shun-Tian; Chen, Hong-Zheng; Wang, Mang
2008-01-01
By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry. PMID:27877998
NASA Technical Reports Server (NTRS)
Buffington, A.
1978-01-01
A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.
1984-09-30
EXPERIMENT BACKGROUND Motivated by the desire to measure for the first time the force of 27 gravity on antimatter , Witteborn and Fairbank (WF...and antimatter . There are, however, no direct experimental tests of the gravitational forces on antimatter . Having measured the force of gravity on...electrons, a measurement using positrons would give the first measurement of the force of gravity on antimatter as well as giving a definitive value for
Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems
NASA Astrophysics Data System (ADS)
Tsaliovich, Anatoly
Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.
On behavior peculiarity of electron plasma
NASA Astrophysics Data System (ADS)
Gordeeva, N. M.; Yushkanov, A. A.
2018-03-01
The analysis of the analytical solution of the problem of the behavior of electron plasma in the AC electric field is fulfilled. Debye mode describes shielding of the external electric field in the plasma. The analysis of the region of existence of Debye mode, depending on the plasma parameters has been realized. A non-trivial dependence of the region of existence of Debye mode on the degree of degeneracy of the electron gas are revealed. For the case of nearly degenerate electron gas Debye mode has several areas of existence, depending on the frequency of the electric field.
1987-12-29
EMC, San Francisco CA, 16-18 July 1974, 76-84. 1-13. E. R. Uhlig, "Developmnent of Criteria for Protection ef NIKE -X Power Plant and Facilities...Interference Reduction and Electronic Compatibility, Armour Research Foundation of Illinois Institute of Technology (now IITRI), Chicago IL, October...Measuring Systems Susceptibility," Proceedings of the Eighth Tri-Service Conference on Electromagnetic Compatibility, Armour Research Foundation of
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
Analysis of a Lunar Base Electrostatic Radiation Shield Concept
NASA Technical Reports Server (NTRS)
Buhler, Charles R.
2004-01-01
Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.
Passive dosimetry aboard the Mir Orbital Station: external measurements.
Benton, E R; Benton, E V; Frank, A L
2002-10-01
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope. c2002 Elsevier Science Ltd. All rights reserved.
Passive dosimetry aboard the Mir Orbital Station: external measurements
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2002-01-01
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope. c2002 Elsevier Science Ltd. All rights reserved.
On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.
Chen, Z; Agostinelli, A; Nath, R
1998-03-01
The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable's spatial configuration were altered during the two-polarity measurements. This suggests that automatic scanning systems with unshielded cables should not be used in TSET ionization chamber dosimetry. However, the data did show that an unshielded cable may be used in TSET ionization chamber dosimetry if the size of cable-induced error in a given TSET beam is pre-evaluated and the measurement is carefully conducted. When such an evaluation has not been performed, additional shielding should be applied to the cable being used, making measurements at multiple points difficult.
Effect of molybdenum on gamma ray shielding and structural properties of PbO-B2O3 glasses
NASA Astrophysics Data System (ADS)
Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder
2018-04-01
The present study is aimed at developing new shielding materials for gamma ray shielding applications. Transparent glasses of the composition xMoO3-0.7PbO-(0.3-x)B2O3 where x= 0.03 to 0. 06 (mole fraction) have been prepared by using melt-quenchingtechnique. Gamma ray shielding properties have been evaluated in terms of mass attenuation coefficient and half value layer parameter at photon energies 662 and 1173 keV. These shielding parameters are also compared with standard shielding material`concretes'. It has been found that prepared glass system shows better shielding properties than barite and ordinary concretes proving the possibility of its usage as an alternate to conventional concrete for gamma ray shielding applications. The density, molar volume, X-Ray Diffraction, Fourier Transform InfraRed and Raman studies have been performed to study the structural properties of the glass system. It has been analyzed from FTIR and Raman studies that bridging oxygens increase with the decrease of MoO3 content in the glass composition.
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer
2015-01-01
A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.
Katagiri, Kiyofumi; Takabatake, Ryuichi; Inumaru, Kei
2013-10-23
Robust infrared (IR)-shielding coating films were prepared by dispersing indium tin oxide (ITO) nanoparticles (NPs) in a silica matrix. Hydrophobized ITO NPs were synthesized via a liquid phase process. The surface plasmon resonance (SPR) absorption of the ITO NPs could be tuned by varying the concentration of Sn doping from 3 to 30 mol %. The shortest SPR wavelength and strongest SPR absorption were obtained for the ITO NPs doped with 10% Sn because they possessed the highest electron carrier density. Coating films composed of a continuous silica matrix homogeneously dispersed with ITO NPs were obtained using perhydropolysilazane (PHPS) as a precursor. PHPS was completely converted to silica by exposure to the vapor from aqueous ammonia at 50 °C. The prepared coating films can efficiently shield IR radiation even though they are more than 80% transparent in the visible range. The coating film with the greatest IR-shielding ability completely blocked IR light at wavelengths longer than 1400 nm. The pencil hardness of this coating film was 9H at a load of 750 g, which is sufficiently robust for applications such as automotive glass.
Radiation dose from reentrant electrons
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Watts, J.; Cleghorn, T. E.
2001-01-01
In estimating the crew exposures during an extra vehicular activity (EVA), the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more that 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO. Published by Elsevier Science Ltd.
Cross-field electron transport inside an insulating cylinder of a baffled probe
NASA Astrophysics Data System (ADS)
Raitses, Yevgeny; Alt, Andrew
2017-10-01
Plasma-immersed wall experiments have been performed in a magnetized xenon plasma in a cross-field Penning configuration with density around 1012 cm-3 and an electron temperature around a few eV. A cylinder with an open end and diameter of 1.4 mm was placed across field lines so that electrons were blocked from reaching a wire recessed behind the shield while ions were unimpeded. The reduction of electron current to the wire causes it to float closer to the plasma potential, possibly making a device that can passively measure plasma potential. However, the measured electron current was much higher than expected even when the wire was recessed several electron gyroradii behind the baffle. Possible mechanisms for this electron conduction causing the short circuiting to the bulk plasma have been studied with numerical approaches and with a dedicated experiment designed to isolate this short circuit effect. The obtained results may be important for cross-field transport in a variety of other configurations in magnetized, low-temperature plasmas. This work was supported by DOE contract DE-AC02-09CH11466.
Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D
Haye, R. J. La; Paz-Soldan, C.; Strait, E. J.
2015-01-23
DIII-D experiments show that fully penetrated resonant n=1 error field locked modes in Ohmic plasmas with safety factor q 95≳3 grow to similar large disruptive size, independent of resonant error field correction. Relatively small resonant (m/n=2/1) static error fields are shielded in Ohmic plasmas by the natural rotation at the electron diamagnetic drift frequency. However, the drag from error fields can lower rotation such that a bifurcation results, from nearly complete shielding to full penetration, i.e., to a driven locked mode island that can induce disruption.
Local, global, and nonlinear screening in twisted double-layer graphene
Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong; ...
2016-06-02
One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less
Local, global, and nonlinear screening in twisted double-layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong
One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less
Respiratory disease among military personnel in Saudi Arabia during Operation Desert Shield.
Richards, A L; Hyams, K C; Watts, D M; Rozmajzl, P J; Woody, J N; Merrell, B R
1993-01-01
OBJECTIVES. The purpose of this study was to determine whether respiratory disease due to crowded living conditions and high levels of suspended and blowing sand had a major adverse impact on US military personnel during Operation Desert Shield. METHODS. A questionnaire survey was administered to 2598 combat troops stationed in Northeast Saudi Arabia for a mean of 102 days. Samples of surface sand from seven different locations were analyzed by scanning electron microscopy and x-ray diffraction. RESULTS. Among surveyed troops, 34.4% reported a sore throat, 43.1% complained of a cough, 15.4% complained of chronic rhinorrhea, and 1.8% were unable to perform their routine duties because of upper respiratory symptoms. Evaluation of sleeping accommodations indicated that complaints of a sore throat and cough were most closely associated with sleeping in air-conditioned buildings; in contrast, complaints of rhinorrhea were associated with exposure to the outdoor environment while living in tents. Sand samples consisted mostly of quartz, with just 0.21% by weight of respirable size (< 10 microns in diameter). CONCLUSIONS. These findings indicate that upper respiratory complaints were frequent among Operation Desert Shield troops and were related both to the troops' housing and to their exposure to the outside environment. PMID:8363011
Radiological considerations for bulk shielding calculations of national synchrotron light source-II
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2011-12-01
Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.
Influence of Atmospheric Pressure and Composition on LIBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch, Jeremy J.; Scott, Jill R.; Effenberger, A. J. Jr.
2014-03-01
Most LIBS experiments are conducted at standard atmospheric pressure in air. However, there are LIBS studies that vary the pressure and composition of the gas. These studies have provided insights into fundamentals of the mechanisms that lead to the emission and methods for improving the quality of LIBS spectra. These atmospheric studies are difficult because the effects of pressure and gas composition and interconnected, making interpretation of the results difficult. The influence of pressures below and above 760 Torr have been explored. Performing LIBS on a surface at reduced pressures (<760 Torr) can result in enhanced spectra due to highermore » resolution, increased intensity, improved signal-to-noise (S/N), and increased ablation. Lower pressures produce increased resolution because the line width in LIBS spectra is predominantly due to Stark and Doppler broadening. Stark broadening is primarily caused from collisions between electrons and atoms, while Doppler broadening is proportional to the plasma temperature. Close examination using a high resolution spectrometer reveals that spectra show significant peak broadening and self-absorption as pressures increase, especially for pressures >760 Torr. During LIBS plasma expansion, energy is lost to the surrounding atmosphere, which reduces the lifetime of the laser plasma. Therefore, reducing the pressure increases the lifetime of the plasma, allowing more light from the laser plasma to be collected; thus, increasing the observed signal intensity. However, if pressures are too low (<10 Torr), then there is a steep drop in LIBS spectral intensity. This loss in intensity is mostly due to a disordered plasma that results from the lack of sufficient atmosphere to provide adequate confinement. At reduced pressures, the plasma expands into a less dense atmosphere, which results in a less dense shock wave. The reduced density in the shock wave results in reduced plasma shielding, allowing more photons to reach the sample. Increasing the number of photons interacting with the sample surface results in increased ablation, which can lead to increased intensity. The composition of the background gas has been shown to greatly influence the observed LIBS spectra by altering the plasma temperature, electron density, mass removal, and plasma shielding that impact the emission intensity and peak resolution. It has been reported that atmospheric Ar results in the highest plasma temperature and electron density, while a He atmosphere results in the lowest plasma temperatures and electron density. Studying temporal data, it was also found that Ar had the slowest decay of both electron density and plasma temperature, while He had the fastest decay in both parameters. The higher plasma temperature and electron density results in an increase in line broadenin, or poor resolution, for Ar compared to He. A rapidly developing LIBS plasma with a sufficient amount of electrons can absorb a significant portion of the laser pulse through inverse Bremsstahlung. Ar (15.8 eV ) is more easily ionized than He (24.4 eV). The breakdown threshold for He at 760 Torr is approximately 3 times greater than Ar and approximately 5 times greater at 100 Torr. The lower breakdown threshold in Ar, compared to He, creates an environment favorable for plasma shielding, which reduces sample vaporization and leads to a weaker LIBS signal.« less
Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooling, J.; Accelerator Systems Division
The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight sectionmore » will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker targets, however, the dose-rate no longer depends only on photon attenuation, as photoneutrons (PNs) begin to dominate. The GB radiation-induced photoneutron measurements from four different metals (Fe, Cu, W, and Pb) are compared with MARS predictions. The simulated dose-rates for beamline 6-ID are approximately 3-5 times larger than the measured values, whereas those for beamline 11-ID are much closer. Given the uncertainty in local values of pressure and Z, the degree of agreement between MARS and the PN measurements is good. MARS simulations of GB-induced radiation in and around the FOE show the importance of using actual pressure and gas composition (Z{sub eff}) to obtain accurate PN dose. For a beam current of 300 mA, extrapolating pressure data measured in previously published studies predicts an average background gas pressure of 27 nTorr. An average atomic number of Z{sub eff} = 4.0 is obtained from the same studies. In addition, models of copper masks presently in use at the APS are included. Simulations show that inclusion of exit masks make significant differences in both the radiation spatial distribution within the FOE, as well as the peak intensity. Two studies have been conducted with MARS to assess shielding requirements. First, dose levels in contact with the outside wall of the FOE are examined when GB radiation strikes Pb or W beam stops of varying transverse size within the FOE. Four separate phantom regions are utilized to measure the dose, two at beam elevation and two at the horizontal beam position. The first two phantoms are used for scoring FOE dose along the outside and back walls, horizontally; the second two collect dose on the roof and vertically on the back wall. In all cases, the beam stop depth is maintained at 30 cm. Inclusion of front end (FE) exit masks typically cause a 1-2 order-of-magnitude increase in the dose-rates relative to the case with no masks. Masks place secondary bremsstrahlung sources inside the FOE, and therefore they must be shielded appropriately. The MARS model does not fully account for all shielding present in the hutches; localized shielding is employed in individual hutches. Typically, a collimator, placed downstream of the FE exit masks, mitigates the possible increase in dose. Regarding beam stop transverse size, a modest reduction in dose on the back wall is noted as the stop dimension (square cross section) is increased from 12 cm to 24 cm. In the second study, the thickness of Pb required to shield against the GB extremal ray is determined. In this study, we are interested in finding the thickness of material necessary to add at the edge of a stop to adequately block GB radiation; therefore, we look at the case of no masks in order to have a well-defined GB beam edge. Simulations show the separation between the extremal ray and the edge of the shielding should be 2R{sub m}, where R{sub m} is the Moliere radius.« less
Characterization of the Radiation Shielding Properties of US andRussian EVA Suits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benton, E.R.; Benton, E.V.; Frank, A.L.
2001-10-26
Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less
Time-dependent spectroscopy of plasma plume under laser welding conditions
NASA Astrophysics Data System (ADS)
Hoffman, Jacek; Szymanski, Zygmunt
2004-07-01
Momentary emission spectra of iron and argon lines were measured in a plasma plume induced during welding with a continuous wave CO2 laser. Time-dependent spectra were registered using a fast gate, lens coupled microchannel plate image intensifier placed between a spectrograph and a 1254 silicon intensified target detector connected to an optical multichannel analyser. The results, together with the analysis of the colour images from a fast camera, show that in the case when argon is the shielding gas, two plasmas exist: the argon plasma and the iron plasma. It has been found that during strong bursts the plasma plume over the keyhole consists mainly of metal vapour, not being diluted by the shielding gas. No apparent mixing of the metal vapour and the shielding gas has been observed. The space-averaged electron densities determined from the Stark broadening of the 7503.87, 7514.65 Å Ar I lines amounts to (0.75-1.05) × 1023 m-3 depending on the distance from the surface. Assuming that argon is not mixed with the metal vapour and is in local thermodynamic equilibrium these electron densities correspond to the temperatures of 12-13 kK. At the peaks of strong vapour bursts the space-averaged electron densities determined from the Stark broadening of the 5383.37 Å Fe I line are (0.6-1) × 1023 m-3. Numerical simulations showed that the maximum densities in the plasma centre are considerably higher and amount to ~1.8 × 1023 m-3 and ~2.45 × 1023 m-3 in the case of the argon and metal plasma, respectively. Consequently the absorption of the laser beam in the plasma plume amounts to ~5% of the beam power in the case of argon and 10% in the case of metal plasma.
Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation
NASA Astrophysics Data System (ADS)
Schubert, Martin; Stober, Jörg; Herrmann, Albrecht; Kasparek, Walter; Leuterer, Fritz; Monaco, Francesco; Petzold, Bernhard; Plaum, Burkhard; Vorbrugg, Stefan; Wagner, Dietmar; Zohm, Hartmut
2017-10-01
The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.
Runaway electron dynamics in tokamak plasmas with high impurity content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín-Solís, J. R., E-mail: solis@fis.uc3m.es; Loarte, A.; Lehnen, M.
2015-09-15
The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impuritiesmore » are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.« less
The Low Temperature Microgravity Physics Experiments Project
NASA Technical Reports Server (NTRS)
Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu;
2000-01-01
The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard the ISS, the other is re-integrated on the ground with new experiments. When the cryogen of the facility in space are exhausted, it will be swapped with the other facility with the new experiment. A total of 20 science missions are envisioned over the next 20 years.
Electron trapping in rad-hard RCA IC's irradiated with electrons and gamma rays
NASA Technical Reports Server (NTRS)
Danchenko, V.; Brashears, S. S.; Fang, P. H.
1984-01-01
Enhanced electron trapping has been observed in n-channels of rad-hard CMOS devices due to electron and gamma-ray irradiation. Room-temperature annealing results in a positive shift in the threshold potential far beyond its initial value. The slope of the annealing curve immediately after irradiation was found to depend strongly on the gate bias applied during irradiation. Some dependence was also observed on the electron dose rate. No clear dependence on energy and shielding over a delidded device was observed. The threshold shift is probably due to electron trapping at the radiation-induced interface states and tunneling of electrons through the oxide-silicon energy barrier to fill the radiation-induced electron traps. A mathematical analysis, based on two parallel annealing kinetics, hole annealing and electron trapping, is applied to the data for various electron dose rates.
Battery driven 8 channel pulse height analyzer with compact, single gamma-peak display
Morgan, John P.; Piper, Thomas C.
1991-01-01
The invention comprises a hand-held wand including an l.e.d. display and a aI photomultiplier tube encased in lead or other suitable gamma shielding material, and an electronics and battery back-pack package connected to the wand.
A Variational Monte Carlo Approach to Atomic Structure
ERIC Educational Resources Information Center
Davis, Stephen L.
2007-01-01
The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.
Magnetic shielding of large high-power-satellite solar arrays using internal currents
NASA Technical Reports Server (NTRS)
Parker, L. W.; Oran, W. A.
1979-01-01
Present concepts for solar power satellites involve dimensions up to tens of kilometers and operating internal currents up to hundreds of kiloamperes. A question addressed is whether the local magnetic fields generated by these strong currents during normal operation can shield the array against impacts by plasma ions and electrons (and from thruster plasmas) which can cause possible losses such as power leakage and surface erosion. One of several prototype concepts was modeled by a long narrow rectangular panel 2 km wide and 20 km long. The currents flow in a parallel across the narrow dimension (sheet current) and along the edge (wire currents). The wire currents accumulate from zero to 100 kiloamp and are the dominant sources. The magnetic field is approximated analytically. The equations of motion for charged particles in this magnetic field are analyzed. The ion and electron fluxes at points on the surface are represented analytically for monoenergetic distributions and are evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com
2014-04-14
A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less
Transport calculations and accelerator experiments needed for radiation risk assessment in space.
Sihver, Lembit
2008-01-01
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.
Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.
Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-05-01
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele
2017-01-11
A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding ability.
X-ray shielding behaviour of kaolin derived mullite-barites ceramic
NASA Astrophysics Data System (ADS)
Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.
2018-03-01
Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.
NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar
2017-09-01
Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.
Li, Xinhua; Zhang, Da; Liu, Bob
2012-07-01
To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard;
2015-01-01
NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.
Absorption property of C@CIPs composites by the mechanical milling process
NASA Astrophysics Data System (ADS)
Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang
2017-09-01
The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.
Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures
NASA Astrophysics Data System (ADS)
Liu, Jun-Hua; Zhang, Quan-Ping; Sun, Nan; Zhao, Yang; Shi, Rui; Zhou, Yuan-Lin; Zheng, Jian
2018-01-01
Radiation shielding materials have attracted much attention across academia and industry because of the increasing of nuclear activities. To achieve the materials with low toxicity but good protective capability is one of the most significant goals for personal protective articles. Here, bismuth tungstate nanostructures are controllably fabricated by a versatile hydrothermal treatment under various temperatures. The crystals structure and morphology of products are detailedly characterized with X-ray diffraction, electron microscope and specific surface area. It is noteworthy that desired Bi2WO6 nanosheets treated with 190 °C show the higher specific surface area (19.5 m2g-1) than that of the other two products. Importantly, it has a close attenuating property to lead based counterpart for low energy gamma-rays. Due to the less toxicity, Bi2WO6 nanosheets are more suitable than lead based materials to fabricate personal protective articles for shielding low energy radiations and have great application prospect as well as market potential.
NASA Technical Reports Server (NTRS)
Soffer, L.; Wright, G. N.
1973-01-01
A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran, R.; Alagar, M.; Dinesh Kumar, S.
We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDFmore » matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.« less
Solar Probe thermal shield design and testing
NASA Technical Reports Server (NTRS)
Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.
1992-01-01
This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.
Dynamics, magnetic properties, and electron binding energies of H2O2 in water.
C Cabral, Benedito J
2017-06-21
Results for the magnetic properties and electron binding energies of H 2 O 2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H 2 O 2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H 2 O 2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H 2 O 2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H 2 O 2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H 2 O 2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ( 17 O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H 2 O 2 .
Quantum tunneling resonant electron transfer process in Lorentzian plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.
Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements
Terando, Adam J.; Youngsteadt, Elsa; Meineke, Emily K.; Prado, Sara G.
2017-01-01
In light of global climate change, ecological studies increasingly address effects of temperature on organisms and ecosystems. To measure air temperature at biologically relevant scales in the field, ecologists often use small, portable temperature sensors. Sensors must be shielded from solar radiation to provide accurate temperature measurements, but our review of 18 years of ecological literature indicates that shielding practices vary across studies (when reported at all), and that ecologists often invent and construct ad hoc radiation shields without testing their efficacy. We performed two field experiments to examine the accuracy of temperature observations from three commonly used portable data loggers (HOBO Pro, HOBO Pendant, and iButton hygrochron) housed in manufactured Gill shields or ad hoc, custom‐fabricated shields constructed from everyday materials such as plastic cups. We installed this sensor array (five replicates of 11 sensor‐shield combinations) at weather stations located in open and forested sites. HOBO Pro sensors with Gill shields were the most accurate devices, with a mean absolute error of 0.2°C relative to weather stations at each site. Error in ad hoc shield treatments ranged from 0.8 to 3.0°C, with the largest errors at the open site. We then deployed one replicate of each sensor‐shield combination at five sites that varied in the amount of urban impervious surface cover, which presents a further shielding challenge. Bias in sensors paired with ad hoc shields increased by up to 0.7°C for every 10% increase in impervious surface. Our results indicate that, due to variable shielding practices, the ecological literature likely includes highly biased temperature data that cannot be compared directly across studies. If left unaddressed, these errors will hinder efforts to predict biological responses to climate change. We call for greater standardization in how temperature data are recorded in the field, handled in analyses, and reported in publications.
The performance of NASA research hydrogen masers
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Rueger, L. J.
1980-01-01
Field operable hydrogen masers based on prior maser designs are presented. These units incorporate improvements in magnetic shielding, lower noise electronics, better thermal control, and have a microprocessor for operation, monitoring, and diagnostic functions. They are ruggedly built for transportability and ease of service anywhere in the world.
Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D
2006-05-01
Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.
Fairfield Plume Measurement and Analysis on the NASA-300M and NASA-300MS
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Shastry, Rohit; Soulas, George C.; Kamhawi, Hani
2013-01-01
NASA is developing a 10- to 15-kW Hall thruster system to support future NASA missions. This activity is funded under the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project. As a part of the development process, the NASA-300M, a 20-kW Hall thruster, was modified to incorporate the magnetic shielding concept and named the NASA-300MS. This activity was undertaken to assess the viability of using the magnetic shielding concept on a high-power Hall thruster to greatly reduce discharge channel erosion. This paper reports on the study to characterize the far-field plumes of the NASA-300M and NASA-300MS. Diagnostics deployed included a polarlyswept Faraday probe, a Wien filter (ExB probe), a retarding potential analyzer, and a Langmuir probe. During the study, a new, more accurate, integration method for analyzing Wien filter probe data was implemented and effect of secondary electron emission on the Faraday probe data was treated. Comparison of the diagnostic results from the two thrusters showed that the magnetically shielded version performed with 2 percent higher voltage utilization efficiency, 2 percent lower plume divergence efficiency, and 2 percent lower mass utilization efficiency compared to the baseline version. The net change in efficiency is within the aggregate measurement uncertainty so the overall performance is roughly equal for the two versions of the thruster. Anode efficiency calculated from thrust stand measurement corroborates this finding.
Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Atwell, William
2016-01-01
Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.
Adimensional theory of shielding in ultracold collisions of dipolar rotors
NASA Astrophysics Data System (ADS)
González-Martínez, Maykel L.; Bohn, John L.; Quéméner, Goulven
2017-09-01
We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their first rotational excited state, using an adimensional approach. We establish a map of good and bad candidates for efficient evaporative cooling based on this shielding mechanism, by presenting the ratio of elastic over quenching processes as a function of a rescaled rotational constant B ˜=B /sE3 and a rescaled electric field F ˜=d F /B . B ,d ,F ,andsE 3 are respectively the rotational constant, the full electric dipole moment of the molecules, the applied electric field, and a characteristic dipole-dipole energy. We identify two groups of bi-alkali-metal dipolar molecules. The first group, including RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is favorable with a ratio over 1000 at collision energies equal to (or even higher than) their characteristic dipolar energy. The second group, including LiNa and KRb, is not favorable. More generally, for molecules well described by Hund's case b, our adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate rescaled rotational constant and rescaled field is approximately B ˜≥108 and 3.25 ≤F ˜≤3.8 , with a maximum ratio reached for F ˜≃3.4 for a given B ˜. We also discuss the importance of the electronic van der Waals interaction on the adimensional character of our study.
Radiation environment on board Foton-M 3: the neutron component
NASA Astrophysics Data System (ADS)
Falzetta, Giuseppe; Zanini, Alba; Chiorra, Katia; Briccarello, Mauro; Belluco, Maurizio; Longo, Francesco; Jerse, Giovanna
The recoverable capsule Foton-M 3 (ESA mission) was launched from Baikonur on 2007 September 14 and landed on the Russian-Kazakh border 12 days later. The spacecraft carried on board several ESA experiments. During this space mission a study has been performed on the neutron component of the radiation environment inside the capsule. Neutrons are a not avoidable component of the secondary radiation produced by interaction of primary radiation with the spacecraft shielding. Because of their high LET, neutrons could represent a main risk for both the electronic instruments and the health of the astronauts during space missions. Monte Carlo simulations performed by Geant4 code have been carried out using as input primary proton and alpha spectra, obtained by various tools (i.e. Creme 96, Omere, etc . . . ) and the neutron fluxes and doses, as a function of neutron energies, have been evaluated. The simulation results are compared with experimental data obtained by passive neutron detectors. In this study the effectiveness of various shielding materials useful in space mission has been also investigated.
A study on leakage radiation dose at ELV-4 electron accelerator bunker
NASA Astrophysics Data System (ADS)
Chulan, Mohd Rizal Md; Yahaya, Redzuwan; Ghazali, Abu BakarMhd
2014-09-01
Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker's door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.
Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer
NASA Technical Reports Server (NTRS)
Pugel, Diane
2011-01-01
This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous waste threats during its lifecycle. The material composition is radiation-tolerant up to megarad doses, indicating its use as a radiation shielding material. It is lightweight, non-metallic, and able to be mechanically densified, permitting a tunable gradient of thermal and radiation protection as needed. The dual-use (thermal and radiation shielding), sustainable nature of this material makes it suitable for both industrial applications as a sustainable/green building material, and for space applications as thermal protection material and radiation shield.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2014-01-01
The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.
Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system
NASA Astrophysics Data System (ADS)
Kaur, Parminder; Singh, K. J.; Thakur, Sonika
2018-05-01
Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.
A thermal shield concept for the Solar Probe mission
NASA Technical Reports Server (NTRS)
Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.
1991-01-01
The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.
Sanli, Ilknur; Arts, Jacobus Johannes Christiaan; Geurts, Jan
2016-01-01
Stress shielding remains a concern in total hip arthroplasty. The consequences of stress shielding in hydroxyapatite-coated femoral component revisions were evaluated in a prospective cohort study. A total of 106 patients operated on by revision total hip arthroplasty were identified. Sixty-three patients were eligible for clinical and radiologic assessment of osseointegration, bone remodeling, and stress shielding. Five patients showed evidence of excessive stress shielding. One patient experienced a periprosthetic fracture. No adverse events occurred in the remaining patients with a low rate of thigh pain and reliable osseointegration. This is the only available study concerning mid- to long-term consequences of excessive stress shielding in hydroxyapatite-coated revision stems. We advocate surgeons using these stems to remain vigilant and be aware of possible stress shielding side effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of vacuum processing on outgassing within an orbiting molecular shield
NASA Technical Reports Server (NTRS)
Outlaw, R. A.
1982-01-01
The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.
Passive magnetic shielding in MRI-Linac systems.
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul
2018-03-26
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Passive magnetic shielding in MRI-Linac systems
NASA Astrophysics Data System (ADS)
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul
2018-04-01
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Modular power converter having fluid cooled support
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-09-06
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Modular power converter having fluid cooled support
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-12-06
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Compact fluid cooled power converter supporting multiple circuit boards
Radosevich, Lawrence D.; Meyer, Andreas A.; Beihoff, Bruce C.; Kannenberg, Daniel G.
2005-03-08
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Measurements of occupational exposure for a technologist performing 18F FDG PET scans.
Biran, Talma; Weininger, Jolie; Malchi, Shalom; Marciano, Rami; Chisin, Roland
2004-11-01
Radiation doses to one PET technologist performing 100 18F FDG (18F fluorodeoxyglucose) imaging procedures were measured in a clinical setting using two types of thermoluminescent dosimeter (TLD) badges, one finger-ring TLD and one electronic pocket dosimeter (EPD). 18F FDG was handled either with unshielded or with viewing window tungsten shielded syringes. The resulting doses using unshielded syringes were 13.8 +/- 0.8 microSv/370 MBq and 14.3 +/- 0.4 microSv/370 MBq, measured with TLD 100 and with TLD 700H/600H, respectively. For the same series of measurements, the doses obtained using shielded syringes were 10.7 +/- 0.4 microSv/370 MBq and 7.2 +/- 2.1 microSv/370 MBq with TLD700H/600H and with EPD, respectively. The dose to the right hand from shielded syringes was 69.3 +/- 5.5 microSv/370 MBq. All these values are within the ICRP recommended dose limits. Extrapolated to 725 examinations per year, the resulting effective dose measured with TLD would be 10 mSv with unshielded and 7.5 mSv with shielded syringes, respectively (25% dose reduction). The doses measured by TLD were consistently higher than those measured by EPD, suggesting that EPD measurements might underestimate occupational doses.
Using FLUKA to Calculate Spacecraft: Single Event Environments: A Practical Approach
NASA Technical Reports Server (NTRS)
Koontz, Steve; Boeder, Paul; Reddell, Brandon
2009-01-01
The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.
Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min
2017-09-21
Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm -3 ) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm -3 ). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m -1 K -1 ) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm -3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.
Investigations of some building materials for γ-rays shielding effectiveness
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Kaur, Baljit; Sidhu, Gurdeep Singh; Kumar, Ajay
2013-06-01
For construction of residential and non-residential buildings bricks are used as building blocks. Bricks are made from mixtures of sand, clay, cement, fly ash, gypsum, red mud and lime. Shielding effectiveness of five soil samples and two fly ash samples have been investigated using some energy absorption parameters (Mass attenuation coefficients, mass energy absorption coefficients, KERMA (kinetic energy released per unit mass), HVL, equivalent atomic number and electron densities) firstly at 14 different energies from 81-1332 keV then extended to wide energy range 0.015-15 MeV. The soil sample with maximum shielding effectiveness has been used for making eight fly ash bricks [(Lime)0.15 (Gypsum)0.05 (Fly Ash)x (Soil)0.8-x, where values of x are from 0.4-0.7]. High Purity Germanium (HPGe) detector has been used for gamma-ray spectroscopy. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence (EDXRF) spectrometer. The agreements of theoretical and experimental values of mass attenuation coefficient have been found to be quite satisfactory. It has been verified that common brick possess the maximum shielding effectiveness for wide energy range 0.015-15 MeV. The results have been shown graphically with some useful conclusions for making radiation safe buildings.
2004-04-15
The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.
You're a What?: Tower Technician
ERIC Educational Resources Information Center
Vilorio, Dennis
2012-01-01
In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…
Temperature-Adaptive Circuits on Reconfigurable Analog Arrays
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas
2006-01-01
Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).
The design of the electron beam dump unit of Turkish Accelerator Center (TAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cite, L. H., E-mail: hcite@gantep.edu.tr; Yilmaz, M., E-mail: Mustafa.Yilmaz@gaziantep.edu.tr
The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in themore » bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.« less
NASA Astrophysics Data System (ADS)
Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team
2017-10-01
Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.
NASA Technical Reports Server (NTRS)
Pearce, W. E.
1982-01-01
An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.
New applications and developments in the neutron shielding
NASA Astrophysics Data System (ADS)
Uğur, Fatma Aysun
2017-09-01
Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.
1979-01-01
A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
NASA Astrophysics Data System (ADS)
Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar
2016-10-01
In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.
Magnetic Johnson Noise Constraints on Electron Electric Dipole Moment Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, C.
2004-11-18
Magnetic fields from statistical fluctuations in currents in conducting materials broaden atomic linewidths by the Zeeman effect. The constraints so imposed on the design of experiments to measure the electric dipole moment of the electron are analyzed. Contrary to the predictions of Lamoreaux [S.K. Lamoreaux, Phys. Rev. A60, 1717(1999)], the standard material for high-permeability magnetic shields proves to be as significant a source of broadening as an ordinary metal. A scheme that would replace this standard material with ferrite is proposed.
RADIATION DAMAGE TO SATELLITE ELECTRONIC SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, S.C.
The radiation sensitivity of satellite electronic systems was examined in order to determine the limitations they place on satellite life. The effects of radiation on components are briefly reviewed. Methods are presented and illustrated for determining the minimum radiation level at which circuit failure could occur. The effects of shielding on the radiation belt levels are discussed. It is shown that the effects of space radiation on satellite circuits, in general, can be made negligible by using good design practices. (M.C.G.)
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Darty, Ronald C.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.
2008-01-01
Primary Objective: 1) A computational tool to accurately predict electronics performance in the presence of space radiation in support of spacecraft design: a) Total dose; b) Single Event Effects; and c) Mean Time Between Failure. (Developed as successor to CR ME96.) Secondary Objectives: 2) To provide a detailed description of the natural radiation environment in support of radiation health and instrument design: a) In deep space; b) Inside the magnetosphere; and c) Behind shielding.
Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noises.
NASA Astrophysics Data System (ADS)
Wong, Raymond Lee Man
This analytical and experimental study explores concepts for jet noise shielding. Model experiments centre on solid planar shields, simulating engine-over-wing installations, and 'sugar scoop' shields. Tradeoff on effective shielding length is set by interference 'edge noise' as the shield trailing edge approaches the spreading jet. Edge noise is minimized by (i) hyperbolic cutouts which trim off the portions of most intense interference between the jet flow and the barrier and (ii) hybrid shields--a thermal refractive extension (a flame); for (ii) the tradeoff is combustion noise. In general, shielding attenuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several dB, the reduction of the subjectively weighted perceived noise levels is higher. In addition, calculated ground contours of peak PN dB show a substantial contraction due to shielding: this reaches 66% for one of the 'sugar scoop' shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding. The former approach combines point source shielding with a suitable jet source distribution. The results are synthesized into a predictive algorithm for jet noise shielding: the jet is modelled as a line distribution of incoherent sources with narrow band frequency (TURN)(axial distance)('-1). The predictive version agrees well with experiment (1 to 1.5 dB) up to moderate frequencies. The insertion loss deduced from the point source measurements for semi-infinite as well as finite rectangular shields agrees rather well with theoretical calculation based on the exact half plane solution and the superposition of asymptotic closed-form solutions. An approximate theory, the Maggi-Rubinowicz line integral, is found to yield reasonable predictions for thin barriers including cutouts if a certain correction is applied. The more exact integral equation approach (solved numerically) is applied to a more demanding geometry: a half round sugar scoop shield. It is found that the solutions of integral equation derived from Helmholtz formula in normal derivative form show satisfactory agreement with measurements.
SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Sauer, O
2016-06-15
Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of amore » 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.« less
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-08-22
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Vehicle drive module having improved cooling configuration
Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.
2007-02-13
An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2005-05-24
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Thermally matched fluid cooled power converter
Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.
2005-06-21
A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Department of Engineering Physics, Tsinghua University, Beijing; Tian, Z
Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less
Supported plasma sputtering apparatus for high deposition rate over large area
Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils
1977-01-01
A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.
Update on the status of the ITER ECE diagnostic design
NASA Astrophysics Data System (ADS)
Taylor, G.; Austin, M. E.; Basile, A.; Beno, J. H.; Danani, S.; Feder, R.; Houshmandyar, S.; Hubbard, A. E.; Johnson, D. W.; Khodak, A.; Kumar, R.; Kumar, S.; Ouroua, A.; Padasalagi, S. B.; Pandya, H. K. B.; Phillips, P. E.; Rowan, W. L.; Stillerman, J.; Thomas, S.; Udintsev, V. S.; Vayakis, G.; Walsh, M.; Weeks, D.
2017-07-01
Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE) diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM) in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70-1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200-300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.
Active magnetic compensation composed of shielding panels.
Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M
2004-11-30
Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.
Fabrication of compact electron gun for 6 MeV X-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodke, S.R.; Barnwal, Rajesh; Kumar, Mahendra, E-mail: ghodke_barc@yahoo.co.in
The 6 MeV X-Ray source for container cargo scanning application has been designed and developed by the Accelerator and Pulse Power Division, BARC, Mumbai. This compact linac has been designed as a mobile system, to be mounted on a moving container. In linac-based cargo-scanning system, to work electron gun on a movable container, it has to be robust. Electron gun is to work at 10{sup -7} mbar vacuum and 2000 degree Celsius temperature. An effort is made to engineer the gun assembly to make it more robust and aligned. The linac acts as the source of X-rays, which fall onmore » the cargo and are then detected by the detector system. Many components are indigenously developed like grid, insulating ring, Tungsten filament and filament guide, which are made from alumina ceramic and Tantalum which is to work at 1500 degree Celsius. Filament connector is made from Invar to reduce heat loss and to make rigid connection. It was CNC machined and wire cut by EDM. Invar and Copper electrode feed through is shrink fitted with the help of liquid Nitrogen. Shrink fit tolerances of 15 micrometer are achieved by jig boring machining processes. Tantalum cup for LaB6 cathode and heat shield are made from die and punch mechanism. For alignment of electron emitter with beam axis this Tantalum cup is a crucial component. Electron gun is assembled and aligned its components with the help of precision jigs. The whole assembly was Helium leak tested by MSLD up to 4 x 10{sup -10} mbar.l/s vacuum, no leak was found. This paper will describe the machining, Tantalum cup forming, ceramic components development, heat shields, ceramic feed through etc of electron gun. (author)« less
Music and the brain - design of an MEG compatible piano.
Chacon-Castano, Julian; Rathbone, Daniel R; Hoffman, Rachel; Heng Yang; Pantazis, Dimitrios; Yang, Jason; Hornberger, Erik; Hanumara, Nevan C
2017-07-01
Magnetoencephalography (MEG) neuroimaging has been used to study subjects' responses when listening to music, but research into the effects of playing music has been limited by the lack of MEG compatible instruments that can operate in a magnetically shielded environment without creating electromagnetic interference. This paper describes the design and preliminary testing of an MEG compatible piano keyboard with 25 full size keys that employs a novel 3-state optical encoder design and electronics to provide realistic velocity-controlled volume modulation. This instrument will allow researchers to study musical performance on a finer timescale than fMRI and enable a range of MEG studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, Peter; Heyn, Martin F.; Kernbichler, Winfried
In this paper, the impact of momentum and energy conservation of the collision operator in the kinetic description for Resonant Magnetic Perturbations (RMPs) in a tokamak is studied. The particle conserving differential collision operator of Ornstein-Uhlenbeck type is supplemented with integral parts such that energy and momentum are conserved. The application to RMP penetration in a tokamak shows that energy conservation in the electron collision operator is important for the quantitative description of plasma shielding effects at the resonant surface. On the other hand, momentum conservation in the ion collision operator does not significantly change the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xinhua; Zhang Da; Liu, Bob
2012-07-15
Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less
Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M
2010-08-01
Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.
Equal Measure: Shielding Students and Enabling Access
ERIC Educational Resources Information Center
Pierce, Margo
2012-01-01
"If one life is saved, then it's worth it." That is the cliched argument frequently used to justify banning electronic communications, websites, and other forms of technology in schools. The common belief is that these prohibitions will prevent, among other things, the sexual assault of minors or suicides related to cyberbullying. But that…
Predictions of cell damage rates for Lifesat missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Atwell, William; Hardy, Alva C.; Golightly, Michael J.; Wilson, John W.; Townsend, Lawrence W.; Shinn, Judy; Nealy, John E.; Katz, Robert
1990-01-01
The track model of Katz is used to make predictions of cell damage rates for possible Lifesat experiments. Contributions from trapped protons and electrons and galactic cosmic rays are considered for several orbits. Damage rates for survival and transformation of C3HT10-1/2 cells are predicted for various spacecraft shields.
Spacecraft Charging Technology, 1978
NASA Technical Reports Server (NTRS)
1979-01-01
The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.
Simulated E-Bomb Effects on Electronically Equipped Targets
2009-09-01
coupling model program (CEMPAT), pursuing a feasible geometry of attack, practical antennas, best coupling approximations of ground conductivity and...procedure to determine these possible effects is to estimate the electromagnetic coupling from first principles and simulations using a coupling model ...Applications .................................... 16 B. SYSTEM OF INTEREST MODEL AS A TARGET ............................. 16 1. Shielding Methods, as
Advanced Instrumentation for Positron Emission Tomography [PET
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.
1985-04-01
This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.
Search for the permanent electric dipole moment of 129Xe
NASA Astrophysics Data System (ADS)
Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep
2017-09-01
CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.
1995-01-01
Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding
NASA Astrophysics Data System (ADS)
Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing
2018-04-01
A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.
The final results of the Mi-Beta Cryogenic Experiment towards the CUORICINO Experiment
NASA Astrophysics Data System (ADS)
Pirro, S.; Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; McDonald, R. J.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pobes, C.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.
2002-02-01
We present the final results on neutrinoless Double Beta Decay (DBD) of 130Te obtained with an array of 20 cryogenic detectors. The Mi-Beta Experiment is operating since 3 years and was upgraded in March 2001. The background in the DBD energy region was reduced thanks to a new Roman lead shield framed inside the dilution unit and a neutron shield mounted outside the cryostat. We also improved the energy threshold using a cold electronic stage inside the cryostat. The new set-up represents also a good test for the CUORICINO Experiment. CUORICINO will start by the beginning of 2002 and will consist of 56 Tellurium Oxide Crystal with an overall bolometric mass of 42 kg. .
High Power Laser Welding. [of stainless steel and titanium alloy structures
NASA Technical Reports Server (NTRS)
Banas, C. M.
1972-01-01
A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.
1990-01-01
Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
The implementation of physical safety system in bunker of the electron beam accelerator
NASA Astrophysics Data System (ADS)
Ahmad, M. A.; Hashim, S. A.; Ahmad, A.; Leo, K. W.; Chulan, R. M.; Dalim, Y.; Baijan, A. H.; Zain, M. F.; Ros, R. C.
2017-01-01
This paper describes the implementation of physical safety system for the new low energy electron beam (EB) accelerator installed at Block 43T Nuclear Malaysia. The low energy EB is a locally designed and developed with a target energy of 300 keV. The issues on radiation protection have been addressed by the installation of radiation shielding in the form of a bunker and installation radiation monitors. Additional precaution is needed to ensure that personnel are not exposed to radiation and other physical hazards. Unintentional access to the radiation room can cause serious hazard and hence safety features must be installed to prevent such events. In this work we design and built a control and monitoring system for the shielding door. The system provides signals to the EB control panel to allow or prevent operation. The design includes limit switches, key-activated switches and emergency stop button and surveillance camera. Entry procedure is also developed as written record and for information purposes. As a result, through this safety implementation human error will be prevented, increase alertness during operation and minimizing unnecessary radiation exposure.
Walls, Alexandra C.; Tortorici, M. Alejandra; Frenz, Brandon; Snijder, Joost; Li, Wentao; Rey, Félix A.; DiMaio, Frank; Bosch, Berend-Jan; Veesler, David
2017-01-01
The threat of a major coronavirus pandemic urges the development of suitable strategies to combat these pathogens. HCoV-NL63 is an α-coronavirus that can cause severe lower respiratory tract infections requiring hospitalization. We report here the 3.4 Å resolution cryo-electron microscopy reconstruction of the HCoV-NL63 coronavirus spike glycoprotein trimer, which is the conformational machine responsible for entry into host cells and the sole target of neutralizing antibodies during infection. The map resolves the extensive glycan shield obstructing the protein surface and, in combination with mass-spectrometry, provides a structural framework to understand accessibility to antibodies. The structure also reveals a remarkable modular architecture of the receptor-binding subunit and the complete architecture of the fusion machinery including the triggering loop and the C-terminal domains, which contribute to anchoring the trimer to the viral membrane. Our data further suggest that HCoV-NL63 and other coronaviruses use molecular trickery, based on masking of epitopes with glycans and activating conformational changes, to evade the immune system of infected hosts. PMID:27617430
NASA Astrophysics Data System (ADS)
Rane, Tejas; Chakravarty, Anindya; Klebaner, Arkadiy
2017-12-01
Transferline thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Copper/Aluminium is widely used to fabricate thermal shields because of their higher thermal diffusivity. This causes uniformity of temperature along the surface of the shield thus reducing thermal stresses within allowable values. However, factors such as raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material for thermal shields in the PIP2IT transferline. The present paper discusses the design approach, various factors affecting the conservative selection of thermal shield design.
A novel electron accelerator for MRI-Linac radiotherapy.
Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca
2016-03-01
MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility.
A novel electron accelerator for MRI-Linac radiotherapy
Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca
2016-01-01
Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility. PMID:26936713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, David; Rickey, Daniel; Dubey, Arbind
Purpose: We describe the process by which our centre is currently implementing 3D printing and scanning technology for treatment accessory fabrication. This technology can increase efficiency and accuracy of accessory design, production and placement during daily use. Methods: A low-cost 3D printer and 3D optical scanner have been purchased and are being commissioned for clinical use. Commissioning includes assessing: the accuracy of the 3D scanner through comparison with high resolution CT images; the dosimetric characteristics of polylactic acid (PLA) for electron beams; the clinical utility of the technology, and; methods for quality assurance. Results: The agreement between meshes generated usingmore » the 3D scanner and CT data was within 2 millimeters for an anthropomorphic head phantom. In terms of electron beam attenuation, 1 centimetre of printed PLA was found equivalent to 1.17 cm of water. In proof-of-concept tests, several types of treatment accessories have been prototyped to date that will benefit from this technology. These include electron and photon bolus for areas with complex surface contours including the ear for electron treatments, the extremities for photon treatments and lead shielding for orthovoltage treatments. Imaging with CT and x-ray showed minimal defects, which will have no significant clinical impact. Geometric fidelity and fit to volunteers and patients was found to be excellent. Conclusions: 3D Printing and scanning can increase efficiency in the clinic for treatments requiring custom accessories. Customized boluses and shielding had excellent fit and reduced uncertainty in positioning.« less
The RICH detector of the CBM experiment
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-12-01
The CBM-RICH detector is designed to identify electrons with momenta up to 8 GeV/c and high purity as this is essential for the CBM physics program. The detector consist of a CO2-gaseous radiator, a spherical mirror system, and Multi-Anode PhotoMultiplier Tubes (MAPMT) of type H12700 from Hamamatsu as photon detectors. The detector concept was verified through R&D studies and a laterally scaled prototype. The results were summarized in a TDR, in which open issues were defined concerning the readout electronics, the shielding of the magnetic stray field in the MAPMT region, the radiation hardness of the MAPMT sensors, and the mechanical holding structure of the mirror system. In this article an overview is given on the CBM RICH development with focus on those open issues.
Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S
2015-11-01
To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.
SU-E-T-564: Multi-Helix Rotating Shield Brachytherapy for Cervical Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadkhah, H; Wu, X; Flynn, R
Purpose: To present a novel and practical brachytherapy technique, called multi-helix rotating shield brachytherapy (H-RSBT), for the precise positioning of a partial shield in a curved applicator. H-RSBT enables RSBT delivery using only translational motion of the radiation source/shield combination. H-RSBT overcomes the challenges associated with previously proposed RSBT approaches based on a serial (S-RSBT) step-and-shoot delivery technique, which required independent translational and rotational motion. Methods: A Fletcher-type applicator, compatible with the combination of a Xoft Axxent™ electronic brachytherapy source and a 0.5 mm thick tungsten shield, is proposed. The wall of the applicator contains six evenly-spaced helical keyways thatmore » rigidly define the emission direction of the shield as a function of depth. The shield contains three protruding keys and is attached to the source such that it rotates freely. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients representative of a wide range of high-risk clinical target volume (HR-CTV) shapes and applicator positions. The number of beamlets used in the treatment planning process was nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. For all the treatment plans the EQD2 of the HR-CTV was escalated until the EQD{sub 2cc} tolerance of either the bladder, rectum, or sigmoid colon was reached. Results: Treatment times for H-RSBT tended to be shorter than for S-RSBT, with changes of −38.47% to 1.12% with an average of −8.34%. The HR-CTV D{sub 90} changed by −8.81% to 2.08% with an average of −2.46%. Conclusion: H-RSBT is a mechanically feasible technique in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT dose distributions were clinically equivalent for all patients considered, with the H-RSBT deliveries tending to be faster. Ryan Flynn has ownership interest in pxAlpha, LLC, which is a startup company developing a rotating shield brachytherapy system.« less
Shield Optimization in Simple Geometry for the Gateway Concept
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Simonsen, L. C.; Nealy, J. E.; Troutman, P. A.; Wilson, J. W.
2002-01-01
The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.
Irradiation caused performance losses of undulators equipped with Sm2Co17 magnets
NASA Astrophysics Data System (ADS)
Heidrich, S.; Aulenbacher, K.; Donders, S.; Nikipelov, A.
2018-06-01
The effects of beam losses on the performance of undulators equipped with Sm2Co17 magnets were investigated at the 855 MeV beamline of the Mainzer Microtron MAMI. Therefore, different cases containing undulator components as well as complete undulator assemblies were irradiated. Different types of shielding were used to distinguish the magnetic field degradation caused by neutrons from the degradation caused by electrons and photons. The results of each case were put in relation with the expected beam losses of a conceptional 10 kW free-electron-laser (FEL) based on an electron beam with 34 MW beam power.
Electrical power converter method and system employing multiple output converters
Beihoff, Bruce C [Wauwatosa, WI; Radosevich, Lawrence D [Muskego, WI; Meyer, Andreas A [Richmond Heights, OH; Gollhardt, Neil [Fox Point, WI; Kannenberg, Daniel G [Waukesha, WI
2007-05-01
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Fluid cooled vehicle drive module
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-11-15
An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Electrical power converter method and system employing multiple-output converters
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2006-03-21
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Technical Reports Server (NTRS)
Bourrieau, J.
1993-01-01
One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Astrophysics Data System (ADS)
Bourrieau, J.
1993-04-01
One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.
A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection
NASA Astrophysics Data System (ADS)
Staib, Michael; Gnanvo, Kondo; Grasso, Leonard; Hohlmann, Marcus; Locke, Judson; Costa, Filippo; Martoiu, Sorin; Muller, Hans
2011-10-01
Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with six to ten 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ˜130 μm in both dimensions and the station is operated at a muon trigger rate of ˜20 Hz. The 1,536 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.
SHIELDS Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania Koleva
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data frommore » LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.« less
2011-01-01
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633
Polymer-composite materials for radiation protection.
Nambiar, Shruti; Yeow, John T W
2012-11-01
Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.
Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen
2012-09-01
A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.
The VBB SEIS experiment of InSight
NASA Astrophysics Data System (ADS)
De Raucourt, Sebastien; Gabsi, Taoufik; Tanguy, Nebut; Mimoun, David; Lognonne, Philippe; Gagnepain-Beyneix, Jeannine; Banerdt, William; Tillier, Sylvain; Hurst, Kenneth
2012-07-01
SEIS is the core payload of InSight, one of the three missions selected for competitive phase A in the frame of the 2010 Discovery AO. It aims at providing unique observation of the interior structure of Mars and to monitor seismic activity of Mars. SEIS will provide the first seismic model from another planet than Earth. SEIS is an hybrid seismometer composed of 3 SPs and 3 VBBs axes providing ground motion measurement from Dc to 50Hz. A leveling system will ensure the coupling between the ground and the sensors as well as the horizontality of the VBB sphere. This assembly will be deployed on the ground of Mars and will be shielded by a strong thermal insulation and a wind shield. The 24 bits low noise acquisition electronics will remain in the warm electronic box of the lander with the sensors feedback and leveling system electronics. The VBB sphere enclosed three single axis sensors. Those sensors are based on an inverted leaf spring pendulum, which convert ground acceleration into mobile mass displacement. A capacitive displacement sensor monitors this mass displacement to provide a measurement. A force feedback allows transfer function and sensitivity tuning. The VBB sensor has a very strong heritage from previous project and benefits from recent work to improve its performances. Both the mechanical design and the displacement sensors have optimized to improve performances while reducing technological risk and keeping a high TRL. From those development a self-noise well below 10 ^{-9} m.s ^{-2}/sqrt Hz is expected. Environmental sensitivity of SEIS has been minimized by the design of a very efficient wind and thermal shield. Remaining noise is expected to be very close to the VBB self-noise. Associated sources and budget will be discussed. If InSight is selected to fly in 2016, this experiment will provide very high quality seismic signal measurement with a wider bandwidth, higher sensitivity and lower noise than previous Mars seismometer (Viking and Optimism/Mars 96).
Shielding Structures for Interplanetary Human Mission
NASA Astrophysics Data System (ADS)
Tracino, Emanuele; Lobascio, Cesare
2012-07-01
Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila
2002-01-01
Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek
2010-08-01
In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.
Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2015-11-10
Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.
Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust
NASA Astrophysics Data System (ADS)
Korja, T.; Hjelt, S.-E.
1993-12-01
Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of the Svecofennian Domain.
NASA Astrophysics Data System (ADS)
Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi
1994-07-01
Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.
Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission
Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-01-01
Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685
SU-E-T-495: Neutron Induced Electronics Failure Rate Analysis for a Single Room Proton Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knutson, N; DeWees, T; Klein, E
2014-06-01
Purpose: To determine the failure rate as a function of neutron dose of the range modulator's servo motor controller system (SMCS) while shielded with Borated Polyethylene (BPE) and unshielded in a single room proton accelerator. Methods: Two experimental setups were constructed using two servo motor controllers and two motors. Each SMCS was then placed 30 cm from the end of the plugged proton accelerator applicator. The motor was then turned on and observed from outside of the vault while being irradiated to known neutron doses determined from bubble detector measurements. Anytime the motor deviated from the programmed motion a failuremore » was recorded along with the delivered dose. The experiment was repeated using 9 cm of BPE shielding surrounding the SMCS. Results: Ten SMCS failures were recorded in each experiment. The dose per monitor unit for the unshielded SMCS was 0.0211 mSv/MU and 0.0144 mSv/MU for the shielded SMCS. The mean dose to produce a failure for the unshielded SMCS was 63.5 ± 58.3 mSv versus 17.0 ±12.2 mSv for the shielded. The mean number of MUs between failures were 2297 ± 1891 MU for the unshielded SMCS and 2122 ± 1523 MU for the shielded. A Wilcoxon Signed Ranked test showed the dose between failures were significantly different (P value = 0.044) while the number of MUs between failures were not (P value = 1.000). Statistical analysis determined a SMCS neutron dose of 5.3 mSv produces a 5% chance of failure. Depending on the workload and location of the SMCS, this failure rate could impede clinical workflow. Conclusion: BPE shielding was shown to not reduce the average failure of the SMCS and relocation of the system outside of the accelerator vault was required to lower the failure rate enough to avoid impeding clinical work flow.« less
Measurement of Cosmic-Ray TeV Electrons
NASA Astrophysics Data System (ADS)
Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.; Tarle, G.; Wakely, S.
2011-09-01
The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. At these energies distant sources will not contribute to the local electron spectrum due to the strong energy losses of the electrons and thus TeV observations will reflect the distribution and abundance of nearby acceleration sites. CREST will detect electrons indirectly by measuring the characteristic synchrotron photons generated in the Earth's magnetic field. The instrument consist of an array of 1024 BaF2 crystals viewed by photomultiplier tubes surrounded by a hermetic scintillator shield. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica during the 2011-12 season.