Sample records for electron skin depth

  1. Nonextensive statistics and skin depth of transverse wave in collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemzadeh, M., E-mail: hashemzade@gmail.com

    Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less

  2. The Lateral Decubitus Breast Boost: Description, Rationale, and Efficacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Michelle S., E-mail: mludwig@mdanderson.or; McNeese, Marsha D.; Buchholz, Thomas A.

    2010-01-15

    Purpose: To describe and evaluate the modified lateral decubitus boost, a breast irradiation technique. Patients are repositioned and resimulated for electron boost to minimize the necessary depth for the electron beam and optimize target volume coverage. Methods and Materials: A total of 2,606 patients were treated with post-lumpectomy radiation at our institution between January 1, 2000, and February 1, 2008. Of these, 231 patients underwent resimulation in the lateral decubitus position with electron boost. Distance from skin to the maximal depth of target volume was measured in both the original and boost plans. Age, body mass index (BMI), boost electronmore » energy, and skin reaction were evaluated. Results: Resimulation in the lateral decubitus position reduced the distance from skin to maximal target volume depth in all patients. Average depth reduction by repositioning was 2.12 cm, allowing for an average electron energy reduction of approximately 7 MeV. Mean skin entrance dose was reduced from about 90% to about 85% (p < 0.001). Only 14 patients (6%) experienced moist desquamation in the boost field at the end of treatment. Average BMI of these patients was 30.4 (range, 17.8-50.7). BMI greater than 30 was associated with more depth reduction by repositioning and increased risk of moist desquamation. Conclusions: The lateral decubitus position allows for a decrease in the distance from the skin to the target volume depth, improving electron coverage of the tumor bed while reducing skin entrance dose. This is a well-tolerated regimen for a patient population with a high BMI or deep tumor location.« less

  3. Microplasma effect on skin scaffold for melanoma cancer treatment

    NASA Astrophysics Data System (ADS)

    Abdullah, Zulaika; Zaaba, S. K.; Mustaffa, M. T.; Mohamad, C. W. S. R.; Zakaria, A.

    2017-03-01

    An atmospheric plasma system using Helium gas was developed. The effect of helium plasma treatment on skin scaffold surface was studied by scanning electron microscopy (SEM). The changes of skin scaffold surfaces before and after helium plasma treatment was recorded. The surface of skin scaffold changed with the prolonged of helium plasma treatment time. The depth of helium plasma penetration was studied using methylene blue dye staining method. The methylene blue will detect the presence or absence of an oxygen that was induced from plasma excitation. The presence of the oxygen indicated on the depth of helium plasma penetration. Results showed plasma are able to penetrate 4mm of skin scaffold after 1200 seconds of exposure.

  4. SU-E-T-373: Evaluation and Reduction of Contralateral Skin /subcutaneous Dose for Tangential Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M; Carroll, S; Whitaker, M

    2015-06-15

    Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less

  5. Electron inertia and quasi-neutrality in the Weibel instability

    NASA Astrophysics Data System (ADS)

    Camporeale, Enrico; Tronci, Cesare

    2017-06-01

    While electron kinetic effects are well known to be of fundamental importance in several situations, the electron mean-flow inertia is often neglected when length scales below the electron skin depth become irrelevant. This has led to the formulation of different reduced models, where electron inertia terms are discarded while retaining some or all kinetic effects. Upon considering general full-orbit particle trajectories, this paper compares the dispersion relations emerging from such models in the case of the Weibel instability. As a result, the question of how length scales below the electron skin depth can be neglected in a kinetic treatment emerges as an unsolved problem, since all current theories suffer from drawbacks of different nature. Alternatively, we discuss fully kinetic theories that remove all these drawbacks by restricting to frequencies well below the plasma frequency of both ions and electrons. By giving up on the length scale restrictions appearing in previous works, these models are obtained by assuming quasi-neutrality in the full Vlasov-Maxwell system.

  6. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, G., E-mail: gohar.abbas@gcu.edu.pk; Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring themore » ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].« less

  7. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  8. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  9. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    NASA Astrophysics Data System (ADS)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in skin depth with magnetic field and a damping of the effect of B with pressure. The flat coil geometry which launches waves more nearly parallel to B allows enhanced wave penetration at higher pressures than the standard helical coil.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández

    Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less

  11. Dynamics of laser ablation at the early stage during and after ultrashort pulse

    NASA Astrophysics Data System (ADS)

    Ilnitsky, D. K.; Khokhlov, V. A.; Zhakhovsky, V. V.; Petrov, Yu V.; Migdal, K. P.; Inogamov, N. A.

    2016-11-01

    Study of material flow in two-temperature states is needed for a fundamental understanding the physics of femtosecond laser ablation. To explore phenomena at a very early stage of laser action on a metallic target our in-house two-temperature hydrodynamics code is used here. The early stage covers duration of laser pulse with next first few picoseconds. We draw attention to the difference in behavior at this stage between the cases: (i) of an ultrathin film (thickness of order of skin depth d skin or less), (ii) thin films (thickness of a film is 4-7 of d skin for gold), and (iii) bulk targets (more than 10d skin for gold). We demonstrate that these differences follow from a competition among conductive cooling of laser excited electrons in a skin layer, electron-ion coupling, and hydrodynamics of unloading caused by excess of pressure of excited free electrons. Conductive cooling of the skin needs a heat sink, which is performed by the cold material outside the skin. Such sink is unavailable in the ultrathin films.

  12. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    NASA Astrophysics Data System (ADS)

    Gamble, Lisa M.; Farrell, Thomas J.; Jones, Glenn W.; Hayward, Joseph E.

    2003-04-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions.

  13. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film.

    PubMed

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-04-07

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions.

  14. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  15. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment.

    PubMed

    Rong, Yi; Welsh, James S

    2010-10-01

    The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with +/- 5% variation for 16 sources. The dose-rate output and stability (within +/- 5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be measured for each case with varying shapes of cutouts. Together with TG-61, the authors' methodology provides comprehensive calibration procedures for medical physicists for using the Xoft eBx system and skin applicators for nonmelanoma skin cancer treatments.

  16. Multiscale Processes in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.; Jain, Neeraj

    The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.

  17. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators.

    PubMed

    Moradi, F; Ung, N M; Khandaker, M U; Mahdiraji, G A; Saad, M; Abdul Malik, R; Bustam, A Z; Zaili, Z; Bradley, D A

    2017-07-28

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.

  18. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu

    2018-04-01

    We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

  19. Skin dose from radionuclide contamination on clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less

  20. Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil.

    PubMed

    Ferrante, G; Zarcone, M; Uryupin, S A

    2003-08-22

    The formation of a highly anisotropic photoelectron velocity distribution as a result of the interaction of a powerful ultrashort laser pulse with a thin foil is found to yield a large skin-layer depth and an anomalous increase of the transmission coefficient. The physical reason for the effect is the influence of the incident wave magnetic field, through the Lorenz force, on the electron kinetics in the skin layer.

  1. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    PubMed

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  2. Polynomial expressions of electron depth dose as a function of energy in various materials: application to thermoluminescence (TL) dosimetry

    NASA Astrophysics Data System (ADS)

    Deogracias, E. C.; Wood, J. L.; Wagner, E. C.; Kearfott, K. J.

    1999-02-01

    The CEPXS/ONEDANT code package was used to produce a library of depth-dose profiles for monoenergetic electrons in various materials for energies ranging from 500 keV to 5 MeV in 10 keV increments. The various materials for which depth-dose functions were derived include: lithium fluoride (LiF), aluminum oxide (Al 2O 3), beryllium oxide (BeO), calcium sulfate (CaSO 4), calcium fluoride (CaF 2), lithium boron oxide (LiBO), soft tissue, lens of the eye, adiopose, muscle, skin, glass and water. All materials data sets were fit to five polynomials, each covering a different range of electron energies, using a least squares method. The resultant three dimensional, fifth-order polynomials give the dose as a function of depth and energy for the monoenergetic electrons in each material. The polynomials can be used to describe an energy spectrum by summing the doses at a given depth for each energy, weighted by the spectral intensity for that energy. An application of the polynomial is demonstrated by explaining the energy dependence of thermoluminescent detectors (TLDs) and illustrating the relationship between TLD signal and actual shallow dose due to beta particles.

  3. Skin Pretreatment With Conventional Non-Fractional Ablative Lasers Promote the Transdermal Delivery of Tranexamic Acid.

    PubMed

    Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Chun-Hsun

    2016-07-01

    Laser pretreatment of skin can be used to enable drugs used in dermatology to penetrate the skin to the depth necessary for their effect to take place. To compare the permeation of tranexamic acid after conventional non-fractionated ablative Er:YAG and CO2 laser pretreatment in a laser-aided transdermal delivery system. An erbium-doped yttrium aluminium garnet (Er:YAG) and a CO2 laser were used to pretreat dorsal porcine skin. Scanning electron microscopy was used to examine disruption of the skin surface. Confocal laser scanning microscopy was used to determine the depth of penetration of a reporter molecule (fluorescein isothiocyanate) into the skin. A Franz diffusion assembly was used to examine fluency-related increases in transdermal delivery of transexamic acid. Transdermal delivery of tranexamic acid increased as Er:YAG laser fluency increased. Transdermal delivery was higher when CO2 laser pretreatment was used than when Er:YAG laser pretreatment was used, but a "ceiling effect" was present and increasing the wattage did not cause a further increase in delivery. CO2 laser pretreatment also caused more extensive and deeper skin disruption than Er:YAG laser pretreatment. For conventional, non-fractionated ablative laser pretreatment, the Er:YAG laser would be an optimal choice to enhance transdermal penetration of transexamic acid.

  4. SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Kenneth, R; Higgins, S

    Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry formore » CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragojevic, I; Hoisak, J

    Purpose: To evaluate changes in the percent depth dose (PDD) and effective depth of treatment based on exerted force by applicator on the skin during treatments of skin cancer with Xoft Electronic Brachytherapy. Methods: To simulate compressible tissue, 5mm tissue-equivalent bolus was used. An ion chamber (Soft X-ray Chamber, PTW) and electrometer (Max 4000, Standard Imaging) were used for output measurements. Measurements were done for all available Xoft surface applicators (10, 20, 35, and 50mm cones) with plastic endcap. Fig1 shows the experimental setup. The PDD was measured first with no or minimal pressure of the applicator on the bolus,more » followed by increasing uniform pressure on the applicator applied with custom cerrobend weights. The measurements were used to calculate the effective PDD and effective depth. Results: Force applied with the applicator was plotted against the change in PDD relative to the PDD when no force is applied. For the 10mm cone, moderate force of 5N can change the PDD by more than 20%, (Fig2). The effect is also pronounced for the 20mm cone, while it is minimal for the 35 and 50mm cones. Even when only moderate force is applied, the effective prescription depth can be changed by a several millimeters, which is on the order of the typical prescription depth (Fig3). Conclusion: Based on the results of this simulation, excessive pressure applied on the patient’s skin by the applicator cone can drastically alter the PDD and effective treatment depth. The effect is most pronounced for the 10mm cone, and to a lesser extent, 20mm, which is significant as these cones tend to be used most frequently in the clinic. Applicator placement therefore may Result in significant consequences such as excessive dose to target, severe skin reaction, permanent discoloration, skin indentation, and poor overall cosmesis upon completion of treatment.« less

  6. Nonlinear magnetic electron tripolar vortices in streaming plasmas.

    PubMed

    Vranjes, J; Marić, G; Shukla, P K

    2000-06-01

    Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

  7. Piezoelectric control of needle-free transdermal drug delivery.

    PubMed

    Stachowiak, Jeanne C; von Muhlen, Marcio G; Li, Thomas H; Jalilian, Laleh; Parekh, Sapun H; Fletcher, Daniel A

    2007-12-04

    Transdermal drug delivery occurs primarily through hypodermic needle injections, which cause pain, require a trained administrator, and may contribute to the spread of disease. With the growing number of pharmaceutical therapies requiring transdermal delivery, an effective, safe, and simple needle-free alternative is needed. We present and characterize a needle-free jet injector that employs a piezoelectric actuator to accelerate a micron-scale stream of fluid (40-130 microm diameter) to velocities sufficient for skin penetration and drug delivery (50-160 m/s). Existing jet injectors, powered by compressed springs and gases, are not widely used due to painful injections and poor reliability in skin penetration depth and dose. In contrast, our device offers electronic control of the actuator expansion rate, resulting in direct control of jet velocity and thus the potential for more precise injections. We apply a simple fluid-dynamic model to predict the device response to actuator expansion. Further, we demonstrate that injection parameters including expelled volume, jet pressure, and penetration depth in soft materials vary with actuator expansion rate, but are highly coupled. Finally, we discuss how electronically-controlled jet injectors may enable the decoupling of injection parameters such as penetration depth and dose, improving the reliability of needle-free transdermal drug delivery.

  8. Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin.

    PubMed

    Frenkel, V; Kimmel, E; Iger, Y

    2000-08-10

    Electron-dense nano-particles in aqueous suspension were administered by immersion into the epidermis of fish using ultrasound in the therapeutic range. Enhanced permeability of the tissues to the particles was achieved by acoustic cavitation, which induced a controlled level of necrosis in the outer cell layers, and by non-cavitational exposures, which widened intercellular spaces of non-necrosed tissue in deeper regions of the epidermis. Both particle concentration and penetration depth were quantified using transmission electron microscopy. While cavitation-induced perforation was necessary for particles to penetrate into the tissues, non-cavitational exposures during immersions increased the particle flux towards the skin surface, as well as the diffusion rate of the particles within the epidermis and their depth of penetration. The technique described above may potentially be applied for non-stressful, mass-administration of substances into aquatic animals, as well as the relatively new field of ultrasound-facilitated delivery in moist epithelial tissues in humans.

  9. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.

    2017-08-01

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.

  10. Unusual diffusive effects on the ESR of Nd 3+ ions in the tunable topologically nontrivial semimetal YBiPt

    DOE PAGES

    Lesseux, G. G.; Garitezi, T. M.; Rosa, P. F. S.; ...

    2016-02-24

    Electron spin resonance (ESR) of diluted Nd 3+ ions in the topologically nontrivial semimetallic (TNSM) YBiPt compound is reported. The cubic YBiPt compound is a non-centrosymmetric half Heusler material which crystallizes in the F43m space group. The low temperature Nd 3+ ESR spectra showed a g-value of 2.66(4) corresponding to amore » $${{\\Gamma}_{6}}$$ cubic crystal field Kramers' doublet ground state. Remarkably, the observed metallic and diffusive (Dysonian) Nd 3+ lineshape presented an unusual dependence with grain size, microwave power, Nd 3+ concentration and temperature. Furthermore, the spin dynamic of the localized Nd 3+ ions in YBiPt was found to be characteristic of a phonon-bottleneck regime. It is claimed that, in this regime for YBiPt, phonons are responsible for mediating the diffusion of the microwave energy absorbed at resonance by the Nd 3+ ions to the thermal bath throughout the skin depth ($$\\delta \\simeq 15$$ μm). We argue that this is only possible because of the existence of highly mobile conduction electrons inside the skin depth of YBiPt that are strongly coupled to the phonons by spin–orbit coupling. Thus, our unexpected ESR results point to a coexistence of metallic and insulating behaviors within the skin depth of YBiPt. This scenario is discussed in the light of the TNSM properties of this compound.« less

  11. A porcine deep dermal partial thickness burn model with hypertrophic scarring.

    PubMed

    Cuttle, Leila; Kempf, Margit; Phillips, Gael E; Mill, Julie; Hayes, Mark T; Fraser, John F; Wang, Xue-Qing; Kimble, Roy M

    2006-11-01

    We developed a reproducible model of deep dermal partial thickness burn injury in juvenile Large White pigs. The contact burn is created using water at 92 degrees C for 15s in a bottle with the bottom replaced with plastic wrap. The depth of injury was determined by a histopathologist who examined tissue sections 2 and 6 days after injury in a blinded manner. Upon creation, the circular wound area developed white eschar and a hyperaemic zone around the wound border. Animals were kept for 6 weeks or 99 days to examine the wound healing process. The wounds took between 3 and 5 weeks for complete re-epithelialisation. Most wounds developed contracted, purple, hypertrophic scars. On measurement, the thickness of the burned skin was approximately 1.8 times that of the control skin at week 6 and approximately 2.2 times thicker than control skin at 99 days after injury. We have developed various methods to assess healing wounds, including digital photographic analysis, depth of organising granulation tissue, immunohistochemistry, electron microscopy and tensiometry. Immunohistochemistry and electron microscopy showed that our porcine hypertrophic scar appears similar to human hypertrophic scarring. The development of this model allows us to test and compare different treatments on burn wounds.

  12. A technique for pediatric total skin electron irradiation.

    PubMed

    Bao, Qinan; Hrycushko, Brian A; Dugas, Joseph P; Hager, Frederick H; Solberg, Timothy D

    2012-03-20

    Total skin electron irradiation (TSEI) is a special radiotherapy technique which has generally been used for treating adult patients with mycosis fungoides. Recently, two infants presented with leukemia cutis isolated to the skin requiring TSEI. This work discusses the commissioning and quality assurance (QA) methods for implementing a modified Stanford technique using a rotating harness system to position sedated pediatric patients treated with electrons to the total skin. Commissioning of pediatric TSEI consisted of absolute calibration, measurement of dosimetric parameters, and subsequent verification in a pediatric patient sized cylindrical phantom using radiographic film and optically stimulated luminance (OSL) dosimeters. The depth of dose penetration under TSEI treatment condition was evaluated using radiographic film sandwiched in the phantom and demonstrated a 2 cm penetration depth with the maximum dose located at the phantom surface. Dosimetry measurements on the cylindrical phantom and in-vivo measurements from the patients suggested that, the factor relating the skin and calibration point doses (i.e., the B-factor) was larger for the pediatric TSEI treatments as compared to adult TSEI treatments. Custom made equipment, including a rotating plate and harness, was fabricated and added to a standard total body irradiation stand and tested to facilitate patient setup under sedated condition. A pediatric TSEI QA program, consisting of daily output, energy, flatness, and symmetry measurements as well as in-vivo dosimetry verification for the first cycle was developed. With a long interval between pediatric TSEI cases, absolute dosimetry was also repeated as part of the QA program. In-vivo dosimetry for the first two infants showed that a dose of ± 10% of the prescription dose can be achieved over the entire patient body. Though pediatric leukemia cutis and the subsequent need for TSEI are rare, the ability to commission the technique on a modified TBI stand is appealing for clinical implementation and has been successfully used for the treatment of two pediatric patients at our institution.

  13. A technique for pediatric total skin electron irradiation

    PubMed Central

    2012-01-01

    Background Total skin electron irradiation (TSEI) is a special radiotherapy technique which has generally been used for treating adult patients with mycosis fungoides. Recently, two infants presented with leukemia cutis isolated to the skin requiring TSEI. This work discusses the commissioning and quality assurance (QA) methods for implementing a modified Stanford technique using a rotating harness system to position sedated pediatric patients treated with electrons to the total skin. Methods and Results Commissioning of pediatric TSEI consisted of absolute calibration, measurement of dosimetric parameters, and subsequent verification in a pediatric patient sized cylindrical phantom using radiographic film and optically stimulated luminance (OSL) dosimeters. The depth of dose penetration under TSEI treatment condition was evaluated using radiographic film sandwiched in the phantom and demonstrated a 2 cm penetration depth with the maximum dose located at the phantom surface. Dosimetry measurements on the cylindrical phantom and in-vivo measurements from the patients suggested that, the factor relating the skin and calibration point doses (i.e., the B-factor) was larger for the pediatric TSEI treatments as compared to adult TSEI treatments. Custom made equipment, including a rotating plate and harness, was fabricated and added to a standard total body irradiation stand and tested to facilitate patient setup under sedated condition. A pediatric TSEI QA program, consisting of daily output, energy, flatness, and symmetry measurements as well as in-vivo dosimetry verification for the first cycle was developed. With a long interval between pediatric TSEI cases, absolute dosimetry was also repeated as part of the QA program. In-vivo dosimetry for the first two infants showed that a dose of ± 10% of the prescription dose can be achieved over the entire patient body. Conclusion Though pediatric leukemia cutis and the subsequent need for TSEI are rare, the ability to commission the technique on a modified TBI stand is appealing for clinical implementation and has been successfully used for the treatment of two pediatric patients at our institution. PMID:22433063

  14. Phonon Enhancement of Electronic and Optoelectronic Devices

    DTIC Science & Technology

    2006-12-01

    wave vector q determines the momentum transfer in the electron transition. Inasmuch as the polar mode confinement has not yet been studied in the InAs...and the geometry is compatible with the TM polarization of intersubband transitions. Due to the shallow skin depth in the metal (several hundred A...noise temperature ofa-1400 K is among the lowest at this high frequency. Figure 6 shows the schematic and measurement results of frequency locking of a

  15. Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mustafa, F. H.; Jaafar, M. S.

    2013-03-01

    The determination of the penetration depth of laser light with different sources wavelengths into human skin is one of the preconditions of improving the photodynamic therapy (PDT) procedure for skin diseases. This research is planned to explore which wavelengths would be the most advantageous for use in PDT for superficial skin diseases, and to demonstrate that the red laser exposure of 635 nm wavelength is a suitable choice for all skin types in PDT. A realistic skin model (RSM) in the Advanced Systems Analysis Program (ASAP) software has been used to create different types of skin and to simulate laser sources with wavelengths of 635, 532, 405, 365, 308 and 295 nm. The penetration depths of different kinds of laser into the skin as well as their transmission have been calculated. Comparison of the depth of penetration of different wavelengths for all types of skin has been made. A large variation is found in the penetration depth of laser lights in all skin types. The transmission of lasers on the epidermis and dermis in different skin types occur, and the transmission dose changes significantly with the skin depths. The results of the present study provide a basis for understanding the penetration depth of laser in various skin colors and the responses of the skin to laser to improve dose-drug activation in PDT. The differences in spectral transmission between the red laser and the other lasers suggest that the red laser could be a suitable laser for all skin types.

  16. Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Lei; Fan, Peng-Fei; Guo, Xia-Sheng; Tu, Juan; Ma, Yong; Zhang, Dong

    2016-12-01

    Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow-green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 μm. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 μm, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4-5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful. Project partially supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 81473692, 81673995, 11374155, 11574156, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011812), the Fundamental Research Funds for the Central Universities, and the National High-Tech Research and Development Program of China (Grant No. 2012AA022702).

  17. SU-E-T-191: Commissioning and Dosimetric Characteristics of Elekta Agility for Total Skin Electron Beam (TSEB) Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Charpentier, P; Micaily, B

    2015-06-15

    Purpose The purpose of this work is to publish beam data from Elekta Synergy(R) linear accelerators with Agility(TM) MLC for total skin electron beam (TSEB) therapy using the HDRE1 (High Dose Rate Electron 6MeV) energy. Method & Materials The optimal gantry angles for TSEB were determined using ion chamber measurements along a vertical profile at 450cm SSD. After gantry angles were chosen, field uniformity was measured over the entire treatment area. Uniformity was measured with and without the patient support device, allowing the dosimetric effect of the support device to be determined. Beam output and PDD were measured at themore » calibration point (450cm SSD) for a dual beam using a parallel plate chamber in solid water. These measurements were repeated with the chamber and phantom rotated about the patient isocenter at various angles, in order to measure the contribution from oblique beams. This technique provides a precise measurement of the treatment skin dose (TSD). Lastly, ion chamber measurements were verified by film and diodes. Results The optimal gantry angle for 450 cm SSD was determined to be 90±16°. This achieved uniformity better than 96% on the vertical axis, and 92% along the horizontal axis. HDRE1 was calibrated to deliver 10 cGy/MU at standard geometry (100 cm SSD, 1.2 cm depth). Thus at TSEB geometry (450 cm SSD, 0.1 cm depth) the output of the AP dual field was measured to be 0.35 cGy/MU. The TSD of a 20 cm radius cylinder for six (equally, 60° spaced) dual fields was measured to be 1.19 cGy/MU. Percent Depth Dose data for the AP dual field and TSD are shown in Figure 2. Conclusion This paper provides a modern procedure for commissioning TSEB therapy on a linear accelerator, and clinical beam data for the Elekta Synergy(R) with Agility(TM) MLC.« less

  18. Clinical implementation of MOSFET detectors for dosimetry in electron beams.

    PubMed

    Bloemen-van Gurp, Esther J; Minken, Andre W H; Mijnheer, Ben J; Dehing-Oberye, Cary J G; Lambin, Philippe

    2006-09-01

    To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D(max)) and investigate their feasibility for in vivo dose measurements in electron beams. Factors were determined to relate the reading of a MOSFET detector to D(max) for 4 - 15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z(max)). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D(max), was compared to the dose prescribed at this depth. The factors to convert MOSFET reading to D(max) vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm(2) and for oblique incidence up to 45 degrees, a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors.

  19. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    NASA Astrophysics Data System (ADS)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  20. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    ERIC Educational Resources Information Center

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  1. Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment.

    PubMed

    Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  2. SU-E-T-193: FMEA Severity Scores - Do We Really Know?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A; Robertson, JD; Narra, V

    2014-06-01

    Purpose: Mycosis fungoides is a common form of cutaneous T-cell lymphoma which generally affects the skin. A typical course of treatment may include fractionated total skin electron beam therapy. Given the difficulties in uniformly irradiating some regions of the body and the need for frequent visits within the context of a fractionated protocol, this study investigated the feasibility of delivering the dose using form-fitting cloth which contained phosphorous-32 as a source for beta particle irradiation. Methods: A piece of fabric (0.97 g) consisting of a blend of spandex and flame retardant material impregnated with phosphorus-31 (2000 ppm) was bombarded withmore » neutrons to produce phosphorus-32. The cloth was then laid flat and a stack of radiochromic film placed on top. Sheets of film and tissue equivalent plastic were layered to form a stack measuring a total of 1 cm thickness and remained sandwiched for 77.3 hr. Results: The initial activity of the activated cloth was 44 μCi of P-32. The absorbed dose was uniform within planes parallel to the cloth and exponentially dependent on depth, delivering 560cGy at 0.3mm and falling to 20cGy at 3mm. Conclusion: The total dose prescribed for a typical course of TSET for mycosis fungoides is 36Gy delivered over 9 weeks and is expected to treat to at least 5mm depth. Therefore, the P-32 impregnated cloth may not be clinically indicated to treat this disease given the unfavorable depth-dose characteristics. However, a major advantage of using form-fitting cloth is the uniformity with which the dose could be delivered over the skin in areas which are not flat. Increasing the distance between cloth and skin could improve the depth-dose characteristics.« less

  3. Method and apparatus to measure the depth of skin burns

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  4. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.

    PubMed

    Chen, Z; Agostinelli, A; Nath, R

    1998-03-01

    The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable's spatial configuration were altered during the two-polarity measurements. This suggests that automatic scanning systems with unshielded cables should not be used in TSET ionization chamber dosimetry. However, the data did show that an unshielded cable may be used in TSET ionization chamber dosimetry if the size of cable-induced error in a given TSET beam is pre-evaluated and the measurement is carefully conducted. When such an evaluation has not been performed, additional shielding should be applied to the cable being used, making measurements at multiple points difficult.

  6. Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid

    2014-06-16

    Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less

  7. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    PubMed

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-04

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.

  8. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams

    PubMed Central

    Zheng, Xiao J; Chow, James C L

    2017-01-01

    AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. METHODS Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness. RESULTS It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams. CONCLUSION In nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams. PMID:28298966

  9. Fast, purely growing collisionless reconnection as an eigenfunction problem related to but not involving linear whistler waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellan, Paul M.

    If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. Themore » instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.« less

  10. Dosimetric evaluation of internal shielding in a high dose rate skin applicator

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Carmona, Vicente; Pujades, M Carmen; Ballester, Facundo

    2011-01-01

    Purpose The Valencia HDR applicators are accessories of the microSelectron HDR afterloading system (Nucletron) shaped as truncated cones. The base of the cone is either 2 or 3 cm diameter. They are intended to treat skin lesions, being the typical prescription depth 3 mm. In patients with eyelid lesions, an internal shielding is very useful to reduce the dose to the ocular globe. The purpose of this work was to evaluate the dose enhancement from potential backscatter and electron contamination due to the shielding. Material and methods Two methods were used: a) Monte Carlo simulation, performed with the GEANT4 code, 2 cm Valencia applicator was placed on the surface of a water phantom in which 2 mm lead slab was located at 3 mm depth; b) radiochromic EBT films, used to verify the Monte Carlo results, positioning the films at 1.5, 3, 5 and 7 mm depth, inside the phantom. Two irradiations, with and without the lead shielding slab, were carried out. Results The Monte Carlo results showed that due to the backscatter component from the lead, the dose level raised to about 200% with a depth range of 0.5 mm. Under the lead the dose level was enhanced to about 130% with a depth range of 1 mm. Two millimeters of lead reduce the dose under the slab with about 60%. These results agree with film measurements within uncertainties. Conclusions In conclusion, the use of 2 mm internal lead shielding in eyelid skin treatments with the Valencia applicators were evaluated using MC methods and EBT film dosimetry. The minimum bolus thickness that was needed above and below the shielding was 0.5 mm and 1 mm respectively, and the shielding reduced the absorbed dose delivered to the ocular globe by about 60%. PMID:27877198

  11. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Eldib, A; Li, J

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less

  12. Electron Energization and Mixing Observed by MMS in the Vicinity of an Electron Diffusion Region During Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; hide

    2016-01-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  13. Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection

    NASA Astrophysics Data System (ADS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; Giles, Barbara; Strangeway, Robert; Russell, Christopher; Khotyaintsev, Yuri; Burch, Jim; Moore, Thomas; Lavraud, Benoit; Phan, Tai; Avanov, Levon

    2016-06-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  14. Diaphragm depth in normal subjects.

    PubMed

    Shahgholi, Leili; Baria, Michael R; Sorenson, Eric J; Harper, Caitlin J; Watson, James C; Strommen, Jeffrey A; Boon, Andrea J

    2014-05-01

    Needle electromyography (EMG) of the diaphragm carries the potential risk of pneumothorax. Knowing the approximate depth of the diaphragm should increase the test's safety and accuracy. Distances from the skin to the diaphragm and from the outer surface of the rib to the diaphragm were measured using B mode ultrasound in 150 normal subjects. When measured at the lower intercostal spaces, diaphragm depth varied between 0.78 and 4.91 cm beneath the skin surface and between 0.25 and 1.48 cm below the outer surface of the rib. Using linear regression modeling, body mass index (BMI) could be used to predict diaphragm depth from the skin to within an average of 1.15 mm. Diaphragm depth from the skin can vary by more than 4 cm. When image guidance is not available to enhance accuracy and safety of diaphragm EMG, it is possible to reliably predict the depth of the diaphragm based on BMI. Copyright © 2013 Wiley Periodicals, Inc.

  15. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  16. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of jitter radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  17. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This small- scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a uniform magnetic field. The jitter radiation resulting from small-scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  18. Radiolytic Impacts of Energetic Electron Irradiation on Enceladus and Mimas

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Sittler, E. C.; Sturner, S. J.

    2011-01-01

    Episodic overturn of the south polar terrain on Enceladus would convey radio lytic oxidants from surface irradiation by Saturn's inner magnetospheric electrons to the putative underlying polar sea and contribute to CO2 and other gas production driving the visibly active cryovolcanism. Low duty cycle of active episodes below 1 - 10 percent would raise the relative importance of the continuous radiolytic chemical energy input for mass and heat outflow, e.g. as compared to heating by gravitational tides. The "Pac-Man" thermal anomaly on Mimas most likely arises from leading-trailing asymmetry of electron irradiation and resultant radio lytic processing of the moon ice to a few centimeters of depth. The Mimas thermal anomaly distribution suggests a relatively stable surface unmodified by Enceladus-like geologic overturn or cryovolcanic activity. In both cases, the heavily irradiated skin depth corresponds to the sensible thermal layer probed by Cassini infrared measurements. Neutral gas and dust emissions from Enceladus limit energetic ion and plasma electron fluxes in the inner magnetosphere, thereby governing the irradiation of Mimas and other Saturn moons.

  19. Approximate relationship between frequency-dependent skin depth resolved from geoelectromagnetic pedotransfer function and depth of investigation resolved from geoelectrical measurements: A case study of coastal formation, southern Nigeria

    NASA Astrophysics Data System (ADS)

    George, N. J.; Obiora, D. N.; Ekanem, A. M.; Akpan, A. E.

    2016-10-01

    The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.

  20. High e+/e– ratio dense pair creation with 10 21W.cm –2 laser irradiating solid targets

    DOE PAGES

    Liang, E.; Clarke, T.; Henderson, A.; ...

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 10 21 W.cm –2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×10 10 with emerging pair density reaching ~10 15/cm 3 so that the pair skin depth becomes < pair jet transverse size.more » These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.« less

  1. Monte Carlo study and design of system for implementation of Rotational Total Skin Electron Irradiation technique

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.

    2018-05-01

    Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.

  2. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    PubMed

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Clinical measurements analysis of multi-spectral photoplethysmograph biosensors

    NASA Astrophysics Data System (ADS)

    Asare, Lasma; Kviesis-Kipge, Edgars; Spigulis, Janis

    2014-05-01

    The developed portable multi-spectral photoplethysmograph (MS-PPG) optical biosensor device, intended for analysis of peripheral blood volume pulsations at different vascular depths, has been clinically verified. Multi-spectral monitoring was performed by means of a four - wavelengths (454 nm, 519 nm, 632 nm and 888 nm) light emitted diodes and photodiode with multi-channel signal output processing. Two such sensors can be operated in parallel and imposed on the patient's skin. The clinical measurements confirmed ability to detect PPG signals at four wavelengths simultaneously and to record temporal differences in the signal shapes (corresponding to different penetration depths) in normal and pathological skin. This study analyzed wavelengths relations between systole and diastole peak difference at various tissue depths in normal and pathological skin. The difference between parameters of healthy and pathological skin at various skin depths could be explain by oxy- and deoxyhemoglobin dominance at different wavelengths operated in sensor. The proposed methodology and potential clinical applications in dermatology for skin assessment are discussed.

  4. Penetration of Chlorhexidine into Human Skin ▿

    PubMed Central

    Karpanen, T. J.; Worthington, T.; Conway, B. R.; Hilton, A. C.; Elliott, T. S. J.; Lambert, P. A.

    2008-01-01

    This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice. PMID:18676882

  5. Plasma skin regeneration technology.

    PubMed

    Bogle, M A

    2006-09-01

    Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.

  6. Melanoma Is Skin Deep: A 3D Reconstruction Technique for Computerized Dermoscopic Skin Lesion Classification

    PubMed Central

    Satheesha, T. Y.; Prasad, M. N. Giri; Dhruve, Kashyap D.

    2017-01-01

    Melanoma mortality rates are the highest amongst skin cancer patients. Melanoma is life threating when it grows beyond the dermis of the skin. Hence, depth is an important factor to diagnose melanoma. This paper introduces a non-invasive computerized dermoscopy system that considers the estimated depth of skin lesions for diagnosis. A 3-D skin lesion reconstruction technique using the estimated depth obtained from regular dermoscopic images is presented. On basis of the 3-D reconstruction, depth and 3-D shape features are extracted. In addition to 3-D features, regular color, texture, and 2-D shape features are also extracted. Feature extraction is critical to achieve accurate results. Apart from melanoma, in-situ melanoma the proposed system is designed to diagnose basal cell carcinoma, blue nevus, dermatofibroma, haemangioma, seborrhoeic keratosis, and normal mole lesions. For experimental evaluations, the PH2, ISIC: Melanoma Project, and ATLAS dermoscopy data sets is considered. Different feature set combinations is considered and performance is evaluated. Significant performance improvement is reported the post inclusion of estimated depth and 3-D features. The good classification scores of sensitivity = 96%, specificity = 97% on PH2 data set and sensitivity = 98%, specificity = 99% on the ATLAS data set is achieved. Experiments conducted to estimate tumor depth from 3-D lesion reconstruction is presented. Experimental results achieved prove that the proposed computerized dermoscopy system is efficient and can be used to diagnose varied skin lesion dermoscopy images. PMID:28512610

  7. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan

    2012-06-01

    The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.

  8. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    PubMed

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Eddy-current inversion in the thin-skin limit: Determination of depth and opening for a long crack

    NASA Astrophysics Data System (ADS)

    Burke, S. K.

    1994-09-01

    A method for crack size determination using eddy-current nondestructive evaluation is presented for the case of a plate containing an infinitely long crack of uniform depth and uniform crack opening. The approach is based on the approximate solution to Maxwell's equations for nonmagnetic conductors in the limit of small skin depth and relies on least-squares polynomial fits to a normalized coil impedance function as a function of skin depth. The method is straightforward to implement and is relatively insensitive to both systematic and random errors. The procedure requires the computation of two functions: a normalizing function, which depends both on the coil parameters and the skin depth, and a crack-depth function which depends only on the coil parameters in addition to the crack depth. The practical perfomance of the method was tested using a set of simulated cracks in the form of electro-discharge machined slots in aluminum alloy plates. The crack depths and crack opening deduced from the eddy-current measurements agree with the actual crack dimensions to within 10% or better. Recommendations concerning the optimum conditions for crack sizing are also made.

  10. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  11. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.

  12. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  13. Evaluation of skin firmness by the DynaSKIN, a novel non-contact compression device, and its use in revealing the efficacy of a skincare regimen featuring a novel anti-ageing ingredient, acetyl aspartic acid.

    PubMed

    Kearney, E M; Messaraa, C; Grennan, G; Koeller, G; Mavon, A; Merinville, E

    2017-05-01

    One of the key strategies for anti-ageing in the cosmetics industry today is to target the structural changes responsible for ptosis of the skin, given its impact on age perception. Several objective and non-invasive methods are available to characterise the biomechanical properties of the skin, which are operator-dependent, involving skin contact and providing single-dimensional numerical descriptions of skin behaviour. The research introduces the DynaSKIN, a device using non-contact mechanical pressure in combination with fringe projection to quantify and visualise the skin response in 3-dimensions. We examine the age correlation of the measurements, how they compare with the Cutometer ® , and measure skin dynamics following application of a skincare regimen containing established anti-ageing ingredients. DynaSKIN and Cutometer ® measurements were made on the cheek of 80 Caucasian women (18-64 years). DynaSKIN volume, mean depth and maximum depth parameters were correlated with age and 15 Cutometer ® parameters. Subsequently, the firming efficacy of a skincare regimen featuring acetyl aspartic acid (AAA) and a peptide complex was examined in a cohort of 41 volunteers. DynaSKIN volume, mean depth and maximum depth parameters correlate with age and the Cutometer ® parameters that are associated with the skin relaxation phase (R1, R2, R4, R5, R7 and F3). Furthermore, the DynaSKIN captured significant improvements in skin firmness delivered by the skincare regimen. The DynaSKIN is a novel device capable of capturing skin biomechanics at a high level of specificity and successfully detected the firming properties of a skincare regimen. Its independent measuring principle, consumer relevance and skin firmness 3D visualisation capabilities bring objectivity and novelty to product efficacy substantiation evaluation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785 nm of porcine ear skin ex vivo

    NASA Astrophysics Data System (ADS)

    Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E.

    2017-09-01

    Autofluorescence photobleaching describes the decrease of fluorescence intensity of endogenous fluorophores in biological tissue upon light irradiation. The origin of autofluorescence photobleaching is not fully understood. In the skin, the spatial distribution of various endogenous fluorophores varies within the skin layers. Most endogenous fluorophores are excited in the ultraviolet and short visible wavelength range, and only a few, such as porphyrins (red) and melanin (near-infrared), are excited at longer wavelengths. The excitation wavelength- and depth-dependent irradiation of skin will therefore excite different fluorophores, which will likely influence the photobleaching characteristics. The autofluorescence photobleaching of porcine ear skin has been measured ex vivo using 325, 473, 633, and 785 nm excitation at different skin depths from the surface to the dermis at 150 μm. Confocal Raman microscopes were used to achieve sufficient spatial resolution of the measurements. The autofluorescence area under the curve was measured for 21 consecutive acquisitions of 15 s. In all cases, the photobleaching follows a two-exponential decay function approximated by nonlinear regression. The results show that photobleaching can be applied to improve the signal-to-noise ratio in Raman spectroscopy for all of the applied excitation wavelengths and skin depths.

  15. Comparing Yb-fiber and Ti:Sapphire lasers for depth resolved imaging of human skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2016-02-01

    We report on a direct comparison between Ti:Sapphire and Yb fiber lasers for depth-resolved label-free multimodal imaging of human skin. We found that the penetration depth achieved with the Yb laser was 80% greater than for the Ti:Sapphire. Third harmonic generation (THG) imaging with Yb laser excitation provides additional information about skin structure. Our results indicate the potential of fiber-based laser systems for moving into clinical use.

  16. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  17. LASER METHODS IN MEDICINE: Light absorption in blood during low-intensity laser irradiation of skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-06-01

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis.

  18. Measurements of material properties for solar cells. [aluminum film and KAPTON

    NASA Technical Reports Server (NTRS)

    Castle, J. G., Jr.

    1978-01-01

    Measurements on two candidate materials for space flight are reported. The observed optical transmittance of aluminum films vapor deposited on fused quartz showed anomalously high transmittance thru 400 A and 600 A and showed an effective skin depth of 110 A in the latter part of the 1000 A thickness. KAPTON films are shown by their optical transmission spectra to have an energy gap for electron excitation of approximately 2.5 eV, which value depends on the thickness as manufactured. The resistance of KAPTON film to ionizing radiation is described by their optical spectra and their electron spin resonance spectra.

  19. Electron paramagnetic resonance field-modulation eddy-current analysis of silver-plated graphite resonators

    NASA Astrophysics Data System (ADS)

    Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.

    2005-09-01

    Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.

  20. SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.

    PubMed

    Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I

    2012-06-01

    The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.

  1. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils.

    PubMed

    Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E

    2017-08-01

    The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  2. Development of a silicon diode detector for skin dosimetry in radiotherapy.

    PubMed

    Vicoroski, Nikolina; Espinoza, Anthony; Duncan, Mitchell; Oborn, Bradley M; Carolan, Martin; Metcalfe, Peter; Menichelli, David; Perevertaylo, Vladimir L; Lerch, Michael L F; Rosenfeld, Anatoly B; Petasecca, Marco

    2017-10-01

    The aim of in vivo skin dosimetry was to measure the absorbed dose to the skin during radiotherapy, when treatment planning calculations cannot be relied on. It is of particularly importance in hypo-fractionated stereotactic modalities, where excessive dose can lead to severe skin toxicity. Currently, commercial diodes for such applications are with water equivalent depths ranging from 0.5 to 0.8 mm. In this study, we investigate a new detector for skin dosimetry based on a silicon epitaxial diode, referred to as the skin diode. The skin diode is manufactured on a thin epitaxial layer and packaged using the "drop-in" technology. It was characterized in terms of percentage depth dose, dose linearity, and dose rate dependence, and benchmarked against the Attix ionization chamber. The response of the skin diode in the build-up region of the percentage depth dose (PDD) curve of a 6 MV clinical photon beam was investigated. Geant4 radiation transport simulations were used to model the PDD in order to estimate the water equivalent measurement depth (WED) of the skin diode. Measured output factors using the skin diode were compared with the MOSkin detector and EBT3 film at 10 cm depth and at surface at isocenter of a water equivalent phantom. The intrinsic angular response of the skin diode was also quantified in charge particle equilibrium conditions (CPE) and at the surface of a solid water phantom. Finally, the radiation hardness of the skin diode up to an accumulated dose of 80 kGy using photons from a Co-60 gamma source was evaluated. The PDD curve measured with the skin diode was within 0.5% agreement of the equivalent Geant4 simulated curve. When placed at the phantom surface, the WED of the skin diode was estimated to be 0.075 ± 0.005 mm from Geant4 simulations and was confirmed using the response of a corrected Attix ionization chamber placed at water equivalent depth of 0.075 mm, with the measurement agreement to within 0.3%. The output factor measurements at 10 cm depth were within 2% of those measured with film and the MOSkin detector down to a field size of 2 × 2 cm 2 . The dose-response for all detector samples was linear and with a repeatability within 0.2%. The skin diode intrinsic angular response showed a maximum deviation of 8% at 90 degrees and from 0 to 60 degree is less than 5%. The radiation sensitivity reduced by 25% after an accumulated dose of 20 kGy but after was found to stabilize. At 60 kGy total accumulated dose the response was within 2% of that measured at 20 kGy total accumulated dose. This work characterizes an innovative detector for in vivo and real-time skin dose measurements that is based on an epitaxial silicon diode combined with the Centre for Medical Radiation Physics (CMRP) "drop-in" packaging technology. The skin diode proved to have a water equivalent depth of measurement of 0.075 ± 0.005 mm and the ability to measure doses accurately relative to reference detectors. © 2017 American Association of Physicists in Medicine.

  3. Age and Hydration dependence of jowl and forearm skin firmness in young and mature women.

    PubMed

    Mayrovitz, Harvey N; Wong, Jennifer; Fasen, Madeline

    2017-12-27

    Quantitative assessment of possible linkages between skin's firmness and water content is useful for cosmetic and clinical purposes and to better understand features of advancing age. Our goals were to characterize age-related differential features in skin firmness in women and determine the relationship between skin firmness and indices of skin water. Skin firmness was quantified using handheld devices that measure the force to indent skin 0.3 and 1.3 mm (F0.3 and F1.3). Skin hydration was quantified using handheld devices that measured tissue dielectric constant (TDC) at 300 MHz to skin depths of 0.5 and 2.0-2.5 mm. All parameters were measured bilaterally in the jowl area and volar forearm of 60 women grouped by age <45 years (YOUNG) and ≥45 years old (MATURE). All measured parameters were bilaterally symmetrical at jowl and forearm. Forearm and jowl indentation forces were greater in YOUNG with statistically significant declines with advancing age with regression relations most evident at shallower indentation depths (P < .001). Quantitative relations for arm and jowl were F 0.3 = 0.256 × AGE + 32.7 mN and F 0.3 = -0.07 × AGE + 17.7 mN. Firmness was related to TDC values only when indentation force and TDC were assessed on the arm at the shallowest skin depths, as weakly related to firmness and was observed to change with age only when measured to a depth of 0.5 mm represented by TDC5 = 0.096 × AGE + 32.7. Experimental finding show clear differences in skin firmness between age-groups with skin hydration playing a minor role. Possible explanations and suggestions for further studies are provided. © 2017 Wiley Periodicals, Inc.

  4. Photoacoustic detection of neovascularities in skin graft

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saitoh, Daizo; Ishihara, Miya; Okada, Yoshiaki; Ashida, Hiroshi; Obara, Minoru

    2005-04-01

    We previously proposed a new method for monitoring adhesion of skin graft by measuring photoacoustic (PA) signal originated from the neovascularities. In this study, immunohistochemical staining (IHC) with CD31 antibody was performed for grafted skin tissue to observe neovascularity, and the results were compared with PA signals. We also used a laser Doppler imaging (LDI) to observe blood flow in the grafted skin, and sensitivity of PA measurement and that of LDI were compared. In rat autograft models, PA signals were measured for the grafted skin at postgrafting times of 0-48 h. At 6 h postgrafting, PA signal was observed in the skin depth region of 500-600 mm, while the results of IHC showed that angiogenesis occurred at the depth of about 600 mm. Depths at which PA signal and angiogenesis were observed decreased with postgrafting time. These indicate that the PA signal observed at 6 h postgrafting originated from the neovascularities in the skin graft. Results of LDI showed no blood-originated signal before 48 h postgrafting. These findings suggest that PA measurement is effective in monitoring the adhesion of skin graft in early stage after transplantation.

  5. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study

    PubMed Central

    Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi

    2015-01-01

    We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740

  6. SU-F-T-70: A High Dose Rate Total Skin Electron Irradiation Technique with A Specific Inter-Film Variation Correction Method for Very Large Electron Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rosenfield, J; Dong, X

    2016-06-15

    Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less

  7. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less

  8. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo

    PubMed Central

    BUSSAU, L. J.; VO, L. T.; DELANEY, P. M.; PAPWORTH, G. D.; BARKLA, D. H.; KING, R. G.

    1998-01-01

    Fibre optic confocal imaging (FOCI) enabled subsurface fluorescence microscopy of the skin of hairless mice in vivo. Application of acridine orange enabled imaging of the layers of the epidermis. The corneocytes of the stratum corneum, the keratinocytes in the basal layers and redundant hair follicles were visualised at depths greater than 100 μm. Cellular and nuclear membranes of keratinocytes of the skin were visualised by the use of acridine orange and DIOC5(3). Imaging of the skin after injection of FITC-dextran revealed an extensive network of blood vessels with a size range up to 20 μm. Blood cells could be seen moving through dermal vessels and the blood circulation through the dermal vascular bed was video-taped. The fluorescent dye 4-di-2-ASP showed the presence of nerves fibres around the hair follicles and subsurface blood vessels. Comparison was made between images obtained in vivo using FOCI and in vitro scanning electron microscopy and conventional histology. FOCI offers the potential to study dynamic events in vivo, such as blood flow, skin growth, nerve regeneration and many pathological processes, in ways which have not previously been possible. PMID:9643419

  9. Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock.

    PubMed

    Bale, S D; Mozer, F S

    2007-05-18

    Large parallel (

  10. Skin contamination dosimeter

    DOEpatents

    Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR

    2011-06-21

    A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

  11. Induction heating apparatus and methods of operation thereof

    DOEpatents

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  12. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new way to visualize in-depth skin structure.

    PubMed

    Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J

    2018-05-01

    Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Rehan, Kamran; Sultana, S.; Haq, M. Oun ul; Niazi, Muhammad Zubair Khan; Muhammad, Riaz

    2016-01-01

    We presents spectroscopic study of the plasma generated by a Q-switched Nd:YAG (1064 nm) laser irradiation of the flesh of red and white skin potatoes. From the spectra recorded with spectrometer (LIBS2500+, Ocean Optics, USA) 11 elements were identified in red skin potato, whereas, the white skin potato was found to have nine elements. Their relative concentrations were estimated using CF-LIBS method for the plasma in local thermodynamic equilibrium. The target was placed in ambient air at atmospheric pressure. The electron temperature and number density were calculated from Boltzmann plot and stark broadened line profile methods, respectively using Fe I spectral lines. The spatial distribution of plasma parameters were also studied which show a decreasing trend of 6770 K-4266 K and (3-2.0) × 1016 cm-3. Concentrations of the detected elements were monitored as a function of depth of the potatoes. Our study reveals a decreasing tendency in concentration of iron from top to the centre of potato's flesh, whereas, the concentrations of other elements vary randomly.

  14. Fractional laser-assisted delivery of methyl aminolevulinate: Impact of laser channel depth and incubation time.

    PubMed

    Haak, Christina S; Farinelli, William A; Tam, Joshua; Doukas, Apostolos G; Anderson, R Rox; Haedersdal, Merete

    2012-12-01

    Pretreatment of skin with ablative fractional lasers (AFXL) enhances the uptake of topical photosensitizers used in photodynamic therapy (PDT). Distribution of photosensitizer into skin layers may depend on depth of laser channels and incubation time. This study evaluates whether depth of intradermal laser channels and incubation time may affect AFXL-assisted delivery of methyl aminolevulinate (MAL). Yorkshire swine were treated with CO2 AFXL at energy levels of 37, 190, and 380 mJ/laser channel and subsequent application of MAL cream (Metvix) for 30, 60, 120, and 180 minutes incubation time. Fluorescence photography and fluorescence microscopy quantified MAL-induced porphyrin fluorescence (PpIX) at the skin surface and at five specific skin depths (120, 500, 1,000, 1,500, and 1,800 µm). Laser channels penetrated into superficial (∼300 µm), mid (∼1,400 µm), and deep dermis/upper subcutaneous fat layer (∼2,100 µm). Similar fluorescence intensities were induced at the skin surface and throughout skin layers independent of laser channel depth (180 minutes; P < 0.19). AFXL accelerated PpIX fluorescence from skin surface to deep dermis. After laser exposure and 60 minutes MAL incubation, surface fluorescence was significantly higher compared to intact, not laser-exposed skin at 180 minutes (AFXL-MAL 60 minutes vs. MAL 180 minutes, 69.16 a.u. vs. 23.49 a.u.; P < 0.01). Through all skin layers (120-1,800 µm), laser exposure and 120 minutes MAL incubation induced significantly higher fluorescence intensities in HF and dermis than non-laser exposed sites at 180 minutes (1,800 µm, AFXL-MAL 120 minutes vs. MAL 180 minutes, HF 14.76 a.u. vs. 6.69 a.u. and dermis 6.98 a.u. vs. 5.87 a.u.; P < 0.01). AFXL pretreatment accelerates PpIX accumulation, but intradermal depth of laser channels does not affect porphyrin accumulation. Further studies are required to examine these findings in clinical trials. Copyright © 2012 Wiley Periodicals, Inc.

  15. SU-F-T-83: Infant Total Skin Electron Therapy Using Five Fields Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H; Howlin, T; Massey, V

    Purpose: We were presented with a 9 month old boy with Relapsed Acute Myeloid Leukemia (AML) involving the skin. The plan was to treat the entire skin using 6 MeV electrons with the infant under complete anesthesia. The purpose of this work is to commission the 6 MeV electron beam and to develop a technique that can be used to deliver total skin dose to infants with minimal patient immobilization. Methods: A baby mannequin phantom that mimics the child’s length was used to determine the best technique to treat the infant. The 76 cm long phantom was placed on themore » floor. The phantom was placed in four unique immobilization devices to simulate four different treatment positions (anterior, posterior, left lateral and right lateral). Radiochromic films were used to determine beam profile in both axial and radial directions, and percent depth dose (PDD). Absolute calibration of the machine output at 214 cm distance was measured using an Exradin A11 parallel-plate ion chamber. A 1.0 cm plexiglass scatter plate was inserted in the collimator. Mosfet dosimeters were used for dose verification for phantom and and patient. Results: At 214 cm source to surface distance (SSD) using gantry angle of + 20o from vertical beam flatness is + 10% in the radial direction over a region of 70 cm and + 4% in the axial direction over 60 cm. A five field arrangement was determined to optimally deliver the desired dose with > 90% uniformity. The fifth field was used to boost the head vertex. Conclusion: It is possible to treat sedated infants with total skin dose using five positions. Four positions were enough to cover the body and the fifth position boosts the vertex of the head. All fractions can be reproduced accurately daily because of the patient’s stable immobilization.« less

  16. Optical coherence tomography applied to tests of skin care products in humans--a case study.

    PubMed

    Vasquez-Pinto, L M C; Maldonado, E P; Raele, M P; Amaral, M M; de Freitas, A Z

    2015-02-01

    When evaluating skin care products for human skin, quantitative test methods need to be simple, precise and reliable. Optical coherence tomography (OCT), provides high-resolution sectional images of translucent materials to a depth of a few millimeters, a technique usually applied to medical measurements in ophthalmology and dermatology. This study aimed to demonstrate the application of OCT as the main technique for monitoring changes in skin topography during tests of a wrinkle-reduction product in humans. We used a commercial OCT apparatus to perform clinical examinations of skin roughness in treated and non-treated sites in the periorbital region of thirty human voluntaries who were using an anti-aging product commercially available: Natura Chronos® Flavonóides de Passiflora 45+ FPS15, from Natura Cosméticos, Brazil. Measurements were performed days 0, 7, 14 and 28 of treatment. Equipment and software allowed real-time recording of skin roughness parameters and wrinkle depths. The OCT measurements have allowed the monitoring of changes in skin roughness, which have shown reduction in treated sites around 10%. The obtained depth distributions also indicate reduction in the occurrence of wrinkles deeper than 170 μm. The verified results are consistent with those typically obtained after successful treatment with modern anti-aging products. By using the OCT technique, it was possible to quantify changes in skin roughness and in the distribution of depths of skin wrinkles, with adequate sensitivity. OCT imaging allows the direct visualization of the skin topography with resolution of micrometers, a reliable and interactive tool for clinical use. Therefore, for the first time, we demonstrated the use of OCT technique to verify the efficacy of cosmetic products in real time. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Magnetic Field Generation During the Collision of Narrow Plasma Clouds

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki

    1999-06-01

    We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.

  18. Multiple scattering theory for total skin electron beam design.

    PubMed

    Antolak, J A; Hogstrom, K R

    1998-06-01

    The purpose of this manuscript is to describe a method for designing a broad beam of electrons suitable for total skin electron irradiation (TSEI). A theoretical model of a TSEI beam from a linear accelerator with a dual scattering system has been developed. The model uses Fermi-Eyges theory to predict the planar fluence of the electron beam after it has passed through various materials between the source and the treatment plane, which includes scattering foils, monitor chamber, air, and a plastic diffusing plate. Unique to this model is its accounting for removal of the tails of the electron beam profile as it passes through the primary x-ray jaws. A method for calculating the planar fluence profile for an obliquely incident beam is also described. Off-axis beam profiles and percentage depth doses are measured with ion chambers, film, and thermoluminescent dosimeters (TLD). The measured data show that the theoretical model can accurately predict beam energy and planar fluence of the electron beam at normal and oblique incidence. The agreement at oblique angles is not quite as good but is sufficiently accurate to be of predictive value when deciding on the optimal angles for the clinical TSEI beams. The advantage of our calculational approach for designing a TSEI beam is that many different beam configurations can be tested without having to perform time-consuming measurements. Suboptimal configurations can be quickly dismissed, and the predicted optimal solution should be very close to satisfying the clinical specifications.

  19. Technology and techniques for parity experiments at Mainz: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Diefenbach, Juergen

    2016-03-01

    For almost 20 years the Mainz accelerator facility MAMI delivered polarized electron beam to the parity violation experiment A4 that measured the contributions of strange sea quarks to the proton electromagnetic factors. Parity violation asymmetries were of the order of A ~5 ppm. Currently the A1 collaboration carries out single spin asymmetry measurements at MAMI (A ~20 ppm) to prepare for a measurement of neutron skin depth on lead (A ~1 ppm). For such high precision experiments active stabilization and precise determination of beam parameters like current, energy, position, and angle are essential requirements in addition to precision electron beam polarimetry. For the future P2 experiment at the planned superconducting accelerator MESA in Mainz the requirements for beam quality will be even higher. P2 will measure the weak mixing angle with 0.15 percent total uncertainty and, in addition, the neutron skin depth of lead as well as parity violation in electron scattering off 12C. A tiny asymmetry of only -0.03 ppm creates the needs to combine digital feedback with feedforward stabilizations along with new polarimetry developments like a hydro-Moller and a double-Mott polarimeter to meet the goals for systematic uncertainty. This talk gives an overview of our experience with polarimetry, analog feedbacks and compensation techniques for apparative asymmetries at the A4 experiment. It finally leads to the requirements and new techniques for the pioneering P2 experiment at MESA. First results from beam tests currently carried out at the existing MAMI accelerator, employing high speed analog/digital conversion and FPGAs for control of beam parameters, will be presented. Supported by the cluster of excellence PRISMA and the Deutsche Forschungsgemeinschaft in the framework of the SFB1044.

  20. Novel burn device for rapid, reproducible burn wound generation.

    PubMed

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  1. Novel burn device for rapid, reproducible burn wound generation

    PubMed Central

    Kim, J.Y.; Dunham, D.M.; Supp, D.M.; Sen, C.K.; Powell, H.M.

    2016-01-01

    Introduction Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. Methods A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200 ± 5 °C) and pressed into the skin for 40 s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40 s at a constant pressure and at pressures of 1 or 3 lbs with a constant contact time of 40 s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). Results The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20 s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. Conclusions The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. PMID:26803369

  2. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    PubMed

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  3. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    NASA Astrophysics Data System (ADS)

    Lucero, J. F.; Rojas, J. I.

    2016-07-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient's entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  4. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt; Hope International, Guatemala; Rojas, J. I., E-mail: isaac.rojas@siglo21.cr

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  5. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  6. Penile Inversion Vaginoplasty with or without Additional Full-Thickness Skin Graft: To Graft or Not to Graft?

    PubMed

    Buncamper, Marlon E; van der Sluis, Wouter B; de Vries, Max; Witte, Birgit I; Bouman, Mark-Bram; Mullender, Margriet G

    2017-03-01

    Penile inversion vaginoplasty is considered to be the gold standard for gender reassignment surgery in transgender women. The use of additional full-thickness skin graft as neovaginal lining is controversial. Some believe that having extra penile skin for the vulva gives better aesthetic results. Others believe that it gives inferior functional results because of insensitivity and skin graft contraction. Transgender women undergoing penile inversion vaginoplasty were studied prospectively. The option to add full-thickness skin graft is offered in patients where the penile skin length lies between 7 and 12 cm. Neovaginal depth was measured at surgery and during follow-up (3, 13, 26, and 52 weeks postoperatively). Satisfaction with the aesthetic result, neovaginal depth, and dilation regimen during follow-up were recorded. Satisfaction, sexual function, and genital self-image were assessed using questionnaires. A total of 100 patients were included (32 with and 68 without additional full-thickness skin graft). Patient-reported aesthetic outcome, overall satisfaction with the neovagina, sexual function, and genital self-image were not significantly associated with surgical technique. The mean intraoperative neovaginal depth was 13.8 ± 1.4 cm. After 1 year, this was 11.5 ± 2.5 cm. The largest decline (-15 percent) in depth is observed in the first 3 postoperative weeks (p < 0.01). The authors can confirm neither of the suggested arguments, for or against full-thickness skin graft use, in penile inversion vaginoplasty. The additional use of full-thickness skin graft does not influence neovaginal shrinkage, nor does it affect the patient- and physician-reported aesthetic or functional outcome. Therapeutic, IV.

  7. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    NASA Astrophysics Data System (ADS)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  8. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  9. Histological case-control study of peeling-induced skin changes by different peeling agents in surgically subcutaneous undermined skin flaps in facelift patients.

    PubMed

    Gonser, P; Kaestner, S; Jaminet, P; Kaye, K

    2017-11-01

    A histological evaluation of peeling-induced skin changes in subcutaneous undermined preauricular facial skin flaps of nine patients was performed. There were three treatment groups: Trichloroacetic acid (TCA) 25%, TCA 40% and phenol/croton oil; one group served as control. Two independent evaluators determined the epidermal and dermal thickness and the depth of necrosis (micrometre). The percentual tissue damage due to the peeling was calculated, and a one-sample t-test for statistical significance was performed. On the basis of the histomorphological changes, peeling depth was classified as superficial, superficial-partial, deep-partial and full thickness chemical burn. The histological results revealed a progression of wound depth for different peeling agents without full thickness necrosis. TCA peels of up to 40% can be safely applied on subcutaneous undermined facial skin flaps without impairing the vascular patency, producing a predictable chemical burn, whereas deep peels such as phenol/croton oil peels should not be applied on subcutaneous undermined skin so as to not produce skin slough or necrosis by impairing vascular patency. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Low Loss Polymer Nanoparticle Composites for RF Applications

    DTIC Science & Technology

    2014-09-17

    size of nanoparticles below a critical dimension ( skin depth).6 It is possible to increase the skin depth of the hybrid material by decreasing the...filled with elastomers,[10-12] polymer-nanoparticle composites,[13, 14] liquid metal filled microfluidic channels,[4, 15] conductive networks on pre

  11. 3D profilometric characterization of the aged skin surface using a skin replica and alicona Mex software.

    PubMed

    Pirisinu, Marco; Mazzarello, Vittorio

    2016-05-01

    The skin's surface is characterized by a network of furrows and wrinkles showing different height and depth. Different studies showed that processes such as aging, photo aging and cancer may alter dermal ultrastructure surface. The quantitative analysis of skin topography is a key point for understanding health condition of the skin. Here, for the first time, the skin fine structure was studied via a new approach where replica method was combined with Mex Alicona software and scanning electron microscopy (SEM). The skin texture of cheek and forearm were studied in 120 healthy sardinian volunteers. Patients were divided into three different aged groups. The skin areas of interest were reproduced by the silicone replica method, each replica was explored by SEM and digital images were taken. By using Mex Alicona software were created 3D imagine and a list of 24 surface texture parameters were obtained, of these the most representative were chosen in order to assess eventual changes between groups. The skin's texture of forearm and cheek showed a gradually loss of its typical polyhedric mesh with increasing age group. In particular, the photoexposition increased loss of dermal texture. At today, Alicona mex technology was exclusively used on palaeontology studies, our results showed that a deep analyze of skin texture was performed and support Mex alicona software as a new promising tool on dermatological research. This new analytical approach provided an easy and fast process to appreciate skin texture and its changes, by using high quality 3D dimension images. SCANNING 38:213-220, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  12. Photo-damage protective effect of two facial products, containing a unique complex of Dead Sea minerals and Himalayan actives.

    PubMed

    Wineman, Eitan; Portugal-Cohen, Meital; Soroka, Yoram; Cohen, Dror; Schlippe, Gerrit; Voss, Werner; Brenner, Sarah; Milner, Yoram; Hai, Noam; Ma'or, Zeevi

    2012-09-01

    Skin appearance is badly affected when exposed to solar UV rays, which encourage physiological and structural cutaneous alterations that eventually lead to skin photo-damage. To test the capability of two facial preparations, extreme day cream (EXD) and extreme night treatment (EXN), containing a unique complex of Dead Sea water and three Himalayan extracts, to antagonize biological effects induced by photo-damage. Pieces of organ cultures of human skin were used as a model to assess the biological effects of UVB irradiation and the protective effect of topical application of two Extreme preparations. Skin pieces were analyzed for mitochondrial activity by MTT assay, for apoptosis by caspase 3 assay, and for cytokine secretion by solid phase ELISA. Human subjects were tested to evaluate the effect of Extreme preparations on skin wrinkle depth using PRIMOS and skin hydration by a corneometer. UVB irradiation induced cell apoptosis in the epidermis of skin organ cultures and increased their pro-inflammatory cytokine, tumor necrosis α (TNFα) secretion. Topical applications of both preparations significantly attenuated all these effects. Furthermore, in human subjects, a reduction in wrinkle depth and an elevation in the intense skin moisture were observed. The observations clearly show that EXD and EXN preparations have protective anti-apoptotic and anti-inflammatory properties that can attenuate biological effects of skin photo-damage. Topical application of the preparations improves skin appearance by reducing its wrinkles depth and increasing its moisturizing impact. © 2012 Wiley Periodicals, Inc.

  13. Ultrasound-induced cavitation damage to external epithelia of fish skin.

    PubMed

    Frenkel, V; Kimmel, E; Iger, Y

    1999-10-01

    Transmission electron microscopy was used to show the effects of therapeutic ultrasound (< or = 1.0 W/cm2, 1 MHz) on the external epithelia of fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.

  14. Ingestion of an Oral Hyaluronan Solution Improves Skin Hydration, Wrinkle Reduction, Elasticity, and Skin Roughness: Results of a Clinical Study.

    PubMed

    Göllner, Imke; Voss, Werner; von Hehn, Ulrike; Kammerer, Susanne

    2017-10-01

    Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study.

  15. Ingestion of an Oral Hyaluronan Solution Improves Skin Hydration, Wrinkle Reduction, Elasticity, and Skin Roughness: Results of a Clinical Study

    PubMed Central

    Göllner, Imke; Voss, Werner; von Hehn, Ulrike; Kammerer, Susanne

    2017-01-01

    Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study. PMID:29228816

  16. Effects of hair removal alexandrite laser on biometric parameters of the skin.

    PubMed

    Alavi, Shiva; Abolhasani, Ehsan; Nilforoushzadeh, Mohammadali

    2016-04-01

    The effects of alexandrite laser (AL) on skin parameters such as melanin content, skin layer depth, elasticity, and density have not been investigated through biometric methods. We aim to assess the effect of AL on the skin parameters through biometric devices to determine whether it has positive effects on treated region. In this pretest-posttest study, we recruited patients who attended Laser Clinic of Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran, from January through December 2014. Patients had to be free of any dermatologic conditions and lesion at the site of treatment or any contraindication to laser therapy. Baseline measurements were performed and patients received four sessions of AL therapy (spot size, 12 mm; fluence, 12 J/cm(2); and pulse width, 5 Hz) with 4-week intervals. Four weeks after the last treatment session, the same parameters were assessed that included skin color, transepidermal water loss (TEWL), dermis and epidermis density and depth (through skin ultrasonography), melanin content, erythema intensity, and skin elasticity. Biometric parameters of 33 patients (27 females [81.8%]), with mean (SD) age of 35.7 (9.5) years were evaluated. The mean percent changes of skin parameters were as follows: skin color, 5.88% through Visioface and by 56.8% through Colorimeter devices (became lighter); melanin content, -15.95%; TEWL, -2.96%; elasticity, +14.88%; dermis depth -19.01%; and dermis density, +1580.11% (P < 0.001 for changes in each parameter). AL could decrease melanin content of the skin and make the skin thinner while it could increase elasticity and density of epidermis and dermis, which might indicate increased collagen content of skin.

  17. Wake excited in plasma by an ultrarelativistic pointlike bunch

    DOE PAGES

    Stupakov, G.; Breizman, B.; Khudik, V.; ...

    2016-10-05

    We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge ismore » obtained. As a result, a numerical solution for the case of a positively charged driver is also found.« less

  18. TLD extrapolation for skin dose determination in vivo.

    PubMed

    Kron, T; Butson, M; Hunt, F; Denham, J

    1996-11-01

    Prediction of skin reactions requires knowledge of the dose at various depths in the human skin. Using thermoluminescence dosimeters of three different thicknesses, the dose can be extrapolated to the surface and interpolated between the different depths. A TLD holder was designed for these TLD extrapolation measurements on patients during treatment which allowed measurements of entrance and exit skin dose with a day to day variability of +/-7% (S.D. of mean reading). In a pilot study on 18 patients undergoing breast irradiation, it was found that the angle of incidence of the radiation beam is the most significant factor influencing skin entrance dose. In most of these measurements the beam exit dose contributed 50% more to the surface dose than the entrance dose.

  19. Analysis of the in vivo confocal Raman spectral variability in human skin

    NASA Astrophysics Data System (ADS)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  20. Role of Beam Spot Size in Heating Targets at Depth.

    PubMed

    Ross, E Victor; Childs, James

    2015-12-01

    Wavelength, fluence and pulse width are primary device parameters for the treatment of skin and hair conditions. Wavelength selection is based on tissue scatter and target chromophores. Pulse width is chosen to optimize target heating. Energy absorbed by a target is determined by fluence and spot size of the light source as well as the depth of the target. We conducted an in vitro skin study and simulations to compare heating of a target at a particular depth versus spot size. Porcine skin and fat tissue were prepared and separated to form a 2mm skin layer above a 1 cm thick fat layer. A 50 μm thermocouple was placed between the layers and centered beneath a 23 x 38 mm treatment window of an 805 nm diode laser device (Vectus, Cynosure, Westford, MA). Apertures provided various incident beam spot sizes and the temperature rise of the thermocouple was measured for a fixed fluence. The 2mm deep target's temperature rise versus treatment area showed two regimes with different positive slopes. The first regime up to approximately 1 cm(2) area has a greater temperature rise versus area than that for the regime greater than 1 cm(2). The slope in the second regime is nonetheless appreciable and provides a fluence reduction factor for skin safety. The same temperature rise in a target at 2 mm depth (typical hair bulb depth in some areas) is realized by increasing the area from 1 to 4 cm(2) while reducing the fluence by half. The role of spot size and in situ beam divergence is an important consideration to determine optimum fluence settings that increase skin safety when treating deeper targets.

  1. Chemical peels.

    PubMed

    Jackson, Adrianna

    2014-02-01

    Chemical peels are a method of resurfacing with a long-standing history of safety in the treatment of various skin conditions. This article reviews the classification of different chemical agents based on their depth of injury. The level of injury facilitates cell turnover, epidermal thickening, skin lightening, and new collagen formation. Preprocedural, periprocedural, and postprocedural skin care are briefly discussed. To select the appropriate chemical peel, the provider should evaluate the patient's expectations, medical history, skin type, and possible complications to determine the best chemical peel to achieve the desired results. Patients with Fitzpatrick skin types IV to VI have increased risk of dyspigmentation, hypertrophic, and keloid scarring. These individuals respond well to superficial and medium-depth chemical peels. Advances in the use of combination peels allow greater options for skin rejuvenation with less risk of complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.

    PubMed

    Seok, Joon; Oh, Chang Taek; Kwon, Hyun Jung; Kwon, Tae Rin; Choi, Eun Ja; Choi, Sun Young; Mun, Seog Kyun; Han, Seung-Ho; Kim, Beom Joon; Kim, Myeung Nam

    2016-08-01

    The effectiveness of needle-free injection devices in neocollagenesis for treating extended skin planes is an area of active research. It is anticipated that needle-free injection systems will not only be used to inject vaccines or insulin, but will also greatly aid skin rejuvenation when used to inject aesthetic materials such as hyaluronic acid, botulinum toxin, and placental extracts. There has not been any specific research to date examining how materials penetrate the skin when a needle-free injection device is used. In this study, we investigated how material infiltrates the skin when it is injected into a cadaver using a needle-free device. Using a needle-free injector (INNOJECTOR™; Amore Pacific, Seoul, Korea), 0.2 ml of 5% methylene blue (MB) or latex was injected into cheeks of human cadavers. The device has a nozzle diameter of 100 µm and produces a jet with velocity of 180 m/s. This jet penetrates the skin and delivers medicine intradermally via liquid propelled by compressed gasses. Materials were injected at pressures of 6 or 8.5 bars, and the injection areas were excised after the procedure. The excised areas were observed visually and with a phototrichogram to investigate the size, infiltration depth, and shape of the hole created on the skin. A small part of the area that was excised was magnified and stained with H&E (×40) for histological examination. We characterized the shape, size, and depth of skin infiltration following injection of 5% MB or latex into cadaver cheeks using a needle-free injection device at various pressure settings. Under visual inspection, the injection at 6 bars created semi-circle-shaped hole that penetrated half the depth of the excised tissue, while injection at 8.5 bars created a cylinder-shaped hole that spanned the entire depth of the excised tissue. More specific measurements were collected using phototrichogram imaging. The shape of the injection entry point was consistently spherical regardless of the amount of pressure used. When injecting 5% MB at 6 bars, the depth of infiltration reached 2.323 mm, while that at 8.5 bars reached 8.906 mm. The area of the hole created by the 5% MB injection was 0.797 mm(2) at 6 bars and 0.242 mm(2) at 8.5 bars. Latex injections reached a depth of 3.480 mm at 6 bars and 7.558 mm at 8.5 bars, and the areas were measured at 1.043 mm(2) (6 bars) and 0.355 mm(2) (8.5 bars). Histological examination showed that the injection penetrated as deep as the superficial musculoaponeurotic system at 6 bars and the masseter muscle at 8.5 bars. When injecting material into the skin using a pneumatic needle-free injector, higher-pressure injections result in a hole with smaller area than lower-pressure injections. The depth and shape of skin penetration vary according to the amount of pressure applied. For materials of low density and viscosity, there is a greater difference in penetration depth according to the degree of pressure. Lasers Surg. Med. 48:624-628, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis.

    PubMed

    Yu, Yijing; Prassas, Ioannis; Muytjens, Carla M J; Diamandis, Eleftherios P

    2017-02-23

    Sweat is produced by eccrine and apocrine glands and represents a biological fluid with established roles in thermo-regulation and host infection defense. The composition of sweat is highly dynamic and alters significantly in various skin and other disorders. Therefore, in-depth profiling of sweat protein composition is expected to augment our understanding of the pathobiology of several skin diseases and may lead to the identification of useful sweat-based disease biomarkers. We here reported an in-depth analysis of the human sweat proteome and peptidome. Sweat was collected from healthy males and healthy females of ages 20-60years, following strenuous exercise. Two sweat pools were prepared (1 for males and 1 for females) and were subjected to sample preparation for mass spectrometric analysis. We identified a total of 861 unique proteins during our proteomic analysis and 32,818 endogenous peptides (corresponding to additional 1067 proteins) from our peptidomics workflow. As expected, the human skin was identified as the most abundant source of sweat proteins and peptides. Several skin proteases and protease inhibitors were identified in human sweat, highlighting the intense proteolytic activity of human skin. The presence of several antimicrobial peptides supports the functional roles of sweat in host defense and innate immunity. Sweat is a skin-associated biological fluid, secreted by eccrine and apocrine glands, with essential function in body thermo-regulation and host infection defense. In the present study, we performed in-depth profiling of both sweat proteome and peptidome composition. Our data provide the most in-depth characterization of the skin's catalytic network present in sweat. For the first time, we brought to light novel peptides in human sweat that potentially have antimicrobial activity, which highlight the important role of this fluid in innate immunity. All these findings allow us to have a better understanding of the complex web of proteases in skin and may act as a platform for the future discovery of novel skin biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pursuing prosthetic electronic skin

    NASA Astrophysics Data System (ADS)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  5. Basal cell cancer (image)

    MedlinePlus

    Basal cell cancer is a malignant skin tumor involving cancerous changes of basal skin cells. Basal cell skin cancers ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and ...

  6. Deep skin structural and microcirculation imaging with extended-focus OCT

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Grajciar, Branislav; Huber, Robert; Leitgeb, Rainer A.

    2012-02-01

    We present an extended focus OCT system for dermatologic applications that maintains high lateral resolution over a large depth range by using Bessel beam illumination. More, Bessel beams exhibit a self-reconstruction property that is particularly useful to avoid shadowing from surface structures such as hairs. High lateral resolution and high-speed measurement, thanks to a rapidly tuning swept source, allows not only for imaging of small skin structures in depth but also for comprehensive visualization of the small capillary network within the human skin in-vivo. We use this information for studying temporal vaso-responses to hypothermia. In contrast to other perfusion imaging methods such as laser Doppler imaging (LDI), OCT gives specific access to vascular responses in different vascular beds in depth.

  7. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hean; Pierce, Mark C.; Maguluri, Gopi; Park, B. Hyle; Yoon, Sang June; Lydon, Martha; Sheridan, Robert; de Boer, Johannes F.

    2012-06-01

    The accurate determination of burn depth is critical in the clinical management of burn wounds. Polarization-sensitive optical coherence tomography (PS-OCT) has been proposed as a potentially non-invasive method for determining burn depth by measuring thermally induced changes in the structure and birefringence of skin, and has been investigated in pre-clinical burn studies with animal models and ex vivo human skin. In this study, we applied PS-OCT to the in-vivo imaging of two pediatric burn patients. Deep and superficial burned skins along with contralateral controls were imaged in 3D. The imaging size was 8 mm×6 mm×2 mm in width, length, and depth in the air respectively, and the imaging time was approximately 6 s per volume. Superficially burned skins exhibited the same layered structure as the contralateral controls, but more visible vasculature and reduced birefringence compared to the contralateral controls. In contrast, a deeply burned skin showed loss of the layered structure, almost absent vasculature, and smaller birefringence compared to superficial burns. This study suggested the vasculature and birefringence as parameters for characterizing burn wounds.

  8. Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision.

    PubMed

    Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu

    2018-06-22

    The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on-off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.

  9. Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision

    NASA Astrophysics Data System (ADS)

    Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu

    2018-06-01

    The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on–off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.

  10. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed Central

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    Introduction: To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. Methods: The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. Result: In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam–skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Conclusion: Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer. PMID:25653820

  11. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam-skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer.

  12. Postnatal changes in skin water content in preterm infants.

    PubMed

    Ishiguro, Akio; Fujinuma, Sumie; Motojima, Yukiko; Oka, Shuntaro; Komaki, Takeshi; Saito, Aya; Kawasaki, Hidenori; Araki, Shunsuke; Kanai, Masayo; Sobajima, Hisanori; Tamura, Masanori

    2015-09-01

    Preterm infants have immature skin, which contributes to skin problems. Very little is known about postnatal changes in the skin, despite the clinical importance of this issue. To assess temporal changes in skin water content in preterm infants. A prospective observational study. Infants admitted to the neonatal intensive care unit were included in this study. Skin water content was measured at five different skin regions using dielectric methods at a depth of 1.5mm. Skin water content was measured on postnatal day 1 in 101 infants, and the correlation between skin water content and gestational week was analyzed. Measurements were also made on postnatal days 2, 3, and 7, and every 7days thereafter until the corrected age of 37weeks in 87 of the 101 infants. Temporal changes were statistically analyzed after dividing participants into seven groups by gestational age. On postnatal day 1, skin water content correlated inversely with gestational age at all skin regions. Skin water content decreased significantly over time, converging to the level of term infants by the corrected age of 32-35weeks. Skin water content at a depth of 1.5mm was related to corrected age and reached the level of term infants by the corrected age of approximately 32-35weeks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. The fractional laser-induced coagulation zone characterized over time by laser scanning confocal microscopy-A proof of concept study.

    PubMed

    Banzhaf, Christina A; Lin, Lynlee L; Dang, Nhung; Freeman, Michael; Haedersdal, Merete; Prow, Tarl W

    2018-01-01

    Ablative fractional laser (AFXL) is an acknowledged technique to increase uptake of topical agents in skin. Micro thermal ablation zones (MAZs) consist of ablated vertical channels surrounded by a coagulation zone (CZ). Laser scanning confocal microscopy (LSCM) images individual MAZs at 733 nm (reflectance confocal microscopy (RCM)). Further, LSCM can image sodium fluorescein (NaF) fluorescence with 488 nm excitation (fluorescence confocal microcopy (FCM)), a small hydrophilic test molecule (370 MW, log P -1.52), which may simulate uptake, bio-distribution and kinetics of small hydrophilic drugs. To explore LSCM for combined investigations of CZ thickness and uptake, bio-distribution and kinetics of NaF in AFXL-exposed skin. Excised human abdominal skin samples were exposed to AFXL (15 mJ/microbeam, 2% density) and NaF gel (1000 μg/ml, 10 μl/cm2) in six repetitions, including untreated control samples. CZ thickness and spatiotemporal fluorescence intensities (FI) were quantified up to four hours after NaF application by RCM and FCM. Test sites were scanned to a depth of 200 μm, quantifying thickness of skin compartments (stratum corneum, epidermis, upper dermis), individual CZ thicknesses and FI in CZ and surrounding skin. RCM images established skin morphology to a depth of 200 μm. The CZ thickness measurements were feasible to a depth of 50 μm, and remained unchanged over time at 50 μm (P > 0.5). FI were detected to a depth of 160 μm and remained constant in CZ up to four hours after NaF application (15 minutes: 79 AU (73-92 AU), 60 minutes: 72 AU (58-82 AU), four hours: 78 AU (71-90 AU), P > 0.1). In surrounding skin, FI increased significantly over time, but remained lower than FI in CZ (15 minutes: 21 AU (17-22 AU), 60 minutes: 21 AU (19-26 AU), four hours: 42 (31- 48 AU), P = 0.03). AFXL-processed skin generated higher FI compared to non-laser processed skin in epidermis and upper dermis at 60 minutes and four hours (P = 0.03). By LSCM, assessment of the AFXL-induced CZ thickness was feasible to a depth of 50 μm, and assessment of FI from a small hydrophilic test molecule, NaF in CZ and surrounding skin feasible to a depth of 160 μm. Lasers Surg. Med. 50:70-77, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    PubMed

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Taiurskii, A. A.; Gavrikov, M. B.

    2016-10-01

    We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.

  16. Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence

    NASA Astrophysics Data System (ADS)

    Passot, T.; Sulem, P. L.; Tassi, E.

    2018-04-01

    A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius corrections, and parallel magnetic field fluctuations is derived from the model of Brizard [Brizard, Phys. Fluids B 4, 1213 (1992)]. It assumes low βe, where βe indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave turbulence, from magnetohydrodynamics to sub-de scales (where de holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.

  17. [Anti-wrinkle creams with hyaluronic acid: how effective are they?].

    PubMed

    Poetschke, Julian; Schwaiger, Hannah; Steckmeier, Stephanie; Ruzicka, Thomas; Gauglitz, Gerd G

    2016-05-25

    Anti-wrinkle creams containing hyaluronic-acid are often advertised as an efficacious option for the treatment of wrinkles and have even been presented as an option equal to some medical procedures in this regard. Evidence from conclusive and systematic research supporting those claims, however, is widely lacking. During this trial we examined whether the daily use of anti-wrinkle creams containing hyaluronic-acid has an influence on the depth of wrinkles as well as skin tightness and elasticity. We split up 20 patients into four groups, each of which were assigned an anti-wrinkle cream containing hyaluronic acid for daily use. Four different creams within different price ranges were chosen (Balea, Nivea, Lancôme, Chanel). Before and after the 3 month trial, wrinkle depth was assessed using the PRIMOS(pico) (GFMesstechnik, Teltow, Germany) and skin-tightness and elasticity were evaluated using the Cutometer MP580 (Courage+Khazaka, Cologne, Germany). Additionally, after the trial, questionnaire data on patient satisfaction with their individual product was collected. The depth of perioral and orbital wrinkles decreased significantly in all groups, with depth reduction ranging between 10% and 20%. Skin-tightness increased significantly in all groups, rising by 13 to 30%. Minimal significant changes in skin-elasticity could only be shown in individual groups. The regular use of hyaluronic-acid containing anti-wrinkle creams for over 3 months showed clear and positive effects on wrinkle-depth and skin-tightness. Due to the design of the study, however, no clear indication on the efficacy of hyaluronic acid could be shown.

  18. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  19. [The Value of High Frequency Color Doppler Ultrasonography in the Diagnosis of Solid Skin Tumorsa-a Preliminary Study].

    PubMed

    Zhong, Lin; Tang, Yuan-Jiao; Yang, Yu-Jia; Qiu, Li

    2017-01-01

    To explore the value of high frequency color doppler ultrasonography in differentiating benign and malignant skin solid tumors. Clinical and ultrasonic data of cutaneous solid tumors confirmed by pathology in our hospital were collected. The differences in clinical and sonographic features between benign and malignant tumors were statistically analyzed. A total of 512 patients, involving 527 cases of skin solid tumors, were enrolled in this study. The ultrasonic detected 99.43% of the cases, with 99.02% accuracy in locating the lesions. The benign and malignant tumors showed differences in patient age, location, multiple occurance, location and depth, surface skin condition, tumor size, echo, morphology, uniformity, calcification, blood flow status, tumor rear area and peripheral echo, and pathological requests ( P <0.05). High frequency ultrasound has excellent detection rate of skin tumors, which can locate invasion depth of skin accurately. Benign and malignant skin tumors show differences in a number of clinical and ultrasound features.

  20. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi

    2018-02-01

    The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.

  1. Stabilization of beam-weibel instability by equilibrium density ripples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S. K., E-mail: nishfeb@gmail.com; Kaw, Predhiman; Das, A.

    In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length)more » collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.« less

  2. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    NASA Astrophysics Data System (ADS)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  3. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo.

    PubMed

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V; Roberts, Michael S

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  4. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays.

    PubMed

    Han, Wuxiao; He, Haoxuan; Zhang, Linlin; Dong, Chuanyi; Zeng, Hui; Dai, Yitong; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2017-09-06

    The emerging multifunctional flexible electronic-skin for establishing body-electric interaction can enable real-time monitoring of personal health status as a new personalized medicine technique. A key difficulty in the device design is the flexible power supply. Here a self-powered wearable noninvasive electronic-skin for perspiration analysis has been realized on the basis of a piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. The electronic-skin can detect lactate, glucose, uric acid, and urea in the perspiration, and no outside electrical power supply or battery is used in the biosensing process. The piezoelectric impulse of the piezo-biosensing units serves as the power supply and the data biosensor. The working mechanism can be ascribed to the piezoelectric-enzymatic-reaction coupling effect of enzyme/ZnO nanowires. The electronic-skin can real-time/continuously monitor the physiological state of a runner through analyzing the perspiration on his skin. This approach can promote the development of a new-type of body electric and self-powered biosensing electronic-skin.

  5. Arm, Leg, and Foot Skin Water in Persons With Diabetes Mellitus (DM) in Relation to HbA1c Assessed by Tissue Dielectric Constant (TDC) Technology Measured at 300 MHz.

    PubMed

    Mayrovitz, Harvey N; Volosko, Irina; Sarkar, Bansari; Pandya, Naushira

    2017-05-01

    DM is associated with structural skin changes. However, few studies have investigated changes in dermal water and specifically its relationship to glucose control as measured by HbA1c. Our goal was to test the hypothesis that skin water, assessed by its tissue dielectric constant (TDC), is inversely related to HbA1c. Water content of 3 skin sites (forearm, lower leg, and foot dorsum) of 50 persons with DM was estimated by measuring TDC at 300 MHz. TDC is the ratio of tissue dielectric constant to vacuum and depends on free and bound water in the measured volume. TDC was measured in triplicate to 4 depths, 0.5. 1.5, 2.5, and 5.0 mm to include different skin components. At each site increased measurement depth showed (1) a significant decrease in absolute TDC values and (2) a significant increase in foot-to-arm TDC ratios. TDC values at forearm were shown to be greater than at either leg or foot. However, testing of these 50 patients at 3 sites and 4 skin depths did not show any significant relationship between TDC and HbA1c or fasting glucose. The data indicate no relationship between TDC values, as indices for skin water, and HbA1c or fasting glucose. This implies that skin TDC values to assess skin property features and changes in persons with DM are not sensitive to recent glucose control. Furthermore, the results introduce a newly applied TDC technology useful to assess skin properties of persons with DM.

  6. Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Hesse, M.; Wang, S.; Gershman, D.; Ergun, R. E.; Burch, J.; Bessho, N.; Torbert, R. B.; Giles, B.; Webster, J.; Pollock, C.; Dorelli, J.; Moore, T.; Paterson, W.; Lavraud, B.; Strangeway, R.; Russell, C.; Khotyaintsev, Y.; Lindqvist, P.-A.; Avanov, L.

    2017-05-01

    An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.

  7. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akihito; Lee, Sungwon; Cooray, Nawalage Florence; Lee, Sunghoon; Mori, Mami; Matsuhisa, Naoji; Jin, Hanbit; Yoda, Leona; Yokota, Tomoyuki; Itoh, Akira; Sekino, Masaki; Kawasaki, Hiroshi; Ebihara, Tamotsu; Amagai, Masayuki; Someya, Takao

    2017-09-01

    Thin-film electronic devices can be integrated with skin for health monitoring and/or for interfacing with machines. Minimal invasiveness is highly desirable when applying wearable electronics directly onto human skin. However, manufacturing such on-skin electronics on planar substrates results in limited gas permeability. Therefore, it is necessary to systematically investigate their long-term physiological and psychological effects. As a demonstration of substrate-free electronics, here we show the successful fabrication of inflammation-free, highly gas-permeable, ultrathin, lightweight and stretchable sensors that can be directly laminated onto human skin for long periods of time, realized with a conductive nanomesh structure. A one-week skin patch test revealed that the risk of inflammation caused by on-skin sensors can be significantly suppressed by using the nanomesh sensors. Furthermore, a wireless system that can detect touch, temperature and pressure is successfully demonstrated using a nanomesh with excellent mechanical durability. In addition, electromyogram recordings were successfully taken with minimal discomfort to the user.

  8. Topical dissolved oxygen penetrates skin: model and method.

    PubMed

    Roe, David F; Gibbins, Bruce L; Ladizinsky, Daniel A

    2010-03-01

    It has been commonly perceived that skin receives its oxygen supply from the internal circulation. However, recent investigations have shown that a significant amount of oxygen may enter skin from the external overlying surface. A method has been developed for measuring the transcutaneous penetration of human skin by oxygen as described herein. This method was used to determine both the depth and magnitude of penetration of skin by topically applied oxygen. An apparatus consisting of human skin samples interposed between a topical oxygen source and a fluid filled chamber that registered changes in dissolved oxygen. Viable human skin samples of variable thicknesses with and without epidermis were used to evaluate the depth and magnitude of oxygen penetration from either topical dissolved oxygen (TDO) or topical gaseous oxygen (TGO) devices. This model effectively demonstrates transcutaneous penetration of topically applied oxygen. Topically applied dissolved oxygen penetrates through >700 microm of human skin. Topically applied oxygen penetrates better though dermis than epidermis, and TDO devices deliver oxygen more effectively than TGO devices. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.

    2016-04-01

    We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.

  10. Active microwave measurement of soil water content

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Cihlar, J.; Moore, R. K.

    1974-01-01

    Measurements of radar backscatter from bare soil at 4.7, 5.9, and 7.1 GHz for incident angles of 0-70 deg have been analyzed to determine sensitivity to soil moisture. Because the effective depth of penetration of the radar signal is only about one skin depth, the observed signals were correlated with the moisture in a skin depth as characterized by the attenuation coefficient (reciprocal of skin depth). Since the attenuation coefficient is a monotonically increasing function of moisture density, it may also be used as a measure of moisture content over the distance involved, which varies with frequency and moisture content. The measurements show an approximately linear increase in scattering with attenuation coefficient of the soil at angles within 10 deg of vertical and all frequencies. At 4.7 GHz this increase continues relatively large out to 70 deg incidence, but by 7.1 GHz the sensitivity is much less even at 20 deg and practically gone at 50 deg.

  11. Histologic analyses on the response of the skin to 1,927-nm fractional thulium fiber laser treatment.

    PubMed

    Kwon, In Ho; Bae, Youin; Yeo, Un-Cheol; Lee, Jin Yong; Kwon, Hyuck Hoon; Choi, Young Hee; Park, Gyeong-Hun

    2018-02-01

    The histologic responses to varied parameters of 1,927-nm fractional thulium fiber laser treatment have not yet been sufficiently elucidated. This study sought to evaluate histologic changes immediately after 1,927-nm fractional thulium fiber laser session at various parameters. The dorsal skin of Yucatan mini-pig was treated with 1,927-nm fractional thulium fiber laser at varied parameters, with or without skin drying. The immediate histologic changes were evaluated to determine the effects of varying laser parameters on the width and the depth of treated zones. The increase in the level of pulse energy widened the area of epidermal changes in the low power level, but increased the dermal penetration depth in the high power level. As the pulse energy level increased, the increase in the power level under the given pulse energy level more evidently made dermal penetration deeper and the treatment area smaller. Skin drying did not show significant effects on epidermal changes, but evidently increased the depth of dermal denaturation under both high and low levels of pulse energy. These results may provide important information to establish treatment parameters of the 1,927-nm fractional thulium fiber laser for various skin conditions.

  12. Fractional laser microablation of skin aimed at enhancing its permeability for nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Dolotov, L E; Bashkatov, A N

    2011-05-31

    A new method for delivering nanoparticles into the skin using the fractional laser microablation of its surface and the ultrasonic treatment is proposed. As a result of in vitro and in vivo studies, it is shown that the 290-nm laser pulses with the energy from 0.5 to 3.0 J provide the penetration of nanoparticles of titanium dioxide with the diameter {approx}100 nm from the skin surface to the depth, varying from 150 to 400 {mu}m. Histological testing of the skin areas, subjected to the treatment, shows that the particles stay in the dermis at the depth up to 400 {mu}mmore » no less than for three weeks. (optical technologies in biophysics and medicine)« less

  13. Transient fields produced by a cylindrical electron beam flowing through a plasma

    NASA Astrophysics Data System (ADS)

    Firpo, Marie-Christine

    2012-10-01

    Fast ignition schemes (FIS) for inertial confinement fusion should involve in their final stage the interaction of an ignition beam composed of MeV electrons laser generated at the critical density surface with a dense plasma target. In this study, the out-of-equilibrium situation in which an initially sharp-edged cylindrical electron beam, that could e.g. model electrons flowing within a wire [1], is injected into a plasma is considered. A detailed computation of the subsequently produced magnetic field is presented [2]. The control parameter of the problem is shown to be the ratio of the beam radius to the electron skin depth. Two alternative ways to address analytically the problem are considered: one uses the usual Laplace transform approach, the other one involves Riemann's method in which causality conditions manifest through some integrals of triple products of Bessel functions.[4pt] [1] J.S. Green et al., Surface heating of wire plasmas using laser-irradiated cone geometries, Nature Physics 3, 853--856 (2007).[0pt] [2] M.-C. Firpo, http://hal.archives-ouvertes.fr/hal-00695629, to be published (2012).

  14. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mett, R. R.; Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202; Sidabras, J. W.

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approachesmore » the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement “meta-metallic.” In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz.« less

  15. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    PubMed Central

    Mett, R. R.; Hyde, J. S.

    2016-01-01

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement “meta-metallic.” In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz. PMID:27587143

  16. Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Köhler, Martin J; Scharenberg, Rüdiger; Kaatz, Martin

    2010-12-01

    The first-ever application of high-frequency ultrasound combined with multiphoton tomography (MPT) and dermoscopy in a clinical trial is reported. 47 patients with different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond laser multiphoton tomograph and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface with a magnification up to 70 x. Depending on the ultrasonic frequencies from 7.5 MHz to 100 MHz, the signal depth varies from about 1 mm to 80 mm. Vertical ultrasound wide-field images provide fast information on depth and volume of the lesion. The 100 MHz ultrasound allows imaging with resolutions down to 16 μm (axial) and 32 μm (lateral). Multiphoton tomography provides 0.36 x 0.36 x 0.001 mm³ horizontal optical sections of a particular region of interest with submicron resolution down to 200 μm tissue depth. The autofluorescence of mitochondrial coenzymes, keratin, melanin, and elastin as well as the network of collagen structures can be imaged. The combination of ultrasound and MPT opens novel synergistic possibilities in diagnostics of skin diseases with a special focus on the early detection of skin cancer as well as the evaluation of treatments. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multi-depth fractionated aesthetic ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Slayton, Michael H.; Lyke, Stephanie; Barthe, Peter G.

    2017-03-01

    Objective: Aesthetic ultrasound surgery provides the ability to treat at precise, clinically relevant depths with varied lesion size. This represents a major advantage compared to cosmetic laser and RF based energy sources. We present results of pre-clinical and clinical research aimed at establishing the feasibility of three-dimensional fractional deposition of focused ultrasound energy in the first 3mm of skin. Conformal thermal lesions were created in ex-vivo porcine muscle and live human skin in a variety of depths and geometries. Gross pathology demonstrating a three-dimensional pattern of non-intersecting lesions was micro- photographed and characterized in porcine tissue, and followed up to thirty days post treatment in human tissue. Methods: Image/treat transducers from 7.5 to 10 MHz, focal depths of 1 to 3 mm, and energies of 160 to 300 mJ were used to lay down a three-dimensional pattern of non-intersecting thermal lesions in freshly excised porcine muscle tissue. Human skin was treated in vivo at 120 to 360 mJ per lesion. Results were photographed immediately post-treatment and followed up to 30 days. Results: Porcine tissue lesion geometry was measured. Average lesion dimensions approximated by a sphere ranged from 360 micron (±19%) to 520 micron (±23%) varying with the energy settings. Measured depth and distance between the thermal lesions were within ±13% of the focal depth and lesion spacing. In human skin all lesions for all energy settings were completely resolved during the follow-up period. At lower energy settings of 120 mJ and 160 mJ lesions were completely resolved by day 2. Mild erythema and localized swelling were the only transient side effects and resolved within 48 hours or less. Conclusions: In conclusion, skin may be successfully treated in a three-dimensional fractionated manner with predictable and precise deposition of thermal damage. In vivo results demonstrate tolerability and fast resolution with minimal side effects.

  18. Comparative dosimetry study of three UK centres implementing total skin electron treatment through external audit.

    PubMed

    Misson-Yates, S; Gonzalez, R; McGovern, M; Greener, A

    2015-05-01

    This article describes the external audit measurements conducted in two UK centres implementing total skin electron beam therapy (TSEBT) and the results obtained. Measurements of output, energy, beam flatness and symmetry at a standard distance (95 or 100 cm SSD) were performed using a parallel plate chamber in solid water. Similarly, output and energy measurements were also performed at the treatment plane for single and dual fields. Clinical simulations were carried out using thermoluminescent dosemeters (TLDs) and Gafchromic® film (International Specialty Products, Wayne, NJ) on an anthropomorphic phantom. Extended distance measurements confirmed that local values for the beam dosimetry at Centres A and B were within 2% for outputs and 1-mm agreement of the expected depth at which the dose is 50% of the maximum for the depth-dose curve in water (R50,D) value. Clinical simulation using TLDs) showed an agreement of -1.6% and -6.7% compared with the expected mean trunk dose for each centre, respectively, and a variation within 10% (±1 standard deviation) across the trunk. The film results confirmed that the delivery of the treatment technique at each audited centre complies with the European Organisation for Research and Treatment of Cancer recommendations. This audit methodology has proven to be a successful way to confirm the agreement of dosimetric parameters for TSEBT treatments at both audited centres and could serve as the basis for an audit template to be used by other audit groups. TSEBT audits are not established in the UK owing to a limited number of centres carrying out the treatment technique. This article describes the audits performed at two UK centres prior to their clinical implementation.

  19. Erbium:YAG laser resurfacing increases skin permeability and the risk of excessive absorption of antibiotics and sunscreens: the influence of skin recovery on drug absorption.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Al-Suwayeh, Saleh A; Li, Yi-Ching; Fang, Jia-You

    2012-06-01

    While laser skin resurfacing is expected to result in reduced barrier function and increased risk of drug absorption, the extent of the increment has not yet been systematically investigated. We aimed to establish the skin permeation profiles of tetracycline and sunscreens after exposure to the erbium:yttrium-aluminum-garnet (Er:YAG) laser during postoperative periods. Physiological and histopathological examinations were carried out for 5 days after laser treatment on nude mice. Percutaneous absorption of the permeants was determined by an in vitro Franz cell. Ablation depths varied in reaching the stratum corneum (10 μm, 2.5 J/cm²) to approach the epidermis (25 μm, 6.25 J/cm²) and upper dermis (40 μm, 10 J/cm²). Reepithelialization evaluated by transepidermal water loss was complete within 2-4 days and depended on the ablation depth. Epidermal hyperplasia was observed in the 40-μm-treated group. The laser was sufficient to disrupt the skin barrier and allow the transport of the permeants into and across the skin. The laser fluence was found to play an important role in modulating skin absorption. A 25-μm ablation depth increased tetracycline flux 84-fold. A much smaller enhancement (3.3-fold) was detected for tetracycline accumulation within the skin. The laser with different fluences produced enhancement of oxybenzone skin deposition of 3.4-6.4-fold relative to the untreated group. No penetration across the skin was shown regardless of whether titanium dioxide was applied to intact or laser-treated skin. However, laser resurfacing increased the skin deposition of titanium dioxide from 46 to 109-188 ng/g. Tetracycline absorption had recovered to the level of intact skin after 5 days, while more time was required for oxybenzone absorption. The in vivo skin accumulation and plasma concentration revealed that the laser could increase tetracycline absorption 2-3-fold. The experimental results indicated that clinicians should be cautious when determining the dose for postoperative treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Ultrasound-guided evaluation of the lumbar subarachnoid space in lateral and sitting positions in pregnant patients to receive elective cesarean operation.

    PubMed

    Gulay, Ucarli; Meltem, Turkay; Nadir, Sinikoglu Sitki; Aysin, Alagol

    2015-01-01

    The aim was to compare visibility of the spinal space in sitting and lateral positions, number of attempts, spinal needle depth, skin-dura mater distance and the possible complications; in application of spinal anesthesia, using ultrasound in pregnant patients scheduled to receive elective cesarean operations. The study was conducted prospective-randomly after receiving approval from the ethics committee and the patients' permission. ASA I-II 50 pregnant patients were divided into two groups. The patients in Group SP were those placed in a sitting position and the patients in Group LP were those placed in a lateral position. In both groups, the skin-dura mater distance was recorded through an out-of plane technique accompanied by ultrasound. The depth of the spinal needle was measured. The number of attempts, the level of attempts recorded. The degree of visibility of the vertebral space was observed through ultrasound and was numerically scored. Intraoperative and postoperative complications were recorded. There was no difference between the number of attempts, Modified Bromage Scale and mean measurements of skin-dura mater distance observed through ultrasound. The mean needle depths of Group LP were statistically found significantly higher than Group SP (p=0.002). Our study supports the notion that access to the skin-dura mater distance is longer in the lateral decubitus position when skin-dura mater distance is evaluated by measuring needle depth.

  1. Confocal Raman microscopic investigation of the effectiveness of penetration enhancers for procaine delivery to the skin

    NASA Astrophysics Data System (ADS)

    Lunter, Dominique; Daniels, Rolf

    2014-12-01

    A methodology that employs confocal Raman microscopy (CRM) on ex vivo skin samples is proposed for the investigation of drug content and distribution in the skin. To this end, the influence of the penetration enhancers propylene glycol and polyoxyethylene-23-lauryl ether on the penetration and permeation of procaine as a model substance was investigated. The drug content of skin samples that had been incubated with semisolid formulations containing one of these enhancers was examined after skin segmentation. The experiments showed that propylene glycol did not affect the procaine content that was delivered to the skin, whereas polyoxyethylene-23-lauryl ether led to higher procaine contents and deeper penetration. Neither substance was found to influence the permeation rate of procaine. It is thereby shown that CRM can provide additional information on drug penetration and permeation. Furthermore, the method was found to enhance the depth from which Raman spectra can be collected and to improve the depth resolution compared to previously proposed methods.

  2. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin

    2010-07-01

    The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.

  3. Evaluation of a near-infrared-type contrast medium extravasation detection system using a swine model.

    PubMed

    Ishihara, Toshihiro; Kobayashi, Tatsushi; Ikeno, Naoya; Hayashi, Takayuki; Sakakibara, Masahiro; Niki, Noboru; Satake, Mitsuo; Moriyama, Noriyuki

    2014-01-01

    To refine the development and evaluate the near-infrared (NIR) extravasation detection system and its ability to detect extravasation during a contrast-enhanced computed tomography (CT) examination. The NIR extravasation detection system projects the NIR light through the surface of the human skin then, using its sensory system, will monitor the changes in the amount of NIR that reflected, which varies based on absorption properties.Seven female pigs were used to evaluate the contrast media extravasation detection system, using a 20-gauge intravenous catheter, when injected at a rate of 1 mL/s into 4 different locations just under the skin in the thigh section. Using 3-dimensional CT images, we evaluated the extravasations between time and volume, depth and volume, and finally depth and time to detect. We confirmed that the NIR light, 950-nm wavelength, used by the extravasation detection system is well absorbed by contrast media, making changes easy to detect. The average time to detect an extravasation was 2.05 seconds at a depth of 2.0 mm below the skin with a volume of 1.3 mL, 2.57 seconds at a depth between 2.1 and 5 mm below the skin and a volume of 3.47 mL, 10.5 seconds for depths greater than 5.1 mm and a volume of 11.1 mL. The detection accuracy was significantly deteriorated when the depth exceeded 5.0 mm (Tukey-Kramer, P < 0.05) CONCLUSIONS: The extravasation system detection system that is using NIR has a high level of detection sensitivity. The sensitivity enables the system to detect extravasation at depths less than 2 mm with a volume of 1.5 mL and at depths less than 5 mm with a volume of 3.5 mL. The extravasation detection system could be suitable for use during examinations.

  4. Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.

    2018-03-01

    The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.

  5. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    PubMed

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards maximum accumulation in deeper skin layers. Biodistribution of MTX occurred throughout the skin without being compromised by coagulation zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated the skin after 7 h at a ten-fold increased MTX-concentration compared to intact skin. Transdermal permeation stayed below 1.5% of applied MTX before skin saturation, and increased afterwards up to 8.0% at 24h. MTX distributed radially into the coagulation zone within 15 min of application and could be detected in surrounding skin at 1.5 h. Upon skin saturation, MTX had distributed in an entire mid-dermal skin section. In conclusion, adjusting laser parameters and application time may enable targeted treatments of dermatological disorders and potentially pose a future alternative to systemic MTX in selected dermatological disorders.

  6. Ionic skin.

    PubMed

    Sun, Jeong-Yun; Keplinger, Christoph; Whitesides, George M; Suo, Zhigang

    2014-12-03

    Electronic skins (i.e., stretchable sheets of distributed sensors) report signals using electrons, whereas natural skins report signals using ions. Here, ionic conductors are used to create a new type of sensory sheet, called "ionic skin". Ionic skins are highly stretchable, transparent, and biocompatible. They readily measure strains from 1% to 500%, and pressures as low as 1 kPa. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. In vivo optical coherence tomography of human skin microstructure

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Pravdenko, Kirill I.; Shabanov, Dmitry V.; Gladkova, Natalia D.; Pochinko, Vitaly; Zhegalov, V.; Dmitriev, G.; Vazina, I.; Petrova, Galina P.; Nikulin, Nikolai K.

    1994-12-01

    A compact effective optical coherence tomography (OCT) system is presented. It contains approximately equals 0.3 mW superluminescent diode with spectral width 30 nm FWHM (providing approximately equals 15 micrometers longitudinal resolution) and fiber interferometer with integrated longitudinal scanning. The dynamic range 60 dB allows to observe structure of human skin in vivo up to 1.5 mm in depth. A comparison of obtained tomographs with data of histologic analysis of the same samples of the skin have been carried out to identify the observed structures and determine their optical properties. This technique allows one to perform noncontact, noninvasive diagnostic of early stages of different pathological state of the skin, to measure the burn depth and to observe the process of the recovery. Unlike scanning confocal microscopy, OCT is more suitable for an endoscopic investigation of the mucous membranes of hollow organs. Possible diagnostic applications include dermatology, gastroenterology, gynecology, urology, oncology, othorinolaryngology, transplantology. The most promising features are the potential possibility of differential diagnosis of precancer and various types of cancer, estimation of the invasion depth, differential diagnosis of inflammation and dystrophic processes, control of radical operative treatment.

  8. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    PubMed

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are calculated for the unrealistic 1D magnetic field. For the transverse configuration, the entrance skin dose is equal or smaller than that of the zero B-field case for perpendicular beams. For a 10 × 10 cm(2) oblique beam the transverse magnetic field decreases the entry skin dose for oblique angles less than ±20° and increases it by no more than 10% for larger angles up to ±45°. The exit skin dose is increased by 42% for a 10 × 10 cm(2) perpendicular beam, but appreciably drops and approaches the zero B-field case for large oblique angles of incidence. For longitudinal linac-MR systems only a small increase in the entrance skin dose is predicted, due to the rapid decay of the realistic magnetic fringe fields. For transverse linac-MR systems, changes to the entrance skin dose are small for most scenarios. For the same geometry, on the exit side a fairly large increase is observed for perpendicular beams, but significantly drops for large oblique angles of incidence. The observed effects on skin dose are not expected to limit the application of linac-MR systems in either the longitudinal or transverse configuration.

  9. Birefringence and vascular imaging of in vivo human skin by Jones-matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-02-01

    A customized 1310-nm Jones-matrix optical coherence tomography (JM-OCT) for dermatological investigation was constructed and used for in vivo normal human skin tissue imaging. This system can simultaneously measure the threedimensional depth-resolved local birefringence, complex-correlation based OCT angiography (OCT-A), degree-ofpolarization- uniformity (DOPU) and scattering OCT intensity. By obtaining these optical properties of tissue, the morphology, vasculature, and collagen content of skin can be deduced and visualized. Structures in the deep layers of the epithelium were observed with depth-resolved local birefringence and polarization uniformity images. These results suggest high diagnostic and investigative potential of JM-OCT for dermatology.

  10. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress.

    PubMed

    Hammock, Mallory L; Chortos, Alex; Tee, Benjamin C-K; Tok, Jeffrey B-H; Bao, Zhenan

    2013-11-13

    Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of Thermal Resistance on One-Dimensional Thermal Analysis of the Epidermal Flexible Electronic Devices Integrated with Human Skin

    NASA Astrophysics Data System (ADS)

    Li, He; Cui, Yun

    2017-12-01

    Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.

  12. Plasma skin resurfacing: personal experience and long-term results.

    PubMed

    Bentkover, Stuart H

    2012-05-01

    This article presents a comprehensive clinical approach to plasma resurfacing for skin regeneration. Plasma technology, preoperative protocols, resurfacing technique, postoperative care, clinical outcomes, evidence-based results, and appropriate candidates for this procedure are discussed. Specific penetration depth and specific laser energy measurements are provided. Nitrogen plasma skin regeneration is a skin-resurfacing technique that offers excellent improvement of mild to moderate skin wrinkles and overall skin rejuvenation. It also provides excellent improvement in uniformity of skin color and texture in patients with hyperpigmentation with Fitzpatrick skin types 1 through 4. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensionalmore » space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.« less

  14. Acceleration during magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less

  15. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  16. Breslow depth of cutaneous melanoma: impact of factors related to surveillance of the skin, including prior skin biopsies and family history of melanoma.

    PubMed

    Fisher, Nina M; Schaffer, Julie V; Berwick, Marianne; Bolognia, Jean L

    2005-09-01

    Because the early detection of cutaneous melanoma can dramatically improve survival, identification and surveillance of persons at risk have received much attention. Our purpose was to examine the influences of personal or family history, patterns of detection, and prior skin biopsies (considered to be a measurement of surveillance by medical personnel) on the Breslow depth of cutaneous melanomas. A retrospective cohort analysis of 218 patients with a history of at least one invasive cutaneous melanoma who visited the Yale Pigmented Lesion Clinic between January 1995 and January 1996 was performed. Data on patterns of detection, melanocytic nevi, and skin biopsies before and after the initial diagnosis of melanoma were collected, and patients with a family history of melanoma were compared with sporadic patients. Initial melanomas discovered by dermatologists were more likely to be 0.75 mm or less in depth than those found by other physicians (P = .03). Although patients detected 45% of the initial primary melanomas (98/218), dermatologists discovered 80% of the second primary tumors (33/41; P = .001). A personal history of melanoma was predictive of a thinner Breslow depth (P = .01), but a family history of melanoma was not. Having a biopsy of any type or combination of types of skin lesion(s) performed in the 5 years, 2 years, or 1 year before the first diagnosis of melanoma did not predict a melanoma of thinner Breslow depth among either familial or sporadic patients. The mean number of skin biopsies performed per patient was 8 times higher in the 5-year period after (5.6) versus the 5-year period before (0.7) the initial diagnosis of melanoma, with a peak in the first year after the diagnosis (2.3 vs 0.25 in the prior year). In 27 patients, one or more skin biopsies were performed in the year before the initial diagnosis of melanoma; 41% of these biopsies (23/56) were of lesions in normally exposed sites (eg, the face, neck, and forearms) compared with 22% of the melanomas (6/27). Since an invasive melanoma (with the possible exception of a nodular melanoma) would likely have been present for at least a year, plausible explanations for why evidence of previous dermatologic care did not appear to result in earlier detection include performance of a limited rather than a total body skin examination as well as subtle clinical features of early melanomas. However, this study cannot give weight to these explanations because at the time new Pigmented Lesion Clinic patients were not routinely asked about previous total body skin examinations. The disappointing trends seen in this study, with neither the well-established risk factor of a family history of melanoma nor previously having a skin biopsy predicting thinner melanomas, highlight the need to establish criteria defining the subset of patients for whom appropriate management requires periodic total body skin examination.

  17. Color structured light imaging of skin

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin; Reichenberg, Jason; Sacks, Michael; Tunnell, James W.

    2016-05-01

    We illustrate wide-field imaging of skin using a structured light (SL) approach that highlights the contrast from superficial tissue scattering. Setting the spatial frequency of the SL in a regime that limits the penetration depth effectively gates the image for photons that originate from the skin surface. Further, rendering the SL images in a color format provides an intuitive format for viewing skin pathologies. We demonstrate this approach in skin pathologies using a custom-built handheld SL imaging system.

  18. Water-Enabled Healing of Conducting Polymer Films.

    PubMed

    Zhang, Shiming; Cicoira, Fabio

    2017-10-01

    The conducting polymer polyethylenedioxythiophene doped with polystyrene sulfonate (PEDOT:PSS) has become one of the most successful organic conductive materials due to its high air stability, high electrical conductivity, and biocompatibility. In recent years, a great deal of attention has been paid to its fundamental physicochemical properties, but its healability has not been explored in depth. This communication reports the first observation of mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be electrically healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, after being wetted the films are transformed into autonomic self-healing materials without the need of external stimulation. This work reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bioimplanted electronics, placing conducting polymers on the front line for healing applications in electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A possible mechanism for visible-light-induced skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Lubart, Rachel; Friedman, Harry; Lavie, R.

    2004-09-01

    In recent years there has been intensive research in the field of non-ablative skin rejuvenation. This comes as a response to the desire for a simple method of treating rhytids caused by aging, UV exposure and acne scars. In numerous studies intense visible light pulsed systems (20-30J/cm2) are used. The mechanism of action was supposed to be a selective heat induced denaturalization of dermal collagen that leads to subsequent reactive synthesis. In this study we suggest a different mechanism for photorejuvenation based on light induced Reactive Oxygen Species (ROS) formation. We irradiated collagen in-vitro with a broad band of visible light, 400-800 nm, 12-22J/cm2, and used the spin trapping coupled with electron paramagnetic resonance (EPR) spectroscopy to detect ROS. In vivo, we used dose 30 J in average (35 for acnis scars, 25 for wrinkles and redness). Irradiated collagen results in hydroxyl and methyl radicals formation. We propose, as a new concept, that visible light at the intensity used for skin rejuvenation, 20-30J/cm2, produces high amounts of ROS which destroy old collagen fibers encouraging the formation of new ones. On the other hand at inner depths of the skin, where the light intensity is much weaker, low amounts of ROS are formed which are well known to stimulate fibroblast proliferation.

  20. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    PubMed

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  1. Potential for focused beam orthovoltage therapy

    NASA Astrophysics Data System (ADS)

    Mahato, Dip N.; MacDonald, C. A.

    2010-08-01

    Radiation therapy typically employs high energy photon beams because the low absorption coefficient at these energies minimizes skin dose with a conventional, unfocused beam. At orthovoltage energies less than 150 keV, the maximum dose for a single beam occurs very close to the skin surface. However a well-focused beam of low energy x rays can provide much higher flux at the target depth while sparing dose to the skin. The measured focal spot size for the polycapillary optic was 0.2 mm and was found to remain unchanged through 50 mm of phantom thickness. The calculated depth-dose curve was found to peak several centimeters below the surface with 25-40 keV radiation. Modeling indicates that the tumor dose would remain much higher than the skin dose even after scanning to cover a 1 cm3 tumor.

  2. Wavelet-based statistical classification of skin images acquired with reflectance confocal microscopy

    PubMed Central

    Halimi, Abdelghafour; Batatia, Hadj; Le Digabel, Jimmy; Josse, Gwendal; Tourneret, Jean Yves

    2017-01-01

    Detecting skin lentigo in reflectance confocal microscopy images is an important and challenging problem. This imaging modality has not yet been widely investigated for this problem and there are a few automatic processing techniques. They are mostly based on machine learning approaches and rely on numerous classical image features that lead to high computational costs given the very large resolution of these images. This paper presents a detection method with very low computational complexity that is able to identify the skin depth at which the lentigo can be detected. The proposed method performs multiresolution decomposition of the image obtained at each skin depth. The distribution of image pixels at a given depth can be approximated accurately by a generalized Gaussian distribution whose parameters depend on the decomposition scale, resulting in a very-low-dimension parameter space. SVM classifiers are then investigated to classify the scale parameter of this distribution allowing real-time detection of lentigo. The method is applied to 45 healthy and lentigo patients from a clinical study, where sensitivity of 81.4% and specificity of 83.3% are achieved. Our results show that lentigo is identifiable at depths between 50μm and 60μm, corresponding to the average location of the the dermoepidermal junction. This result is in agreement with the clinical practices that characterize the lentigo by assessing the disorganization of the dermoepidermal junction. PMID:29296480

  3. 46 CFR 69.203 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., excluding rub rails, from the outboard side of the skin (outside planking or plating) on one side of the hull to the outboard side of the skin on the other side of the hull. Overall depth means the vertical distance taken at or near midships from a line drawn horizontally through the uppermost edges of the skin...

  4. Excimer laser debridement of necrotic erosions of skin without collateral damage

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-07-01

    Pulsed ArF excimer laser radiation at 6.4 eV, at fluence exceeding the ablation threshold, will debride burn eschar and other dry necrotic erosions of the skin. Debridement will cease when sufficiently moist viable tissue is exposed, due to absorption by aqueous chloride ions (Cl-) through the non-thermal process of electron photodetachment, thereby inhibiting collateral damage to the viable tissue. ArF excimer laser radiation debrides/ablates ~1 micron of tissue with each pulse. While this provides great precision in controlling the depth of debridement, the process is relatively time-consuming. In contrast, XeCl excimer laser radiation debrides ~8 microns of tissue with each pulse. However the 4.0 eV photon energy of the XeCl excimer laser is insufficient to photodetach an electron from a Cl- ion, so blood or saline will not inhibit debridement. Consequently, a practical laser debridement system should incorporate both lasers, used in sequence. First, the XeCl excimer laser would be used for accelerated debridement. When the necrotic tissue is thinned to a predetermined thickness, the ArF excimer laser would be used for very precise and well-controlled debridement, removing ultra-thin layers of material with each pulse. Clearly, the use of the ArF laser is very desirable when debriding very close to the interface between necrotic tissue and viable tissue, where the overall speed of debridement need not be so rapid and collateral damage to viable tissue is undesirable. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  5. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  6. Source to Skin Distance (SSD) Characteristics from Varian CX Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Bahari Nurdin, Wira; Purnomo, Aji; Dewang, Syamsir

    2018-03-01

    This study aims to describe the characteristics of the source to skin distance (SSD) of Varian CX linear accelerator (LINAC) using the X-ray beam of 6 MV and 10 MV. The variation of the source to the SSD are 90, 100 and 110 cms; the depth of the water phantom used are 5, 10, 15, 20, and 25 cms, respectively. The depth of the water phantom was created for analysis of percentage depth dose (PDD) and profile dose. It can be concluded from the tests that from the measured SSD, SSD of 110 cm with the depth water phantom of 20-25 cm for energy beam of 6 MV and at all levels of depth for 10 MV energy corresponding tolerance limits to be used in clinical radiotherapy. For the SSD 90 and 100, the values beam symmetry and flatness obtained slightly beyond the limits of tolerance.

  7. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  8. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: Characterisation by in vitro percutaneous absorption studies and Time-of-Flight Secondary Ion Mass Spectrometry.

    PubMed

    Holmes, Amy M; Scurr, David J; Heylings, Jon R; Wan, Ka-Wai; Moss, Gary P

    2017-06-15

    Skin penetration and localisation of chlorhexidine digluconate (CHG) within the skin have been investigated in order to better understand and optimise the delivery using a nano polymeric delivery system of this topically-applied antimicrobial drug. Franz-type diffusion cell studies using in vitro porcine skin and tape stripping procedures were coupled with Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise the skin during various treatments with CHG and polyamidoamine dendrimers (PAMAM). Pre-treatment of the skin with PAMAM dendrimers significantly increased the amount and depth of permeation of CHG into the skin in vitro. The effect observed was not concentration dependant in the range 0.5-10mM PAMAM. This could be important in terms of the efficiency of treatment of bacterial infection in the skin. It appears that the mechanism of enhancement is due to the PAMAM dendrimer disrupting skin barrier lipid conformation or by occluding the skin surface. Franz-type diffusion cell experiments are complimented by the detailed visualisation offered by the semi-quantitative ToF-SIMS method which provides excellent benefits in terms of sensitivity and fragment ion specificity. This allows a more accurate depth profile of chlorhexidine permeation within the skin to be obtained and potentially affords the opportunity to map the co-localisation of permeants with skin structures, thus providing a greater ability to characterise skin absorption and to understand the mechanism of permeation, providing opportunities for new and more effective therapies. Copyright © 2017. Published by Elsevier B.V.

  9. Assessing the Agreement Between Radiologic and Clinical Measurements of Lumbar and Cervical Epidural Depths in Patients Undergoing Prone Interlaminar Epidural Steroid Injection.

    PubMed

    Jones, James Harvey; Singh, Naileshni; Nidecker, Anna; Li, Chin-Shang; Fishman, Scott

    2017-05-01

    Fluoroscopy-guided epidural steroid injection (ESI) commonly is performed to treat radicular pain yet can lead to adverse events if the needle is not advanced with precision. Accurate preoperative assessment of the distance from the skin to the epidural space holds the potential for reducing the risks of adverse effects from ESI. It was hypothesized that the distance from the skin to the epidural space as measured on preoperative magnetic resonance imaging (MRI) would agree with the distance traveled by a Tuohy needle to reach the epidural space during midline, interlaminar ESI. This study compared the final needle depth measurement at the point of loss of resistance (LOR) from cervical or lumbar ESI to the distance from the skin to the anterior and posterior borders of the epidural space on the associated cervical and lumbar preoperative MRI. This retrospective chart review analyzed the procedure notes, MRI, and demographic data of patients who received a prone, interlaminar ESI at an outpatient chronic pain clinic between June 1, 2013, and June 1, 2015. The following data were collected: body mass index (BMI), age, sex, intervertebral level of the ESI, and LOR depth. We then measured the distance from the skin surface to the anterior border of the ligamentum flavum (ligamentum flavum depth [LFD]) and dura (dura depth [DD]) on MRI. A total of 335 patients were categorized into the following patient subgroups: age ≥65 years, age <65 years, BMI ≥30 kg/m (obese), BMI <30 kg/m (nonobese), male, and female. Secondary analyses were then performed to compare the agreement between LOR depth and DD with that between LOR depth and LFD within each patient subgroup. Intraclass correlation coefficient (ICC) and Bland-Altman plot were used to assess the agreement between DD or LFD and LOR depth. Data from 335 ESIs were analyzed, including 147 cervical ESIs and 188 lumbar ESIs. Estimated ICC values for the agreement between LOR depth and LFD for all lumbar and cervical measurements were 0.88 (95% confidence interval [CI], 0.85-0.91) and 0.72 (95% CI, 0.64-0.79), respectively. Estimated ICC values for the agreement between LOR depth and DD for all lumbar and cervical measurements were 0.86 (95% CI, 0.82-0.89) and 0.69 (95% CI, 0.60-0.77), respectively. This study assessed the agreement between MRI-derived measurements of epidural depth and those determined clinically. MRI-derived measurements from the skin to the anterior border of the ligamentum flavum, which represents the most posterior aspect of the epidural space, revealed stronger agreement with LOR depths than did measurements to the dura or the most anterior aspect of the epidural space. These results require further analysis and refinement before supporting clinical application.

  10. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    PubMed

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  11. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study.

    PubMed

    Boone, M A L M; Suppa, M; Marneffe, A; Miyamoto, M; Jemec, G B E; Del Marmol, V

    2015-10-01

    Several non-invasive two-dimensional techniques with different lateral resolution and measurable depth range have proved to be useful in assessing and quantifying morphological changes in skin ageing. Among these, only in vivo microscopy techniques permit histometric measurements in vivo. Qualitative and quantitative assessment of chronological (intrinsic) age-related (IAR) morphological changes of epidermis, dermo-epidermal junction (DEJ), papillary dermis (PD), papillary-reticular dermis junction and reticular dermis (RD) have been performed by high-definition optical coherence tomography in real time 3-D. HD-OCT images were taken at the internal site of the right upper arm. Qualitative HD-OCT IAR descriptors were reported at skin surface, at epidermal layer, DEJ, PD and upper RD. Quantitative evaluation of age-related compaction and backscattered intensity or brightness of different skin layers was performed by using the plugin plot z-axis profile of ImageJ(®) software permitting intensity assessment of HD-OCT (DICOM) images (3-D images). Analysis was in blind from all clinical information. Sixty, fair-skinned (Fitzpatrick types I-III) healthy females were analysed retrospectively in this study. The subjects belonged to three age groups: twenty in group I aged 20-39, twenty in group II aged 40-59 and twenty in group III aged 60-79. Only intrinsic ageing in women has been studied. Significant age-related qualitative and quantitative differences could be noticed. IAR changes in dermal matrix fibers morphology/organisation and in microvasculature were observed. The brightness and compaction of the different skin layers increased significantly with intrinsic skin ageing. The depth of visibility of fibers in RD increased significantly in the older age group. In conclusion, HD-OCT allows 3-D in vivo and real time qualitative and quantitative assessment of chronological (intrinsic) age-related morphological skin changes at high resolution from skin surface to a depth of the superficial reticular dermis.

  12. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    PubMed

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  13. Investigations of percutaneous uptake of ultrafine TiO 2 particles at the high energy ion nanoprobe LIPSION

    NASA Astrophysics Data System (ADS)

    Menzel, F.; Reinert, T.; Vogt, J.; Butz, T.

    2004-06-01

    Micronised TiO 2 particles with a diameter of about 15 nm are used in sunscreens as physical UV filter. Due to the small particle size it may be supposed that TiO 2 particles can pass through the uppermost horny skin layer ( stratum corneum) via intercellular channels and penetrate into deeper vital skin layers. Accumulations of TiO 2 particles in the skin can decrease the threshold for allergies of the immune system or cause allergic reactions directly. Spatially resolved ion beam analysis (PIXE, RBS, STIM and secondary electron imaging) was carried out on freeze-dried cross-sections of biopsies of pig skin, on which four different formulations containing TiO 2 particles were applied. The investigations were carried out at the high energy ion nanoprobe LIPSION in Leipzig with a 2.25 MeV proton beam, which was focused to a diameter of 1 μm. The analysis concentrated on the penetration depth and on pathways of the TiO 2 particles into the skin. In these measurements a penetration of TiO 2 particles through the s. corneum into the underlying stratum granulosum via intercellular space was found. Hair follicles do not seem to be important penetration pathways because no TiO 2 was detected inside. The TiO 2 particle concentration in the stratum spinosum was below the minimum detection limit of about 1 particle/μm 2. These findings show the importance of coating the TiO 2 particles in order to prevent damage of RNA and DNA of skin cells by photocatalytic reactions of the penetrated particles caused by absorption of UV light.

  14. Bio-integrated electronics and sensor systems

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  15. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  16. Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  17. Enhanced chlorhexidine skin penetration with 1,8-cineole.

    PubMed

    Casey, A L; Karpanen, T J; Conway, B R; Worthington, T; Nightingale, P; Waters, R; Elliott, T S J

    2017-05-17

    Chlorhexidine (CHG) penetrates poorly into skin. The purpose of this study was to compare the depth of CHG skin permeation from solutions containing either 2% (w/v) CHG and 70% (v/v) isopropyl alcohol (IPA) or 2% (w/v) CHG, 70% (v/v) IPA and 2% (v/v) 1,8-cineole. An ex-vivo study using Franz diffusion cells was carried out. Full thickness human skin was mounted onto the cells and a CHG solution, with or without 2% (v/v) 1,8-cineole was applied to the skin surface. After twenty-four hours the skin was sectioned horizontally in 100 μm slices to a depth of 2000 μm and the concentration of CHG in each section quantified using high performance liquid chromatography (HPLC). The data were analysed with repeated measures analysis of variance. The concentration of CHG in the skin on average was significantly higher (33.3% [95%, CI 1.5% - 74.9%]) when a CHG solution which contained 1,8-cineole was applied to the skin compared to a CHG solution which did not contain this terpene (P = 0.042). Enhanced delivery of CHG can be achieved in the presence of 1,8-cineole, which is the major component of eucalyptus oil. This may reduce the numbers of microorganisms located in the deeper layers of the skin which potentially could decrease the risk of surgical site infection.

  18. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: morpho-mechanical approach

    NASA Astrophysics Data System (ADS)

    Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M. E. L.

    2014-03-01

    The structuring of the dermis with a network of collagen and elastic fibres gives a three-dimensional structure to the skin network with directions perpendicular and parallel to the skin surface. This three-dimensional morphology prints on the surface of the stratum corneum a three dimensional network of lines which express the mechanical tension of the skin at rest. To evaluate the changes of skin morphology, we used a three-dimensional confocal microscopy and characterization of skin imaging of volar forearm microrelief. We have accurately characterize the role of skin line network during chronological aging with the identification of depth scales on the network of lines (z <= 60μm) and the network of lines covering Langer's lines (z > 60 microns). During aging has been highlighted lower rows for elastic fibres, the decrease weakened the tension and results in enlargement of the plates of the microrelief, which gives us a geometric pertinent indicator to quantify the loss of skin tension and assess the stage of aging. The study of 120 Caucasian women shows that ageing in the volar forearm zone results in changes in the morphology of the line network organisation. The decrease in secondary lines (z <= 60 μm) is counterbalanced by an increase in the depth of the primary lines (z > 60 μm) and an accentuation of the anisotropy index.

  19. Evaluating the use of optical coherence tomography for the detection of epithelial cancers in vitro

    NASA Astrophysics Data System (ADS)

    Smith, Louise E.; Hearnden, Vanessa; Lu, Zenghai; Smallwood, Rod; Hunter, Keith D.; Matcher, Stephen J.; Thornhill, Martin H.; Murdoch, Craig; MacNeil, Sheila

    2011-11-01

    Optical coherence tomography (OCT) is a noninvasive imaging methodology that is able to image tissue to depths of over 1 mm. Many epithelial conditions, such as melanoma and oral cancers, require an invasive biopsy for diagnosis. A noninvasive, real-time, point of care method of imaging depth-resolved epithelial structure could greatly improve early diagnosis and long-term monitoring in patients. Here, we have used tissue-engineered (TE) models of normal skin and oral mucosa to generate models of melanoma and oral cancer. We have used these to determine the ability of OCT to image epithelial differences in vitro. We report that while in vivo OCT gives reasonable depth information for both skin and oral mucosa, in vitro the information provided is less detailed but still useful. OCT can provide reassurance on the development of TE models of skin and oral mucosa as they develop in vitro. OCT was able to detect the gross alteration in the epithelium of skin and mucosal models generated with malignant cell lines but was less able to detect alteration in the epithelium of TE models that mimicked oral dysplasia or, in models where tumor cells had penetrated into the dermis.

  20. The effect of topical anesthetic hydration on the depth of thermal injury from the plasma skin regeneration device.

    PubMed

    Sanderson, Alicia R; Wu, Edward C; Liaw, Lih-Huei L; Garg, Rohit; Gangnes, Richard A

    2014-02-01

    The plasma skin regeneration (PSR) device delivers thermal energy to the skin by converting nitrogen gas to plasma. Prior to treatment, hydration of the skin is recommended as it is thought to limit the zone of thermal damage. However, there is limited data on optimal hydration time. This pilot study aims to determine the effect of topical anesthetic application time on the depth of thermal injury from a PSR device using histology. PSR (1.8 and 3.5 J) was performed after 0, 30, or 60 minutes of topical anesthetic application. Rhytidectomy was then performed and skin was fixed for histologic analysis. Four patients (two control and four treatment sites per patient) undergoing rhytidectomy were recruited for the study. Each patient served as his/her own control (no hydration). A scoring system for tissue injury was developed. Epidermal injury, the presence of vacuolization, blistering, damage to adnexal structures, and depth of dermal collagen changes were evaluated in over 1,400 high-power microscopy fields. There was a significant difference in the average thermal injury score, depth of thermal damage, and epidermal injury when comparing controls to 30 minutes of hydration (P = 0.012, 0.012, 0.017, respectively). There was no statistical difference between controls and 60 minutes of hydration or between 30 and 60 minutes of hydration. Epidermal vacuolization at low energy and patchy distribution of thermal injury was also observed. Topical hydration influences the amount of thermal damage when applied to skin for 30 minutes prior to treatment with the PSR device. There was a trend toward decreasing thermal damage at 60 minutes, and there was no difference between treatment for 30 or 60 minutes. The data suggest that application of topical anesthetic for a short period of time prior to treatment with the PSR device is cost-effective, safe, and may be clinically beneficial. © 2013 Wiley Periodicals, Inc.

  1. Skindeep Ulysses.

    PubMed

    Freedman, Ariela

    2008-01-01

    This essay is about Joyce as an epidermist and Joyce as a chronicler and cataloguer of the "skindeep" surfaces of Dublin in Ulysses. The book is crowded with skins: tanned skins, blushing skins, skins enhanced by makeup and creams, skins marked by race or religion, skins legible and visible, skins imagined and inaccessible and associated with both authenticity and disguise. Skin in Joyce becomes, in Steven Connor's terms, in The Book of Skin, "a place of minglings; a mingling of places," a space where medical, cultural, and aesthetic meanings jostle and intersect and are inscribed and projected on the surface that both expresses and conceals the subject. A skin-deep analysis of Ulysses can reveal to us the entanglement of surface and depth that characterizes Joyce's novel.

  2. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  3. Imperceptible magnetoelectronics

    PubMed Central

    Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.

    2015-01-01

    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices. PMID:25607534

  4. Imperceptible magnetoelectronics

    NASA Astrophysics Data System (ADS)

    Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.

    2015-01-01

    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m-2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.

  5. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02678h

  6. Total skin electron therapy in the lying‐on‐the‐floor position using a customized flattening filter to accommodate frail patients

    PubMed Central

    Antolak, John A.

    2013-01-01

    A total skin electron (TSE) floor technique is presented for treating patients who are unable to safely stand for extended durations. A customized flattening filter is used to eliminate the need for field junctioning, improve field uniformity, and reduce setup time. The flattening filter is constructed from copper and polycarbonate, fits into the linac's accessory slot, and is optimized to extend the useful height and width of the beam such that no field junctions are needed during treatment. A TSE floor with flattening filter (TSE FF) treatment course consisted of six patient positions: three supine and three prone. For all treatment fields, electron beam energy was 6 MeV; collimator settings were an x of 30 cm, y of 40 cm, and θcoll of 0°; and a 0.4 cm thick polycarbonate spoiler was positioned in front of the patient. Percent depth dose (PDD) and photon contamination for the TSE FF technique were compared with our standard technique, which is similar to the Stanford technique. Beam profiles were measured using radiochromic film, and dose uniformity was verified using an anthropomorphic radiological phantom. The TSE FF technique met field uniformity requirements specified by the American Association of Physicists in Medicine Task Group 30. TSE FF R80 ranges from 4 to 4.8 mm. TSE FF photon contamination was ~ 3%. Anthropomorphic radiological phantom verification demonstrated that dose to the entire skin surface was expected to be within about ±15% of the prescription dose, except for the perineum, scalp vertex, top of shoulder, and soles of the feet. The TSE floor technique presented herein eliminates field junctioning, is suitable for patients who cannot safely stand during treatment, and provides comparable quality and uniformity to the Stanford technique. PACS number: 87 PMID:24036864

  7. Fractional laser microablation of skin: increasing the efficiency of transcutaneous delivery of particles

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Dolotov, L. E.; Bashkatov, A. N.; Tuchin, V. V.

    2016-06-01

    We study several regimes of fractional laser microablation using a pulsed Er : YAG laser for producing microchannels of different depth and incisions that allow transcutaneous delivery of particles of different size, namely, Al2O3 (27 μm), ZrO2 (smaller than 5 μm) and TiO2 (smaller than 100 nm). The shock wave regime was used both for enhancing the penetration of particles into the ablation zones and as an independent method of particle delivery into the skin. Based on optical coherence tomography we assessed the coherent depth of particle detection in the skin in 2 hours, 3 days and 10 days after the administration. The maximal localisation depth (up to 450 μm) was obtained for TiO2 nanoparticles in the regime of incisions with enhancement of particle penetration by pulses of a multiple-beam hydrodynamic shock wave. The results of the study can be useful for developing new methods of transcutaneous delivery of micro- and nanocarriers of medicinal preparations.

  8. Fractional CO2 laser resurfacing of photoaged facial and non-facial skin: histologic and clinical results and side effects.

    PubMed

    Sasaki, Gordon H; Travis, Heather M; Tucker, Barbara

    2009-12-01

    CO(2) fractional ablation offers the potential for facial and non-facial skin resurfacing with minimal downtime and rapid recovery. The purpose of this study was (i) to document the average depths and density of adnexal structures in non-lasered facial and non-facial body skin; (ii) to determine injury in ex vivo human thigh skin with varying fractional laser modes; and (iii) to evaluate the clinical safety and efficacy of treatments. Histologies were obtained from non-lasered facial and non-facial skin from 121 patients and from 14 samples of excised lasered thigh skin. Seventy-one patients were evaluated after varying energy (mJ) and density settings by superficial ablation, deeper penetration, and combined treatment. Skin thickness and adnexal density in non-lasered skin exhibited variable ranges: epidermis (47-105 mum); papillary dermis (61-105 mum); reticular dermis (983-1986 mum); hair follicles (2-14/ HPF); sebaceous glands (2-23/HPF); sweat glands (2-7/HPF). Histological studies of samples from human thigh skin demonstrated that increased fluencies in the superficial, deep and combined mode resulted in predictable deeper levels of ablations and thermal injury. An increase in density settings results in total ablation of the epidermis. Clinical improvement of rhytids and pigmentations in facial and non-facial skin was proportional to increasing energy and density settings. Patient assessments and clinical gradings by the Wilcoxon's test of outcomes correlated with more aggressive settings. Prior knowledge of normal skin depths and adnexal densities, as well as ex vivo skin laser-injury profiles at varying fluencies and densities, improve the safety and efficiency of fractional CO(2) for photorejuvenation of facial and non-facial skin.

  9. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    PubMed Central

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p < 0.001). The model simulations of superficial temperature correlated with the measured skin surface temperature (r > 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  10. Confocal Raman spectroscopy: In vivo biochemical changes in the human skin by topical formulations under UV radiation.

    PubMed

    Tosato, M G; Orallo, D E; Ali, S M; Churio, M S; Martin, A A; Dicelio, L

    2015-12-01

    A new approach to the study of the effects on human skin of mycosporine-like amino acids (MAAs) and gadusol (Gad) incorporated in polymer gel is proposed in this work. The depth profile and photoprotector effects of Pluronic F127® gels containing each of the natural actives were evaluated by in vivo confocal Raman spectroscopy aiming at the analysis of the biochemical changes on human skin. Hierarchical cluster analysis (HCA) showed that the data corresponding to different depths of the skin, from surface to 4 μm, and from 6 to 16 μm, remained in the same cluster. In vivo Raman spectra, classified into five different layers of epidermis according to their similarities, indicated that the amount of Gad gel increased by about 26% in the outermost layer of the stratum corneum (SC) and that MAAs gel at 2 μm depth was 103.4% higher than in the outermost layer of the SC. Variations in the SC of urocanic acid at 1490-1515 cm(-1) and 1652 cm(-1) and histidine at 1318 cm(-1) were calculated, before and after UV exposure with or without gels. With the application of gels the vibrational modes that correspond to lipids in trans conformation (1063 and 1128 cm(-1)) increased with respect to normal skin, whereas gauche conformation (1085 cm(-1)) disappeared. Our studies suggest that gels protected the skin against the stress of the natural defense mechanism caused by high levels of UV exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Skin Bioengineering: Noninvasive Transdermal Monitoring

    DTIC Science & Technology

    2005-01-01

    involves the application of a small and defined electrical current to the skin. This process causes increased molecular transport through the skin and has...flow of electrons is translated into an ion flux across the skin. A power supply establishes the electric field that causes electrons to migrate in...a model designed to mimic the developing cutaneous barrier in a premature neonate (Sekkat et al 2002). While the idea appears feasible for full-term

  12. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava

    Open questions concerning structures and dynamics of diffusion regions and electron acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of electron distribution functions measured by the four spacecraft, distinct electron regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended electron current sheet (ecs), a series of magnetic islands, and bursts of energetic electrons within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of electron-scale electric fields normalmore » to the ecs and pointing toward the ecs center plane. Both the observed electron and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal electrons whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the electron scale at certain phases of reconnection, electrons and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary electron acceleration occurs within the islands.« less

  13. Coherent transition radiation from a self-modulated charged particle beam

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yu, P.; An, W.; Lu, W.; Mori, W. B.

    2012-12-01

    Plasma wakefield accelerator utilizing a TeV proton beam is a promising method to generate a TeV electron beam. However the length of the existing proton beam is too long compared with the proper plasma skin depth. As a result selfmodulation instability takes place after such a long pulse enters into the plasma. The transverse spot size of the long beam changes periodically in the longitudinal direction. Therefor measurement of the coherent transition radiation when the selfmodulated beam leaves the plasma is a possible method to demonstrate the self-modulation instability. In this paper, we analyze the angular spectrum of this coherent transition radiation when the beam comes from plasma to vacuum.

  14. Ultrafast acousto-plasmonics in gold nanoparticle superlattices

    NASA Astrophysics Data System (ADS)

    Ruello, P.; Ayouch, A.; Vaudel, G.; Pezeril, T.; Delorme, N.; Sato, S.; Kimura, K.; Gusev, V. E.

    2015-11-01

    We report the investigation of the generation and detection of GHz coherent acoustic phonons in plasmonic gold nanoparticle superlattices (NPSs). The experiments have been performed with an optical femtosecond pump-probe scheme across the optical plasmon resonance of the superlattice. Our experiments allow us to estimate first the fundamental mechanical parameters such as the collective elastic response (sound velocity) of the NPS and the nanocontact elastic stiffness. Furthermore, it appears that the light-induced coherent acoustic-phonon pulse has a typical in-depth spatial extension of about 45 nm which is roughly four times the optical skin depth in gold. The modeling of the transient optical reflectivity indicates that the mechanism of phonons generation is achieved through ultrafast heating of the NPS assisted by light excitation of the volume plasmon polariton. Based on these results, we demonstrate that it is possible to map the photon-electron-phonon interaction in subwavelength nanostructures which, in particular, provides insights on the fundamental properties of these nanometamaterials.

  15. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    NASA Astrophysics Data System (ADS)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  16. A Double-Blind Study on Acupuncture Sensations with Japanese Style of Acupuncture: Comparison between Penetrating and Placebo Needles.

    PubMed

    Nishiwaki, Masako; Takayama, Miho; Yajima, Hiroyoshi; Nasu, Morihiro; Park, Joel; Kong, Jian; Takakura, Nobuari

    2018-01-01

    To investigate the acupuncture sensations elicited by the Japanese style of acupuncture, penetrating acupuncture and skin-touch placebo needles were randomly administered at various insertion depths (5 and 10 mm for the penetrating needles and 1 and 2 mm for the placebo needles) at LI4 to 50 healthy subjects. Among the 12 acupuncture sensations in the Massachusetts General Hospital Acupuncture Sensation Scale (MASS), "heaviness" was the strongest and most frequently reported sensation with the 10 mm needles, but not with the 5 mm needles. There were no significant differences in number of sensations elicited, MASS index, range of spreading, and intensity of needle pain for 5 mm penetration versus 1 mm skin press and 10 mm penetration versus 2 mm skin press. The MASS index with 2 mm skin-touch needles was significantly larger than that with 1 mm skin-touch and 5 mm penetrating needles. The factor structures in the 12 acupuncture sensations between penetrating and skin-touch needles were different. The acupuncture sensations obtained in this study under satisfactorily performed double-blind (practitioner-patient) conditions suggest that a slight difference in insertion depth and skin press causes significant differences in quantity and quality of acupuncture sensations.

  17. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin

    2009-07-01

    We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.

  18. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    NASA Astrophysics Data System (ADS)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  19. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin.

    PubMed

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650 ± 20 nm), green (G, 550 ± 20 nm), blue (B, 450 ± 20 nm), and UV (397 ± 5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  20. The effect of CO2 laser treatment on skin tissue.

    PubMed

    Baleg, Sana Mohammed Anayb; Bidin, Noriah; Suan, Lau Pik; Ahmad, Muhammad Fakarruddin Sidi; Krishnan, Ganesan; Johari, Abd Rahman; Hamid, Asma

    2015-09-01

    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model. A 10 600-nm CO2 laser was applied to rat skin, with one side of the rat dorsal skin being exposed, leaving the other side as a control. All of the various laser pulses tested led to gradual loss of epidermal thickness as well as a dramatic increase in thermal damage depth. Collagen coagulation was most effective with ten pulses of CO2 laser, while the strength of irradiated skin tissue increased as the influence of the laser increased. Fundamental laser-skin interaction effects were studied using a CO2 laser. The photodamaged areas obtained from laser interaction were recorded via couple charge device video camera and analyzed via ImageJ software. Photodamage induced by CO2 laser is due to photothermal effects, which involve burning and vaporizing mechanisms to ablate the epidermis layer. The burning area literally expands and penetrates deep into the dermis layer, subsequently causing collagen coagulation. This fundamental study shows in detail the effect of CO2 laser interaction with skin. The CO2 attributed severe burning, producing deep coagulation, and induced strength to treated skin. © 2015 Wiley Periodicals, Inc.

  1. Skin Bioprinting: Impending Reality or Fantasy?

    PubMed

    Ng, Wei Long; Wang, Shuai; Yeong, Wai Yee; Naing, May Win

    2016-09-01

    Bioprinting provides a fully automated and advanced platform that facilitates the simultaneous and highly specific deposition of multiple types of skin cells and biomaterials, a process that is lacking in conventional skin tissue-engineering approaches. Here, we provide a realistic, current overview of skin bioprinting, distinguishing facts from myths. We present an in-depth analysis of both current skin bioprinting works and the cellular and matrix components of native human skin. We also highlight current limitations and achievements, followed by design considerations and a future outlook for skin bioprinting. The potential of bioprinting with converging opportunities in biology, material, and computational design will eventually facilitate the fabrication of improved tissue-engineered (TE) skin constructs, making bioprinting skin an impending reality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Handheld confocal Raman microspectrometer for in-vivo skin cancer measurement

    NASA Astrophysics Data System (ADS)

    Lieber, Chad A.; Ellis, Darrel L.; Billheimer, D. D.; Mahadevan-Jansen, Anita

    2004-07-01

    Several studies have demonstrated Raman spectroscopy to be capable of tissue diagnosis with accuracy rivaling that of histopathologic analysis. This technique obtains biochemical-specific information noninvasively, and can eliminate the pain, time, and cost associated with biopsy and pathological analysis. Furthermore, when used in a confocal arrangement, Raman spectra can be obtained from localized regions of the tissue. Skin cancers are an ideal candidate for this emerging technology, due to their obvious accessibility and presentation at specific depths. However, most commercially available confocal Raman microspectrometers are large, rigid systems ill-suited for clinical application. We developed a bench-top confocal Raman microspectrometer using a portable external-cavity diode laser excitation source. This system was used to study several skin lesions in vitro. Results show the depth-resolved Raman spectra can diagnose in vitro skin lesions with 96% sensitivity, 88% specificity, and 86% pathological classification accuracy. Based on the success of this study, a portable Raman system with a handheld confocal microscope was developed for clinical application. Preliminary in vivo data show several distinct spectral differences between skin pathologies. Diagnostic algorithms are planned for this continuing study to assess the capability of Raman spectroscopy for clinical skin cancer diagnosis.

  3. Confocal Raman microscopy supported by optical clearing treatment of the skin—influence on collagen hydration

    NASA Astrophysics Data System (ADS)

    Sdobnov, Anton Yu; Tuchin, Valery V.; Lademann, Juergen; E Darvin, Maxim

    2017-07-01

    Confocal Raman microscopy (CRM) is employed to study the skin physiology, drug permeation and skin disease monitoring. In order to increase the depth of investigations, the effect of optical clearing was observed on porcine ear skin ex vivo. The optical clearing agents (OCAs) glycerol and iohexol (Omnipaque™) were applied to the porcine ear skin and investigated by CRM after 30 and 60 min of treatment. The extent of optical clearing by utilizing concentrations of 70% glycerol and 100% Omnipaque™ was evaluated. The intensity of the skin-related Raman peaks significantly increased starting from the depth 160 µm for Omnipaque™ and 40 µm for glycerol (p  ⩽  0.05) after 60 min of treatment. The OCAs’ influence on the collagen hydration in the deep-located dermis was investigated. Both OCAs induce skin dehydration, but the effect of glycerol treatment (30 min and 60 min) is stronger. The obtained results demonstrate that with increasing the treatment time, both glycerol and Omnipaque™ solutions improve the optical clearing of porcine skin making the deep-located dermal regions able for investigations. At the used concentrations and time intervals, glycerol is more effective than Omnipaque™. However, Omnipaque™ is more promising than glycerol for future in vivo applications as it is an already approved pharmaceutic substance without any known impact on the skin structure.

  4. Improved heuristics for early melanoma detection using multimode hyperspectral dermoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas B.; Booth, Nicholas; Farkas, Daniel L.

    2017-02-01

    Purpose: To determine the performance of a multimode dermoscopy system (SkinSpect) designed to quantify and 3-D map in vivo melanin and hemoglobin concentrations in skin and its melanoma scoring system, and compare the results accuracy with SIAscopy, and histopathology. Methods: A multimode imaging dermoscope is presented that combines polarization, fluorescence and hyperspectral imaging to accurately map the distribution of skin melanin, collagen and hemoglobin in pigmented lesions. We combine two depth-sensitive techniques: polarization, and hyperspectral imaging, to determine the spatial distribution of melanin and hemoglobin oxygenation in a skin lesion. By quantifying melanin absorption in pigmented areas, we can also more accurately estimate fluorescence emission distribution mainly from skin collagen. Results and discussion: We compared in vivo features of melanocytic lesions (N = 10) extracted by non-invasive SkinSpect and SIMSYS-MoleMate SIAscope, and correlate them to pathology report. Melanin distribution at different depths as well as hemodynamics including abnormal vascularity we detected will be discussed. We will adapt SkinSpect scoring with ABCDE (asymmetry , border, color, diameter, evolution) and seven point dermatologic checklist including: (1) atypical pigment network, (2) blue-whitish veil, (3) atypical vascular pattern, (4) irregular streaks, (5) irregular pigmentation, (6) irregular dots and globules, (7) regression structures estimated by dermatologist. Conclusion: Distinctive, diagnostic features seen by SkinSpect in melanoma vs. normal pigmented lesions will be compared by SIAscopy and results from histopathology.

  5. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy.

    PubMed

    Rodríguez, S; Arenas, M; Gutierrez, C; Richart, J; Perez-Calatayud, J; Celada, F; Santos, M; Rovirosa, A

    2018-04-01

    Clinical indications of brachytherapy in non-melanoma skin cancers, description of applicators and dosimetry recommendations are described based on the literature review, clinical practice and experience of Spanish Group of Brachytherapy and Spanish Society of Medical Physics reported in the XIV Annual Consensus Meeting on Non Melanoma Skin Cancer Brachytherapy held in Benidorm, Alicante (Spain) on October 21st, 2016. All the recommendations for which consensus was achieved are highlighted in blue. Regular and small surfaces may be treated with Leipzig, Valencia, flap applicators or electronic brachytherapy (EBT). For irregular surfaces, customized molds or interstitial implants should be employed. The dose is prescribed at a maximum depth of 3-4 mm of the clinical target volume/planning target volume (CTV/PTV) in all cases except in flaps or molds in which 5 mm is appropriate. Interstitial brachytherapy should be used for CTV/PTV >5 mm. Different total doses and fraction sizes are used with very similar clinical and toxicity results. Hypofractionation is very useful twice or 3 times a week, being comfortable for patients and practical for Radiotherapy Departments. In interstitial brachytherapy 2 fractions twice a day are applied.

  6. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    NASA Astrophysics Data System (ADS)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  7. User-interactive electronic skin for instantaneous pressure visualization

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components—thin-film transistor, pressure sensor and OLED arrays—are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  8. User-interactive electronic skin for instantaneous pressure visualization.

    PubMed

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  9. In vivo features of melanocytic lesions: multimode hyperspectral dermoscopy, reflectance confocal microscopy, and histopathologic correlates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas B.; Jain, Manu; Cordova, Miguel A.; Kose, Kivanc; Rajadhyaksha, Milind; Halpern, Allan C.; Farkas, Daniel L.

    2017-02-01

    Motivation and background: Melanoma, the fastest growing cancer worldwide, kills more than one person every hour in the United States. Determining the depth and distribution of dermal melanin and hemoglobin adds physio-morphologic information to the current diagnostic standard, cellular morphology, to further develop noninvasive methods to discriminate between melanoma and benign skin conditions. Purpose: To compare the performance of a multimode dermoscopy system (SkinSpect), which is designed to quantify and map in three dimensions, in vivo melanin and hemoglobin in skin, and to validate this with histopathology and three dimensional reflectance confocal microscopy (RCM) imaging. Methods: Sequentially capture SkinSpect and RCM images of suspect lesions and nearby normal skin and compare this with histopathology reports, RCM imaging allows noninvasive observation of nuclear, cellular and structural detail in 1-5 μm-thin optical sections in skin, and detection of pigmented skin lesions with sensitivity of 90-95% and specificity of 70-80%. The multimode imaging dermoscope combines polarization (cross and parallel), autofluorescence and hyperspectral imaging to noninvasively map the distribution of melanin, collagen and hemoglobin oxygenation in pigmented skin lesions. Results: We compared in vivo features of ten melanocytic lesions extracted by SkinSpect and RCM imaging, and correlated them to histopathologic results. We present results of two melanoma cases (in situ and invasive), and compare with in vivo features from eight benign lesions. Melanin distribution at different depths and hemodynamics, including abnormal vascularity, detected by both SkinSpect and RCM will be discussed. Conclusion: Diagnostic features such as dermal melanin and hemoglobin concentration provided in SkinSpect skin analysis for melanoma and normal pigmented lesions can be compared and validated using results from RCM and histopathology.

  10. Implantable biosensors: analysis of fluorescent light propagation through skin

    NASA Astrophysics Data System (ADS)

    O'Neal, D. P.; McShane, Michael J.; Pishko, Michael V.; Cote, Gerard L.

    2001-06-01

    Progress towards a painless and hygienic glucose monitoring procedure for diabetics continues as the growth of diabetes mellitus reaches epidemic proportions in the American population. Utilizing an implantable fluorescence based glucose assay, the minimally invasive approach presented here has previously shown promise towards this goal in terms of glucose specificity and quantification for in vitro environments. However, in realistic physiological circumstances the depth of the implant can vary and optical properties of skin can change due to normal physiological conditions. Additionally, naturally occurring auto-fluorescence can obscure the sensor signal. An important concern under these conditions is that variations of fluorescent intensity due to these or other causes might be mistaken for glucose concentration fluctuations. New data shows that fluorescence-based glucose assays can be probed and interpreted in terms of glucose concentrations through pig skin at depths of up to 700 mm when immobilized in a bio-compatible polymer. When a combination of two fluorophores are employed as demonstrated here, reasonable changes in skin thickness and the confounding effects of the variations inherent in skin can be overcome for this glucose sensing application.

  11. Recent Progress in Electronic Skin

    PubMed Central

    Wang, Xiandi; Dong, Lin; Zhang, Hanlu; Yu, Ruomeng; Wang, Zhong Lin

    2015-01-01

    The skin is the largest organ of the human body and can sense pressure, temperature, and other complex environmental stimuli or conditions. The mimicry of human skin's sensory ability via electronics is a topic of innovative research that could find broad applications in robotics, artificial intelligence, and human–machine interfaces, all of which promote the development of electronic skin (e‐skin). To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs. These arrays can map pressure with high resolution and rapid response beyond that of human perception. Multi‐modal force sensing, temperature, and humidity detection, as well as self‐healing abilities are also exploited for multi‐functional e‐skins. Other recent progress in this field includes the integration with high‐density flexible circuits for signal processing, the combination with wireless technology for convenient sensing and energy/data transfer, and the development of self‐powered e‐skins. Future opportunities lie in the fabrication of highly intelligent e‐skins that can sense and respond to variations in the external environment. The rapidly increasing innovations in this area will be important to the scientific community and to the future of human life. PMID:27980911

  12. The transfer of technology to measure skin burn depth in humans

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1991-01-01

    Discussed here is the use of ultrasonic techniques originally used to locate cracks in metal structues to measure burn wound depth in humans. Acoustic impedance, performance tests, and the theoretical model are discussed. Measurements of skin burns on anesthetized pigs made with the the ultrasonic instrumentation were in agreement with diagnoses made by a physician, and subsequently confirmed by the healing process. Researchers felt that the concept proved useful in a clinical setting and that the instrument and concept were ready to extend to the manufacturer.

  13. Raman spectroscopy: in vivo quick response code of skin physiological status

    NASA Astrophysics Data System (ADS)

    Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette

    2014-11-01

    Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.

  14. Raman spectroscopy: in vivo quick response code of skin physiological status.

    PubMed

    Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette

    2014-01-01

    Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.

  15. Laser-induced thermal coagulation enhances skin uptake of topically applied compounds.

    PubMed

    Haak, C S; Hannibal, J; Paasch, U; Anderson, R R; Haedersdal, M

    2017-08-01

    Ablative fractional laser (AFL) generates microchannels in skin surrounded by a zone of thermally altered tissue, termed the coagulation zone (CZ). The thickness of CZ varies according to applied wavelength and laser settings. It is well-known that AFL channels facilitate uptake of topically applied compounds, but the importance of CZ is unknown. Franz Cells were used to investigate skin uptake and permeation of fluorescent labeled polyethylene glycols (PEGs) with mean molecular weights (MW) of 350, 1,000, and 5,000 Da. Microchannels with CZ thicknesses ranging from 0 to 80 μm were generated from micro-needles (0 μm, CZ-0), and AFL (10,600 nm) applied to -80°C deep frozen skin (20 μm, CZ-20) and skin equilibrated to room temperature (80 μm, CZ-80). Channels penetrated into similar mid-dermal skin depths of 600-700 μm, and number of channels per skin area was similar. At 4 hours incubation, skin uptake of PEGs into CZ and dermis was evaluated by fluorescence microscopy at specific skin depths of 150, 400, and 1,000 μm and the transcutaneous permeation was quantified by fluorescence of receptor fluids. Overall, the highest uptake of PEGs was reached through microchannels surrounded by CZ compared to channels with no CZ (CZ-20 and CZ-80>CZ-0).The thickness of CZ affected PEG distribution in skin. A thin CZ-20 favored significantly higher mean fluorescence intensities inside CZ areas compared to CZ-80 (PEG 350, 1,000, and 5,000; P < 0.001). In dermis, the uptake through CZ-20 channels was significantly higher than through CZ-80 and CZ-0 at all skin depths (PEG 350, 1,000 and 5,000, 150-1,000 μm; P < 0.001). Correspondingly, transcutaneous permeation of PEG 350 was highest in CZ-20 compared to CZ-80 and CZ-0 samples (P < 0.001). Permeation of larger molecules (PEG 1,000 and PEG 5,000) was generally low. Uptake of topical compounds is higher through microchannels surrounded by a CZ than without a CZ. Moreover, CZ thickness influences PEG distribution, with highest PEG uptake achieved from microchannels surrounded by a thin CZ. Lasers Surg. Med. 49:582-591, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Ultrasound therapy applicators for controlled thermal modification of tissue

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.

    2011-03-01

    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high frequencies can achieve temperatures and dose distributions which concentrate in a depth profile that coincides with the location of maximum structural collagen content in skin tissues. Using an appropriate transducer configuration produces coverage of significant lateral area, thus making this a practical approach for treatment of skin disorders.

  17. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Demanes, J; Kamrava, M

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour themore » target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.« less

  18. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in; Patel, Kartik

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beammore » plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.« less

  19. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less

  20. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safigholi, H; Soliman, A; Song, W Y

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap withmore » a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.« less

  1. SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, C; Singh, A; AlDahlawi, I

    Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layersmore » of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.« less

  2. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo.

    PubMed

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E

    2016-07-01

    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. TU-A-9A-06: Semi-Automatic Segmentation of Skin Cancer in High-Frequency Ultrasound Images: Initial Comparison with Histology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Li, X; Fishman, K

    Purpose: In skin-cancer radiotherapy, the assessment of skin lesion is challenging, particularly with important features such as the depth and width hard to determine. The aim of this study is to develop interative segmentation method to delineate tumor boundary using high-frequency ultrasound images and to correlate the segmentation results with the histopathological tumor dimensions. Methods: We analyzed 6 patients who comprised a total of 10 skin lesions involving the face, scalp, and hand. The patient’s various skin lesions were scanned using a high-frequency ultrasound system (Episcan, LONGPORT, INC., PA, U.S.A), with a 30-MHz single-element transducer. The lateral resolution was 14.6more » micron and the axial resolution was 3.85 micron for the ultrasound image. Semiautomatic image segmentation was performed to extract the cancer region, using a robust statistics driven active contour algorithm. The corresponding histology images were also obtained after tumor resection and served as the reference standards in this study. Results: Eight out of the 10 lesions are successfully segmented. The ultrasound tumor delineation correlates well with the histology assessment, in all the measurements such as depth, size, and shape. The depths measured by the ultrasound have an average of 9.3% difference comparing with that in the histology images. The remaining 2 cases suffered from the situation of mismatching between pathology and ultrasound images. Conclusion: High-frequency ultrasound is a noninvasive, accurate and easy-accessible modality to image skin cancer. Our segmentation method, combined with high-frequency ultrasound technology, provides a promising tool to estimate the extent of the tumor to guide the radiotherapy procedure and monitor treatment response.« less

  4. Graphene Electronic Tattoo Sensors.

    PubMed

    Kabiri Ameri, Shideh; Ho, Rebecca; Jang, Hongwoo; Tao, Li; Wang, Youhua; Wang, Liu; Schnyer, David M; Akinwande, Deji; Lu, Nanshu

    2017-08-22

    Tattoo-like epidermal sensors are an emerging class of truly wearable electronics, owing to their thinness and softness. While most of them are based on thin metal films, a silicon membrane, or nanoparticle-based printable inks, we report sub-micrometer thick, multimodal electronic tattoo sensors that are made of graphene. The graphene electronic tattoo (GET) is designed as filamentary serpentines and fabricated by a cost- and time-effective "wet transfer, dry patterning" method. It has a total thickness of 463 ± 30 nm, an optical transparency of ∼85%, and a stretchability of more than 40%. The GET can be directly laminated on human skin just like a temporary tattoo and can fully conform to the microscopic morphology of the surface of skin via just van der Waals forces. The open-mesh structure of the GET makes it breathable and its stiffness negligible. A bare GET is able to stay attached to skin for several hours without fracture or delamination. With liquid bandage coverage, a GET may stay functional on the skin for up to several days. As a dry electrode, GET-skin interface impedance is on par with medically used silver/silver-chloride (Ag/AgCl) gel electrodes, while offering superior comfort, mobility, and reliability. GET has been successfully applied to measure electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), skin temperature, and skin hydration.

  5. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Semi-automated algorithm for localization of dermal/epidermal junction in reflectance confocal microscopy images of human skin

    NASA Astrophysics Data System (ADS)

    Kurugol, Sila; Dy, Jennifer G.; Rajadhyaksha, Milind; Gossage, Kirk W.; Weissmann, Jesse; Brooks, Dana H.

    2011-03-01

    The examination of the dermis/epidermis junction (DEJ) is clinically important for skin cancer diagnosis. Reflectance confocal microscopy (RCM) is an emerging tool for detection of skin cancers in vivo. However, visual localization of the DEJ in RCM images, with high accuracy and repeatability, is challenging, especially in fair skin, due to low contrast, heterogeneous structure and high inter- and intra-subject variability. We recently proposed a semi-automated algorithm to localize the DEJ in z-stacks of RCM images of fair skin, based on feature segmentation and classification. Here we extend the algorithm to dark skin. The extended algorithm first decides the skin type and then applies the appropriate DEJ localization method. In dark skin, strong backscatter from the pigment melanin causes the basal cells above the DEJ to appear with high contrast. To locate those high contrast regions, the algorithm operates on small tiles (regions) and finds the peaks of the smoothed average intensity depth profile of each tile. However, for some tiles, due to heterogeneity, multiple peaks in the depth profile exist and the strongest peak might not be the basal layer peak. To select the correct peak, basal cells are represented with a vector of texture features. The peak with most similar features to this feature vector is selected. The results show that the algorithm detected the skin types correctly for all 17 stacks tested (8 fair, 9 dark). The DEJ detection algorithm achieved an average distance from the ground truth DEJ surface of around 4.7μm for dark skin and around 7-14μm for fair skin.

  7. Composite foam structures

    NASA Technical Reports Server (NTRS)

    Williams, Brian E. (Inventor); Brockmeyer, Jerry (Inventor); Tuffias, Robert H. (Inventor)

    2005-01-01

    A composite rigid foam structure that has a skin or coating on at least one of its surfaces. The skin is formed in situ by thermal spray techniques. The skin is bonded substantially throughout the surface of the porous substrate to the peripheries of the pores. The skin on the average does not penetrate the surface of the substrate by more than the depth of about 2 to 5 pores. Thus, thermal spraying the skin onto the rigid foam produces a composite that is tightly and uniformly bonded together without unduly increasing the weight of the composite structure. Both thermal conductivity and bonding are excellent.

  8. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface.

    PubMed

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment.

  9. Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing

    PubMed Central

    Levi, Alessandro; Piovanelli, Matteo; Furlan, Silvano; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    In this paper we present a new optical, flexible pressure sensor that can be applied as smart skin to a robot or to consumer electronic devices. We describe a mechano-optical transduction principle that can allow the encoding of information related to an externally applied mechanical stimulus, e.g., contact, pressure and shape of contact. The physical embodiment that we present in this work is an electronic skin consisting of eight infrared emitters and eight photo-detectors coupled together and embedded in a planar PDMS waveguide of 5.5 cm diameter. When a contact occurs on the sensing area, the optical signals reaching the peripheral detectors experience a loss because of the Frustrated Total Internal Reflection and deformation of the material. The light signal is converted to electrical signal through an electronic system and a reconstruction algorithm running on a computer reconstructs the pressure map. Pilot experiments are performed to validate the tactile sensing principle by applying external pressures up to 160 kPa. Moreover, the capabilities of the electronic skin to detect contact pressure at multiple subsequent positions, as well as its function on curved surfaces, are validated. A weight sensitivity of 0.193 gr−1 was recorded, thus making the electronic skin suitable to detect pressures in the order of few grams. PMID:23686140

  10. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  11. Effects of pressure, cold and gloves on hand skin temperature and manual performance of divers.

    PubMed

    Zander, Joanna; Morrison, James

    2008-09-01

    Cold water immersion and protective gloves are associated with decreased manual performance. Although neoprene gloves slow hand cooling, there is little information on whether they provide sufficient protection when diving in cold water. Nine divers wearing three-fingered neoprene gloves and dry suits were immersed in water at 25 and 4 degrees C, at depths of 0.4 msw (101 kPa altitude adjusted) and 40 msw (497 kPa) in a hyperbaric chamber. Skin temperatures were measured at the fingers, hand, forearm, chest and head. Grip strength, tactile sensitivity and manual dexterity were measured at three time intervals. There was an exponential decay in finger and back of hand skin temperatures with exposure time in 4 degrees C water. Finger and back of hand skin temperatures were lower at 40 msw than at 0.4 msw (P < 0.05). There was no effect of pressure or temperature on grip strength. Tactile sensitivity decreased linearly with finger skin temperature at both pressures. Manual dexterity was not affected by finger skin temperature at 0.4 msw, but decreased with fall in finger skin temperature at 40 msw. Results show that neoprene gloves do not provide adequate thermal protection in 4 degrees C water and that impairment of manual performance is dependent on the type of task, depth and exposure time.

  12. Hand and goods judgment algorithm based on depth information

    NASA Astrophysics Data System (ADS)

    Li, Mingzhu; Zhang, Jinsong; Yan, Dan; Wang, Qin; Zhang, Ruiqi; Han, Jing

    2016-03-01

    A tablet computer with a depth camera and a color camera is loaded on a traditional shopping cart. The inside information of the shopping cart is obtained by two cameras. In the shopping cart monitoring field, it is very important for us to determine whether the customer with goods in or out of the shopping cart. This paper establishes a basic framework for judging empty hand, it includes the hand extraction process based on the depth information, process of skin color model building based on WPCA (Weighted Principal Component Analysis), an algorithm for judging handheld products based on motion and skin color information, statistical process. Through this framework, the first step can ensure the integrity of the hand information, and effectively avoids the influence of sleeve and other debris, the second step can accurately extract skin color and eliminate the similar color interference, light has little effect on its results, it has the advantages of fast computation speed and high efficiency, and the third step has the advantage of greatly reducing the noise interference and improving the accuracy.

  13. SU-G-JeP2-09: Minimal Skin Dose Increase in Longitudinal Rotating Biplanar Linac-MR Systems: Examination of Radiation Energy and Flattening Filter Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallone, B; Keyvanloo, A; Burke, B

    Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth ofmore » 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less

  14. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Aakash A.

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  15. Computationally efficient description of relativistic electron beam transport in dense plasma

    NASA Astrophysics Data System (ADS)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  16. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE PAGES

    Sahai, Aakash A.

    2017-08-23

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  17. Initial evaluation of acoustic reflectors for the preservation of sensitive abdominal skin areas during MRgFUS treatment.

    PubMed

    Gorny, Krzysztof R; Chen, Shigao; Hangiandreou, Nicholas J; Hesley, Gina K; Woodrum, David A; Brown, Douglas L; Felmlee, Joel P

    2009-04-21

    During MR-guided focused ultrasound (MRgFUS) treatments of uterine fibroids using ExAblate(R)2000 (InSightec, Haifa, Israel), individual tissue ablations are performed extracorporeally through the patient's abdomen using an annular array FUS transducer embedded within the MR table. Ultrasound intensities in the near field are below therapeutic levels and, under normal conditions, heating of the patient skin is minimal. However, increased absorption of ultrasound energy within sensitive skin areas or areas with differing acoustic properties, such as scars, may lead to skin burns and therefore these areas must be kept outside the near field of the FUS beam. Depending on their location and size the sensitive areas may either obstruct parts of the fibroid from being treated or prevent the entire MRgFUS treatment altogether. The purpose of this work is to evaluate acoustic reflector materials that can be applied to protect skin and the underlying sensitive areas. Reflection coefficients of cork (0.88) and foam (0.91) based materials were evaluated with a hydrophone. An ExAblate 2000 MRgFUS system was used to simulate clinical treatment with discs of reflector materials placed in a near field underneath a gel phantom. MR thermometry was used to monitor temperature elevations as well as the integrity of the focal spot. The phantom measurements showed acoustic shadow zones behind the reflectors with zone depths changing between 7 and 27 mm, for reflector disc diameters increasing from 10 to 30 mm (40 mm diameter discs completely blocked the FUS beam at the depth evaluated). The effects on thermal lesions due to the presence of the reflectors in the FUS beam were found to diminish with decreasing disc diameter and increasing sonication depth. For a 20 mm diameter disc and beyond 50 mm sonication depth, thermal lesions were minimally affected by the presence of the disc. No heating was observed on the skin side of the foam reflectors, as confirmed by measurements performed with adhesive temperature labels. We present these data and discuss possible applications to clinical MRgFUS treatments.

  18. Wearable glass beads for in vivo dosimetry of total skin electron irradiation treatments

    NASA Astrophysics Data System (ADS)

    Nabankema, S. K.; Jafari, S. M.; Peet, S. C.; Binny, D.; Sylvander, S. R.; Crowe, S. B.

    2017-11-01

    Glass beads have recently been proposed for use as radiation therapy dosimeters. Glass beads have a number of characteristics that make them suitable for in vivo skin dose measurements, including an ability to be worn on a string, and therefore avoid possible patient discomfort that may result from the use of adhesives. In this study, their use for in vivo dose measurements in total skin electron irradiation treatments has been tested. First, the dosimetric properties of cylindrical beads with a 3 mm diameter were characterised using electron fields produced by a linear accelerator. The mean individual bead reproducibility was demonstrated to be within 3%; and a batch variation of 7% was observed. The beads were shown to have a linear dose response, and both dose rate and beam energy independence, within the measurement uncertainty. Phantom measurements were then performed for a total skin electron irradiation beam arrangement, and results compared against optically stimulated luminescent dosimeters at five anatomical sites. For a majority of measurement locations, agreement within 3% was observed between the two dosimetry techniques, demonstrating the feasibility of glass beads as in vivo dosimeters for total skin electron irradiation; though further investigation may be needed to minimise uncertainty in results.

  19. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor.

    PubMed

    Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-10-11

    The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.

  20. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.

    2017-08-01

    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  1. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  2. Radio-frequency measurements of UNiX compounds (X=Al, Ga, Ge) in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Alsmadi, A. M.; Alyones, S.; Mielke, C. H.; McDonald, R. D.; Zapf, V.; Altarawneh, M. M.; Lacerda, A.; Chang, S.; Adak, S.; Kothapalli, K.; Nakotte, H.

    2009-11-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to ~60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency Δ f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in Δ f. The results of our skin-depth measurements were compared with previously published B- T phase diagrams for these three compounds.

  3. [Radiation load on the skin using a silicone-coated polyamide wound dressing during photon and electron radiotherapy].

    PubMed

    Thilmann, C; Adamietz, I A; Ramm, U; Mose, S; Saran, F; Böttcher, H D

    1996-05-01

    Silicone-coated polyamide wound dressing is frequently used for the supportive treatment in patients with radiation induced skin lesions. The use of this kind of dressing during radiotherapy with high energy beams shifts the dose built-up effect towards the skin surface. Thus the dose delivered to the skin increases. The present work quantifies changes of the skin dose by a commercial silicon-coated polyamide wound dressing. The dependence on the beam quality and on different treatment techniques is investigated. Measurements were performed with photon (60Co, 6 MV, 42 MV) and electron (7 MeV, 20 MeV, 40 MeV) beams using thin LiF thermoluminescence dosimeters (TLD) in a perspex phantom. The beams were directed perpendicularly to the phantom surface. For 60Co and 6 MV photon beams the skin dose was evaluated in vivo at different beam arrangements and at a given reference dose. For 60Co, 6 MV and 42 MV photon beams wound dressing caused a dose increase on the surface of the perspex phantom by a factor of 1.65, 1.39 and 1.33 respectively. Using oblique or rotational techniques for 60Co and 6 MV photon irradiation the wound dressing increased the skin dose but less compared to perpendicular beam direction. For electron beams the skin dose is relatively high (from 84% to 92%) and an increase by a dressing has no clinical relevance (factor 1.03 to 1.05). The silicone-coated polyamide wound dressing causes no relevant skin dose increase during radiation treatment with electron beams and can be left on the skin during irradiation. During radiation treatment with photon beams like 60Co and 6 MV the protective procedure should be adapted to skin changes, in case of strong skin reactions a removal during the time of irradiation should be considered.

  4. Determination of Energy of a Clinical Electron Beam as Part of a Routine Quality Assurance and Audit System

    NASA Astrophysics Data System (ADS)

    Hernández-Bello, Jimmy; D'Souza, Derek; Rossenberg, Ivan

    2002-08-01

    A method to determine the electron beam energy and an electron audit based on the current IPEM electron Code of Practice has been devised. During the commissioning on the new Varian 2100CD linear accelerator in The Middlesex Hospital, two methods were devised for the determination of electron energy. The first method involves the use of a two-depth method, whereby the ratio of ionisation (presented as a percentage) measured by an ion chamber at two depths in solid water is used to compare against the baseline ionisation depth value for that energy. The second method involves the irradiation of an X-ray film in solid water to obtain a depth dose curve and, hence determine the half value depth and practical range of the electrons. The results showed that the two-depth method has a better accuracy, repeatability, reliability and consistency than the X-ray method. The results for the electron audit showed that electron absolute outputs are obtained from ionisation measurements in solid water, where the energy-range parameters such as practical range and the depth at which ionisation is 50% of that at the maximum for the depth-ionisation curve are determined.

  5. A study on bulk and skin temperature difference using observations from Atlantic and Pacific Coastal regions of United States

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard; Reynolds, Mike; Christman, Adam

    2017-05-01

    Analysis of bulk-skin sea surface temperature (SST) difference form the west and east coasts of United States is presented using the data collected from three field experiments. These experiments were conducted at offshore Duck, North Carolina and in the Monterey Bay of the California coastal region. Bulk SST measurements were made using conventional thermistors from a depth of one meter below the sea level. Infrared radiometers were used to measure the surface skin SST. Depending on measurement depth and prevailing conditions, the bulk SST can differ from skin SST by few tenths of a degree to O(1°C). Difference between bulk and skin SST arise from cools skin and warm layer effects. Bulk-skin SST difference (ΔSST) estimated from east coast observations varied from -0.46°C to 1.24°C. Here, the bulk SST was higher than skin SST most of the time during the observations. This indicates cool skin effect was the dominant factor determining the ΔSST in the east coast. For wind speeds less than 4 m s-1, we also noticed an increase in ΔSST. Additionally, for low winds (<4 m s-1) ΔSST also varied diurnally with the occurrence of generally higher ΔSST in the nighttime in comparison with daytime. Moreover, increase in downwelling longwave radiation reduced the bulk-skin SST difference. ΔSST calculated from the observation in the Monterey bay varied between 2.3° and -2.3°C. This was higher than the variability ΔSST observed at the east coast. Moreover, ΔSST variability observed at west coast was independent of wind speed.

  6. Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions.

    PubMed

    Deegan, Anthony J; Talebi-Liasi, Faezeh; Song, Shaozhen; Li, Yuandong; Xu, Jingjiang; Men, Shaojie; Shinohara, Michi M; Flowers, Mary E; Lee, Stephanie J; Wang, Ruikang K

    2018-03-01

    In clinical dermatology, the identification of subsurface vascular and structural features known to be associated with numerous cutaneous pathologies remains challenging without the use of invasive diagnostic tools. To present an advanced optical coherence tomography angiography (OCTA) method to directly visualize capillary-level vascular and structural features within skin in vivo. An advanced OCTA system with a 1310 nm wavelength was used to image the microvascular and structural features of various skin conditions. Subjects were enrolled and OCTA imaging was performed with a field of view of approximately 10 × 10 mm. Skin blood flow was identified using an optical microangiography (OMAG) algorithm. Depth-resolved microvascular networks and structural features were derived from segmented volume scans, representing tissue slabs of 0-132, 132-330, and 330-924 μm, measured from the surface of the skin. Subjects with both healthy and pathological conditions, such as benign skin lesions, psoriasis, chronic graft-versus-host-disease (cGvHD), and scleroderma, were OCTA scanned. Our OCTA results detailed variations in vascularization and local anatomical characteristics, for example, depth-dependent vascular, and structural alterations in psoriatic skin, alongside their resolve over time; vascular density changes and distribution irregularities, together with corresponding structural depositions in the skin of cGvHD patients; and vascular abnormalities in the nail folds of a patient with scleroderma. OCTA can image capillary blood flow and structural features within skin in vivo, which has the potential to provide new insights into the pathophysiology, as well as dynamic changes of skin diseases, valuable for diagnoses, and non-invasive monitoring of disease progression and treatment. Lasers Surg. Med. 50:183-193, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Extraordinary Magnetic Field Enhancement with Metallic Nanowire: Role of Surface Impedance in Babinet's Principle for Sub-Skin-Depth Regime

    NASA Astrophysics Data System (ADS)

    Koo, Sukmo; Kumar, M. Sathish; Shin, Jonghwa; Kim, Daisik; Park, Namkyoo

    2009-12-01

    We propose and analyze the “complementary” structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.

  8. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

    PubMed Central

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-01-01

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders. PMID:28429757

  9. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

    NASA Astrophysics Data System (ADS)

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-04-01

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

  10. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  11. Quantification of changes in skin hydration and sebum after tape stripping using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2017-02-01

    Skin barrier function relies on well balanced water and lipid system of stratum corneum. Optimal hydration and oiliness levels are indicators of skin health and integrity. We demonstrate an accurate and sensitive depth profiling of stratum corneum sebum and hydration levels using short wave infrared spectroscopy in the spectral range around 1720 nm. We demonstrate that short wave infrared spectroscopic technique combined with tape stripping can provide morequantitative and more reliable skin barrier function information in the low hydration regime, compared to conventional biophysical methods.

  12. Skin fluorescence model based on the Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.

    2003-10-01

    The novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account spatial distribution of fluorophores following the collagen fibers packing, whereas in epidermis and stratum corneum the distribution of fluorophores assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the NIR spectral region, while fluorescence of sensor layer embedded in epidermis is localized at the adjusted depth. The model is also able to simulate the skin fluorescence spectra.

  13. Noninvasive lifting of arm, thigh, and knee skin with transcutaneous intense focused ultrasound.

    PubMed

    Alster, Tina S; Tanzi, Elizabeth L

    2012-05-01

    Transcutaneous intense focused ultrasound is a novel Food and Drug Administration-approved technology for noninvasive skin tightening of the face and neck. No studies have reported on its safety and effectiveness on nonfacial areas. Eighteen paired areas (6 each) on the upper arms, medial thighs, and extensor knees were randomly treated with two different transducers (4.0 MHz, 4.5-mm focal depth and 7.0 MHz, 3.0-mm focal depth). One side was randomly assigned to receive a single pass (single plane) of microthermal coagulation zones over the involved area with the 4.0 MHz, 4.5-mm-depth transducer, and the contralateral side was assigned to receive consecutive single passes (dual plane) using both transducers (4.0 MHz, 4.5-mm depth followed by 7.0 MHz, 3.0-mm depth). Two independent masked assessors determined clinical improvement scores using comparative standardized photographs obtained at baseline and 3 and 6 months after treatment. Subjective assessments of clinical improvement and side effects of treatment were obtained. Global assessment scores revealed significant improvement in all treated areas, with the upper arms and knees demonstrating more skin lifting and tightening than the thighs. Areas receiving dual-plane treatment had slightly better clinical scores than those receiving single-plane treatment in all three sites. Clinical scores from single-plane and dual-plane treated areas continued to improve between 3 and 6 months after treatment. Side effects were mild and transient and included erythema, warmth, and skin tenderness. Rare focal bruising was noted in two patients on the upper arms that resolved within 7 days. No other side effects were reported or observed. Transcutaneous intense focused ultrasound can be safely and effectively used to improve the clinical appearance (texture and contour) of the upper arms, extensor knees, and medial thighs. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  14. Effect of linear alkyl benzene sulfonate in skin of fish fingerlings (Cirrhina mrigala): observations with scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, V.; Chawla, G.; Kumar, V.

    1987-04-01

    Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.

  15. Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications.

    PubMed

    Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin

    2016-12-01

    Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magnetospheric Multiscale Observations of Large-Amplitude Parallel, Electrostatic Waves Associated with Magnetic Reconnection at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E(sub parallel)) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E(sub parallel). These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (less than 10eV) plasma in the magnetosphere with warm (approximately 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  17. Ion Larmor radius effects near a reconnection X line at the magnetopause: THEMIS observations and simulation comparison

    NASA Astrophysics Data System (ADS)

    Phan, T. D.; Shay, M. A.; Haggerty, C. C.; Gosling, J. T.; Eastwood, J. P.; Fujimoto, M.; Malakit, K.; Mozer, F. S.; Cassak, P. A.; Oieroset, M.; Angelopoulos, V.

    2016-09-01

    We report a Time History of Events and Macroscale Interactions during Substorms (THEMIS-D) spacecraft crossing of a magnetopause reconnection exhaust ~9 ion skin depths (di) downstream of an X line. The crossing was characterized by ion jetting at speeds substantially below the predicted reconnection outflow speed. In the magnetospheric inflow region THEMIS detected (a) penetration of magnetosheath ions and the resulting flows perpendicular to the reconnection plane, (b) ion outflow extending into the magnetosphere, and (c) enhanced electron parallel temperature. Comparison with a simulation suggests that these signatures are associated with the gyration of magnetosheath ions onto magnetospheric field lines due to the shift of the flow stagnation point toward the low-density magnetosphere. Our observations indicate that these effects, ~2-3 di in width, extend at least 9 di downstream of the X line. The detection of these signatures could indicate large-scale proximity of the X line but do not imply that the spacecraft was upstream of the electron diffusion region.

  18. Asymmetrical penetration of microwave in a conducting media and determination of microwave conductivity for very thin samples using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Seridonio, A. C.; Walmsley, L.

    2001-04-01

    Dyson's theory of conduction electron spin resonance (CESR) has been used in the limit d≤δ (d being the thickness of the sample and δ the skin depth of the microwave field) to obtain the microwave conductivity from the (A/B) ratio of the CESR absorbed power derivative. In this work we calculate the CESR absorbed power derivative using Kaplan's approach and show that the (A/B) ratio can be enhanced if asymmetrical penetration of microwave is used, which means that the microwave field enters into the sample from one of the faces. Therefore, the determination of the microwave conductivity from the (A/B) ratio of the CESR line can be performed for thinner samples. Experimentally, asymmetrical penetration can be obtained if one of the sample's faces is covered with a thin gold layer. The determination of microwave conductivity in conducting polymers films is among the possible applications of this method.

  19. Point-of-care instrument for monitoring tissue health during skin graft repair

    NASA Astrophysics Data System (ADS)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  20. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    PubMed

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within gas-sensing devices and has enabled stable sensor operation within aqueous media. Furthermore, careful tuning of the chemical composition of the dielectric layer has provided a means to operate the sensor in real time within an aqueous environment and without the need for encapsulation layers. The integration of such devices as electronic mimics of skin will require the incorporation of biocompatible or biodegradable components. Toward this goal, OFETs may be fabricated with >99% biodegradable components by weight, and the devices are robust and stable, even in aqueous environments. Collectively, progress to date suggests that OFETs may be integrated within a single substrate to function as an electronic mimic of human skin, which could enable a large range of sensing-related applications from novel prosthetics to robotic surgery.

  1. Confocal imaging of benign and malignant proliferative skin lesions in vivo

    NASA Astrophysics Data System (ADS)

    Gonzalez, Salvador; Rajadhyaksha, Milind M.; Anderson, R. Rox

    1999-06-01

    Near-infrared confocal reflectance microscopy (CM) provides non- invasive real-time images of thin en-face tissue sections with high resolution and contrast. Imaging of cells, nuclei, other organelles, microvessels, and hair follicles has been possible at resolution comparable to standard histology, to a maximum depth of 250-300 μm in human skin in vivo. We have characterized psoriasis as a prototype of benign proliferative skin conditions, and non-pigmented skin malignancies in vivo based on their unstained, native histologic features using CM. Our data shows that reflectance CM may potentially diagnose and morphometrically evaluate proliferative skin lesions in vivo.

  2. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model.

    PubMed

    Meliga, Stefano C; Coffey, Jacob W; Crichton, Michael L; Flaim, Christopher; Veidt, Martin; Kendall, Mark A F

    2017-01-15

    In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms -1 ). A layered finite-element model satisfactorily predicted the penetration of micro-penetrators using characteristic fracture energies (∼10pJμm -2 ) significantly lower than previously reported (≫100pJμm -2 ). Interestingly, with our standard application conditions (∼2ms -1 , 35gpistonmass), ∼95% of the application kinetic energy was transferred to the backing support rather than the skin ∼5% (murine ear model). At higher velocities (∼10ms -1 ) strain energy accumulated in the top skin layers, initiating fracture before stress waves transmitted deformation to the backing material, increasing energy transfer efficiency to 55%. Thus, the tools developed provide guidelines to rationally engineer skin penetrators to increase depth targeting consistency and payload delivery across patients whilst minimizing penetration energy to control skin inflammation, tolerability and acceptability. The mechanics of skin penetration by dynamically-applied microscopic tips is investigated using a combined experimental-computational approach. A FE model of skin is parameterized using indentation tests and a ductile-failure implementation validated against penetration assays. The simulations shed light on skin elastic and fracture properties, and elucidate the interaction with microprojection arrays for vaccine delivery allowing rational design of next-generation devices. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin.

    PubMed

    Regan, Caitlin; Hayakawa, Carole; Choi, Bernard

    2017-12-01

    Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.

  4. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin

    PubMed Central

    Regan, Caitlin; Hayakawa, Carole; Choi, Bernard

    2017-01-01

    Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions. PMID:29296499

  5. Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.

    2017-06-01

    We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.

  6. In vivo optical elastography: stress and strain imaging of human skin lesions

    NASA Astrophysics Data System (ADS)

    Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.

    2015-03-01

    Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.

  7. On the modeling and characterization of an interlocked flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Khalili, Nazanin; Shen, Xuechen; Naguib, Hani E.

    2017-04-01

    Development of an electronic skin with ultra-high pressure sensitivity is now of critical importance due its broad range of applications including prosthetic skins and biomimetic robotics. Microstructured conductive composite elastomers can acquire mechanical and electrical properties analogous to those of natural skin. One of the most prominent features of human skin is its tactile sensing property which can be mimicked in an electronic skin. Herein, an electrically conductive composite comprising polydimethylsiloxane and conductive fillers is used as a flexible and stretchable piezoresistive sensor. The electrical conductivity is induced within the elastomer matrix via carbon nanotubes whereas the piezoresistivity is obtained by means of microstructuring the surface of the substrate. An interlocked array of pyramids in micro-scale allows the change in the contact resistance between two thin layers of the composite upon application of an external load. Deformation of the interlocked arrays endows the sensor with an ultra-high sensitivity to the external pressures within the range of human skin perception. Moreover, using finite element analysis, the change in the contact are between the two layers was captured for different geometries. The structure of the sensor can be optimized through an optimization model in order to acquire maximum sensitivity.

  8. Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system.

    PubMed

    Oborn, B M; Kolling, S; Metcalfe, P E; Crozier, S; Litzenberg, D W; Keall, P J

    2014-05-01

    A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both with and without the presence of an ECD located immediately below the MLC's. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm(3) water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm(2) resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm(2). The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% of D(max) for 5 × 5 to 20 × 20 cm(2), respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom surface. Replacing a large portion of the extended air-column between the ECD and phantom surface with helium gas is a key element as it significantly minimized the air-generated contamination. When using an optimal ECD and helium gas region, the 70 μm skin dose is predicted to increase moderately inside a small hot spot over that of the case with no magnetic field present for the jaw defined square beams examined here. These increases include from 12% to 40% of [Formula: see text] for 5 × 5 cm(2), 18% to 55% of D(max) for 10 × 10 cm(2), and from 23% to 65% of D(max) for 20 × 20 cm(2). Coupling an efficient ECD and helium gas region below the MLCs in the 160 cm isocenter MRI-linac system is predicted to ameliorate the impact electron contamination focusing has on skin dose increases. An ECD is practical as its impact on the MRI imaging distortion is correctable, and the mechanical forces acting on it manageable from an engineering point of view.

  9. Translocation of Cell Penetrating Peptide Engrafted Nanoparticles Across Skin Layers

    PubMed Central

    Patlolla, Ram R; Desai, Pinaki; Belay, Kalayu; Singh, Mandip

    2010-01-01

    The objective of the current study was to evaluate the ability of cell penetrating peptides (CPP) to translocate the lipid payload into the skin layers. Fluorescent dye (DID-oil) encapsulated nano lipid crystal nanoparticles (FNLCN) were prepared using Compritol, Miglyol and DOGS-NTA-Ni lipids by hot melt homogenization technique. The FNLCN surface was coated with TAT peptide (FNLCNT) or control YKA peptide (FNLCNY) and in vitro rat skin permeation studies were performed using Franz diffusion cells. Observation of lateral skin sections obtained using cryotome with a confocal microscope demonstrated that skin permeation of FNLCNT was time dependent and after 24 h, fluorescence was observed upto a depth of 120 µm which was localized in the hair follicles and epidermis. In case of FNLCN and FNLCNY formulations fluorescence was mainly observed in the hair follicles. This observation was further supported by confocal Raman spectroscopy where higher fluorescence signal intensity was observed at 80 and 120 µm depth with FNLCNT treated skin and intensity of fluorescence peaks was in the ratio of 2:1:1 and 5:3:1 for FNLCNT, FNLCN, and FNLCNY treated skin sections, respectively. Furthermore, replacement of DID-oil with celecoxib (Cxb), a model lipophilic drug showed similar results and after 24 h, the CXBNT formulation increased the Cxb concentration in SC by 3 and 6 fold and in epidermis by 2 and 3 fold as compared to CXBN and CXBNY formulations respectively. Our results strongly suggest that CPP can translocate nanoparticles with their payloads into deeper skin layers. PMID:20413152

  10. Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation †

    PubMed Central

    Ibrahim, Ali; Gastaldo, Paolo; Chible, Hussein; Valle, Maurizio

    2017-01-01

    Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted. PMID:28287448

  11. Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation.

    PubMed

    Ibrahim, Ali; Gastaldo, Paolo; Chible, Hussein; Valle, Maurizio

    2017-03-10

    Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted.

  12. Use of fractional laser microablation of skin for improvement of its immersion clearing

    NASA Astrophysics Data System (ADS)

    Kolesnikova, Ekaterina A.; Kolesnikov, Aleksandr S.; Genina, Elina A.; Dolotov, Leonid E.; Tuchina, Darya K.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2013-02-01

    We are proposing a new method for enhancement of optical clearing agent delivery into the skin using fractional laser microablation of the skin surface. The Palomar Lux2940 erbium laser with the wavelength 2940 nm and pulse duration of 5 ms was used as a light source. Two regimes of laser action were used in the experiments: the first one realized microablation of skin upper layer and the second one created microchannels in skin. As optical clearing agents mineral oil and PEG-300 were used. In vivo studies were carried out with white outbred rats. Both parameters: the permeability coefficient of the agents in the tissue and the optical probing depth were measured using the OCT system at a wavelength of 930 nm. The following values of the permeability coefficient of the skin with microablation were obtained: (3.41+/-0.46)×10-5 cm/s and (2.35+/-0.30)×10-5 cm/s for mineral oil and PEG-300, respectively, at the use of the surface microablation and (3.32+/-0.09)×10-5 cm/s and (3.61+/-0.34)×10-5 cm/s for mineral oil and PEG-300, respectively, at the use of the microporation. The results have shown that the joint application of mineral oil with microablation in the first regime promotes maximal (nearly 2-folds) increasing of optical probing depth in 30 min. Obtained data can be used for development of optical diagnostic methods of skin diseases.

  13. Estimating melanin location in the pigmented skin lesions by hue-saturation-lightness color space values of dermoscopic images.

    PubMed

    Sakai, Hiroshi; Ando, Yoshimi; Ikinaga, Kuniko; Tanaka, Masaru

    2017-05-01

    The depth of melanin in the skin can be estimated roughly by observation of the color exhibited on dermoscopy. Currently, there are no objective methods to estimate it. The aim of the present study was to clarify the relationship between the depth of melanin in the skin and the color variation exhibited, and to objectively estimate the 3-D location of melanin in the pigmented skin lesions from dermoscopic images. Representative colors in dermoscopic images of acral compound nevus, Spitz nevus and blue nevus were evaluated by the subjectively perceived color on dermoscopy and objective values in hue-saturation-lightness color space values. Brown colors due to small quantities of superficial melanin in the skin had high saturation and low lightness values, whereas black colors due to large quantities of superficial melanin had low saturation and low lightness values. On the other hand, colors due to melanin in the dermis were perceived as blue-gray on dermoscopy, but extracted colors showed gray-brown hue and intermediate saturation and high lightness values. In all cases, extracted representative colors of pigmented skin lesions had similar hue values within the red-orange range. Objective estimation of the 3-D location of melanin in the pigmented skin lesions is possible by the saturation and lightness values of the colors extracted from dermoscopic images. Subjectively perceived colors of melanin, especially in the dermis, can be modified by the surrounding environment effect and blue color perception. © 2017 Japanese Dermatological Association.

  14. Revision Vaginoplasty: A Comparison of Surgical Outcomes of Laparoscopic Intestinal versus Perineal Full-Thickness Skin Graft Vaginoplasty.

    PubMed

    Van der Sluis, Wouter B; Bouman, Mark-Bram; Buncamper, Marlon E; Mullender, Margriet G; Meijerink, Wilhelmus J

    2016-10-01

    Vaginal (re)construction can greatly improve the quality of life of indicated patients. If primary vaginoplasty fails, multiple surgical approaches exist for revision. The authors compared surgical results of laparoscopic intestinal versus full-thickness skin graft revision vaginoplasty. A retrospective chart review of patients who underwent revision vaginoplasty at the authors' institution was conducted. Patient demographics, surgical characteristics, complications, hospitalization, reoperations, and neovaginal depth for both surgical techniques were recorded and compared. The authors studied a consecutive series of 50 transgender and three biological women who underwent revision vaginoplasty, of which 21 were laparoscopic intestinal and 32 were perineal full-thickness skin graft vaginoplasties, with a median clinical follow-up of 3.2 years (range, 0.5 to 19.7 years). Patient demographics did not differ significantly. There was no mortality. Two intraoperative rectal perforations (10 percent) occurred in the intestinal group versus six (19 percent) in the full-thickness skin graft group. Operative time was shorter for the full-thickness skin graft vaginoplasty group (131 ± 35 minutes versus 191 ± 45 minutes; p < 0.01). Hospitalization length did not differ significantly. Successful vaginal (re)construction was achieved in 19 intestinal (91 percent) and 26 full-thickness skin graft (81 percent) vaginoplasty procedures. A deeper neovagina was achieved with intestinal vaginoplasty (15.9 ± 1.4 cm versus 12.5 ± 2.8 cm; p < 0.01). Both laparoscopic intestinal and full-thickness skin graft vaginoplasty can be used as secondary vaginal reconstruction. Intraoperative and postoperative complications do not differ significantly, but rectal perforation was more prevalent in the full-thickness skin graft vaginoplasty group. Although the operative time of laparoscopic intestinal vaginoplasty is longer, adequate neovaginal depth was more frequently achieved than in secondary perineal full-thickness skin graft vaginoplasty. Therapeutic, III.

  15. An in vivo confocal Raman study of the delivery of trans retinol to the skin.

    PubMed

    Pudney, Paul D A; Mélot, Mickaël; Caspers, Peter J; Van Der Pol, Andre; Puppels, Gerwin J

    2007-08-01

    The purpose of this study is to monitor in vivo the delivery of trans-retinol into human skin. Delivery to real systems, such as skin, can be extremely difficult to execute and is problematic to confirm and measure. So far, methods for studying the delivery of compounds through the skin are mostly ex vivo and so inherently influence the skin and may not translate directly to the in vivo situation. Raman spectroscopy is uniquely placed to be able to measure biological processes in vivo, and this paper shows that the trans-retinol penetration into the skin can successfully be measured in vivo using this technique. This study measured the volar forearm of volunteers treated with 0.3% trans-retinol in propylene glycol (PG)/ethanol and 0.3% trans-retinol in caprylic/capric acid triglyceride (MYRITOL318), an oil found in skin creams. Solutions were applied and then confocal Raman depth profiles were obtained of the stratum corneum (SC) and into the viable epidermis (VE) up to 10 hours after treatment. Remarkable differences between a penetrating and a nonpenetrating solution can clearly be observed. Treating with trans-retinol in PG/ethanol results in trans-retinol penetrating through the SC and into the VE. Its penetration was also observed to be highly correlated with the depth of penetration of the PG, which is well known as an efficient penetration enhancer. In contrast, while treating with trans-retinol in MYRITOL318, trans-retinol hardly penetrates at all. For the first time, the penetration of trans-retinol has been monitored directly after application of solutions, in vivo without skin excision. Here, the effect of two different solutions on the delivery of trans-retinol into the skin was measured very effectively in vivo by Raman spectroscopy.

  16. Validity and reliability of a structured-light 3D scanner and an ultrasound imaging system for measurements of facial skin thickness.

    PubMed

    Lee, Kang-Woo; Kim, Sang-Hwan; Gil, Young-Chun; Hu, Kyung-Seok; Kim, Hee-Jin

    2017-10-01

    Three-dimensional (3 D)-scanning-based morphological studies of the face are commonly included in various clinical procedures. This study evaluated validity and reliability of a 3 D scanning system by comparing the ultrasound (US) imaging system versus the direct measurement of facial skin. The facial skin thickness at 19 landmarks was measured using the three different methods in 10 embalmed adult Korean cadavers. Skin thickness was first measured using the ultrasound device, then 3 D scanning of the facial skin surface was performed. After the skin on the left half of face was gently dissected, deviating slightly right of the midline, to separate it from the subcutaneous layer, and the harvested facial skin's thickness was measured directly using neck calipers. The dissected specimen was then scanned again, then the scanned images of undissected and dissected faces were superimposed using Morpheus Plastic Solution (version 3.0) software. Finally, the facial skin thickness was calculated from the superimposed images. The ICC value for the correlations between the 3 D scanning system and direct measurement showed excellent reliability (0.849, 95% confidence interval = 0.799-0.887). Bland-Altman analysis showed a good level of agreement between the 3 D scanning system and direct measurement (bias = 0.49 ± 0.49 mm, mean±SD). These results demonstrate that the 3 D scanning system precisely reflects structural changes before and after skin dissection. Therefore, an in-depth morphological study using this 3 D scanning system could provide depth data about the main anatomical structures of face, thereby providing crucial anatomical knowledge for utilization in various clinical applications. Clin. Anat. 30:878-886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  18. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  19. Multiphoton spectroscopy of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  20. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  1. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing

    NASA Astrophysics Data System (ADS)

    Volkova, Elena K.; Yanina, Irina Yu; Genina, Elina A.; Bashkatov, Alexey N.; Konyukhova, Julia G.; Popov, Alexey P.; Speranskaya, Elena S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; Goryacheva, Irina Yu.; Kochubey, Vyacheslav I.; Sukhorukov, Gleb B.; Meglinski, Igor V.; Tuchin, Valery V.

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ˜1.6 μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ˜20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues.

  2. Distribution of phospholipid based formulations in the skin investigated by combined ATR-FTIR and tape stripping experiments.

    PubMed

    Wolf, Martin; Halper, Maria; Pribyl, Raffaela; Baurecht, Dieter; Valenta, Claudia

    2017-03-15

    The spatial distribution of exogenous substances in the stratum corneum (SC) could have an influence on their skin irritation potential. In this study it was possible to monitor the distribution of phospholipids with their phosphatidylcholine scaffold on porcine ear skin by combining tape stripping and in vitro ATR-FTIR spectroscopy. Significant vibrational modes in the spectra could be successfully assigned to the functional groups of the molecules. Thus it was possible to track the phospholipids without the need of their deuterated form by calculating difference spectra from the treated - untreated skin samples. The correlation between four characteristic bands (R 2 ≥0.9909) revealed the excellent suitability of this semi-quantitative method for deep profiling analysis. The penetration capabilities of aqueous suspensions of the different phospholipid compositions as well as two monoacyl-phosphatidylcholine based liposome formulations were investigated using this method. Nevertheless, differences in the distribution of the investigated phospholipid species, having different amounts of monoacyl-phosphatidylcholine, could not be found. It could be clearly shown that the deepest skin penetration was seen in the irritating anionic SDS (sodium dodecyl sulfate) out of the aqueous solution. The aqueous suspensions based on different phospholipid surfactants showed the same range of penetration depth (10-15% of SC), whereas the smallest skin penetration depth was observed after the application of liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electron energization mechanisms in collisionless magnetic reconnection for different guide-field intensities

    NASA Astrophysics Data System (ADS)

    Pucci, F.; Usami, S.; Guo, X.; Ji, H.; Horiuchi, R.; Okamura, S.

    2017-12-01

    Electron dynamics and energization are a key component of magnetic field dissipation in collisionless reconnection. Indeed, in 2D reconnection, the main mechanism that limits the current density and provides the resistivity most probably relies on the electron pressure tensor term which has been shown to break the frozen-in condition at the x-point (Ishizawa and Horiuchi 2005; Horiuchi et al. 2014). In addition the electron-meandering-orbit scale controls the width of the electron dissipation region around the x-point, where the electron temperature is observed to increase, so understanding the electron heating mechanism is fundamental for magnetic reconnection. It has been shown by Guo et al. 2017 that for a 2D high guide field configuration (Bz/B0 = 3) electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in the separatrix region while electron perpendicular acceleration takes place mainly in the downstream near the X-point. Electron velocity distributions have been shown to exhibit highly structured features within a few electron skin depths from the X line (Bessho et al. 2014) as well as in the exhaust (Shuster et al. 2014). By means of two-dimensional, full-particle simulations in an open system (Pei et al. 2001; Ohtani and R. Horiuchi 2009), we investigate how the energization mechanism depends on the guide field intensity. We compare electron distribution functions as well as particles orbits, in the electron diffusion region and the exhaust, in order to clarify the preferential electron heating/acceleration in two-dimensional systems. We will then compare our results with observations using the present catalogue of MMS diffusion region crossings.

  4. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE PAGES

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...

    2017-08-24

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  5. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  6. Lower energy and pulse stacking. A safer alternative for skin tightening using fractional CO2 laser.

    PubMed

    Motta, Marcos Matias; Stelini, Rafael Fantelli; Calderoni, Davi Reis; Gilioli, Rovilson; Kharmandayan, Paulo

    2016-01-01

    To evaluate the effect of different energies and stacking in skin shrinkage. Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically evaluated for microthermal zones dimensions. Groups II and III (n=10 each) were macroscopic evaluated with freeware ImageJ for area contraction immediately and after 30 and 60 days. No statistical significance was found within microthermal zone histological dimensions (Group I) in all settings studied. (Ablation depth: 76.90 to 97.18µm; Coagulation depth: 186.01 to 219.84 µm). In Group II, macroscopic evaluation showed that all settings cause significant immediate skin contraction. The highest setting cause significant more intense tightening effect initially, contracting skin area from 258.65 to 179.09 mm2. The same pattern was observed in Group III. At 30 and 60 days, the lowest setting significantly sustained contraction. Lower fractional CO2 laser energies associated to pulse stacking could cause consistent and long lasting tissue contraction in rats.

  7. Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models

    NASA Astrophysics Data System (ADS)

    Petrova, Kremena S.; Stoykova, Elena V.

    2006-09-01

    Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.

  8. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    PubMed Central

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-01-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307

  9. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing.

    PubMed

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W F; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B-H; Bao, Zhenan

    2015-08-24

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

  10. The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues

    DTIC Science & Technology

    2013-08-09

    new organs to replace damaged or diseased ones;10 • contact lenses, skin patches, and glucose-sensing tattoos that monitor diabetics’ blood sugar...collection on a device the size of a sugar cube;16 • inexpensive, flexible, durable, low-voltage “electronic skin ” sensors that allow robots and...Toward Nanoparticle-Based Electronic Skin ,” ACS Applied Materials and Interfaces, vol. 5, no. 12 (2013), pp. pp 5531-5541. 18 U.S. Department of

  11. Multifunctional epidermal electronics printed directly onto the skin.

    PubMed

    Yeo, Woon-Hong; Kim, Yun-Soung; Lee, Jongwoo; Ameen, Abid; Shi, Luke; Li, Ming; Wang, Shuodao; Ma, Rui; Jin, Sung Hun; Kang, Zhan; Huang, Yonggang; Rogers, John A

    2013-05-28

    Materials and designs are presented for electronics and sensors that can be conformally and robustly integrated onto the surface of the skin. A multifunctional device of this type can record various physiological signals relevant to health and wellness. This class of technology offers capabilities in biocompatible, non-invasive measurement that lie beyond those available with conventional, point-contact electrode interfaces to the skin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    PubMed

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies. Additional studies are necessary to prove clinical safety of these protocols.

  13. Total-skin electron irradiation for cutaneous T-cell lymphoma: the Northern Israel Oncology Center experience.

    PubMed

    Kuten, A; Stein, M; Mandelzweig, Y; Tatcher, M; Yaacov, G; Epelbaum, R; Rosenblatt, E

    1991-07-01

    Total-skin electron irradiation (TSEI) is effective and frequently used in the treatment of cutaneous T-cell lymphoma. A treatment technique has been developed at our center, using the Philips SL 75/10 linear accelerator. In our method, the patient is irradiated in a recumbent position by five pairs of uncollimated electron beams at a source to skin distance of 150 cm. This method provides a practical solution to clinical requirements with respect to uniformity of electron dose and low X-ray contamination. Its implementation does not require special equipment or modification of the linear accelerator, 19 of 23 patients (83%) with mycosis fungoides, treated by this method, achieved complete regression of their cutaneous lesions.

  14. Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yu, E. P.; Yelton, W. G.; Fuelling, S.

    2018-05-01

    A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μ m Parylene-N were driven to 1 MA in 100 ns , with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k , grew exponentially with rate γ (k ) =0.06 n s-1-(0.4 n s-1μ m2ra d-2 ) k2 in ˜1 g /c m3 , ˜7000 K aluminum.

  15. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Trevor M.; Hutchinson, Trevor M.; Awe, Thomas James

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  16. Towards multimodal detection of melanoma thickness based on optical coherence tomography and optoacoustics

    NASA Astrophysics Data System (ADS)

    Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.

    2016-03-01

    Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.

  17. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths

    NASA Astrophysics Data System (ADS)

    Marcinkevics, Zbignevs; Rubins, Uldis; Zaharans, Janis; Miscuks, Aleksejs; Urtane, Evelina; Ozolina-Moll, Liga

    2016-03-01

    The feasibility of bispectral imaging photoplethysmography (iPPG) system for clinical assessment of cutaneous microcirculation at two different depths is proposed. The iPPG system has been developed and evaluated for in vivo conditions during various tests: (1) topical application of vasodilatory liniment on the skin, (2) skin local heating, (3) arterial occlusion, and (4) regional anesthesia. The device has been validated by the measurements of a laser Doppler imager (LDI) as a reference. The hardware comprises four bispectral light sources (530 and 810 nm) for uniform illumination of skin, video camera, and the control unit for triggering of the system. The PPG signals were calculated and the changes of perfusion index (PI) were obtained during the tests. The results showed convincing correlations for PI obtained by iPPG and LDI at (1) topical liniment (r=0.98) and (2) heating (r=0.98) tests. The topical liniment and local heating tests revealed good selectivity of the system for superficial microcirculation monitoring. It is confirmed that the iPPG system could be used for assessment of cutaneous perfusion at two different depths, morphologically and functionally different vascular networks, and thus utilized in clinics as a cost-effective alternative to the LDI.

  18. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths.

    PubMed

    Marcinkevics, Zbignevs; Rubins, Uldis; Zaharans, Janis; Miscuks, Aleksejs; Urtane, Evelina; Ozolina-Moll, Liga

    2016-03-01

    The feasibility of bispectral imaging photoplethysmography (iPPG) system for clinical assessment of cutaneous microcirculation at two different depths is proposed. The iPPG system has been developed and evaluated for in vivo conditions during various tests: (1) topical application of vasodilatory liniment on the skin, (2) skin local heating, (3) arterial occlusion, and (4) regional anesthesia. The device has been validated by the measurements of a laser Doppler imager (LDI) as a reference. The hardware comprises four bispectral light sources (530 and 810 nm) for uniform illumination of skin, video camera, and the control unit for triggering of the system. The PPG signals were calculated and the changes of perfusion index (PI) were obtained during the tests. The results showed convincing correlations for PI obtained by iPPG530 nm and LDI at (1) topical liniment (r = 0.98) and (2) heating (r = 0.98) tests. The topical liniment and local heating tests revealed good selectivity of the system for superficial microcirculation monitoring. It is confirmed that the iPPG system could be used for assessment of cutaneous perfusion at two different depths, morphologically and functionally different vascular networks, and thus utilized in clinics as a cost-effective alternative to the LDI.

  19. Ultrastructural and x-ray microanalytical observations of minocycline-related hyperpigmentation of the skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, S.; Murphy, G.F.; Bernhard, J.D.

    1981-09-01

    In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less

  20. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  1. Skin-Inspired Electronics: An Emerging Paradigm.

    PubMed

    Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan

    2018-05-15

    Future electronics will take on more important roles in people's lives. They need to allow more intimate contact with human beings to enable advanced health monitoring, disease detection, medical therapies, and human-machine interfacing. However, current electronics are rigid, nondegradable and cannot self-repair, while the human body is soft, dynamic, stretchable, biodegradable, and self-healing. Therefore, it is critical to develop a new class of electronic materials that incorporate skinlike properties, including stretchability for conformable integration, minimal discomfort and suppressed invasive reactions; self-healing for long-term durability under harsh mechanical conditions; and biodegradability for reducing environmental impact and obviating the need for secondary device removal for medical implants. These demands have fueled the development of a new generation of electronic materials, primarily composed of polymers and polymer composites with both high electrical performance and skinlike properties, and consequently led to a new paradigm of electronics, termed "skin-inspired electronics". This Account covers recent important advances in skin-inspired electronics, from basic material developments to device components and proof-of-concept demonstrations for integrated bioelectronics applications. To date, stretchability has been the most prominent focus in this field. In contrast to strain-engineering approaches that extrinsically impart stretchability into inorganic electronics, intrinsically stretchable materials provide a direct route to achieve higher mechanical robustness, higher device density, and scalable fabrication. The key is the introduction of strain-dissipation mechanisms into the material design, which has been realized through molecular engineering (e.g., soft molecular segments, dynamic bonds) and physical engineering (e.g., nanoconfinement effect, geometric design). The material design concepts have led to the successful demonstrations of stretchable conductors, semiconductors, and dielectrics without sacrificing their electrical performance. Employing such materials, innovative device design coupled with fabrication method development has enabled stretchable sensors and displays as input/output components and large-scale transistor arrays for circuits and active matrixes. Strategies to incorporate self-healing into electronic materials are the second focus of this Account. To date, dynamic intermolecular interactions have been the most effective approach for imparting self-healing properties onto polymeric electronic materials, which have been utilized to fabricate self-healing sensors and actuators. Moreover, biodegradability has emerged as an important feature in skin-inspired electronics. The incorporation of degradable moieties along the polymer backbone allows for degradable conducting polymers and the use of bioderived materials has led to the demonstration of biodegradable functional devices, such as sensors and transistors. Finally, we highlight examples of skin-inspired electronics for three major applications: prosthetic e-skins, wearable electronics, and implantable electronics.

  2. Usability evaluation of intradermal adapters (IDA).

    PubMed

    Tsals, Izrail

    2017-03-27

    Intradermal adapter device technology minimizes the complexity of the Mantoux technique, thereby providing predictable, reproducible intradermal (ID) injections and removing the concerns regarding the ease and reliability of Mantoux technique when using conventional needle and syringe. The technology employs a simple device with geometry designed to gently deform the skin surface and the subcutaneous tissue, providing the ideal angle and depth of needle insertion for consistently successful intradermal injections. The results of this development were presented at the First, Second and Third Skin Vaccination Summits in 2011, 2013 and 2015 respectively [1,2,3]. The current publication addresses the performance of intradermal adapters (IDA) evaluated in three preclinical studies. The evaluations were based on the assessment of bleb formation in a skin model, an accepted indicator of ID injection success. All evaluated devices share the same proprietary dermal interface technology. Devices instituting this design are easy to use, require minimal training, and employ conventionally molded parts and cannula. These studies evaluated IDAs of initial design integral with luer lock needles, IDAs for use with conventional syringes, and intradermal adapters for use with auto disable syringes (ADID adapters). The evaluated ID adapters were intended to consistently place the lancet of the needle at a depth of 0.75mm from the skin's surface. This placement depth addresses the variation in the skin thickness at immunization sites for the majority of patients independent of many other variables. Most participants preferred the intradermal adapter method over the traditional Mantoux and identified a need for the adapter at their workplace. Evaluation of IDAs by registered nurses indicated these devices increase success of bleb formation. The use of IDA increased the success of forming blebs by about 30%. Nurses felt the injections were much easier to perform, in particular by novices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biophysical and photobiological basics of water-filtered infrared-A hyperthermia of superficial tumors.

    PubMed

    Vaupel, Peter; Piazena, Helmut; Müller, Werner; Notter, Markus

    2018-05-10

    Thermography-controlled, water-filtered infrared-A (wIRA) is a novel, effective and approved heating technique listed in the ESHO quality assurance guidelines for superficial hyperthermia clinical trials (2017). In order to assess the special features and the potential of wIRA-hyperthermia (wIRA-HT), detailed and updated information about its physical and photobiological background is presented. wIRA allows for (a) application of high irradiances without skin pain and acute grade 2-4 skin toxicities, (b) prolonged, therapeutically relevant exposure times using high irradiances (150-200 mW/cm 2 ) and (c) faster and deeper heat extension within tissues. The deeper radiative penetration depth is mainly caused by forward Mie-scattering. At skin surface temperatures of 42-43 °C, the effective heating depth is 15 mm (T ≥ 40 °C) and 20 mm (T ≥ 39.5 °C). Advantages of wIRA include its contact-free energy input, easy power steering by a feed-back loop, extendable treatment fields, real-time and noninvasive surface temperature monitoring with observation of dynamic changes during HT, and - if necessary - rapid protection of temperature-sensitive structures. wIRA makes the compliant heating of ulcerated and/or bleeding tumors possible, allows for HT of irregularly shaped and diffusely spreading tumors, is independent of individual body contours, allows for very short 'transits' between HT and RT (1-4 min) or continuous heating between both therapeutic interventions. New treatment options for wIRA-HT may include malignant melanoma, vulvar carcinoma, skin metastases of different primary tumors, cutaneous T-and B-cell lymphoma, large-area hemangiomatosis, inoperable squamous cell, basal cell and eccrine carcinoma of the skin with depth extensions ≤20 mm.

  4. Ag/alginate nanofiber membrane for flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Peng; Zhang, Bin; Zhang, Jun; Luo, Wei-Ling; Guo, Ya; Chen, Shao-Juan; Yun, Mao-Jin; Ramakrishna, Seeram; Long, Yun-Ze

    2017-11-01

    Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like ‘Nano’ and ‘Perfect’ spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.

  5. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  6. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-09-19

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  7. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study

    PubMed Central

    Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940

  8. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    PubMed

    Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  9. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel.more » The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).« less

  10. A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Lu, Z. X.

    2018-02-01

    A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.

  11. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    PubMed

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  12. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Pallon, J.; Alves, L. C.; Veríssimo, A.; Filipe, P.; Silva, J. N.; Silva, R.

    2007-07-01

    The permeability of skin to nanoparticles of titanium dioxide (TiO 2) used in sunscreens as a reflector of the UV wavelengths of sunlight, was examined using nuclear microscopy techniques. Special attention was given to the permeation characteristics of these nanoparticles across the outer layers of skin, the stratum corneum, in healthy and psoriatic skin condition. Aspects that may influence the interpretation of results such as sample preparation difficulties and skin condition were focused. Sample preparation can damage the integrity of the corneocyte layers inducing unwanted artefacts that may bias the evaluation of results. Irradiation conditions may also introduce distortions in the labile structures of human skin. Skin condition, such as loss of corneocyte cohesion occurring in psoriasis also influence the permeation profile of the nanoparticles. Weighing and accounting for these features in the examination of skin by nuclear microscopy is crucial to accurately assess the TiO 2 nanoparticles permeation depth.

  13. Further search for selectivity of positron annihilation in the skin and cancerous systems

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Chen, Hongmin; Chakka, Lakshmi; Cheng, Mei-Ling; Gadzia, Joseph E.; Suzuki, R.; Ohdaira, T.; Oshima, N.; Jean, Y. C.

    2008-10-01

    Positronium annihilation lifetime (PAL) spectroscopy and Doppler broadening energy spectra (DBES) have been used to search for selectivity and sensitivity for cancerous skin samples with and without cancer. This study is to further explore the melanoma cancerous system and other different types of skin samples. We found that the S parameter in melanoma skin samples cut at 0.39 mm depth from the same patient's skin is smaller than near the skin surface. However in 10 melanoma samples from different patients, the S parameters vary significantly. Similarly, among 10 normal skin samples without cancer, the S parameters also vary largely among different patients. To understand the sensitivity of PAS as a tool to detect cancer formation at the early stage, we propose a controlled and systematic study of in vivo experiments using UV-induced cancer skin from living animals.

  14. Penetration of ASM 981 in canine skin: a comparative study.

    PubMed

    Gutzwiller, Meret E Ricklin; Reist, Martin; Persohn, Elke; Peel, John E; Roosje, Petra J

    2006-01-01

    ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.

  15. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  16. Towards in vivo breast skin characterization using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Uchugonova, Aisada; Breunig, Hans Georg; König, Karsten

    2017-02-01

    Breast cancer, the most common type of cancer in women worldwide, as well as its treatment (e.g. radiation therapy) can affect the human skin. Multiphoton imaging could provide new insights into these skin alterations non-invasively and with high-resolution. As a preparation for a later investigation involving patients, areas of the breast and forearm skin of healthy volunteers were imaged using the clinically certified multiphoton imaging tomograph MPTflex based on endogenous skin autofluorescence and second-harmonic signals. Depth-resolved image stacks were acquired in consecutive weeks to explore the influence of hormonal variations on the skin properties. Both breasts were considered and up to three different areas were imaged per session. Acquisition parameters were optimized to minimize artifacts caused by breathing-motion. As a first result, skin properties, such as the epidermal thickness, appear to be influenced by hormonal variations.

  17. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  18. Penetration depth, concentration and efficiency of transdermal α-arbutin delivery after ultrasound treatment with albumin-shelled microbubbles in mice.

    PubMed

    Liao, Ai-Ho; Ma, Wan-Chun; Wang, Chih-Hung; Yeh, Ming-Kung

    2016-09-01

    Recently, the feasibility and effects of using microbubbles (MBs) as an ultrasound (US) contrast agent for enhancing the penetration in transdermal delivery in vivo have been demonstrated, but the mechanism and efficiency are unclear. This study demonstrates the penetration depth, concentration and efficiency of transdermal α-arbutin delivery during 4 weeks after US treatment with MBs in mice. Experimental animals were randomly divided into the following four groups (n = 5 animals per group): (1) penetrating α-arbutin alone (C), (2) US combined with penetrating α-arbutin, (3) US combined with MBs and penetrating α-arbutin, and (4) US combined with diluted MBs and penetrating α-arbutin (UBD). The penetration depths in agarose phantoms and pigskin were 47 and 84% greater for group UBD, respectively, than for group C. The in vitro skin penetration by 2% α-arbutin after 3 h was 83% greater in group UBD than in group C. The degree of in vivo skin whitening (quantified as the luminosity index) in group UBD significantly increased by 25% after 1 week, 34% after 2 weeks, and then stabilized after 3 weeks at 37% in C57BL/6J mice over a 4-week experimental period. Our results indicate that combined treatment with optimal US and MBs can increase skin permeability so as to enhance α-arbutin delivery to inhibit melanogenesis without damaging the skin in mice.

  19. On the origin of the crescent-shaped distributions observed by MMS at the magnetopause

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Berchem, J.; Zhou, M.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Khotyaintsev, Y. V.; Torbert, R. B.; Burch, J. L.

    2017-02-01

    MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E × B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E × B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.

  20. An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature-Pressure Detection.

    PubMed

    Wang, Chunya; Xia, Kailun; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2017-11-15

    Flexible skin-mimicking electronics are highly desired for development of smart human-machine interfaces and wearable human-health monitors. Human skins are able to simultaneously detect different information, such as touch, friction, temperature, and humidity. However, due to the mutual interferences of sensors with different functions, it is still a big challenge to fabricate multifunctional electronic skins (E-skins). Herein, a combo temperature-pressure E-skin is reported through assembling a temperature sensor and a strain sensor in both of which flexible and transparent silk-nanofiber-derived carbon fiber membranes (SilkCFM) are used as the active material. The temperature sensor presents high temperature sensitivity of 0.81% per centigrade. The strain sensor shows an extremely high sensitivity with a gauge factor of ∼8350 at 50% strain, enabling the detection of subtle pressure stimuli that induce local strain. Importantly, the structure of the SilkCFM in each sensor is designed to be passive to other stimuli, enabling the integrated E-skin to precisely detect temperature and pressure at the same time. It is demonstrated that the E-skin can detect and distinguish exhaling, finger pressing, and spatial distribution of temperature and pressure, which cannot be realized using single mode sensors. The remarkable performance of the silk-based combo temperature-pressure sensor, together with its green and large-scalable fabrication process, promising its applications in human-machine interfaces and soft electronics.

  1. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry.

    PubMed

    Fernández-Varea, J M; Andreo, P; Tabata, T

    1996-07-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.

  2. Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording.

    PubMed

    Jang, Kyung-In; Jung, Han Na; Lee, Jung Woo; Xu, Sheng; Liu, Yu Hao; Ma, Yinji; Jeong, Jae-Woong; Song, Young Min; Kim, Jeonghyun; Kim, Bong Hun; Banks, Anthony; Kwak, Jean Won; Yang, Yiyuan; Shi, Dawei; Wei, Zijun; Feng, Xue; Paik, Ungyu; Huang, Yonggang; Ghaffari, Roozbeh; Rogers, John A

    2016-10-25

    This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.

  3. A new continuous suture technique in ear reconstruction with full-thickness skin grafts.

    PubMed

    Bramhall, Russell James; Gorman, Mark; Khan, Muhammad Adil Abbas; Riaz, Muhammad

    2012-07-01

    Ear reconstruction with full-thickness skin grafts can be a challenging task for plastic surgeons. It is often necessary to remove the underlying cartilage with the skin lesion and the resultant defect may be deeply concave. We present a short clinical report to describe an improved technique that we find useful in reducing the diameter and depth of anterior pinna contour defects, in improving graft take, and in reducing the size of the donor-site scar.

  4. Photoacoustic Imaging of Epilepsy

    DTIC Science & Technology

    2013-04-01

    mouse brain with the skin and skull intact,” Opt. Lett. 28(19), 1739–1741 (2003). 5. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and...imaging at centimeter scale depths. To date PAT has been applied to the detection of breast cancer, skin cancer and osteoarthritis in humans [1–3...the hemodynamic changes and reveal the 3D structures in the rat brain. Two small rats (~40g) were imaged with intact skull and skin but hairs on the

  5. Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    NASA Astrophysics Data System (ADS)

    Johnson, Robert W.

    2012-06-01

    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Only at low conductivity and below, the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.

  6. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  7. Human axillary skin condition is improved following incorporation of glycerol into the stratum corneum from an antiperspirant formulation.

    PubMed

    Evans, Richard L; Turner, Graham A; Bates, Susan; Robinson, Teresa; Arnold, David; Marriott, Robert E; Pudney, Paul D A; Bonnist, Eleanor Y M; Green, Darren

    2017-11-01

    The study objectives were to demonstrate that glycerol, when topically applied from a roll-on antiperspirant formulation, can be delivered directly to human skin ex vivo and the axillary stratum corneum (SC) in vivo, and to assess whether it improves the quality of the axillary skin barrier. Ex vivo human skin absorption of glycerol was measured following application of a roll-on antiperspirant formulation containing 4% 13 C 3 -glycerol. Skin distribution of 13 C 3 -glycerol over 24 h was assessed using gas chromatography-mass spectrometry. In vivo axillary SC penetration was measured by confocal Raman spectroscopy and multivariate curve-resolution software 1 h after topical application of a roll-on antiperspirant formulation containing 8% deuterated glycerol (d 5 -glycerol). A clinical study was conducted to determine the efficacy of a roll-on antiperspirant formulation containing 4% glycerol in reducing shaving-induced visual irritation and in increasing axillary-skin hydration. Ex vivo skin absorption studies indicated that the formulation delivered 13 C 3 -glycerol into the SC at all timepoints over the 24-h period. In vivo Raman measurements (1 h after application) demonstrated that d 5 -glycerol was detectable to a depth of at least 10 μm in the axillary SC. Application of 4% glycerol from a roll-on antiperspirant formulation to the axilla was associated with significantly less visible irritation and greater skin hydration than observed with the control (glycerol-free) product. These studies demonstrate that glycerol, incorporated in a roll-on antiperspirant formulation, is delivered directly and rapidly to all depths of the axillary SC, and results in improvements in visible irritation and hydration in the axilla.

  8. Enhancement and optimization of PpIX-based photodynamic therapy of skin cancer: translational studies from bench to clinic

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Baran, Christine; Honari, Golara; Lohser, Sara; Kyei, Angela; Bailin, Philip; Pogue, Brian W.

    2009-02-01

    Nonmelanoma skin carcinomas are the most common of all human cancers. Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) has been used to treat these tumors, but has shown variable results. We are pursuing a multifaceted approach toward optimizing tumor responsiveness. First, a new paradigm is being developed in which tumors are pretreated with differentiation-inducing agents, e.g. methotrexate or Vitamin D, to enhance synthesis of protoporphyrin IX (PpIX) and improve tumor cell killing upon exposure to 635 nm light. This principle was first elucidated in cell culture studies, and has now been shown to hold true for murine skin tumors, and for a human subcutaneous tumor model (A431 cells injected in nude mice). Clinical trials to test methotrexate and Vitamin D as augmenting agents for ALA-PDT of nonmelanoma skin cancer are being designed. Second, better methods to measure PpIX in patients' skin tumors in real time are being developed. In a clinical study to measure PpIX in patients with dysplastic skin lesions, in vivo fluorescence dosimetry was used to measure the accumulation of PpIX over time, and revealed that intralesional PpIX may reach clinically-useful levels earlier than previously thought for the treatment of actinic keratoses. In a second clinical study to examine depth of PpIX production in nonmelanoma skin cancer, the depth of PpIX within BCC tumors was found at relatively deep levels (>1 mm) in some tumor nests, but not in others. Production of PpIX in deep squamous cell carcinoma was very low. In summary, molecular approaches such as differentiation therapy to enhance ALA-PDT for individual patients may ultimately be needed to help to improve skin cancer responses to this modality.

  9. Reflectance confocal microscopy for the evaluation of sensitive skin.

    PubMed

    Ma, Y-F; Yuan, C; Jiang, W-C; Wang, X-L; Humbert, P

    2017-05-01

    Nowadays, the diagnosis for sensitive skin relies on subjective assessment or on the combination of subjective and objective evaluation. No quantitative evaluation is available. It could be expected that confocal microscopy imaging could be of interest to better define the condition. Total 166 healthy female subjects were recruited in this study. Firstly, all subjects completed the sensitive questionnaire. Then, the cutaneous structures were measured by the reflectance confocal microscopy (RCM) on the face and fossa cubitalia. The lactic acid sting test was conducted finally. According to the results of self-perception sensitive skin questionnaire and lactic acid stinging test to evaluate facial skin sensitivity the both positive subjects were regarded as sensitive skin group and both negative group as healthy control group. The results of RCM indicating that the proportion of 'disarranged honeycomb pattern' and 'spongiform edema' in the sensitive group and healthy control group were statistically different (P < 0.05), respectively; The following report 'damaged dermal papilla rings' was not a distinctive pattern, with no significant statistical difference (P > 0.05). The epidermal thickness was 38.88 ± 6.81 μm, healthy control group was 40.31 ± 9.37 μm in, respectively, sensitive skin group and healthy control group, there was no significant statistical difference between the two groups (P > 0.05). The honeycomb structure depth of sensitive group was 20.57 ± 4.86 μm. It was for 23.27 ± 6.38 μm, healthy control group the difference being statistically different between the two groups (P < 0.05). Based on the RCM results, 'epidermal honeycomb structure' and 'spongiform edema' may be used as new skin signs of RCM evaluation of sensitive skin effectively. Indeed, sensitive skin honeycomb structure depth was thinner compared with healthy control group. Such a specific pattern has good clinical and monitoring value for the further exploration. RCM could provide new data and patterns for the evaluation of sensitive skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Theoretical analysis of nonnuniform skin effects on drawdown variation

    NASA Astrophysics Data System (ADS)

    Chen, C.-S.; Chang, C. C.; Lee, M. S.

    2003-04-01

    Under field conditions, the skin zone surrounding the well screen is rarely uniformly distributed in the vertical direction. To understand such non-uniform skin effects on drawdown variation, we assume the skin factor to be an arbitrary, continuous or piece-wise continuous function S_k(z), and incorporate it into a well hydraulics model for constant rate pumping in a homogeneous, vertically anisotropic, confined aquifer. Solutions of depth-specific drawdown and vertical average drawdown are determined by using the Gram-Schmidt method. The non-uniform effects of S_k(z) in vertical average drawdown are averaged out, and can be represented by a constant skin factor S_k. As a result, drawdown of fully penetrating observation wells can be analyzed by appropriate well hydraulics theories assuming a constant skin factor. The S_k is the vertical average value of S_k(z) weighted by the well bore flux q_w(z). In depth-specific drawdown, however, the non-uniform effects of S_k(z) vary with radial and vertical distances, which are under the influence of the vertical profile of S_k(z) and the vertical anisotropy ratio, K_r/K_z. Therefore, drawdown of partially penetrating observation wells may reflect the vertical anisotropy as well as the non-uniformity of the skin zone. The method of determining S_k(z) developed herein involves the use of q_w(z) as can be measured with the borehole flowmeter, and K_r/K_z and S_k as can be determined by the conventional pumping test.

  11. Photosensitivity enhancement with TiO2 in semitransparent light-sensitive skins of nanocrystal monolayers.

    PubMed

    Akhavan, Shahab; Yeltik, Aydan; Demir, Hilmi Volkan

    2014-06-25

    We propose and demonstrate light-sensitive nanocrystal skins that exhibit broadband sensitivity enhancement based on electron transfer to a thin TiO2 film grown by atomic layer deposition. In these photosensors, which operate with no external bias, photogenerated electrons remain trapped inside the nanocrystals. These electrons generally recombine with the photogenerated holes that accumulate at the top interfacing contact, which leads to lower photovoltage buildup. Because favorable conduction band offset aids in transferring photoelectrons from CdTe nanocrystals to the TiO2 layer, which decreases the exciton recombination probability, TiO2 has been utilized as the electron-accepting material in these light-sensitive nanocrystal skins. A controlled interface thickness between the TiO2 layer and the monolayer of CdTe nanocrystals enables a photovoltage buildup enhancement in the proposed nanostructure platform. With TiO2 serving as the electron acceptor, we observed broadband sensitivity improvement across 350-475 nm, with an approximately 22% enhancement. Furthermore, time-resolved fluorescence measurements verified the electron transfer from the CdTe nanocrystals to the TiO2 layer in light-sensitive skins. These results could pave the way for engineering nanocrystal-based light-sensing platforms, such as smart transparent windows, light-sensitive walls, and large-area optical detection systems.

  12. Active Silver Nanoparticles for Wound Healing

    PubMed Central

    Rigo, Chiara; Ferroni, Letizia; Tocco, Ilaria; Roman, Marco; Munivrana, Ivan; Gardin, Chiara; Cairns, Warren R. L.; Vindigni, Vincenzo; Azzena, Bruno; Barbante, Carlo; Zavan, Barbara

    2013-01-01

    In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment. PMID:23455461

  13. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    PubMed

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of the secondary electrons produced by proton and electron beams in water

    NASA Astrophysics Data System (ADS)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  15. Comparison of the secondary electrons produced by proton and electron beams in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less

  16. Evidence and Considerations in the Application of Chemical Peels in Skin Disorders and Aesthetic Resurfacing

    PubMed Central

    Berson, Diane S.; Cohen, Joel L.; Roberts, Wendy E.; Starker, Isaac; Wang, Beatrice

    2010-01-01

    Chemical peeling is a popular, relatively inexpensive, and generally safe method for treatment of some skin disorders and to refresh and rejuvenate skin. This article focuses on chemical peels and their use in routine clinical practice. Chemical peels are classified by the depth of action into superficial, medium, and deep peels. The depth of the peel is correlated with clinical changes, with the greatest change achieved by deep peels. However, the depth is also associated with longer healing times and the potential for complications. A wide variety of peels are available, utilizing various topical agents and concentrations, including a recent salicylic acid derivative, β-lipohydroxy acid, which has properties that may expand the clinical use of peels. Superficial peels, penetrating only the epidermis, can be used to enhance treatment for a variety of conditions, including acne, melasma, dyschromias, photodamage, and actinic keratoses. Medium-depth peels, penetrating to the papillary dermis, may be used for dyschromia, multiple solar keratoses, superficial scars, and pigmentary disorders. Deep peels, affecting reticular dermis, may be used for severe photoaging, deep wrinkles, or scars. Peels can be combined with other in-office facial resurfacing techniques to optimize outcomes and enhance patient satisfaction and allow clinicians to tailor the treatment to individual patient needs. Successful outcomes are based on a careful patient selection as well as appropriate use of specific peeling agents. Used properly, the chemical peel has the potential to fill an important therapeutic need in the dermatologist's and plastic surgeon's armamentarium. PMID:20725555

  17. Electronic Skin with Multifunction Sensors Based on Thermosensation.

    PubMed

    Zhao, Shuai; Zhu, Rong

    2017-04-01

    A multifunctional electronic skin (e-skin) with multimodal sensing capabilities of perceiving mechanical and thermal stimuli, discriminating matter type, and sensing wind is developed using the thermosensation of a platinum ribbon array, whose temperature varies with conductive or convective heat transfer toward the surroundings. Pressure is perceived by a porous elastomer covering on the heated platinum ribbon, which bears mechanical-thermal conversion to allow high integration with other sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biotactile Sensors: Self-Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016).

    PubMed

    Hu, Kesong; Xiong, Rui; Guo, Hengyu; Ma, Ruilong; Zhang, Shuaidi; Wang, Zhong Lin; Tsukruk, Vladimir V

    2016-05-01

    On page 3549, V. V. Tsukruk and co-workers develop self-powered ultrathin flexible films for bio-tactile detection. Graphene oxide materials are engineered for robust self-powered tactile sensing applications harnessing their electrochemical reactivity. The simple quadruple electronic skin sensor can recognize nine spatial bio-tactile positions with high sensitivity and selectivity-an approach that can be expanded towards large-area flexible skin arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.

    PubMed

    Wang, Xuewen; Gu, Yang; Xiong, Zuoping; Cui, Zheng; Zhang, Ting

    2014-03-05

    Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Monte Carlo study of skin optical clearing to enhance light penetration in the tissue: implications for photodynamic therapy of acne vulgaris

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.; Altshuler, Gregory B.; Yaroslavsky, Ilya V.

    2008-06-01

    Result of Monte Carlo simulations of skin optical clearing is presented. The model calculations were carried out with the aim of studying of spectral response of skin under immersion liquids action and calculation of enhancement of light penetration depth. In summary, we have shown that: 1) application of glucose, propylene glycol and glycerol produced significant decrease of light scattering in different skin layers; 2) maximal clearing effect will be obtained in case of optical clearing of skin dermis, however, absorbed light fraction in skin dermis changed insignificantly, independently on clearing agent and place it administration; 3) in contrast to it, the light absorbed fraction in skin adipose layer increased significantly in case of optical clearing of skin dermis. It is very important because it can be used for development of optical methods of obesity treatment; 4) optical clearing of superficial skin layers can be used for decreasing of power of light radiation used for treatment of acne vulgaris.

  1. Photograph-based diagnosis of burns in patients with dark-skin types: the importance of case and assessor characteristics.

    PubMed

    Boissin, C; Laflamme, L; Wallis, L; Fleming, J; Hasselberg, M

    2015-09-01

    This study assessed whether photographs of burns on patients with dark-skin types could be used for accurate diagnosing and if the accuracy was affected by physicians' clinical background or case characteristics. 21 South-African cases (Fitzpatrick grades 4-6) of varying complexity were photographed using a camera phone and uploaded on a web-survey. Respondents were asked to assess wound depth (3 categories) and size (in percentage). A sample of 24 burn surgeons and emergency physicians was recruited in South-Africa, USA and Sweden. Measurements of accuracy (using percentage agreement with bedside diagnosis), inter- (n=24), and intra-rater (n=6) reliability (using percentage agreement and kappa) were computed for all cases aggregated and by case characteristic. Overall diagnostic accuracy was 67.5% and 66.0% for burn size and depth, respectively. It was comparable between burn surgeons and emergency physicians and between countries of practice. However, the standard deviations were smaller, showing higher similarities in diagnoses for burn surgeons and South-African clinicians compared to emergency physicians and clinicians from other countries. Case characteristics (child/adult, simple/complex wound, partial/full thickness) affected the results for burn size but not for depth. Inter- and intra-rater reliability for burn depth was 55% and 77%. Size and depth of burns on patients with dark-skin types could be assessed at least as well using photographs as at bedside with 67.5% and 66.0% average accuracy rates. Case characteristics significantly affected the accuracy for burn size, but medical specialty and country of practice seldom did in a statistically significant manner. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  2. Lidocaine permeation from a lidocaine NaCMC/gel microgel formulation in microneedle-pierced skin: vertical (depth averaged) and horizontal permeation profiles.

    PubMed

    Nayak, Atul; Short, Liam; Das, Diganta B

    2015-08-01

    Common local anaesthetics such as lidocaine are administered by the hypodermic parenteral route but it causes pain or anxiety to patients. Alternatively, an ointment formulation may be applied which involves a slow drug diffusion process. In addressing these two issues, this paper aims to understand the significance of the 'poke and patch' microneedle (MN) treatment on skin in conjunction to the lidocaine permeation, and in particular, the vertical (depth averaged) and horizontal (e.g. lateral) permeation profiles of the drug in the skin. The instantaneous pharmacokinetics of lidocaine in skin was determined by a skin denaturation technique coupled with Franz diffusion cell measurements of the drug pharmacokinetics. All pharmacokinetic profiles were performed periodically on porcine skin. Three MN insertion forces of 3.9, 7.9 and 15.7 N were applied on the MN to pierce the skin. For the smaller force (3.9 N), post MN-treated skin seems to provide an 'optimum' percutaneous delivery rate. A 10.2-fold increase in lidocaine permeation was observed for a MN insertion force of 3.9 N at 0.25 h and similarly, a 5.4-fold increase in permeation occurred at 0.5 h compared to passive diffusional delivery. It is shown that lidocaine permeates horizontally beyond the area of the MN-treated skin for the smaller MN insertion forces, namely, 3.9 and 7.9 N from 0.25 to 0.75 h, respectively. The lateral diffusion/permeation of lidocaine for larger MN-treated force (namely, 15.7 N in this work) seems to be insignificant at all recorded timings. The MN insertion force of 15.7 N resulted in lidocaine concentrations slightly greater than control (passive diffusion) but significantly less than 3.9 and 7.9 N impact force treatments on skin. We believe this likelihood is due to the skin compression effect that inhibits diffusion until the skin had time to relax at which point lidocaine levels increase.

  3. A millimeter-wave reflectometer for whole-body hydration sensing

    NASA Astrophysics Data System (ADS)

    Zhang, W.-D.; Brown, E. R.

    2016-05-01

    This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy (<1%) and greater depth of penetration (> 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.

  4. Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms

    PubMed Central

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-01-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473

  5. Effect of detergents on the physicochemical properties of skin stratum corneum: a two-photon excitation fluorescence microscopy study.

    PubMed

    Bloksgaard, M; Brewer, J R; Pashkovski, E; Ananthapadmanabhan, K P; Sørensen, J A; Bagatolli, L A

    2014-02-01

    Understanding the structural and dynamical features of skin is critical for advancing innovation in personal care and drug discovery. Synthetic detergent mixtures used in commercially available body wash products are thought to be less aggressive towards the skin barrier when compared to conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). Experiments were performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in the presence and absence of SCM and SDS detergents. Hydration of the intercellular lipid matrix to a depth of 10 μm into the SC was increased upon treatment with SCM, whereas SDS shows this effect only at the very surface of SC. The proton activity of SC remained unaffected by treatment with either detergent. While our study indicates that the SC is very resistant to external stimuli, it also shows that, in contrast to the response to SDS, SCM to some extent modulates the in-depth hydration properties of the intercellular lipid matrix within excised skin SC. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  7. Construction, in vitro and in vivo evaluation of an in-house conductance meter for measurement of skin hydration.

    PubMed

    Hamed, Saja H; Altrabsheh, Bilal; Assa'd, Tareq; Jaradat, Said; Alshra'ah, Mohammad; Aljamal, Abdulfattah; Alkhatib, Hatim S; Almalty, Abdul-Majeed

    2012-12-01

    Different probes are used in dermato-cosmetic research to measure the electrical properties of the skin. The principle governing the choice of the geometry and material of the measuring probe is not well defined in the literature and some device's measuring principles are not accessible for the scientific community. The purpose of this work was to develop a simple inexpensive conductance meter for the objective in vivo evaluation of skin hydration. The conductance meter probe was designed using the basic equation governing wave propagation along Transverse Electromagnetic transmission lines. It consisted of two concentric copper circular electrodes printed on FR4 dielectric material. The performance of the probe was validated by evaluating its measurement depth, its ability to monitor in vitro water sorption-desorption and in vivo skin hydration effect in comparison to that of the Corneometer CM 825. The measurement depth of the probe, 15 μm, was comparable to that of CM 825. The in vitro readings of the probe correlated strongly with the amount of water adsorbed on filter paper. Skin hydration after application of a moisturizer was monitored effectively by the new probe with good correlation to the results of CM 825. In conclusion, a simple probe for evaluating skin hydration was made from off-the-shelf materials and its performance was validated in comparison to a commercially available probe. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing.

    PubMed

    Volkova, Elena K; Yanina, Irina Yu; Genina, Elina A; Bashkatov, Alexey N; Konyukhova, Julia G; Popov, Alexey P; Speranskaya, Elena S; Bucharskaya, Alla B; Navolokin, Nikita A; Goryacheva, Irina Yu; Kochubey, Vyacheslav I; Sukhorukov, Gleb B; Meglinski, Igor V; Tuchin, Valery V

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ∼1.6  μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ∼20  nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500  μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    PubMed

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Clinical applications of CO2 laser resurfacing in the treatment of various pathologic skin disorders

    NASA Astrophysics Data System (ADS)

    Giler, Shamai

    1997-12-01

    CO2 laser skin resurfacing devices are widely used in cosmetic surgery for the treatment of facial rhytides, acne scars and aging skin. This technique is also useful in the treatment of various benign and premalignant or multiple pathological skin conditions and disorders originating in the epidermal, dermal and skin appendages, vascular lesions, epidermal nevi, infected wounds and ulcers, and keloids. Various surgical techniques have been developed in our clinic using laser resurfacing in the treatment of more than 2,000 patients with various skin pathologic disorders. We describe our experience with the various techniques used. The precise depth control and ablation properties combined with the hemostatic and sterilizing effects of the CO2 laser beam, reduction of the possibility of bleeding, infection and damage to healthy tissues, make the CO2 laser resurfacing techniques the treatment of choice for cosmetic surgery and treatment of benign, premalignant and multiple pathologic skin conditions.

  11. A Parametric Study of Slag Skin Formation in Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Yanke, Jeff; Krane, Matthew John M.

    In electroslag remelting (ESR), the slag generates heat, chemically refines the melting electrode material, and forms frozen skin on the mold. An axisymmetric model is used to simulate fluid flow, heat transfer, solidification, and electromagnetics and their interaction with slag skin formation in ESR. A volume of fluid (VOF) method is used to track the slag/metal interface, allowing simulation of slag freezing to the mold. Mold diameter and applied current are varied to determine how these parameters affect melt rate and formation of slag skin during ESR. Variations in the slag skin thickness within the slag cap are found to have a significant impact on melt rate and depth of metal sump. Changes in slag cap volume resulted in small changes in melt rate.

  12. Monte Carlo study of si diode response in electron beams.

    PubMed

    Wang, Lilie L W; Rogers, David W O

    2007-05-01

    Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M.; Kolling, S.; Metcalfe, P. E.

    Purpose: A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Methods: Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both withmore » and without the presence of an ECD located immediately below the MLC’s. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm{sup 3} water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm{sup 2} resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm{sup 2}. Results: The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% ofD {sub max} for 5 × 5 to 20 × 20 cm{sup 2}, respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom surface. Replacing a large portion of the extended air-column between the ECD and phantom surface with helium gas is a key element as it significantly minimized the air-generated contamination. When using an optimal ECD and helium gas region, the 70 μm skin dose is predicted to increase moderately inside a small hot spot over that of the case with no magnetic field present for the jaw defined square beams examined here. These increases include from 12% to 40% of D {sub max} for 5 × 5 cm{sup 2}, 18% to 55% of D {sub max} for 10 × 10 cm{sup 2}, and from 23% to 65% of D {sub max} for 20 × 20 cm{sup 2}. Conclusions: Coupling an efficient ECD and helium gas region below the MLCs in the 160 cm isocenter MRI-linac system is predicted to ameliorate the impact electron contamination focusing has on skin dose increases. An ECD is practical as its impact on the MRI imaging distortion is correctable, and the mechanical forces acting on it manageable from an engineering point of view.« less

  14. Breathable and Stretchable Temperature Sensors Inspired by Skin.

    PubMed

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-22

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  15. SOME PROTECTION METHODS FOR CUTANEOUS IRRADIATION WITH FAST ELECTRONS (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trucchi, O.

    1962-09-01

    The influence exerted by some substances, particularly by fatty substances and cortisone derivatives, on the skin reaction to fast electrons is examined. The means employed were applied on the skin immediately before the irradiation; their effectiveness varies in relation with the dose fractionation; this decreases in general the capacity of the various substances tested of modifying the skin reaction. The changes induced by these means are both quantitative and relative to the course (anticipation of the appearance of the erythema); they may occur uniformly in all phases of the reaction or only in one (a change of the first phasemore » of the erythema is usually observed). The quality of the excipient, the action of which is often responsible for the aggravation of the skin reaction, is to be taken into account in the evaluation of the typical effect of the medications. Within the limits of the doses employed (1000 rad in only a sitting, 5000 rad in case of fractionation) the influence of fatty substances on the skin reactions due to irradiation with quick electrons proved not to be marked but only scarcely appreciable. The mineral fats may increase the reaction due to quick electrons in some cases: they do not have, however, either a protective or therapeutic effect during the acute phase of the reaction. The cortisone derivatives are uneffective when they are directly and exclusively applied on the irradiated skin, while they are successfully used by general route, especially in the reactions of the mucous membranes produced by quick electrons; in any way, the topical use of cortisone derivatives with excipients deprived from mineral fats proved to be preferable. Among the physical means employed, the compression gave the best results, in the cases where it could be applied. (auth)« less

  16. Multifunctional Skin-like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing

    PubMed Central

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R. Chad; Bonifas, Andrew P.; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A.; Huang, Yonggang; West, Dennis P.; Paller, Amy S.; Alam, Murad

    2014-01-01

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here we report a skin-like electronics platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of ‘epidermal’ electronics system in a realistic, clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. PMID:24668927

  17. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kuranov, Roman V.; Sapozhnikova, Veronika V.; Prough, Donald S.; Cicenaite, Inga; Esenaliev, Rinat O.

    2006-08-01

    Recently, our in vivo studies demonstrated a strong correlation between blood glucose concentration and the slope of the optical coherence tomography (OCT) signal when the probing beam was scanned over a straight line. To improve the sensitivity of OCT for blood glucose monitoring, two-dimensional (2D) lateral scanning of the OCT probing beam was proposed. Depth-dependent changes in pig skin properties with variation of blood glucose concentration were revealed due to significant suppression of speckle noise and motion artefacts in 2D scanning mode. The correlation coefficient of the OCT signal slope with blood glucose concentration varied periodically in the range from -0.9 to +0.9 depending on depth. The period of variation of the correlation coefficient was 100-150 µm that corresponded to the distance between neighbour collagen bundles. We also observed a decrease of skin thickness by 10 ± 7.5 µm with an increase of blood glucose concentration by 277 ± 56 mg dl-1. Mechanisms of glucose-induced changes in skin properties owing to tissue layer shift caused by dehydration associated with the glucose osmotic effect were considered.

  18. Multi-photon microscopy of tobacco-exposed organotypic skin models

    NASA Astrophysics Data System (ADS)

    Dao, Belinda; Yamazaki, Alissa; Sun, Chung Ho; Wang, Zifu; Pham, Nguyen; Oldham, Michael; Wong, Brian J. F.

    2006-02-01

    Cigarette smoking is the most preventable cause of death in the United States. Researchers have extensively studied smoking in regards to its association with cancer, cardiovascular, and pulmonary disease. In contrast, the impact of cigarette smoking on skin has received much less attention. To provide a better understanding of the effect of cigarette smoking on the human dermal layer, this study used multi-photon microscopy (MPM) to examine collagen in organotypic skin models exposed to cigarette smoke condensate (CSC). Adult and neonatal organotypic tissue-engineered artificial skin models (RAFTs) were constructed and exposed to varying concentrations of CSC. Imaging of the RAFTs was performed using MPM and second-harmonic generation signals (SHG), which allowed for collagen structure to be viewed and analyzed as well as for collagen density to be assessed from derived depth-dependent decay (DDD) values. RAFT contraction as related to exposure concentration was monitored as well. Results indicated a dose dependent between contraction rates and CSC concentration. Collagen structure showed more preservation of its original structure at a greater depth in RAFTs with higher concentrations of CSC. No clear trends could be drawn from analysis of derived DDD values.

  19. Detection and imaging of corrosion around wing skin fasteners using the dripless bubbler ultrasonic scanner

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.

    1998-03-01

    The galvanic action between steel fasteners and aluminum wing skins of aircraft often leads to hidden exfoliation corrosion around the countersink surface of the fastener heads. To detect and evaluate the severity of such corrosion defects, the Dripless Bubbler ultrasonic scanner was applied. This technique uses a focused beam of high frequency ultrasound in a closed-cycle, water-coupled scan of wing skin test panels containing corroded and uncorroded fasteners. With full waveform acquisition, not only the lateral extent but also the depth profile of the corrosions around the fastener heads were mapped out, subject to shadowing of defects at different depth. The technique is capable of providing quantitative assessment of the severity of the corrosion. In tests conducted to evaluate different techniques, the Dripless Bubbler has shown high probability of detection and low false call rate. The presence of paint on the surface did not degrade the performance of the technique. In addition, the Dripless Bubbler was also used on wing skin panels containing repair 'blend-out' regions that had 0.020' to 0.100' of metal removed from the surface by grinding. Corrosions around fasteners in the blend-out regions were also detected.

  20. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry.

    PubMed

    Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A

    2017-03-07

    The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies.

  1. Fractional CO₂ Laser Pretreatment Facilitates Transdermal Delivery of Two Vitamin C Derivatives.

    PubMed

    Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Yau-Li; Huang, Chun-Hsun

    2016-11-16

    Topical vitamin C derivatives have been used to treat melasma and used as a skin whitener. The aim of this study was to compare skin histology and permeation of l-ascorbic acid 2-phosphate sesquimagnesium salt (MAP-1) and magnesium l-ascorbic acid-2-phosphate (MAP-2) after fractional CO₂ laser pretreatment. The effect of fractional laser treatment on porcine skin was examined by scanning electron microscopy and confocal laser scanning electron microscopy. The effect of fractional CO₂ laser treatment of different fluencies and pass numbers on transdermal flux of the two vitamin C derivatives through porcine skin was examined in vitro using a Franz diffusion chamber. Fluxes of MAP-1 and MAP-2 across fractional CO₂ laser-treated (5 W) skin were eight- to 13-fold, and 20- to 22-fold higher, respectively, than the fluxes of these compounds across intact skin. Fluxes of MAP-1 and MAP-2 across fractional CO₂ laser-treated (9 W) skin were 14- to 19-fold, and 30- to 42-fold higher, respectively, than their fluxes across intact skin. Fractional CO₂ laser treatment is an effective way of delivering vitamin C derivatives into the skin.

  2. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Fan, J; Eldib, A

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less

  3. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualitiesmore » were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.« less

  4. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures.

    PubMed

    Safari, M J; Wong, J H D; Ng, K H; Jong, W L; Cutajar, D L; Rosenfeld, A B

    2015-05-01

    The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (± 1%), field size (± 1%), frame rate (± 3%), or beam energy (± 5%). The detector angular dependence was within ± 5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ± 3%. The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  5. In vivo optical coherence tomography imaging of dissolution of hyaluronic acid microneedles in human skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Seungri; Kim, Jung Dong; Bae, Jung-hyun; Chang, Sooho; Kim, Soocheol; Lee, Hyungsuk; Jeong, Dohyeon; Kim, Hong Kee; Joo, Chulmin

    2017-02-01

    Transdermal drug delivery (TDD) has been recently highlighted as an alternative to oral delivery and hypodermic injections. Among many methods, drug delivery using a microneedle (MN) is one of the promising administration strategies due to its high skin permeability, mininal invasiveness, and ease of injection. In addition, microneedle-based TDD is explored for cosmetic and therapeutic purposes, rapidly developing market of microneedle industry for general population. To date, visualization of microneedles inserted into biological tissue has primarily been performed ex vivo. MRI, CT and ultrasound imaging do not provide sufficient spatial resolution, and optical microscopy is not suitable because of their limited imaging depth; structure of microneedles located in 0.2 1mm into the skin cannot be visulalized. Optical coherence tomography (OCT) is a non-invasive, cross-sectional optical imaging modality for biological tissue with high spatial resolution and acquisition speed. Compared with ultrasound imaging, it exhibits superior spatial resolution (1 10 um) and high sensitivity, while providing an imaging depth of biological tissue down to 1 2 mm. Here, we present in situ imaging and analysis of the penetration and dissolution characteristics of hyaluronic acid based MNs (HA-MN) with various needle heights in human skin in vivo. In contrast to other studies, we measured the actual penetration depths of the HA-MNs by considering the experimentally measured refractive index of HA in the solid state. For the dissolution dynamics of the HA-MNs, time-lapse structural alteration of the MNs could be clearly visualized, and the volumetric changes of the MNs were measured with an image analysis algorithm.

  6. OCT in Dermatology

    NASA Astrophysics Data System (ADS)

    Holmes, John; Welzel, Julia

    OCT is increasingly interesting for non-invasive skin imaging in Dermatology. Due to its resolution and imaging depth, OCT is already routinely established for diagnosis of nonmelanoma skin cancer, whereas for pigmented lesions, the resolution is still not high enough. OCT has also a high value for monitoring of treatment effects, for example to control healing after non-surgical topical treatment of basal cell carcinomas. In summary, there are several indications for applications of OCT to image skin diseases, and its importance will grow in the future due to further technical developments like speckle variance OCT.

  7. In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin

    NASA Astrophysics Data System (ADS)

    dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.

    2016-03-01

    In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.

  8. Dependence of light transmission through human skin on incident beam diameter at different wavelengths

    NASA Astrophysics Data System (ADS)

    Zhao, ZhongQuan; Fairchild, Paul W.

    1998-05-01

    For many skin treatments with light, it is important to have deep photon penetration into the skin. Because of absorption and scattering of photons by skin tissue, both the color and the diameter of the incident beam affect the penetration depth of photons. In this study, the dependence of light transmission through human skin tissues (ear lobs and between the fingers) has been measured in-vivo at six wavelengths (532 nm, 632 nm, 675 nm, 810 nm, 911 nm, and 1064 nm). The same measurement was also made on pig skin in-vitro for comparison. It was observed that (1) the photons at 1064 nm penetrate deeper than the other colors studied for a given incident beam diameter; and (2) the transmittance at a particular wavelength increases asymptotically with incident beam diameter. For some skin tissues, the transmittance flattens at about 8 mm for 532 nm photons and approaches saturation at about 12 mm for all other colors. The results on pig skin is similar.

  9. The effects of natural S-equol supplementation on skin aging in postmenopausal women: a pilot randomized placebo-controlled trial.

    PubMed

    Oyama, Ayuko; Ueno, Tomomi; Uchiyama, Shigeto; Aihara, Tomohiko; Miyake, Akira; Kondo, Sumio; Matsunaga, Kayoko

    2012-02-01

    The aim of this study was to investigate the effects of the natural S-equol supplement on skin aging in equol-nonproducing Japanese postmenopausal women. A randomized, double-blind, placebo-controlled trial examined the use of the natural S-equol supplement for 12 weeks in 101 postmenopausal Japanese women who were equol nonproducers. They were randomly assigned to one of three groups: placebo (n = 34), 10 mg S-equol/day (EQL10; n = 34), or 30 mg S-equol/day (EQL30; n = 33). Skin parameters of crow's-feet wrinkles (area and depth), hydration, transepidermal water loss, and elasticity were measured at baseline and at monthly intervals during treatment. Vaginal cytology, endometrial thickness, and mammography were performed before and after treatment. Serum hormone concentrations were measured at the same time as skin parameters. The EQL10 and EQL30 groups showed significant reductions in wrinkle area compared with the placebo group (P < 0.05). There was a significant difference in wrinkle depth between the placebo group and the EQL30 group (P < 0.05). Other skin parameters did not show significant differences after the treatment in any group. There were no abnormal results in hormone status or gynecological examinations. Our data suggest that natural S-equol supplementation (EQL10 and EQL30) may have a beneficial effect on crow's-feet wrinkles in postmenopausal women without serious adverse events.

  10. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-06-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  11. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-01-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  12. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  13. Noninvasive methods for determining lesion depth from vesicant exposure.

    PubMed

    Braue, Ernest H; Graham, John S; Doxzon, Bryce F; Hanssen, Kelly A; Lumpkin, Horace L; Stevenson, Robert S; Deckert, Robin R; Dalal, Stephen J; Mitcheltree, Larry W

    2007-01-01

    Before sulfur mustard (HD) injuries can be effectively treated, assessment of lesion depth must occur. Accurate depth assessment is important because it dictates how aggressive treatment needs to be to minimize or prevent cosmetic and functional deficits. Depth of injury typically is assessed by physical examination. Diagnosing very superficial and very deep lesions is relatively easy for the experienced burn surgeon. Lesions of intermediate depth, however, are often problematic in determining the need for grafting. This study was a preliminary evaluation of two noninvasive bioengineering methodologies, laser Doppler perfusion imaging (LDPI) and indocyanine green fluorescence imaging (ICGFI), to determine their ability to accurately diagnose depth of sulfur mustard lesions in a weanling swine model. Histological evaluation was used to assess the accuracy of the imaging techniques in determining burn depth. Six female weanling swine (8-12 kg) were exposed to 400 microl of neat sulfur mustard on six ventral sites for 2, 8, 30, or 60 minutes. This exposure regimen produced lesions of varying depths from superficial to deep dermal. Evaluations of lesion depth using the bioengineering techniques were conducted at 24, 48, and 72 hours after exposure. After euthanasia at 72 hours after exposure, skin biopsies were taken from each site and processed for routine hematoxylin and eosin histological evaluation to determine the true depth of the lesion. Results demonstrated that LDPI and ICGFI were useful tools to characterize skin perfusion and provided a good estimate of HD lesion depth. Traditional LDPI and the novel prototype ICGFI instrumentation used in this study produced images of blood flow through skin lesions, which provided a useful assessment of burn depth. LDPI and ICGFI accurately predicted the need for aggressive treatment (30- and 60-minute HD lesions) and nonaggressive treatment (2- and 8-minute HD lesions) for the lesions generated in this study. Histological evaluation confirmed the accuracy of the assessment. The ICGFI instrument offers several advantages over LDPI including real-time blood flow imaging, low cost, small size, portability, and not requiring the patient to be repositioned. A negative, however, is the need for intravenous dye injection. Although this would not be an issue in a hospital, it may be problematic in a mass casualty field setting. Additional experiments are required to determine the exposure time necessary to produce a graded series of partial-thickness HD lesions and to optimize instrumental parameters. The data generated in this follow-on study will allow for a full assessment of the potential LDPI and ICGFI hold for predicting the need for aggressive treatment after HD exposure. The lasting message is that objective imaging techniques can augment the visual judgment of burn depth.

  14. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jerri; Colorado State University, Fort Collins, CO; Ryan, Stewart

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of thismore » study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data extending to average depths of 2.5 mm, 3.4 mm, and 10 mm for the 1-mm, 2-mm, and 5-mm dimension calculation matrices, respectively. These results emphasize the importance of selecting as small a treatment planning software calculation matrix dimension as is practically possible and of taking a conservative approach for skin treatment planning objectives. One suggested conservative approach is accomplished by defining the skin organ as the outermost 2-3 mm of the body such that the high dose tail of the skin organ dose-volume histogram curve represents dose on the deep side of the skin where the algorithm is more accurate.« less

  15. Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz

    NASA Technical Reports Server (NTRS)

    Yeh, Cavour; Rascoe, Daniel; Shimabukuro, Fred; Tope, Michael; Siegel, Peter

    2005-01-01

    Ribbon waveguides made of alumina or of semiconductors (Si, InP, or GaAs) have been proposed as low-loss transmission lines for coupling electronic components and circuits that operate at frequencies from 30 to 1,000 GHz. In addition to low losses (and a concomitant ability to withstand power levels higher than would otherwise be possible), the proposed ribbon waveguides would offer the advantage of compatibility with the materials and structures now commonly incorporated into integrated circuits. Heretofore, low-loss transmission lines for this frequency range have been unknown, making it necessary to resort to designs that, variously, place circuits and components to be coupled in proximity of each other and/or provide for coupling via free space through bulky and often lossy optical elements. Even chip-to-chip interconnections have been problematic in this frequency range. Metal wave-guiding structures (e.g., microstriplines and traditional waveguides) are not suitable for this frequency range because the skin depths of electromagnetic waves in this frequency range are so small as to give rise to high losses. Conventional rod-type dielectric waveguide structures are also not suitable for this frequency range because dielectric materials, including ones that exhibit ultralow losses at lower frequencies, exhibit significant losses in this frequency range. Unlike microstripline structures or metallic waveguides, the proposed ribbon waveguides would be free of metal and would therefore not be subject to skin-depth losses. Moreover, although they would be made of materials that are moderately lossy in the frequency range of interest, the proposed ribbon waveguides would cause the propagating electromagnetic waves to configure themselves in a manner that minimizes losses.

  16. Two-Dimensional Magnetotelluric Modelling of Ore Deposits: Improvements in Model Constraints by Inclusion of Borehole Measurements

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri

    2017-12-01

    A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.

  17. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGES

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; ...

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  18. Spreading Resistance on Thin Film Contacts

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lau, Y. Y.; Hung, D.; Gilgenbach, R. M.

    2012-10-01

    Electrical contact [1] is important to wire-array z-pinches, metal-insulator-vacuum junctions, and high power microwave sources, etc. Contact problems account for 40 percent of all electrical failures, from small scale consumer electronics to large scale defense and aerospace systems. The crowding of the current lines at contacts leads to enhanced localized heating, a measure of which is the spreading resistance (Rs). For a microscopic area of contact (the ``a-spot'' [1]) on a thin film, we calculate Rs in both Cartesian and cylindrical geometries [2]. In the limit of small film thickness, h, the normalized thin film spreading resistance converges to the finite values, 2.77 for the Cartesian case and 0.28 for the cylindrical case. These same finite limits are found to be applicable to the a-spot between bulk solids in the high frequency limit if the skin depth is identified with h. Extension to a general a-spot geometry is proposed [2]. [4pt] [1] R. Holm, Electric Contacts, 4th ed., Springer (1967). [0pt] [2] P. Zhang et al., IEEE Trans. Electron Devices 59, 1936 (2012).

  19. 77 FR 37445 - Notice of Permit Modification Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... depth, swim speed, ambient temperature, and light levels, stomach temperature, heat flux and skin temperature. An additional stroke frequency sensor is glued to the base of the tail. These tests and... photogrammetric models and infrared analysis and ultrasound measurements of blubber depth, collect blood samples...

  20. Exploring the Alfven-Wave Acceleration of Auroral Electrons in the Laboratory

    NASA Astrophysics Data System (ADS)

    Schroeder, James William Ryan

    Inertial Alfven waves occur in plasmas where the Alfven speed is greater than the electron thermal speed and the scale of wave field structure across the background magnetic field is comparable to the electron skin depth. Such waves have an electric field aligned with the background magnetic field that can accelerate electrons. It is likely that electrons are accelerated by inertial Alfven waves in the auroral magnetosphere and contribute to the generation of auroras. While rocket and satellite measurements show a high level of coincidence between inertial Alfven waves and auroral activity, definitive measurements of electrons being accelerated by inertial Alfven waves are lacking. Continued uncertainty stems from the difficulty of making a conclusive interpretation of measurements from spacecraft flying through a complex and transient process. A laboratory experiment can avoid some of the ambiguity contained in spacecraft measurements. Experiments have been performed in the Large Plasma Device (LAPD) at UCLA. Inertial Alfven waves were produced while simultaneously measuring the suprathermal tails of the electron distribution function. Measurements of the distribution function use resonant absorption of whistler mode waves. During a burst of inertial Alfven waves, the measured portion of the distribution function oscillates at the Alfven wave frequency. The phase space response of the electrons is well-described by a linear solution to the Boltzmann equation. Experiments have been repeated using electrostatic and inductive Alfven wave antennas. The oscillation of the distribution function is described by a purely Alfvenic model when the Alfven wave is produced by the inductive antenna. However, when the electrostatic antenna is used, measured oscillations of the distribution function are described by a model combining Alfvenic and non-Alfvenic effects. Indications of a nonlinear interaction between electrons and inertial Alfven waves are present in recent data.

  1. Two-dimensional turning of thermal flux from normal to lateral propagation in thin metal film irradiated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Shepelev, V. V.; Inogamov, N. A.

    2018-01-01

    There are various geometrical variants of laser illumination and target design. Important direction of investigations is connected with tightly focused action (spot size may be less than micron) onto a thin metal film: thickness of a film is just few skin-layer depths. Duration of a pulse is τ L ˜ 0.1 ps. In these conditions energy absorbed in a skin layer first propagates normally to a surface: gradient ∂Te /∂x dominates, here and below x and y are normal and lateral directions. This process in 1-2 ps homogenizes electron temperature T e along thickness of a film. We consider conditions when a film or is supported by weakly conducting substrate, or is free standing. Therefore all absorbed energy is confined inside the film. At the next stage the internal energy begin to flow along the lateral direction—thus direction of energy expansion is changed from x to y because of the heat non-penetrating boundary condition imposed on the rear-side of the film. At the short two-temperature stage of lateral expansion the thermal conductivity κ is high. After that electron and ion temperatures equilibrates and later on the heat propagates with usual value of κ. Lateral expansion cools down the hot spot on long time scales and finally the molten spot recrystallizes. Two-dimensional approach allows us to consider all these stages from propagation in x direction (normal to a film) to propagation in y direction (along a film).

  2. Simulation of the effect of photoprotective titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles on the thermal response and optical characteristics of skin

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Popov, A. P.

    2015-04-01

    The thermal response of skin covered with a mixture of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles of optimal sizes and irradiated by sunlight has been calculated. The nanoparticles were rubbed into the skin for maximum protection against the incident radiation. The dependences of the temperature dynamics in different skin layers (corneal layer, epidermis, dermis) have been obtained and analyzed upon skin irradiation with light at a wavelength of 310-800 nm. It has been found that increasing light scattering and absorption due to the nanoparticles introduced into the corneal layer resulted in a decrease in the thermal load and penetration depth of the incident radiation.

  3. Optical coherence tomography in dermatology

    NASA Astrophysics Data System (ADS)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  4. Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert W.

    2012-06-15

    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Onlymore » at low conductivity and below, the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.« less

  5. Enhanced chlorhexidine skin penetration with eucalyptus oil

    PubMed Central

    2010-01-01

    Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (μg/mg of skin) was determined to a skin depth of 1500 μm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis. PMID:20860796

  6. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  7. Evaluation and Management of Refractory Acne Vulgaris in Adolescent and Adult Men.

    PubMed

    McCarty, Morgan

    2016-04-01

    Acne vulgaris alters the normal skin physiology, impairing stratum corneum and transepidermal water loss. A male's normal skin physiologic state is different than a female's and may have implications when choosing treatment when the skin is altered in a disease state. Transepidermal water loss, pH, and sebum production are different between the sexes. Several underlying conditions present in male acne patients at several ages that may require a more in-depth evaluation. As knowledge of the pathogenesis of acne expands, the differences in skin physiology between the sexes may alter the manner in which male patients with acne medications are approached. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of high definition OCT system for clinical therapy of skin diseases

    NASA Astrophysics Data System (ADS)

    Baek, Daeyul; Seo, Young-Seok; Kim, Jung-Hyun

    2018-02-01

    OCT is a non-invasive imaging technique that can be applied to diagnose various skin disease. Since its introduction in 1997, dermatology has used OCT technology to obtain high quality images of human skin. Recently, in order to accurately diagnose skin diseases, it is essential to develop OCT equipment that can obtain high quality images. Therefore, we developed the system that can obtain a high quality image by using a 1300 nm light source with a wide bandwidth and deep penetration depth, high-resolution image, and a camera capable of high sensitivity and high speed processing. We introduce the performance of the developed system and the clinical application data.

  9. Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages

    NASA Astrophysics Data System (ADS)

    Vilagosh, Zoltan; Lajevardipour, Alireza; Wood, Andrew

    2018-01-01

    Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel "large sheet" simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.

  10. Calibration of a mosfet detection system for 6-MV in vivo dosimetry.

    PubMed

    Scalchi, P; Francescon, P

    1998-03-01

    Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.

  11. Utilizing nonlinear optical microscopy to investigate the development of early cancer in nude mice in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Lin, Sung-Jan; Lo, Wen; Dong, Chen-Yuan

    2007-07-01

    In this investigation, we used in vivo nonlinear optical microscopy to image normal and carcinogen DMBA treated skin tissues of nude mice. We acquired two-photon autofluroescence and second harmonic generation (SHG) images of the skin tissue, and applied the ASI (Autofluorescence versus SHG Index) to the resulting image. This allows us to visualize and quantify the interaction between mouse skin cells and the surrounding connective tissue. We found that as the imaging depth increases, ASI has a different distribution in the normal and the treated skin tissues. Since the DMBA treated skin eventually became squamous cell carcinoma (SCC), our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by multiphoton microscopy. We envision this approach to be effective in studying tumor biology and tumor treatment procedures.

  12. Structural characterization on in vitro porcine skin treated by ablative fractional laser using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Feng, Kairui; Zhou, Kanheng; Ling, Yuting; O'Mahoney, Paul; Ewan, Eadie; Ibbotson, Sally H.; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Ablative fractional skin laser is widely applied for various skin conditions, especially for cosmetic repairing and promoting the located drug delivery. Although the influence of laser treatment over the skin has been explored before in means of excision and biopsy with microscopy, these approaches are invasive, only morphological and capable of distorting the skin. In this paper the authors use fresh porcine skin samples irradiated by the lasers, followed by detected by using Optical Coherence Tomography (OCT). This advanced optical technique has the ability to present the high resolution structure image of treated sample. The results shows that laser beams can produce holes left on the surface after the irradiation. The depth of holes can be affected by changes of laser energy while the diameter of holes have no corresponding relation. Plus, OCT, as a valuable imaging technology, is capable of monitoring the clinical therapy procedure and assisting the calibration.

  13. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  14. Complications of Medium Depth and Deep Chemical Peels

    PubMed Central

    Nikalji, Nanma; Godse, Kiran; Sakhiya, Jagdish; Patil, Sharmila; Nadkarni, Nitin

    2012-01-01

    Superficial and medium depth peels are dynamic tools when used as part of office procedures for treatment of acne, pigmentation disorders, and photo-aging. Results and complications are generally related to the depth of wounding, with deeper peels providing more marked results and higher incidence of complications. Complications are also more likely with darker skin types, certain peeling agents, and sun exposure. They can range from minor irritations, uneven pigmentation to permanent scarring. In very rare cases, complications can be life-threatening. PMID:23378707

  15. Flexible strain sensors with high performance based on metallic glass thin film

    NASA Astrophysics Data System (ADS)

    Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.

    2017-09-01

    Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.

  16. Complexity aided design. The FuturICT technological innovation paradigm

    NASA Astrophysics Data System (ADS)

    Carbone, A.; Ajmone-Marsan, M.; Axhausen, K. W.; Batty, M.; Masera, M.; Rome, E.

    2012-11-01

    "In the next century, planet earth will don an electronic skin. It will use the Internet as a scaffold to support and transmit its sensations. This skin is already being stitched together. It consists of millions of embedded electronic measuring devices: thermostats, pressure gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs, electroencephalographs. These will probe and monitor cities and endangered species, the atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies-even our dreams ....What will the earth's new skin permit us to feel? How will we use its surges of sensation? For several years-maybe for a decade-there will be no central nervous system to manage this vast signaling network. Certainly there will be no central intelligence...some qualities of self-awareness will emerge once the Net is sensually enhanced. Sensuality is only one force pushing the Net toward intelligence". These statements are quoted by an interview by Cherry Murray, Dean of the Harvard School of Engineering and Applied Sciences and Professor of Physics. It is interesting to outline the timeliness and highly predicting power of these statements. In particular, we would like to point to the relevance of the question "What will the earth's new skin permit us to feel?" to the work we are going to discuss in this paper. There are many additional compelling questions, as for example: "How can the electronic earth's skin be made more resilient?"; "How can the earth's electronic skin be improved to better satisfy the need of our society?";"What can the science of complex systems contribute to this endeavour?"

  17. Systematic review and meta-analysis of electrocautery versus scalpel for surgical skin incisions.

    PubMed

    Aird, Lisa N F; Brown, Carl J

    2012-08-01

    The creation of surgical skin incisions has historically been performed using a cold scalpel. The use of electrocautery for this purpose has been controversial with respect to patient safety and surgical efficacy. A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to compare skin incisions made by electrocautery and a scalpel. A systematic electronic literature search was performed using 2 electronic databases (MEDLINE and PubMed), and the methodological quality of included publications was evaluated. Six RCTs were identified comparing electrocautery (n = 606) and a scalpel (n = 628) for skin incisions. No significant difference in wound infection rates or scar cosmesis was identified between the treatment groups. Electrocautery significantly reduced the incision time and postoperative wound pain. A trend toward less incisional blood loss from skin incisions made with electrocautery was noted. Electrocautery is a safe and effective method for performing surgical skin incisions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Measurement of Respiration Rate and Depth Through Difference in Temperature Between Skin Surface and Nostril by Using Thermal Image.

    PubMed

    Jeong, Hieyong; Matsuura, Yutaka; Ohno, Yuko

    2017-01-01

    The purpose of the present study was to propose a method to measure a respiration rate (RR) and depth at once through difference in temperature between the skin surface and nostril by using a thermal image. Although there have been a lot of devices for contact RR monitoring, it was considered that the subjects could be inconvenienced by having the sensing device in contact with their body. Our algorithm enabled us to make a breathing periodic function (BPF) under the non-contact and non-invasive condition through temperature differences near the nostril during the breath. As a result, it was proved that our proposed method was able to classify differences in breathing pattern between normal, deep, and shallow breath (P < 0.001). These results lead us to conclude that the RR and depth is simultaneously measured by the proposed algorithm of BPF without any contact or invasive procedure.

  19. Breathable and Stretchable Temperature Sensors Inspired by Skin

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  20. Breathable and Stretchable Temperature Sensors Inspired by Skin

    PubMed Central

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  1. Self-powering/self-cleaning electronic-skin basing on PVDF/TiO2 nanofibers for actively detecting body motion and degrading organic pollutants

    NASA Astrophysics Data System (ADS)

    Dong, Chuanyi; Fu, Yongming; Zang, Weili; He, Haoxuan; Xing, Lili; Xue, Xinyu

    2017-09-01

    A flexible self-powering/self-cleaning electronic-skin (e-skin) for actively detecting body motion and degrading organic pollutants has been fabricated from PVDF/TiO2 nanofibers. PVDF/TiO2 nanofibers are synthesized by high voltage electrospinning method. The e-skin can be driven by external mechanical vibration, and actively output piezoelectric impulse. The outputting piezoelectric voltage can be significantly influenced by different applied deformation, acting as both the body-motion-detecting signal and the electricity power for driving the device. The e-skin can detect various body motions, such as pressing, stretching, bending finger and clenching fist. The e-skin also has distinct self-cleaning characteristic through piezo-photocatalytic coupling process. The photocatalytic activity of TiO2 and the piezoelectric effect of PVDF are coupled in a single physical/chemical process, which can efficiently degrade organic pollutants on the e-skin. For example, methylene blue (MB) can be completely degraded within 40 min under UV/ultrasonic irradiation. The present results could provoke a possible new research direction for realizing self-powering multifunctional e-skin.

  2. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    PubMed

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional-rotational pre-ablation increased by 13 ∼ 33%, when compared with the no pre-ablation or microjet only cases. A noticeable point is that the fraction-rotational pre-ablation and microjet result is comparable to the bulk ablation and microjet result of 11 ∼ 42%. The penetration depth underneath ablated stratum corneum (SC) is also measured in order to verify the pre-ablation effect. The penetration depths for each case are (a) 443 ± 104 µm; (b) 625 ± 98 µm; (c) 523 ± 95 µm; and (d) 595 ± 141 µm for microjet only, bulk ablation and microjet, fractional ablation and microjet, and fractional-rotational ablation and microjet, respectively. This is quite beneficial since any healing time associated with ablation is significantly reduced by avoiding hard-core bulk ablation. Thus the bulk pre-ablation and microjet may well be superseded by the less invasive fractiona-rotational ablation followed by the microjet injection. The density of micro-holes is 1.27 number/mm 2 for fractional ablation and 4.84 number/mm 2 for fractional-rotational ablation. The penetration depths measured underneath the ablated SC are 581 µm (fractional ablation and microjet) and 691 µm (fractional-rotational ablation and microjet). Fractional-rotational ablation increases number of micro-holes in a unit area, enabling fast reepithelialization and high drug delivery efficiency. Optimization of system parameters such as ablation time, number of ablations, and injection time will eventually ensure a macromolecule delivery technique with the potential to include vaccines, insulins, and growth hormones, all of which require deeper penetration into the skin. Lasers Surg. Med. 49:387-394, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    PubMed

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  4. Characterization of a new MOSFET detector configuration for in vivo skin dosimetry.

    PubMed

    Scalchi, Paolo; Francescon, Paolo; Rajaguru, Priyadarshini

    2005-06-01

    The dose released to the patient skin during a radiotherapy treatment is important when the skin is an organ at risk, or on the contrary, is included in the target volume. Since most treatment planning programs do not predict dose within several millimeters of the body surface, it is important to have a method to verify the skin dose for the patient who is undergoing radiotherapy. A special type of metal oxide semiconductors field-effect transistors (MOSFET) was developed to perform in vivo skin dosimetry for radiotherapy treatments. Water-equivalent depth (WED), both manufacturing and sensor reproducibility, dependence on both field size and angulation of the sensor were investigated using 6 MV photon beams. Patient skin dosimetries were performed during 6 MV total body irradiations (TBI). The resulting WEDs ranged from 0.04 and 0.15 mm (0.09 mm on average). The reproducibility of the sensor response, for doses of 50 cGy, was within +/-2% (maximum deviation) and improves with increasing sensitivity or dose level. As to the manufacturing reproducibility, it was found to be +/-0.055 mm. No WED dependence on the field size was verified, but possible variations of this quantity with the field size could be hidden by the assessment uncertainty. The angular dependence, for both phantom-surface and in-air setups, when referred to the mean response, is within +/-27% until 80 degree rotations. The results of the performed patient skin dosimetries showed that, normally, our TBI setup was suitable to give skin the prescribed dose, but, for some cases, interventions were necessary: as a consequence the TBI setup was corrected. The water-equivalent depth is, on average, less than the thinnest thermoluminescent dosimeters (TLD). In addition, when compared with TLDs, the skin MOSFETs have significant advantages, like immediate both readout and reuse, as well as the permanent storage of dose. These sensors are also waterproof. The in vivo dosimetries performed prove the importance of verifying the dose to the skin of the patient undergoing radiotherapy.

  5. Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules

    PubMed Central

    Tan, Grace; Xu, Peng; Lawson, Louise B.; He, Jibao; Freytag, Lucia C.; Clements, John D.; John, Vijay T.

    2010-01-01

    Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4–10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4–10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2–3 h. These results demonstrate the effectiveness of a 4–10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin. PMID:19582754

  6. Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Ran, Qincui; Wei, Dapeng; Sun, Tai; Yu, Leyong; Song, Xuefen; Pu, Lichun; Shi, Haofei; Du, Chunlei

    2017-03-01

    We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.

  7. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.

    2016-11-01

    Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect's higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).

  8. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy

    PubMed Central

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.

    2016-01-01

    Abstract. Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect). PMID:27830262

  9. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy.

    PubMed

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J; Farkas, Daniel L

    2016-11-01

    Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).

  10. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function.

    PubMed

    Benfeldt, E; Serup, J

    1999-09-01

    The penetration of topically applied drugs is altered in diseased or barrier-damaged skin. We used microdialysis in the dermis to measure salicylic acid (SA) penetration in hairless rats following application to normal (unmodified) skin (n = 11) or skin with perturbed barrier function from (1) tape-stripping (n = 5), (2) sodium lauryl sulphate (SLS) 2% for 24 h (n = 3) or (3) delipidization by acetone (n = 4). Prior to the experiment, transepidermal water loss (TEWL) and erythema were measured. Two microdialysis probes were inserted into the dermis on the side of the trunk and 5% SA in ethanol was applied in a chamber overlying the probes. Microdialysis sampling was continued for 4 h, followed by measurements of probe depth by ultrasound scanning. SA was detectable in all samples and rapidly increasing up to 130 min. Microdialysates collected between 80 and 200 min showed mean SA concentrations of 3 microg/ml in unmodified and acetone-treated skin, whereas mean SA concentrations were 280 microg/ml in SLS-pretreated skin and 530 microg/ml in tape-stripped skin (P < 0.001). The penetration of SA correlated with barrier perturbation measured by TEWL (P < 0.001) and erythema (P < 0.001). A correlation between dermal probe depth and SA concentration was found in unmodified skin (P = 0.04). Microdialysis sampling in anatomical regions remote from the dosed site excluded the possibility that SA levels measured were due to systemic absorption. Microdialysis sampling of cutaneous penetration was highly reproducible. Impaired barrier function, caused by irritant dermatitis or tape stripping, resulted in an 80- to 170-fold increase in the drug level in the dermis. This dramatic increase in drug penetration could be relevant to humans, in particular to topical treatment of skin diseases and to occupational toxicology.

  11. Extended MHD Turbulence and Its Applications to the Solar Wind

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.

    2016-10-01

    Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }I), Hall (1/{λ }I\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.

  12. Axisymmetric Plasma Equilibria in General Relativity

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  13. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  14. Depth Acuity Methodology for Electronic 3D Displays: eJames (eJ)

    DTIC Science & Technology

    2016-07-01

    AFRL-RH-WP-TR-2016-0060 Depth Acuity Methodology for Electronic 3D Displays: eJames (eJ) Eric L. Heft, John McIntire...AND SUBTITLE Depth Acuity Methodology for Electronic 3D Displays: eJames (eJ) 5a. CONTRACT NUMBER FA8650-08-D-6801-0050 5b. GRANT NUMBER...of 3D electronic displays: one active-eyewear Stereo 3D (S3D) and two non-eyewear full parallax Field-of-Light Display (FoLD) systems. The two FoLD

  15. Phantom with pulsatile arteries to investigate the influence of blood vessel depth on pulse oximeter signal strength.

    PubMed

    Stuban, Norbert; Niwayama, Masatsugu; Santha, Hunor

    2012-01-01

    This paper describes a three-layer head phantom with artificial pulsating arteries at five different depths (1.2 mm, 3.7 mm, 6.8 mm, 9.6 mm and 11.8 mm). The structure enables formation of spatially and temporally varying tissue properties similar to those of living tissues. In our experiment, pressure pulses were generated in the arteries by an electronically controlled pump. The physical and optical parameters of the layers and the liquid in the artificial arteries were similar to those of real tissues and blood. The amplitude of the pulsating component of the light returning from the phantom tissues was measured at each artery depth mentioned above. The build-up of the in-house-developed pulse oximeter used for performing the measurements and the physical layout of the measuring head are described. The radiant flux generated by the LED on the measuring head was measured to be 1.8 mW at 910 nm. The backscattered radiant flux was measured, and found to be 0.46 nW (0.26 ppm), 0.55 nW (0.31 ppm), and 0.18 nW (0.10 ppm) for the 1.2 mm, 3.7 mm and 6.8 mm arteries, respectively. In the case of the 9.6 mm and 11.8 mm arteries, useful measurement data were not obtained owing to weak signals. We simulated the phantom with the arteries at the above-mentioned five depths and at two additional ones (2.5 mm and 5.3 mm in depth) using the Monte Carlo method. The measurement results were verified by the simulation results. We concluded that in case of 11 mm source-detector separation the arteries at a depth of about 2.5 mm generate the strongest pulse oximeter signal level in a tissue system comprising three layers of thicknesses: 1.5 mm (skin), 5.0 mm (skull), and >50 mm (brain).

  16. Phantom with Pulsatile Arteries to Investigate the Influence of Blood Vessel Depth on Pulse Oximeter Signal Strength

    PubMed Central

    Stuban, Norbert; Niwayama, Masatsugu; Santha, Hunor

    2012-01-01

    This paper describes a three-layer head phantom with artificial pulsating arteries at five different depths (1.2 mm, 3.7 mm, 6.8 mm, 9.6 mm and 11.8 mm). The structure enables formation of spatially and temporally varying tissue properties similar to those of living tissues. In our experiment, pressure pulses were generated in the arteries by an electronically controlled pump. The physical and optical parameters of the layers and the liquid in the artificial arteries were similar to those of real tissues and blood. The amplitude of the pulsating component of the light returning from the phantom tissues was measured at each artery depth mentioned above. The build-up of the in-house-developed pulse oximeter used for performing the measurements and the physical layout of the measuring head are described. The radiant flux generated by the LED on the measuring head was measured to be 1.8 mW at 910 nm. The backscattered radiant flux was measured, and found to be 0.46 nW (0.26 ppm), 0.55 nW (0.31 ppm), and 0.18 nW (0.10 ppm) for the 1.2 mm, 3.7 mm and 6.8 mm arteries, respectively. In the case of the 9.6 mm and 11.8 mm arteries, useful measurement data were not obtained owing to weak signals. We simulated the phantom with the arteries at the above-mentioned five depths and at two additional ones (2.5 mm and 5.3 mm in depth) using the Monte Carlo method. The measurement results were verified by the simulation results. We concluded that in case of 11 mm source-detector separation the arteries at a depth of about 2.5 mm generate the strongest pulse oximeter signal level in a tissue system comprising three layers of thicknesses: 1.5 mm (skin), 5.0 mm (skull), and >50 mm (brain). PMID:22368501

  17. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Y Churmakov, D.; Meglinski, I. V.; Piletsky, S. A.; Greenhalgh, D. A.

    2003-07-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an `effective' depth.

  18. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejectionmore » through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.« less

  19. A proposed model membrane and test method for microneedle insertion studies.

    PubMed

    Larrañeta, Eneko; Moore, Jessica; Vicente-Pérez, Eva M; González-Vázquez, Patricia; Lutton, Rebecca; Woolfson, A David; Donnelly, Ryan F

    2014-09-10

    A commercial polymeric film (Parafilm M(®), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M(®) (PF) and also into excised neonatal porcine skin. Parafilm M(®) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M(®), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia

    2018-03-01

    In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.

  1. Optical coherence microscope for invariant high resolution in vivo skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, S.; Lee, K. S.; Meemon, P.; Rolland, J. P.

    2008-02-01

    A non-invasive, reliable and affordable imaging system with the capability of detecting skin pathologies such as skin cancer would be a valuable tool to use for pre-screening and diagnostic applications. Optical Coherence Microscopy (OCM) is emerging as a building block for in vivo optical diagnosis, where high numerical aperture optics is introduced in the sample arm to achieve high lateral resolution. While high numerical aperture optics enables realizing high lateral resolution at the focus point, dynamic focusing is required to maintain the target lateral resolution throughout the depth of the sample being imaged. In this paper, we demonstrate the ability to dynamically focus in real-time with no moving parts to a depth of up to 2mm in skin-equivalent tissue in order to achieve 3.5μm lateral resolution throughout an 8 cubic millimeter sample. The built-in dynamic focusing ability is provided by an addressable liquid lens embedded in custom-designed optics which was designed for a broadband laser source of 120 nm bandwidth centered at around 800nm. The imaging probe was designed to be low-cost and portable. Design evaluation and tolerance analysis results show that the probe is robust to manufacturing errors and produces consistent high performance throughout the imaging volume.

  2. Violation of Field Line Conservation and Associated Spatial Scales in Particle-in-Cell Simulations and MMS Data

    NASA Astrophysics Data System (ADS)

    Wendel, D. E.; Liu, Y. H.; Giles, B. L.; Torbert, R. B.

    2017-12-01

    For the first time, space flight technology exists to detect, in situ, violation of magnetic field line conservation. The violation of magnetic line conservation on scales smaller than the system size is a necessary and sufficient condition for magnetic reconnection. We demonstrate that violation of line conservation produces a detectable, structured signature in both particle-in-cell simulations of reconnection and in data from the Magnetospheric Multi-Scale mission. In particle-in-cell simulations of asymmetric reconnection, the quantity-which we call M-that identifies this violation achieves a significant value in electron skin depth-scale layers that extend from the electron diffusion region along the separatrices, with higher values emerging on the low density, high magnetic field side of the current sheet. In two MMS burst data intervals associated with detection of the electron diffusion region—one interval with antiparallel reconnecting fields and the other with a guide field-we determine the location and scale of M and of the diffusion region relative to electron outflows and the magnetic separatrices. We find that M exceeds measurement uncertainties both at the diffusion region and near the separatrices, where it attains its highest values in layered structures. The observed magnitude scales as the simulated magnitude after adjusting for the artificial parameters of the simulation. Bipolar forms of the quantity also appear further from the diffusion region, possibly associated with electron holes. The measure serves not only as a powerful diagnostic for magnetic reconnection, but reveals that electrons transport this signature of reconnection away from the x-line.

  3. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  4. An easy, rapid, and reproducible way to create a split-thickness wound for experimental purposes.

    PubMed

    Gümüş, Nazim; Özkaya, Neşe Kurt; Bulut, Hüseyin Eray; Yilmaz, Sarper

    2014-09-01

    Partial-thickness wound models of rat skin have some difficulties in creating the wounds in equal size and depth. Moreover, making a split-thickness wound on the rat skin seems not to be simple and rapid. A new alternative method was presented here to overcome these obstacles, by using a waterjet device to create a split-thickness wound on rat skin. Twenty-four male Wistar rats were randomly divided into 3 groups. An area of 4 × 4 cm in diameter was marked on the center of the dorsal skin. Waterjet hydrosurgery system was used to create a wound on the dorsal rat skin, by removing the outer layers of the skin. In group 1, rat skin was wounded with setting 1 to create a superficial skin wound. In group 2, it was injured with setting 5 to make a deeper wound, and in group 3, skin wound was performed with setting 10 making the deepest wound in the experiment. After the wounds were created on the rat skin, a full-thickness skin biopsy was taken from the middle of the cranial margin of the wound, including both the wound surface and the healthy skin in a specimen. Healing time of the wounds of animals was recorded in the experiment groups. Then, the results were compared statistically between the groups. In the histologic assessment, both the thickness of the remnant of the epidermis in the wound surface and the thickness of the healthy epidermis were measured under light microscope. Thickness of the epidermis remaining after wounding was statistically compared among the groups and with the healthy epidermis. The mean thickness of the remaining epidermis was determined for each group. It was higher in the superficial wounds than in the deep wounds, because of the removal of the skin from its outer surface through the deep layers of the skin with waterjet device. The most superficial wound in the experiment was observed in group 1, which was statistically different from the wounds of group 3, whereas there was no difference between the wounds of groups 1 and 2. Compared with the wounds of groups 1 and 2, the wounds in group 3 were significantly deeper than the wounds of other groups, which was statistically significant. In all groups, mean thickness of epidermis in the wound surface showed statistically significant difference from that in the healthy skin. When compared with the healing times of the wounds in the groups, a statistically significant difference was found between them. Creation of a split-skin wound, by using the waterjet system, provides a wound in reproducible size and depth, also in a standardized and rapid manner. Moreover, it makes precise and controlled wound creation in the rat skin.

  5. Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue-mimicking phantom and cadaveric skin.

    PubMed

    Kim, Hee-Jin; Kim, Han Gu; Zheng, Zhenlong; Park, Hyoun Jun; Yoon, Jeung Hyun; Oh, Wook; Lee, Cheol Woo; Cho, Sung Bin

    2015-12-01

    High-intensity focused ultrasound (HIFU) can be applied noninvasively to create focused zones of tissue coagulation on various skin layers. We performed a comparative study of HIFU, evaluating patterns of focused tissue coagulation and ablation upon application thereof. A tissue-mimicking (TM) phantom was prepared with bovine serum albumin and polyacrylamide hydrogel to evaluate the geometric patterns of HIFU-induced thermal injury zones (TIZs) for five different HIFU devices. Additionally, for each device, we investigated histologic patterns of HIFU-induced coagulation and ablation in serial sections of cadaveric skin of the face and neck. All HIFU devices generated remarkable TIZs in the TM phantom, with different geometric values of coagulation for each device. Most of the TIZs seemed to be separated into two or more tiny parts. In cadaveric skin, characteristic patterns of HIFU-induced ablation and coagulation were noted along the mid to lower dermis at the focal penetration depth of 3 mm and along subcutaneous fat to the superficial musculoaponeurotic system or the platysma muscle of the neck at 4.5 mm. Additionally, remarkable pre-focal areas of tissue coagulation were observed in the upper and mid dermis at the focal penetration depth of 3 mm and mid to lower dermis at 4.5 mm. For five HIFU devices, we outlined various patterns of HIFU-induced TIZ formation along pre-focal, focal, and post-focal areas of TM phantom and cadaveric skin of the face and neck.

  6. The effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents.

    PubMed

    Källman, Ulrika; Engström, Maria; Bergstrand, Sara; Ek, Anna-Christina; Fredrikson, Mats; Lindberg, Lars-Göran; Lindgren, Margareta

    2015-03-01

    Although repositioning is considered an important intervention to prevent pressure ulcers, tissue response during loading in different lying positions has not been adequately explored. To compare the effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents. From May 2011 to August 2012, interface pressure, skin temperature, and blood flow at three tissue depths were measured for 1 hr over the sacrum in 30° supine tilt and 0° supine positions and over the trochanter major in 30° lateral and 90° lateral positions in 25 residents aged 65 years or older. Measurement of interface pressure was accomplished using a pneumatic pressure transmitter connected to a digital manometer, skin temperature using a temperature sensor, and blood flow using photoplethysmography and laser Doppler flowmetry. Interface pressure was significantly higher in the 0° supine and 90° lateral positions than in 30° supine tilt and 30° lateral positions. The mean skin temperature increased from baseline in all positions. Blood flow was significantly higher in the 30° supine tilt position compared to the other positions. A hyperemic response in the post pressure period was seen at almost all tissue depths and positions. The 30° supine tilt position generated less interface pressure and allowed greater tissue perfusion, suggesting that this position is the most beneficial. © The Author(s) 2014.

  7. Limitations of silicon diodes for clinical electron dosimetry.

    PubMed

    Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder

    2006-01-01

    This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.

  8. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.

    PubMed

    Zink, K; Wulff, J

    2011-02-01

    In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p(wall) and P(cav)) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount deltaz. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift deltaz for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps deltaz around the depth of measurement. The optimal shift deltaz is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation correction is calculated as the ratio between doses for the complete chamber and a wall-less air cavity. The high energy part of the fluence spectra within the chamber strongly varies even with small chamber shifts, allowing the determination of deltaz within micrometers. For the NACP-02 chamber a shift deltaz = -0.058 cm results. This value is independent of the energy of the primary electrons as well as of the depth within the phantom and it is in good agreement with the value recommended in the German dosimetry protocol. Applying this shift, the calculated wall perturbation correction as a function of depth is varying less than 1% from zero up to the half value depth R50 for electron energies in the range of 6-21 MeV. The remaining depth dependence can mainly be attributed to the scatter properties of the entrance window. When neglecting the nonwater equivalence of the entrance window, the variation of p(wall) with depth is up to 10% and more, especially for low electron energies. The variation of the wall perturbation correction for the NACP-02 chamber in clinical electron beams strongly depends on the positioning of the chamber. Applying a shift deltaz = -0.058 cm toward the focus ensures that the primary electron spectrum within the chamber bears the largest resemblance to the fluence of a wall-less cavity. Hence, the influence of the chamber walls on the perturbation correction can be separated out and the residual variation of p(wall) with depth is minimized.

  9. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.

    PubMed

    Liu, Yuhao; Pharr, Matt; Salvatore, Giovanni Antonio

    2017-10-24

    Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.

  10. Ultrasound-guided thermocouple placement for cryosurgery.

    PubMed

    Abramovits, W; Pruiksma, R; Bose, S

    1996-09-01

    Although cryosurgical methods have high cure rates, imprecise estimates of both skin lesion depth and destructive temperature front location result in subjective technique in skin malignancy treatments. We evaluated the possibility of newer ultrasound equipment to assist in the precise placement of thermocouples in human skin. DermaScan C ver. 3 ultrasonographic equipment fitted with a sharp focus probe with a frequency of 20 MHz and a scan length of 12.1 mm was used to locate thermocouples with 27- and 30-gauge needles. We successfully and reproducibly located thermocouples and thin needles, and accurately measured their distance from the skin surface. Ultrasound is a useful method for the accurate placement of thermocouples, and needles as thin as 30 gauge for monitoring in cryosurgery.

  11. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators

    NASA Astrophysics Data System (ADS)

    Ersen, Ali; Sahin, Mesut

    2017-05-01

    Neural electrodes and associated electronics are powered either through percutaneous wires or transcutaneous powering schemes with energy harvesting devices implanted underneath the skin. For electrodes implanted in the spinal cord and the brain stem that experience large displacements, wireless powering may be an option to eliminate device failure by the breakage of wires and the tethering of forces on the electrodes. We tested the feasibility of using optically clear polydimethylsiloxane (PDMS) as a waveguide to collect the light in a subcutaneous location and deliver to deeper regions inside the body, thereby replacing brittle metal wires tethered to the electrodes with PDMS-based optical waveguides that can transmit energy without being attached to the targeted electrode. We determined the attenuation of light along the PDMS waveguides as 0.36±0.03 dB/cm and the transcutaneous light collection efficiency of cylindrical waveguides as 44%±11% by transmitting a laser beam through the thenar skin of human hands. We then implanted the waveguides in rats for a month to demonstrate the feasibility of optical transmission. The collection efficiency and longitudinal attenuation values reported here can help others design their own waveguides and make estimations of the waveguide cross-sectional area required to deliver sufficient power to a certain depth in tissue.

  12. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less

  13. Electron fluence correction factors for various materials in clinical electron beams.

    PubMed

    Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P

    2001-08-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.

  14. MEMS for medical technology applications

    NASA Astrophysics Data System (ADS)

    Frisk, Thomas; Roxhed, Niclas; Stemme, Göran

    2007-01-01

    This paper gives an in-depth description of two recent projects at the Royal Institute of Technology (KTH) which utilize MEMS and microsystem technology for realization of components intended for specific applications in medical technology and diagnostic instrumentation. By novel use of the DRIE fabrication technology we have developed side-opened out-of-plane silicon microneedles intended for use in transdermal drug delivery applications. The side opening reduces clogging probability during penetration into the skin and increases the up-take area of the liquid in the tissue. These microneedles offer about 200µm deep and pain-free skin penetration. We have been able to combine the microneedle chip with an electrically and heat controlled liquid actuator device where expandable microspheres are used to push doses of drug liquids into the skin. The entire unit is made of low cost materials in the form of a square one cm-sized patch. Finally, the design, fabrication and evaluation of an integrated miniaturized Quartz Crystal Microbalance (QCM) based "electronic nose" microsystem for detection of narcotics is described. The work integrates a novel environment-to-chip sample interface with the sensor element. The choice of multifunctional materials and the geometric features of a four-component microsystem allow a functional integration of a QCM crystal, electrical contacts, fluidic contacts and a sample interface in a single system with minimal assembly effort, a potential for low-cost manufacturing, and a few orders of magnitude reduced in system size (12*12*4 mm 3) and weight compared to commercially available instruments. The sensor chip was successfully used it for the detection of 200 ng of narcotics sample.

  15. Cherenkov imaging for Total Skin Electron Therapy (TSET)

    NASA Astrophysics Data System (ADS)

    Xie, Yunhe; Petroccia, Heather; Maity, Amit; Miao, Tianshun; Zhu, Yihua; Bruza, Petr; Pogue, Brian W.; Andreozzi, Jacqueline M.; Plastaras, John P.; Dong, Lei; Zhu, Timothy C.

    2018-03-01

    Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to evaluate the dose uniformity on the surface of the patient in real-time. Each patient was also monitored during TSET via in-vivo detectors (IVD) in nine locations. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  16. Morphological studies of laser-induced photoacoustic damage

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Yashima, Yutaka; Watanabe, Shinichi; McAuliffe, Daniel J., Sr.; Jacques, Steven L.

    1990-06-01

    Argon-fluoride excimer laser ablation of stratum comeum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting thatphotoacoustic waves have arole in tissue damage. Laserirradiation (193 nm, 14 ns pulses, 1-2 Hz) attworadiantexposures, 60 and 160 mJ/cm2perpulse was usedto ablate the stratumcomeumofskin. Light and electron microscopy ofimmediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 jun, respectively, below the ablation site. Ablation throughwaterwas usedtoinertially confine the ablation zone. Partial ablationofs.c. through airproducedno damage, whereas partial ablation through water damaged skin to amean depth of 1 14.5 8.8( Full thickness ablation of s.c. through air and water produced damage zones measuring 192.2 16.2 and 293.0 71.6 rim, respectively (p <0.05). The increased depth ofdamage in the presence ofinertial confinementprovided by the layer of water strongly supports a photoacoustic mechanism ofdamage. The depths ofdamage for thelarge spot, line, and small spots were 43 1 164 urn, 269 96xni, andno damage. The spot size dependence ofthedepthofdamage is consistentwiththe geometric attenuation one would expect to be present from a pressure wave related phenomena. Sequential biopsies were taken over a 7 day period for light and transmission electron microscopy. At 24 hours, there was necrosis of the epidermis and papillary dermis subjacent to the ablation site, with neutrophils surrounding and demarcating the affected area. The necrotic zone sloughedby48 hours. Thereepithelializationwas completeby7 days. The sequenceofrepairis similartoknife wound healing which we have previously studied, and is analogous to other wound healing processes. We have used an experimental model of ArF excimer laser ablation of stratum corneum to investigate laser-induced photoacoustic damage. The evidence for the injury being due to pressure transients is indirectbutcompelling. Whether these pressuretransients are acoustic transients orshockwaves has notbeendetermined, although itis ourprejudicethatshockwaves are the predominant force under these conditions. It is important to consider the possible effects of pressure transients in evaluating laser-tissue interactions, particularly when using short pulse, high peak power lasers.

  17. Closed loop control of penetration depth during CO₂ laser lap welding processes.

    PubMed

    Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio

    2012-01-01

    In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  18. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    PubMed Central

    Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio

    2012-01-01

    In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646

  19. Device Would Monitor Body Parameters Continuously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.

  20. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation

    NASA Astrophysics Data System (ADS)

    Figueiras, E.; Campos, R.; Semedo, S.; Oliveira, R.; Requicha Ferreira, L. F.; Humeau-Heurtier, A.

    2012-03-01

    Laser Doppler flowmetry (LDF) is now commonly used in clinical research to monitor microvascular blood flow. However, the dependence of the LDF signal on the microvascular architecture is still unknown. That is why we propose a new laser Doppler flowmeter for depth dependent monitoring of skin microvascular perfusion. This new laser Doppler flowmeter combines for the first time, in a device, several wavelengths and different spaced detection optical fibres. The calibration of the new apparatus is herein presented together with in vivo validation. Two in vivo validation tests are performed. In the first test, signals collected in the ventral side of the forearm are analyzed; in the second test, signals collected in the ventral side of the forearm are compared with signals collected in the hand palm. There are good indicators that show that different wavelengths and fibre distances probe different skin perfusion layers. However, multiple scattering may affect the results, namely the ones obtained with the larger fibre distance. To clearly understand the wavelength effect in LDF measurements, other tests have to be performed.

  1. Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.

    PubMed

    Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang

    2016-08-01

    We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.

  2. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  3. Prediction by computerised tomography of distance from skin to epidural space during thoracic epidural insertion.

    PubMed

    Carnie, J; Boden, J; Gao Smith, F

    2002-07-01

    In this single group observational study on 29 patients, we describe a technique that predicts the depth of the epidural space, calculated from the routine pre-operative chest computerised tomography (CT) scan using Pythagorean triangle trigonometry. We also compared the CT-derived depth of the epidural space with the actual depth of needle insertion. The CT-derived and the actual depths of the epidural space were highly correlated (r = 0.88, R2 = 0.78, p < 0.0001). The mean (95% CI) difference between CT-derived and actual depths was 0.26 (0.03-0.49) cm. Thus, the CT-derived depth tends to be greater than the actual depth by between 0.03 and 0.49 cm. There were no associations between either the CT-derived or the actual depth of the epidural space and age, weight, height or body mass index.

  4. Thermal analysis of epidermal electronic devices integrated with human skin considering the effects of interfacial thermal resistance

    NASA Astrophysics Data System (ADS)

    Li, Yuhang; Zhang, Jianpeng; Xing, Yufeng; Song, Jizhou

    2018-05-01

    Epidermal electronic devices (EEDs) have similar mechanical properties as those of human skin such that they can be integrated with human skin for potential applications in monitoring of human vital signs for diagnostic, therapeutic or surgical functions. Thermal management is critical for EEDs in these applications since excessive heating may cause discomfort. Comprehensive analytical studies, finite element analysis and experiments are carried out to study the effects of interfacial thermal resistance between EEDs and human skin on thermal properties of the EED/skin system in this paper. The coupling between the Fourier heat transfer in EEDs and the bio-heat transfer in human skin is accounted in the analytical model based on the transfer matrix method to give accurate predictions on temperatures, which agree well with finite element analysis and experimental measurements. It is shown that the maximum temperature increase of the EED for the case of imperfect bonding between EED and skin is much higher than that of perfect bonding. These results may help the design of EEDs in bi-integrated applications and suggest a valuable route to evaluate the bonding condition between EEDs and biological tissues.

  5. Basal cell carcinoma

    MedlinePlus

    ... confirm basal cell cancer or other skin cancers. Treatment Treatment depends on the size, depth, and location ... blocks both UVA and UVB light. Use a water-resistant sunscreen. Apply sunscreen at least 30 minutes ...

  6. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals

    NASA Astrophysics Data System (ADS)

    Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon

    2014-08-01

    The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system.

  7. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals

    PubMed Central

    Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon

    2014-01-01

    The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system. PMID:25123356

  8. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    PubMed

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-09-15

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

  9. The influences of skin visco-elasticity, hydration level and aging on the formation of wrinkles: a comprehensive and objective approach.

    PubMed

    Choi, Jae Woo; Kwon, Soon Hyo; Huh, Chang Hun; Park, Kyoung Chan; Youn, Sang Woong

    2013-02-01

    Various skin parameters including skin visco-elasticity and hydration level affect the formation of wrinkles. The aim of this study was to investigate the comprehensive and objective relationship between age, skin visco-elasticity, hydration level, and the occurrence of wrinkles using bioengineering equipments for the first time. A total number of 97 healthy women were included in this study. Age, Fitzpatrick skin type, skin mechanical parameters obtained with Cutometer(R0~R9), hydration level measured with Corneometer, as well as wrinkle parameters (SEsm, SEr, SEsc, and SEw) assessed with Visioscan, were analyzed with the Pearson's correlation test. The skin fluidity (R6) increased while the elastic recovery ratio (R7) decreased with the age. The wrinkle parameter (SEw) also increased with the age. The higher skin hysteresis values (R4 and R9) coincided with the higher SEw values. Skin hydration significantly lowered the hysteresis (R9), the wrinkles (SEw), and the depth of wrinkle furrows (R3mr). The elderly have less elastic skin and more wrinkles. Skin hysteresis most closely related with the degree of wrinkles. Drier skin showed more wrinkles and deeper furrows, with wider intervals. On the basis of these objective findings, we propose several skin parameters associated with wrinkles, and hypothesize the mechanism of wrinkle generation. © 2012 John Wiley & Sons A/S.

  10. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  11. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-12-09

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.

  12. SURVIVAL DEPTH OF ORGANICS IN ICES UNDER LOW-ENERGY ELECTRON RADIATION ({<=}2 keV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Irene Li; Lignell, Antti; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov

    2012-03-01

    Icy surfaces in our solar system are continually modified and sputtered with electrons, ions, and photons from solar wind, cosmic rays, and local magnetospheres in the cases of Jovian and Saturnian satellites. In addition to their prevalence, electrons specifically are expected to be a principal radiolytic agent on these satellites. Among energetic particles (electrons and ions), electrons penetrate by far the deepest into the ice and could cause damage to organic material of possible prebiotic and even biological importance. To determine if organic matter could survive and be detected through remote sensing or in situ explorations on these surfaces, suchmore » as water ice-rich Europa, it is important to obtain accurate data quantifying electron-induced chemistry and damage depths of organics at varying incident electron energies. Experiments reported here address the quantification issue at lower electron energies (100 eV-2 keV) through rigorous laboratory data analysis obtained using a novel methodology. A polycyclic aromatic hydrocarbon molecule, pyrene, embedded in amorphous water ice films of controlled thicknesses served as an organic probe. UV-VIS spectroscopic measurements enabled quantitative assessment of organic matter survival depths in water ice. Eight ices of various thicknesses were studied to determine damage depths more accurately. The electron damage depths were found to be linear, approximately 110 nm keV{sup -1}, in the tested range which is noticeably higher than predictions by Monte Carlo simulations by up to 100%. We conclude that computational simulations underestimate electron damage depths in the energy region {<=}2 keV. If this trend holds at higher electron energies as well, present models utilizing radiation-induced organic chemistry in icy solar system bodies need to be revisited. For interstellar ices of a few micron thicknesses, we conclude that low-energy electrons generated through photoionization processes in the interstellar medium could penetrate through ice grains significantly and trigger organic reactions several hundred nanometers deep-bulk chemistry thus competing with surface chemistry of astrophysical ice grains.« less

  13. [Potential Carbon Fixation Capability of Non-photosynthetic Microbial Community at Different Depth of the South China Sea and Its Response to Different Electron Donors].

    PubMed

    Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng

    2015-05-01

    The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.

  14. Dorso-ventral skin characterization of the farmed fish gilthead seabream (Sparus aurata)

    PubMed Central

    Cordero, Héctor; Ceballos-Francisco, Diana; Cuesta, Alberto

    2017-01-01

    The skin is the first barrier of defence in fish, protecting against any external stressor and preserving the integrity and homeostasis of the fish body. The aim of this study was to characterise gilthead seabream skin by isolating cells and studying the cell cycle by flow cytometry, to study the skin histology by scanning electron microscopy and the transcription level of some immune-relevant genes by RT-PCR. Furthermore, the results obtained from samples taken from the dorsal and the ventral part of the specimens are compared. No differences were observed in the cell cycle of cells isolated from the dorsal and ventral zones of the skin or in the gene expression of the genes studied in both epidermal zones. However, the epidermis thickness of the ventral skin was higher than that of the dorsal skin, as demonstrated by image analysis using light microscopy. Besides, scanning electron microscopy pointed to a greater cell size and area of microridges in the apical part of the dorsal epidermal cells compared with ventral skin epidermal cells. This study represents a step forward in our knowledge of the skin structure of an important farmed teleost, gilthead seabream, one of the most commonly farmed fish worldwide. Furthermore, for functional characterization, experimental wounds were carried out comparing the wound healing rate between the dorsal and ventral regions of skin over the time. The results showed higher ratio of wound healing in the ventral region, whose wounds were closed after 15 days, compared to dorsal region of skin. Taking into account all together, this study represents a step forward in our knowledge of the skin structure and skin regeneration of an important farmed teleost, gilthead seabream, one of the most commonly farmed fish worldwide. PMID:28666033

  15. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Maria F., E-mail: chanm@mskcc.org; Song, Yulin; Dauer, Lawrence T.

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed overmore » the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.« less

  16. Mechanism of action of stinging nettles.

    PubMed

    Cummings, Alexander J; Olsen, Michael

    2011-06-01

    Inadvertent exposure to the ubiquitous weed, Urtica dioica, called "stinging nettles" produces an immediate stinging and burning sensation on the skin. This investigation evaluates the structural effect that stinging nettle spicules may have on the clinical manifestation of these symptoms. This hypothesis was investigated by exposing murine skin to stinging nettles and then evaluating the skin using electron microscopy. It was hypothesized that the mechanism of action of stinging nettles is both biochemical and mechanical, which may have clinical significance regarding treatment for acute exposure. Fresh post-mortem dermis samples from the carcasses of genetically modified hairless mice were brushed under the stem and leaf of a stinging nettle plant, mimicking the clinical method of exposure a patient might experience. Another set of mouse skin samples was obtained but not exposed to the nettles. Both sets of skin samples were imaged with scanning electron microscopy. The skin samples that were not exposed to nettle leaves were uniform, with occasional striated hairs on the skin surface and no nettle spicules. The skin samples exposed to nettle leaves showed many smooth nettle spicules piercing the skin surface. A few spicules retained their bases, which appear empty of any liquid contents. The mechanism of action of stinging nettles dermatitis appears to be both biochemical and mechanical. Impalement of spicules into the skin likely accounts for the mechanical irritation in addition to the known adverse chemical effects of stinging nettles. Further investigation of treatment modalities is warranted. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Characterization of new DOPC/DHPC platform for dermal applications.

    PubMed

    Rodríguez, Gelen; Rubio, Laia; Barba, Clara; López-Iglesias, Carmen; de la Maza, Alfons; López, Olga; Cócera, Mercedes

    2013-05-01

    Systems formed by mixtures of the phospholipids dioleoylphosphatidylcholine (DOPC) and dihexanoylphosphatidylcholine (DHPC) were characterized by use of differential scanning calorimetry, small angle X-ray scattering and two electron-microscopy techniques, freeze fracture electron microscopy and cryogenic transmission electron microscopy. These techniques allowed for the determination of the size, morphology, structural topology, self-assembly and thermotropic behavior of the nanostructures present in the mixtures. The interaction between the two phospholipids provides curvatures, irregularities and the increase of thickness and flexibility in the membrane. These effects led to the formation of different aggregates with a differential distribution of both phospholipids. The effect of these systems on the skin in vivo was evaluated by measurement of the biophysical skin parameters. Our results show that the DOPC/DHPC application induces a decrease in the permeability and in the hydration of the tissue. These effects in vivo are related to different microstructural changes promoted by these systems in the skin in vitro, published in a recent work. The fundamental biophysical analyses of DOPC/DHPC systems contribute to our understanding of the mechanisms that govern their interaction with the skin.

  18. Skin and psyche--from the surface to the depth of the inner world.

    PubMed

    Beltraminelli, Helmut; Itin, Peter

    2008-01-01

    About 30% of dermatology patients have signs or symptoms of psychological problems. Dermatologists should be familiar with the basics needed to identify, advise and treat these patients. Because of the complex interaction between skin and psyche, it is difficult to distinguish whether the primary problem is the skin or the psyche. Sometimes the clinical picture is a consequence of interactions between them and other factors. The interactions between skin and psyche are well known in history, art and literature--perhaps better known today because the marked emphasis on such images in our modern multimedia society. Aging is increasingly perceived as an illness and not as a physiological process. Through globalization, many different cultural approaches to the skin have entered in our daily life and influence our communication. This article considers the most important dermatoses which often show primary or secondary interaction with the psyche.

  19. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter?

    PubMed Central

    Tak, Yu Kyung; Pal, Sukdeb; Naoghare, Pravin K.; Rangasamy, Sabarinathan; Song, Joon Myong

    2015-01-01

    Advancements in nano-structured materials have facilitated several applications of nanoparticles (NPs). Skin penetration of NPs is a crucial factor for designing suitable topical antibacterial agents with low systemic toxicity. Available reports focus on size-dependent skin penetration of NPs, mainly through follicular pathways. Herein, for the first time, we demonstrate a proof-of-concept study that entails variations in skin permeability and diffusion coefficients, penetration rates and depth-of-penetration of differently shaped silver NPs (AgNPs) via intercellular pathways using both in vitro and in vivo models. The antimicrobial activity of AgNPs is known. Different shapes of AgNPs may exhibit diverse antimicrobial activities and skin penetration capabilities depending upon their active metallic facets. Consideration of the shape dependency of AgNPs in antimicrobial formulations could help developing an ideal topical agent with the highest efficacy and low systemic toxicity. PMID:26584777

  20. Comparative dosimetry study of three UK centres implementing total skin electron treatment through external audit

    PubMed Central

    Gonzalez, R; McGovern, M; Greener, A

    2015-01-01

    Objective: This article describes the external audit measurements conducted in two UK centres implementing total skin electron beam therapy (TSEBT) and the results obtained. Methods: Measurements of output, energy, beam flatness and symmetry at a standard distance (95 or 100 cm SSD) were performed using a parallel plate chamber in solid water. Similarly, output and energy measurements were also performed at the treatment plane for single and dual fields. Clinical simulations were carried out using thermoluminescent dosemeters (TLDs) and Gafchromic® film (International Specialty Products, Wayne, NJ) on an anthropomorphic phantom. Results: Extended distance measurements confirmed that local values for the beam dosimetry at Centres A and B were within 2% for outputs and 1-mm agreement of the expected depth at which the dose is 50% of the maximum for the depth–dose curve in water (R50,D) value. Clinical simulation using TLDs) showed an agreement of −1.6% and −6.7% compared with the expected mean trunk dose for each centre, respectively, and a variation within 10% (±1 standard deviation) across the trunk. The film results confirmed that the delivery of the treatment technique at each audited centre complies with the European Organisation for Research and Treatment of Cancer recommendations. Conclusion: This audit methodology has proven to be a successful way to confirm the agreement of dosimetric parameters for TSEBT treatments at both audited centres and could serve as the basis for an audit template to be used by other audit groups. Advances in knowledge: TSEBT audits are not established in the UK owing to a limited number of centres carrying out the treatment technique. This article describes the audits performed at two UK centres prior to their clinical implementation. PMID:25761213

  1. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin.

    PubMed

    Kang, Jiheong; Son, Donghee; Wang, Ging-Ji Nathan; Liu, Yuxin; Lopez, Jeffrey; Kim, Yeongin; Oh, Jin Young; Katsumata, Toru; Mun, Jaewan; Lee, Yeongjun; Jin, Lihua; Tok, Jeffrey B-H; Bao, Zhenan

    2018-03-01

    An electronic (e-) skin is expected to experience significant wear and tear over time. Therefore, self-healing stretchable materials that are simultaneously soft and with high fracture energy, that is high tolerance of damage or small cracks without propagating, are essential requirements for the realization of robust e-skin. However, previously reported elastomers and especially self-healing polymers are mostly viscoelastic and lack high mechanical toughness. Here, a new class of polymeric material crosslinked through rationally designed multistrength hydrogen bonding interactions is reported. The resultant supramolecular network in polymer film realizes exceptional mechanical properties such as notch-insensitive high stretchability (1200%), high toughness of 12 000 J m -2 , and autonomous self-healing even in artificial sweat. The tough self-healing materials enable the wafer-scale fabrication of robust and stretchable self-healing e-skin devices, which will provide new directions for future soft robotics and skin prosthetics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.

    PubMed

    Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti

    2016-10-18

    Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.

  3. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-11-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable.

  4. Medical diagnosis system and method with multispectral imaging. [depth of burns and optical density of the skin

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Reilly, T. H. (Inventor)

    1979-01-01

    A skin diagnosis system includes a scanning and optical arrangement whereby light reflected from each incremental area (pixel) of the skin is directed simultaneously to three separate light filters, e.g., IR, red, and green. As a result, the three devices simultaneously produce three signals which are directly related to the reflectance of light of different wavelengths from the corresponding pixel. These three signals for each pixel after processing are used as inputs to one or more output devices to produce a visual color display and/or a hard copy color print, for one usable as a diagnostic aid by a physician.

  5. Modified blank ammunition injuries.

    PubMed

    Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan

    2009-12-15

    Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups, the longest penetration depth (lead projectile: 6.434 cm; steel projectile 8.608 cm) was recorded in the only skin simulant coated block. And the penetration depth of skin simulant and 100% cotton police shirt coated model was 5.870 cm for lead projectile; 8.440 cm for steel projectile. According to penetration results, national and international legislations and production standards should be re-evaluated in order to prevent the modification of blank weapons and ammunitions. There are three methods for preventing modification of blank weapons: completely closed barrel structure; intersected restrain pieces application; eccentric barrel structure.

  6. Using Optical Coherence Tomography to Evaluate Skin Sun Damage and Precancer

    PubMed Central

    Korde, Vrushali R.; Bonnema, Garret T.; Xu, Wei; Krishnamurthy, Chetankumar; Ranger-Moore, James; Saboda, Kathylynn; Slayton, Lisa D.; Salasche, Stuart J.; Warneke, James A.; Alberts, David S.; Barton, Jennifer K.

    2008-01-01

    Background and Objectives Optical coherence tomography (OCT) is a depth resolved imaging modality that may aid in identifying sun damaged skin and the precancerous condition actinic keratosis (AK). Study Design/Materials and Methods OCT images were acquired of 112 patients at 2 sun protected and 2 sun exposed sites, with a subsequent biopsy. Each site received a dermatological evaluation, a histological diagnosis, and a solar elastosis (SE) score. OCT images were examined visually and statistically analyzed. Results Characteristic OCT image features were identified of sun protected, undiseased, sun damaged, and AK skin. A statistically significant difference (P < 0.0001) between the average attenuation values of skin with minimal and severe solar elastosis was observed. Significant differences (P < 0.0001) were also found between undiseased skin and AK using a gradient analysis. Using image features, AK could be distinguished from undiseased skin with 86% sensitivity and 83% specificity. Conclusion OCT has the potential to guide biopsies and provide non-invasive measures of skin sun damage and disease state, possibly increasing efficiency of chemopreventive agent trials. PMID:17960754

  7. Chemical peeling in ethnic/dark skin.

    PubMed

    Roberts, Wendy E

    2004-01-01

    Chemical peeling for skin of color arose in ancient Egypt, Mesopotamia, and other ancient cultures in and around Africa. Our current fund of medical knowledge regarding chemical peeling is a result of centuries of experience and research. The list of agents for chemical peeling is extensive. In ethnic skin, our efforts are focused on superficial and medium-depth peeling agents and techniques. Indications for chemical peeling in darker skin include acne vulgaris, postinflammatory hyperpigmentation, melasma, scarring, photodamage, and pseudofolliculitis barbae. Careful selection of patients for chemical peeling should involve not only identification of Fitzpatrick skin type, but also determining ethnicity. Different ethnicities may respond unpredictably to chemical peeling regardless of skin phenotype. Familiarity with the properties each peeling agent used is critical. New techniques discussed for chemical peeling include spot peeling for postinflammatory hyperpigmentation and combination peels for acne and photodamage. Single- or combination-agent chemical peels are shown to be efficacious and safe. In conclusion, chemical peeling is a treatment of choice for numerous pigmentary and scarring disorders arising in dark skin tones. Familiarity with new peeling agents and techniques will lead to successful outcomes.

  8. Confounding factors in the use of the zero-heat-flow method for non-invasive muscle temperature measurement.

    PubMed

    Brajkovic, Dragan; Ducharme, Michel B

    2005-07-01

    This study evaluated a zero-heat-flow (ZHF), non-invasive temperature probe for in- vivo measurement of resting muscle temperature for up to 2 cm below the skin surface. The ZHF probe works by preventing heat loss from the tissue below the probe by actively heating the tissue until no temperature gradient exists across the probe. The skin temperature under the probe is then used as an indicator of the muscle temperature below. Eight subjects sat for 130 min during exposure to 28 degrees C air. Vastus lateralis (lateral thigh) muscle temperature was measured non-invasively using a ZHF probe which covered an invasive multicouple probe (which measured tissue temperature 0.5 cm, 1 cm, 1.5 cm, and 2 cm below the skin) located 15 cm superior to the patella (T (covered)). T (covered) was evaluated against an uncovered control multicouple probe located 20 cm superior to the patella (T (uncovered)). Rectal temperature and lateral thigh skin temperature were also measured. Mean T (uncovered) (based on average temperatures at the 0.5 cm, 1 cm, 1.5 cm, and 2 cm depths) and Mean T (covered) were similar from time 0 min to 60 min. However, when the ZHF was turned on at 70 min, Mean T (covered) increased by 2.11 +/- 0.20 degrees C by 130 min, while T (uncovered) remained stable. The ZHF probe temperature was similar to T (covered) at 1 cm and after time 85 min, significantly higher than T (covered) at the 0.5 cm, 1.5 cm, and 2 cm depths; however from a physiological standpoint, the temperatures between the different depths and the ZHF probe could be considered uniform (< or =0.2 degrees C separation). Rectal and thigh skin temperatures were stable at 36.99 +/- 0.08 degrees C and 32.82 +/- 0.23 degrees C, respectively. In conclusion, the non-invasive ZHF probe temperature was similar to the T (covered) temperatures directly measured up to 2 cm beneath the surface of the thigh, but all T (covered) temperatures were not representative of the true muscle temperature up to 2 cm below the skin because the ZHF probe heated the muscle by 2.11 +/- 0.20 degrees C during its operation.

  9. Depth distributions of light action spectra for skin chromophores

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  10. Nonablative fractional laser resurfacing in Asian skin--a review.

    PubMed

    Sachdeva, Silonie

    2010-12-01

    Skin resurfacing has been a part of cosmetic dermatology for more than two decades now, and most of it has been ablative with traditional aggressive lasers including the CO(2) and erbium. The last few years have seen a revolutionary change with the invention of nonablative lasers for skin tightening. Fractional resurfacing is a new concept of cutaneous remodeling whereby laser-induced zones of microthermal injury are surrounded by normal untreated tissue that helps in quicker healing. The various wavelengths used are 1320, 1440, and 2940 nm with depth of penetration ranging from 25 μ to 1.2 mm. This article reviews the history of nonablative fractional laser resurfacing, its indications, contraindications, and a review of use in Asian skin with Fitzpatrick type III-VI. © 2010 Wiley Periodicals, Inc.

  11. Elastically stretchable thin film conductors on an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  12. Lumbar epidural depth using transverse ultrasound scan and its correlation with loss of resistance technique: A prospective observational study in Indian population.

    PubMed

    Chauhan, Amit Kumar; Bhatia, Rohan; Agrawal, Sanjay

    2018-01-01

    The objective of the present study was to evaluate the skin-epidural space distance as assessed by ultrasonography and conventional loss of resistance (LOR) technique and to find the correlation of epidural depth with body mass index (BMI). Ninety-eight patients of either sex, American Society of Anesthesiology I/II, BMI <30 kg/m 2 requiring lumbar epidural for surgery were enrolled. The epidural space was assessed with a curvilinear ultrasound (US) probe, 2-5 MHz, in the transverse plane at L3-L4 intervertebral space. Thereafter, the epidural depth from skin was assessed with conventional LOR method while performing the epidural. The needle depth (ND) was measured using a sterile linear scale, and any change in the needle direction or intervertebral space was noted. The patients were demographically similar. Depth of epidural space measured by US depth (UD) was 3.96 ± 0.44 cm (range 3.18-5.44 cm) and by ND was 4.04 ± 0.52 cm (range 2.7-5.7 cm). The Pearson's correlation coefficient (r) between UD and ND was 0.935 (95% confidence interval: 0.72-0.92, r 2 = 0.874, P < 0.001), and Bland-Altman analysis revealed the 95% limits of agreement -0.494-0.652 cm. The present study demonstrates a good correlation between UD and ND and shows that the preprocedural US scan in transverse plane provides accurate needle entry site with a high success rate in single attempt for lumbar epidurals in patients with a BMI <30 kg/m 2 .

  13. Evaluation of an improved fiberoptics luminescence skin monitor with background correction.

    PubMed

    Vo-Dinh, T

    1987-06-01

    In this work, an improved version of a fiberoptics luminescence monitor, the prototype luminoscope II, is evaluated for in situ quantitative measurements. The instrument was developed to detect traces of luminescing organic contaminants on skin. An electronic background-nulling system was designed and incorporated into the instrument to compensate for various skin background emissions. A dose-response curve for a coal liquid spotted on mouse skin was established. The results illustrated the usefulness of the instrument for in vivo detection of organic materials on laboratory mouse skin.

  14. Electrosurgical skin resurfacing: a new bipolar instrument.

    PubMed

    Burns, R L; Carruthers, A; Langtry, J A; Trotter, M J

    1999-07-01

    Numerous modalities may be used for skin resurfacing, including chemical peels, dermabrasion, and lasers. Each of these methods is associated with significant disadvantages. The purpose of these initial studies was to determine the efficacy and safety of a new electrosurgical resurfacing system. Depth of cutaneous injury was also evaluated. Postoperative scar resurfacing was performed on six patients in the initial feasibility study. Patients were evaluated with questionnaires, physician observations, and photographs. The histologic investigation evaluated depth of injury after resurfacing at various power settings and number of passes. Appearance of postoperative scars in all 6 patients was improved by electrosurgical resurfacing. The overall injury, residual thermal damage plus ablation, for all power levels and passes was 114.1 micrometer (mean) with a standard deviation of 60.7 micrometer. Electrosurgical resurfacing may become an effective and safe alternative to current resurfacing modalities.

  15. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depthmore » measurements were compared with previously published B-T phase diagrams for these three compounds.« less

  16. Dissipative cryogenic filters with zero dc resistance.

    PubMed

    Bluhm, Hendrik; Moler, Kathryn A

    2008-01-01

    The authors designed, implemented, and tested cryogenic rf filters with zero dc resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in omega, as typical for skin depth based rf filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

  17. Electron diffusion region and thermal demagnetization

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Holdaway, R. D.; Glassberg, R.; Rodriguez, S. L.

    2008-10-01

    The demagnetized skin depth width electron diffusion region (EDR) distinguishes the innermost current layers of collisionless magnetic reconnection (CMR) from other current layers. Such narrow layers with virtually unknown properties are hard to identify in space observations. Soon, diagnosing it will be the central focus of NASA's Magnetospheric Multiscale Mission. Initial attempts have been made to frame necessary tests to ensure that the observer is in the EDR. Since none of the tests are sufficient to identify the EDR, it is important to vet as many necessary conditions as possible. In this way a winnowing process can lessen the likelihood of false positive detections of the EDR. Since the "necessary" criteria of the EDR are usually not amenable to direct experimental tests, a vetting process is desirable before accepting "necessary" proxy tests for the criteria of CMR. This paper proposes a further necessary test of an essential property of the EDR: the necessity that the thermal electrons be demagnetized in these regions. Without this attribute, the magnetic flux is essentially frozen to the electron fluid velocity and the topology breaking of CMR is thwarted. We have framed this test from kinetic theory, gathered the relevant observables, and used it with a published set of over 100 previously identified EDRs. Surprisingly, 99% of them are ≃100 times more magnetized than expected for the EDR of CMR theory. The outcome of this falsifiable test demonstrates the scientific dialogue is incomplete for framing adequate pragmatic tests for identifying EDRs.

  18. Shadow analysis via the C+K Visioline: A technical note.

    PubMed

    Houser, T; Zerweck, C; Grove, G; Wickett, R

    2017-11-01

    This research investigated the ability of shadow analysis (via the Courage + Khazaka Visioline and Image Pro Premiere 9.0 software) to accurately assess the differences in skin topography associated with photo aging. Analyses were performed on impressions collected from a microfinish comparator scale (GAR Electroforming) as well a series of impressions collected from the crow's feet region of 9 women who represent each point on the Zerweck Crow's Feet classification scale. Analyses were performed using a Courage + Khazaka Visioline VL 650 as well as Image Pro Premiere 9.0 software. Shadow analysis showed an ability to accurately measure the groove depth when measuring impressions collected from grooves of known depth. Several shadow analysis parameters showed a correlation with the expert grader ratings of crow's feet when averaging measurements taken from the North and South directions. The Max Depth parameter in particular showed a strong correlation with the expert grader's ratings which improved when a more sophisticated analysis was performed using Image Pro Premiere. When used properly, shadow analysis is effective at accurately measuring skin surface impressions for differences in skin topography. Shadow analysis is shown to accurately assess the differences across a range of crow's feet severity correlating to a 0-8 grader scale. The Visioline VL 650 is a good tool for this measurement, with room for improvement in analysis which can be achieved through third party image analysis software. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. New finding that might explain why the skin wrinkles more on various parts of the face.

    PubMed

    Tamatsu, Yuichi; Tsukahara, Kazue; Sugawara, Yasushi; Shimada, Kazuyuki

    2015-09-01

    The mechanism of formation of facial wrinkles has not been fully clarified due to the existence of many distinct influential factors. To clarify the relationship between facial wrinkles and structures in the skin, especially sebaceous glands, image analysis was performed on the forehead and lateral canthus regions of cadaveric skin specimens; 58 male and female donated cadavers (age range at death 20s - 90 s) were included in the study. Specimens were obtained from forehead and lateral canthus region after measuring wrinkle depth. Then tissue slices were prepared to observe the sebaceous gland and its density was measured and analyzed in relation to wrinkle depth, retinacula cutis density, dermal thickness, and solar elastosis degree. A correlation was found between sebaceous gland density and wrinkle depth in forehead specimens with a lower retinacula cutis density. Wrinkles were shallower in specimens with a higher sebaceous gland density. However, no such correlation was found in lateral canthus wrinkles, presumably due to the lack of sebaceous glands in that region. In addition, specimens with a higher sebaceous gland density tended to have a thicker dermis and/or less solar elastosis. Sebaceous gland density seems to be one of the multiple factors that prevent wrinkle deepening, and that is why wrinkles are deeper in the lateral canthus area than in the forehead. Functional studies will elucidate the mechanism of wrinkle formation in the future. © 2015 Wiley Periodicals, Inc.

  20. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

Top